Florent Jacquemard 
  
Lydia Rodriguez-De La Nava 
  
Symbolic Weighted Language Models, Quantitative Parsing and Automated Music Transcription

We study several classes of symbolic weighted formalisms: automata (swA), transducers (swT) and visibly pushdown extensions (swVPA, swVPT). They combine the respective extensions of their symbolic and weighted counterparts, allowing a quantitative evaluation of words over a large or infinite input alphabet. We present properties of closure by composition, the computation of transducer-defined distances between nested words and languages, as well as a PTIME 1-best search algorithm for swVPA. These results are applied to solve in PTIME a variant of parsing over infinite alphabets. We illustrate this approach with a motivating use case in automated music transcription.

Introduction

Symbolic Weighted (sw) language models [START_REF] Herrmann | Weighted symbolic automata with data storage[END_REF] (automata and transducers) combine two important extensions of standard models. On the one hand, symbolic extensions, like Symbolic Automata (sA [START_REF] D'antoni | The power of symbolic automata and transducers[END_REF]), can handle an infinite input alphabet Σ, by guarding every transition with a predicate φ : Σ → B. The ability of sA to compare input symbols is quite restricted, compared to other models of automata extended e.g. with registers (see [START_REF] Segoufin | Automata and logics for words and trees over an infinite alphabet[END_REF] for a survey), however, under appropriate closure conditions on the set of predicates, all the good properties enjoyed by automata over finite alphabets are still valid for sA. On the other hand, Weighted Automata (wA [START_REF] Droste | Handbook of Weighted Automata[END_REF]) extend qualitative evaluation of input words to quantitative evaluation, by assigning to every transition a weight value in a semiring S. The weights of the rules involved in a computation are combined using the product operator ⊗ of S, whereas the sum operator ⊕ of S is used to resolve ambiguity (typically, ⊕ selects, amongst two computations, the best weighted one). These extensions have also been applied to evaluate hierarchical structures, like trees [9, ch. 9], or nested words, with symbolic [START_REF] D'antoni | Symbolic Visibly Pushdown Automata[END_REF], or weighted [START_REF] Caralp | Visibly Pushdown Automata with Multiplicities: finiteness and k-boundedness[END_REF] extensions of Visibly Pushdown Automata (VPA [START_REF] Alur | Adding Nesting Structure to Words[END_REF]). With their ability to evaluate data sequences quantitatively, sw models have found various applications such as data stream processing [START_REF] Alur | Automata-Based Stream Processing[END_REF], runtime verification of timed systems [START_REF] Waga | Online quantitative timed pattern matching with semiring-valued weighted automata[END_REF] or robustness optimization for machine learning models [START_REF] Ma | Efficient Adversarial Sequence Generation for RNN with Symbolic Weighted Finite Automata[END_REF].

The sw models with data storage defined in [START_REF] Herrmann | Weighted symbolic automata with data storage[END_REF], where their expressiveness is extensively studied, are very general, and cover all the models cited above, as well as those considered in this paper. Here, we consider simple models of sw-automata and transducers whose transitions are assigned functions φ : Σ → S from input symbols in an infinite alphabet Σ into a semiring S (Section 3). Such functions generalize the boolean guards of symbolic models, from the Boolean codomain B to an arbitrary semiring S, and the constant values of weighted models. We prove some properties of closure under composition for those sw models, generalizing classical constructions for the composition of transducers [START_REF]word, language, grammar[END_REF], and propose a polynomial time algorithm of search for a word of minimal weight for swVPA (somehow a variant of reachability problems in pushdown automata [START_REF] Bouajjani | Reachability analysis of pushdown automata: Application to model-checking[END_REF]). We apply these results to the problem of parsing words over infinite alphabet (sw-parsing), whose goal is: given an (unstructured) input word s, to find a (structured) nested word t at a minimal distance from s, where the distance, following [START_REF] Mohri | Edit-distance of weighted automata: General definitions and algorithms[END_REF], is defined by T (s, t) ⊗ A(t), T being a swtransducer (swT) and A a swVPA (Section 4). The notion of transducer-based distances allows to consider different infinite alphabets for the input s and output t. Moreover, the use of swVPA allows to search for an output t in the form of a nested word, as a linear representation of a parse tree; sw-parsing is solved with a Bar-Hillel, Perles and Shamir construction [11, ch. 13], and the best-search algorithm for swVPA. We illustrate our approach with an application that motivated this work: automated music transcription, i.e. the problem of converting a linear music recording given in input into a score in Common Western Music Notation, a representation structured hierarchically [START_REF] Yust | Organized Time[END_REF].

Example 1. Let us consider a short input sequence I of musical events represented by symbols of the form e: τ in an infinite alphabet Σ, where e is a MIDI key number in 21..108 [START_REF]Beyond MIDI: the handbook of musical codes[END_REF], or the mark 'start' or 'end', and τ ∈ Q is a duration in seconds. Such inputs typically correspond to the recording of a live performance: I = start: 0.07, 69: 0.65, 71: 0.19, 73: 0.14, 74: 0.31, 76: 0.35, 77: 0.29, end: 0.

The output of parsing I is a nested word O, where separated notes are grouped into hierarchical patterns. It is made of symbols a: τ in an alphabet ∆, where a is either a note name, (e.g., A4, G5, etc.), a continuation symbol '-', or a markup symbol (opening or closing parenthesis). The time value τ is a musical duration. For instance, the music score 1). The symbol m marks the opening of a measure (a time interval of duration 1), while the subsequences of O between markups d : and d : , for some natural number d, represent the division of a duration by d. The sequence O ∈ ∆ * is a candidate solution for the transcription of I ∈ Σ * . Let us consider another candidate

3 1 4 is represented by the nested word: O = m : 2, 2 : 1, A4: 1 2 , 2 : 1 2 , -: 1 4 , 2 : 1 4 , B4: 1 8 , C 5 : 1 8 , 2 : 1 4 , 2 : 1 2 , 2 : 1, m : 1, 3 : 1, D5: 1 3 , E5: 1 3 , F5: 1 3 , 3 : 1, m : 1, m : 2 (see Figure
3 1 4 , repre- sented by O = m : 2, 2 : 1, A4: 1 2 , 2 : 1 2 , -: 1 4 , B4: 1 4 , 2 : 1 2 , 2 : 1, m : 1, 3 : 1, 'C 5 ':0, D5: 1 3 , E5: 1 3 , F5: 1 3 , 3 : 1, m : 1, m : 2.
The quoted symbol 'C 5 ' represents an appogiatura, i.e. an ornamental note of theoretical duration 0. Roughly, sw-parsing associates a weight value to each candidate, depending of its temporal distance to I and notational complexity. Our goal is to find a best candidate.

3 

2 m 2 A 4 2 -2 B 4 C 5 m 3 D 5 E 5 F 5 ε m 2 A 4 2 - B 4 m 3 'C 5 ',D 5 E 5 F 5 ε Fig. 1.
: ∀x ∈ S, 0 ⊗ x = x ⊗ 0 = 0. A semiring S is commutative if ⊗ is commutative. It is idempotent if for every x ∈ S, x ⊕ x = x.
Every idempotent semiring S induces a partial ordering ≤ ⊕ called the natural ordering of S [START_REF] Mohri | Semiring frameworks and algorithms for shortest-distance problems[END_REF], defined by: for every x, y ∈ S, x ≤ ⊕ y iff x⊕ y = x. It is sometimes defined in the opposite direction [9, ch. 1]; we follow here the direction that coincides with the usual ordering on the Tropical semiring min-plus (Figure 2). An idempotent semiring S is called total if ≤ ⊕ is total, i.e. when for every x, y ∈ S, either x ⊕ y = x or x ⊕ y = y.

Lemma 1 (Monotony, [START_REF] Mohri | Semiring frameworks and algorithms for shortest-distance problems[END_REF]). If S, ⊕, 0, ⊗, 1 is idempotent, for every x, y, z ∈ S,

x ≤ ⊕ y implies x ⊕ z ≤ ⊕ y ⊕ z, x ⊗ z ≤ ⊕ y ⊗ z and z ⊗ x ≤ ⊕ z ⊗ y.
We say that S is monotonic wrt ≤ ⊕ . Another important semiring property in the context of optimization is superiority ((i) of Lemma 2), which generalizes the non-negative weights condition in Dijkstra's shortest-path algorithm. Intuitively, it means that combining elements with ⊗ always increases their weight.

Lemma 2 (Superiority, Boundedness). Let S, ⊕, 0, ⊗, 1 be an idempotent semiring. The two following statements are equivalent: (i) for all x, y ∈ S, x ≤ ⊕ x ⊗ y and y ≤ ⊕ x ⊗ y (ii) for all x ∈ S, 1 ⊕ x = 1.

The property (i) of superiority implies that 1 ≤ ⊕ z ≤ ⊕ 0 for all z ∈ S (by setting x = 1 and y = 0 in Lemma 2). From an optimization point of view, it means that 1 is the best value, and 0 the worst. A semiring S with property (ii) of Lemma 2 is called bounded in [START_REF] Mohri | Semiring frameworks and algorithms for shortest-distance problems[END_REF] and in the rest of the paper. Lemma 3 ([16], Lemma 3). Every bounded semiring is idempotent.

We need to extend ⊕ to infinitely many operands. A semiring S is called complete [9, ch. 1] if it has an operation i∈I x i for every family (x i ) i∈I of elements in the domain of S, over an index set I ⊆ N, such that:

domain ⊕ ⊗ 0 1 Boolean {⊥, } ∨ ∧ ⊥ Viterbi [0, 1] ⊂ R max × 0 1 Tropical min-plus R+ ∪ {∞} min + ∞ 0 
Fig. 2. Some commutative, bounded, total and complete semirings.

i. infinite sums extend finite sums: ∀j, k ∈ N, j = k,

i∈∅ x i = 0, i∈{j} x i = x j , i∈{j,k} x i = x j ⊕ x k ,
ii. associativity and commutativity: for all partition (I j ) j∈J of I, j∈J i∈Ij

x i = i∈I x i ,
iii. distributivity of products over infinite sums: for all I ⊆ N, ∀x, y ∈ S,

i∈I (x ⊗ y i ) = x ⊗ i∈I y i , and i∈I (x i ⊗ y) = ( i∈I x i ) ⊗ y.
Label Theories. The functions labelling the transitions of sw-automata and transducers generalize the Boolean algebras of [START_REF] D'antoni | The power of symbolic automata and transducers[END_REF]. We consider alphabets, which are non-empty countable sets of symbols denoted by Σ, ∆... and write Σ * for the set of finite sequences (words) over Σ, ε for the empty word, Σ + = Σ * \ {ε}, and uv for the concatenation of u, v ∈ Σ * . Given a semiring S, ⊕, 0, ⊗, 1 , a label theory Φ over S is an indexed family of sets Φ Σ , resp. Φ Σ,∆ , containing recursively enumerable functions of type Σ → S, resp. Σ × ∆ → S, and such that if Φ Σ,∆ ∈ Φ, then Φ Σ ∈ Φ and Φ ∆ ∈ Φ, every Φ Σ , Φ Σ,∆ ∈ Φ contains all the constant functions of Σ → S, resp. Σ × ∆ → S, for all Φ Σ,∆ ∈ Φ, η ∈ Φ Σ,∆ , a ∈ Σ, b ∈ ∆, the partial application x → η(x, b) is in Φ Σ and the partial application y → η(a, y) is in Φ ∆ , and Φ is closed under the following operators, derived from the operations of S:

-For all Φ Σ ∈ Φ, all φ ∈ Φ Σ , and α ∈ S, α ⊗ φ : x → α ⊗ φ(x), and φ ⊗ α : x → φ(x) ⊗ α are in Φ Σ , and similarly for ⊕ and for Φ Σ,∆ .

-For all Φ Σ ∈ Φ, all φ, φ ∈ Φ Σ , φ ⊗ φ : x → φ(x) ⊗ φ (x) is in Φ Σ . -For all Φ Σ,∆ ∈ Φ, all η, η ∈ Φ Σ,∆ , η ⊗η : x, y → η(x, y)⊗η (x, y) is in Φ Σ,∆ . -For all Φ Σ , Φ Σ,∆ ∈ Φ, all φ ∈ Φ Σ and η ∈ Φ Σ,∆ , φ⊗ 1 η : x, y → φ(x)⊗η(x, y) and η ⊗ 1 φ : x, y → η(x, y) ⊗ φ(x) are in Φ Σ,∆ . -For all Φ ∆ , Φ Σ,∆ ∈ Φ, all ψ ∈ Φ ∆ and η ∈ Φ Σ,∆ , ψ⊗ 2 η : x, y → ψ(y)⊗η(x, y) and η ⊗ 2 ψ : x, y → η(x, y) ⊗ ψ(y) are in Φ Σ,∆ . -Analogous closures hold for ⊕.
Example 2. We go back to Example 1. In order to align an input in Σ * with a music score in ∆ * , we must account for the expressive timing of human performance that results in small time shifts between an input event of Σ and a notational event in ∆. These shifts can be weighted as a distance in Φ Σ,∆ , defined in the tropical min-plus semiring by δ(e: τ , a: τ ) = |τ -τ | if a corresponds to e (e.g. e is the MIDI key 69 and a is the note A4), or 0 otherwise. 3

SW Visibly Pushdown Automata and Transducers

Let S, ⊕, 0, ⊗, 1 be a commutative and complete semiring and let Σ and ∆ be countable alphabets called input and output respectively, such that ∆ is partitioned into three disjoint subsets of symbols ∆ i , ∆ c and ∆ r , called respectively internal, call and return [START_REF] Alur | Adding Nesting Structure to Words[END_REF]. Let Φ be a label theory over S, consisting of 

Φ e = Φ Σ , Φ i = Φ ∆ i , Φ c = Φ ∆c , Φ r = Φ ∆r , Φ ei = Φ Σ
Q × Q → Φ ei , w c : Q × Q × P → Φ c , w r : Q × P × Q → Φ cr , w e r : Q × Q → Φ r .
For convenience, we extend the above transition functions as follows, for every q, q ∈ Q, p ∈ P , e ∈ Σ, a ∈ ∆ i , c ∈ ∆ c , r ∈ ∆ r , overloading their names:

w 10 (q, e, ε, q ) = φ(e) where φ = w 10 (q, q ), w 01 (q, ε, a, q ) = φ(a) where φ = w 01 (q, q ), w 11 (q, e, a, q ) = η(e, a) where η = w 11 (q, q ), w c (q, ε, c, q , p) = φ(c) where φ = w c (q, q , p), w r (q, c, p, ε, r, q ) = η(c, r) where η = w r (q, p, q ), w e r (q, ε, r, q ) = φ(r) where φ = w e r (q, q ).

The swVPT T computes asynchronously on pairs s, t ∈ Σ * × ∆ * . Intuitively, a transition w ij (q, e, a, q ), with i, j ∈ {0, 1} and e ∈ Σ ∪ {ε}, a ∈ ∆ i ∪ {ε}, is interpreted as follows: when reading e and a in the input and output words, it increments the current position in the input word if and only if i = 1, and in the output word iff j = 1, and changes state from q to q . When e = ε (resp. a = ε), the current symbol in the input (resp. output) is not read. These transitions ignore the stack. A transition of w c (q, ε, c, q , p) reads the call symbol c ∈ ∆ c in the output word, pushes it to the stack along with p ∈ P , and changes state from q to q . As for w r (q, c, p, ε, r, q ) and w e r (q, ε, r, q ) (used when the stack is empty), they read the return symbol r in the output word and change state from q to q . Additionally, w r reads and pops from the stack a pair c, p and the symbol c is compared to r by the function η = w r (q, p, q ) ∈ Φ cr .

Formally, the computations of the transducer T are defined with an intermediate function weight

T . A configuration q[γ] is composed of a state q ∈ Q and a stack content γ ∈ Γ * , where Γ = ∆ c × P , and weight T is a function from [Q × Γ * ] × Σ * × ∆ * × [Q × Γ * ]
into S, whose recursive definition enumerates each of the possible cases for reading e ∈ Σ, a ∈ ∆ i , c ∈ ∆ c , or r ∈ ∆ r (the empty stack is denoted by ⊥, and the topmost symbol is the last pushed pair):

weight T q[γ], ε, ε, q [γ ]) = 1 if q = q , γ = γ and 0 otherwise (1) weight T q[γ], e u, ε, q [γ ] = q ∈Q w 10 (q, e, ε, q ) ⊗ weight T q [γ], u, ε, q [γ ] weight T q[γ], ε, a v, q [γ ] = q ∈Q w 01 (q, ε, a, q ) ⊗ weight T q [γ], ε, v, q [γ ] weight T q[γ], e u, a v, q [γ ] = q ∈Q w 10 (q, e, ε, q ) ⊗ weight T q [γ], u, a v, q [γ ] ⊕ q ∈Q w 01 (q, ε, a, q ) ⊗ weight T q [γ], e u, v, q [γ ] ⊕ q ∈Q w 11 (q, e, a, q ) ⊗ weight T q [γ], u, v, q [γ ] weight T q[γ], u, c v, q [γ ] = q ∈Q p∈P w c (q, ε, c, q , p) ⊗ weight T q c, p γ , u, v, q [γ ] weight T q c, p γ , u, r v, q [γ ] = q ∈Q w r q, c, p, ε, r, q ⊗ weight T q [γ], u, v, q [γ ] weight T q[⊥], u, r v, q [γ ] = q ∈Q w e r (q, ε, r, q ) ⊗ weight T q [⊥], u, v, q [γ ]
We recall that, by convention, an empty sum with is equal to 0. The weight associated by T to an input/output pair s, t ∈ Σ * × ∆ * is defined according to empty stack semantics:

T (s, t) = q,q ∈Q in(q) ⊗ weight T q[⊥], s, t, q [⊥] ⊗ out(q ) ( 2 
)
Since 0 is absorbing for ⊗, and neutral for ⊕ in S, if a transition's weight is equal to 0, then the entire term is 0, meaning the transition is impossible. This is analogous to the case of a transition's guard not satisfied in symbolic models [START_REF] D'antoni | The power of symbolic automata and transducers[END_REF].

Symbolic Weighted Visibly Pushdown Automata. swVPA are the particular case of swVPT that do not read in the input word, i.e. where all w 10 and w 11 are constant functions equal to 0, or, equivalently, Σ = ∅ (see Appendix C for details). They are a weighted extension of sVPA [START_REF] D'antoni | Symbolic Visibly Pushdown Automata[END_REF], from Boolean semirings to arbitrary semiring domains. A relationship between swVPA and sw-Tree Automata is presented in Appendix F.

Example 3. We consider a swVPA A over ∆ * , with P = Q, computing a value of notational complexity for a given score. In a sequence O ∈ ∆ * like in Example 1, ∆ i contains timed notes and continuations, and ∆ c and ∆ r contain respectively opening and closing parentheses. To a call symbol n : , for some duration value , let us associate a transition for the division of by n: w c q , ε, n : , q n , q = α n ∈ S. And to the matching return symbol n : , we associate a transition of weight 1: w r q n , n : , q , ε, n : , q = 1, which jumps to the state q stored in the stack. The choice of weight values for the call transitions can express some preferences in term of the expected output notation: if we want to prioritize pairs over triplets, in the Tropical min-plus semiring, then we would let α 2 < α 3 . It is able to compute on several representations of a piece of music, estimating for each one a weight value depending on the preferences that we set. The algorithm of Theorem 4 then allows to select the best weighted representation.

3

Symbolic Weighted Transducers. swT are the particular case of swVPT that do not use the stack during their computations, because all w c , w r and w e r are constant functions equal to 0, or, more simply, because

∆ c = ∆ r = ∅ (see App C).
The four first lines in expression (1) can be seen as a stateful definition of an edit-distance between a word s ∈ Σ * and a word t ∈ ∆ i * , see also [START_REF] Mohri | Edit-distance of weighted automata: General definitions and algorithms[END_REF]. Intuitively, in this vision, w 10 (q, e, ε, q ) is the cost of the deletion of the symbol e ∈ Σ in s, w 01 (q, ε, a, q ) is the cost of the insertion of a ∈ ∆ i in t, and w 11 (q, e, a, q ) is the cost of the substitution of e ∈ Σ by a ∈ ∆ i . Following (2), the cost of a sequence of such operations transforming s into t is the product in terms of ⊗ of the individual costs of the operations involved, and the distance between s and t is the sum in terms of ⊕ of all possible products.

Example 4. We propose a swT over Σ and ∆ i that computes the distance between an input I ∈ Σ * and an output O ∈ ∆ i * like in Ex. 1 (for δ, see Ex. 2):

w 11 (q 0 , e: τ , a: τ , q 0 ) and w 11 (q 1 , e: τ , a: τ , q 0 ) = δ(e: τ , a: τ ) if a =w 01 (q 0 , ε, -: τ , q 0 ) = 1 w 01 (q 1 , ε, -: τ , q 0 ) = 1 w 10 (q 0 , e: τ , ε, q 1 ) = α

The continuation symbol -(e.g. in ties ˇ" ˇ" ( , or dots ˇ" ‰ ) is skipped with no cost (w 01 ). We also want to consider performing errors, by switching to an error state q 1 . Reading an extra event e is handled by w 10 that switches to q 1 , with a fixed α ∈ S, then w 11 and w 01 can switch back to q 0 . Finally, we let q 0 be the initial and final state, with in(q 0 ) = out(q 0 ) = 1, and in(q 1 ) = out(q 1 ) = 0. 3 Symbolic Weighted Automata. swA are particular cases of swT omitting the output symbols, or equivalently, swVPA without markups (∆ c = ∆ r = ∅).

Symbolic Weighted Parsing

Parsing is the problem of structuring a linear representation (a finite word) according to a language model [START_REF] Grune | Parsing Techniques[END_REF]. We shall consider in this section the problem of parsing over an infinite alphabet. Let S Σ, ∆, and Φ be like in Section 3. We assume to be given the following input:

a swT T over Σ, ∆ i , S, and Φ, defining a measure T : Σ * × ∆ i * → S, a swVPA A over ∆, S, and Φ, defining a measure A : ∆ * → S, an (unstructured) input word s ∈ Σ * .

For every u ∈ Σ * and t ∈ ∆ * , let d T (u, t) = T u, t| ∆ i , where t| ∆ i ∈ ∆ i * is the projection of t onto ∆ i , obtained from t by removing all symbols in ∆ \ ∆ i . Given the above input, symbolic weighted parsing aims at of finding a (structured) nested word t ∈ ∆ * that minimizes d(s, t) ⊗ A(t) wrt ≤ ⊕ , i.e. such that:

d T (s, t) ⊗ A(t) = v∈∆ * d T (s, v) ⊗ A(u) (3) 
In the terminology of [START_REF] Mohri | Edit-distance of weighted automata: General definitions and algorithms[END_REF], sw-parsing is the problem of computing the distance (3) between the input word s and the weighted language over the output alphabet defined by A, and returning a witness t.

Example 5. In the running example, the input is as follows: The swT T evaluates a "fitness measure": a temporal distance between a performance and a nestedword representation of a music score (Example 4). The swVPA A expresses a weight related to the complexity of music notation (Example 3). The input word is I of Example 1. The notation

3 1 4
Music engraving by LilyPond 2.20.0-www.lilypond.org

, will be favored over when the weight assigned to the call 2 is less than the difference of weight between the appogiatura 'C 5 ' and the standard note C 5 . The sw-parsing framework, applied to music transcription, finds an optimal solution considering both the fitness of the output to the input, and its notational complexity.

3

Nested words in ∆ * can represent linearizations of labeled trees, and to any Weighted Regular Tree Grammar (wRTG), we can associate in polynomial time a swVPA computing the same weight (see Appendix F). Therefore, instead of a swVPA in input, we may be given a wRTG, or a weighted CFG (wCFG), for a definition closer to conventional parsing. The sw-parsing problem hence generalizes the problem of searching for the best derivation tree of a wCFG G that yields a given input word w, with an infinite input alphabet instead of a finite one and transducer-defined distances instead of equality. It is however uncomparable to the related problems of semiring parsing [START_REF] Goodman | Semiring Parsing[END_REF], and weighted parsing [START_REF] Mörbitz | Weighted parsing for grammar-based language models[END_REF].

In Section 5, we present results on swVPT and subclasses (automata construction and best-search algorithm) that can be applied for solving sw-parsing.

Theorem 1. The problem of Symbolic Weighted Parsing can be solved in PTI-ME in the size of the input swT T , swVPA A and input word s, and the computation time of the functions and operators of the label theory.

Proof. We follow an approach of parsing as intersection [11, ch. 13]. First, we associate to T and A a swVPT called (T ⊗ A), computing the product of the respective weights for the two models (Theorem 2): i.e. (T ⊗A)(u, t) = d T (u, t)⊗ A(t). Then, we construct a swVPA computing, for t ∈ ∆ * , (T ⊗ A)(s, t) = d T (s, t) ⊗ A(t) (Theorem 3). Finally, with the algorithm of Theorem 4, we find a best t ∈ ∆ * minimizing the latter value wrt ≤ ⊕ , i.e. a solution of sw-parsing.

Properties and Best-Search Algorithm

In the following results, we assume that the functions of a label theory Φ are given in a finite representation (e.g. Turing machine) in the definitions of swVPT, and provide complexity bounds parameterized by the semiring operators and the operators of Section 2 over the functions of Φ (the latter might be represented symbolically by structures like Algebraic Decision Diagrams [START_REF] Bahar | Algebraic decision diagrams and their applications[END_REF]).

Similarly to VPA [START_REF] Alur | Adding Nesting Structure to Words[END_REF] and sVPA [START_REF] D'antoni | Symbolic Visibly Pushdown Automata[END_REF], the class of swVPT is closed under the binary operators of the underlying semiring.

Proposition 1. Let T 1 , T 2 be two swVPT over the same Σ, ∆, commutative S and Φ. There exist two effectively constructible swVPT T 1 ⊕ T 2 and T 1 ⊗ T 2 , such that for every s ∈ Σ * and t ∈ ∆ * , (T

1 ⊕ T 2 )(s, t) = T 1 (s, t) ⊕ T 2 (s, t) and (T 1 ⊗ T 2 )(s, t) = T 1 (s, t) ⊗ T 2 (s, t).
Proof. Classical Cartesian product construction, similar to the case of the Boolean semiring [START_REF] D'antoni | Symbolic Visibly Pushdown Automata[END_REF], see Appendix B for details.

The following result shows how to compose, in a single swVPT, the two measures as input of sw-parsing: the swT computing input-output distance and the swVPA expressing the weight of parse trees' linearization.

Theorem 2. Given a swT T over Σ, ∆ i , commutative S, and Φ, and a swVPA A over ∆, S, Φ, one can construct in PTIME a swVPT T ⊗ A, over Σ, ∆, S, Φ,

such that ∀s ∈ Σ * , t ∈ ∆ * , (T ⊗ A)(s, t) = T (s, t| ∆ i ) ⊗ A(t).
Proof. (sketch, see Appendix C for details). The state set of T ⊗A is the Cartesian product of the state sets of T and A, and every transition of T ⊗ A is either a transition of T or a transition of A of the same kind (in these cases the state of the other machine remains the same), or a product of two transitions w 11 of T and A.

The next result is the construction, as a swVPA, for the partial application of a swVPT, fixing an input word s as its first argument.

Theorem 3. Given a swVPT T over Σ, ∆, commutative, complete and idempotent S, and Φ, and given s ∈ Σ * , there exists an effectively constructible swVPA T (s) over ∆, S, and Φ, such that for every t ∈ ∆ * , T (s)(t) = T (s, t).

Proof. (sketch, see Appendix D). We construct an automaton that simulates, while reading an output word t ∈ ∆ * , the synchronized computation of T on s and t. The main difficulty comes from the transitions of T of the form w 10 , which read in input s and ignore the output t. Since the automaton A(T ) only reads the output word t, we add to A(T ) a corresponding ε-transition, and show how to remove the ε-transitions from a swVPA while preserving its language.

We present now a procedure for searching a word of minimal weight for a swVPA A, a variant of reachability problems in pushdown automata [START_REF] Bouajjani | Reachability analysis of pushdown automata: Application to model-checking[END_REF].

First of all, for a complete semiring S, we consider the following operators on the functions of a label theory Φ:

Σ : Φ Σ → S, φ → a∈Σ φ(a) 1 Σ : Φ Σ,∆ → Φ ∆ , η → y → a∈Σ η(a, y) 2 ∆ : Φ Σ,∆ → Φ Σ , η → x → b∈∆ η(x, b)
Intuitively, Σ returns the global minimum, wrt ≤ ⊕ , of a function φ of Φ Σ , and

1 Σ , 2
∆ return partial minimums of a function η of Φ Σ,∆ . A label theory is called effective when the three above operators applied on its functions are recursively enumerable, and there exists a function returning a witness symbol that reaches the minimum. In the complexity bounds, we assume a constant time evaluation for these operators. Effectiveness of label theories is a strong restriction, although realistic for the case study presented in this paper. It is satisfied e.g. by functions with a codomain {0, α}, with α < ⊕ 0, generalizing the boolean guards of [START_REF] D'antoni | Symbolic Visibly Pushdown Automata[END_REF][START_REF] D'antoni | The power of symbolic automata and transducers[END_REF] to filters returning null or constant weight values.

Theorem 4. For a swVPA A over ∆, S commutative, complete, bounded and total, and Φ effective, one can construct in PTIME a word t ∈ ∆ * such that A(t) is minimal wrt the natural ordering ≤ ⊕ for S.

Proof. Let A = Q, P, in, w, out . For every q, q ∈ Q, let b ⊥ (q, q ) be the minimum, wrt ≤ ⊕ , of the function β q,q : t → weight A (q[⊥], ε, t, q [⊥]). By definition of ≤ ⊕ , and since S is complete and total, it holds that: b ⊥ (q, q ) = t∈∆ * weight A q[⊥], ε, t, q [⊥] (see [START_REF]library qparse for music transcription[END_REF] for the definition of weight A ). Following (2), and the algebraic properties of ⊗ and ⊕, the minimum of A(t) wrt ≤ ⊕ is:

t∈∆ * A(t) =
t∈∆ * q,q ∈Q in(q) ⊗ β q,q (t) ⊗ out(q ) = q,q ∈Q in(q) ⊗ b ⊥ (q, q ) ⊗ out(q ) (4) Hence, in order to prove Theorem 4, it is sufficient to show that for all q, q ∈ Q, we can compute b ⊥ (q, q ) in PTIME. We proceed by searching for a best weighted derivation in a S-labeled hypergraph G A associated to the swVPA A. It has a set of vertices V A = (Q × {⊥, } × Q), where is a new symbol representing a non-empty stack, a set of hyperedges

E A = (V A × V A ) ∪ (V A × V A × V A )
, and an hyperedge labelling function η A : E A → S defined as follows, for q 0 , q 0 , q 1 , q 2 , q 3 ∈ Q, (w i is another name for w 01 , like in Appendix C, Definition 3): q 0 , ⊥, q 1 , q 0 , γ, q 2 → 0 if γ = or (γ = ⊥ and q 0 = q 0 ) q 0 , ⊥, q 1 , q 0 , ⊥, q 2 → ∆ i w i (q 1 , q 2 ) ⊕ ∆r w e r (q 1 , q 2 ) q 1 , , q 2 , q 0 , ⊥, q 3 → p∈P ∆c w c (q 0 , q 1 , p) ⊗ 2 ∆r w r (q 2 , p, q 3 ) q 1 , , q 2 , q 0 , , q 3 → q1=q0 ∆ i w i (q 2 , q 3 ) ⊕ p∈P ∆c w c (q 0 , q 1 , p) ⊗ 2 2 ∆r w r (q 2 , p, q 3 ) q 0 , γ 1 , q 1 , q 1 , γ 2 , q 2 , q 0 , γ, q 2 → 1 if γ 1 = γ 2 = γ or 0 otherwise. Intuitively, a vertex v = q, ⊥, q (resp. v = q, , q ) of G A represents computations of A starting in state q with an empty stack (resp. non-empty stack γ), and ending in state q with an empty stack (resp. the same non-empty stack γ). The best weight of such computations is the best cumulated weight of hyperedges along a derivation to v. More precisely, a derivation of G A is a V A -labeled binary tree of the form, v, v(θ 1 ) or v(θ 1 , θ 2 ), where θ 1 and θ 2 are sub-derivations, and its weight is defined by (for i = 1, 2, the root of θ i , is labeled with v i ∈ V A ):

weight( q, ⊥, q ) = weight( q, , q ) = 1, -weight( q, ⊥, q ) = weight( q, , q

) = 0 if q = q , -weight v(θ 1 ) = weight(θ 1 ) ⊗ η A (v 1 , v) -weight v(θ 1 , θ 2 ) = weight(θ 1 ) ⊗ weight(θ 2 ) ⊗ η A (v 1 , v 2 , v).
With D(G A , v) denoting the set of derivations of G A with root labeled with v ∈ V A , it holds that (see Appendix E for the proof of the following Lemma 4): Lemma 4. For all q, q ∈ Q, b ⊥ (q, q ) = θ∈D(G A , q,⊥,q ) weight(θ).

Therefore, computing b ⊥ (q, q ) reduces to the search for a smallest weighted derivation of G A (wrt ≤ ⊕ ) rooted with q, ⊥, q , a problem solvable in PTIME [START_REF] Huang | Advanced dynamic programming in semiring and hypergraph frameworks[END_REF], because S is monotonic wrt ≤ ⊕ and superior (Lemma 2). Therefore, by (4), the minimum of t → A(t), wrt ≤ ⊕ , can be computed in PTIME. Moreover, a witness t ∈ ∆ * for this minimum can be associated to the appropriate best derivation, with no additional cost. For details on the extraction of this witness, see Appendix E, the proof of Lemma 4, and Lemma 6.

Conclusion

We presented closure properties and one decision algorithm for three classes of Symbolic Weighted language models: swVPT, swT and swVPA, and applied these results to the problem of parsing with infinitely many input symbols (typically timed events). In our approach to parsing, words are compared by computing a distance between them, defined by a given sw-transducer, which allows to consider finer word relationships than strict equality.

The application to automated music transcription suggested in a toy example has been implemented in a C++ library [START_REF]library qparse for music transcription[END_REF], following the principles of the present sw-parsing framework, although some differences; e.g. the automata constructions are performed on-the-fly during best-search for efficiency reasons. One advantage of this swVPA approach is the global view provided by the stack during transcription, as opposed to other HMM-based approaches [START_REF] Shibata | Non-local musical statistics as guides for audio-to-score piano transcription[END_REF].

This work can be extended in several directions. The best-search algorithm for swVPA could be generalized from 1-best to n-best [START_REF] Huang | Better k-best parsing[END_REF], and to k-closed semirings [START_REF] Mohri | Semiring frameworks and algorithms for shortest-distance problems[END_REF] (instead of bounded, which corresponds to 0-closed ). One could also study the generalization of the best-search algorithm of Theorem 4 to the computation of the best possible output of a swVPT for a given input, or even to the more general models of [START_REF] Herrmann | Weighted symbolic automata with data storage[END_REF].

Finally, the best-search algorithm presented here works offline, whereas an onthe-fly approach coupling automata construction and best-search would be interesting e.g. for online XML validation or filtering, or program monitoring [START_REF] D'antoni | Symbolic Visibly Pushdown Automata[END_REF].

Appendices A Lemmata on Semirings

Lemma 2 (Superiority, Boundedness). Let S, ⊕, 0, ⊗, 1 be an idempotent semiring. The two following statements are equivalent: (i) for all x, y ∈ S, x ≤ ⊕ x ⊗ y and y ≤ ⊕ x ⊗ y (ii) for all x ∈ S, 1 ⊕ x = 1.

Proof. (ii) ⇒ (i) : x ⊕ (x ⊗ y) = x ⊗ (1 ⊕ y) = x, by distributivity of ⊗ over ⊕. Hence x ≤ ⊕ x ⊗ y. Similarly, y ⊕ (x ⊗ y) = (1 ⊕ x) ⊗ y = y, hence y ≤ ⊕ x ⊗ y. (i) ⇒ (ii) : by the second inequality of (i), with y = 1, 1 ≤ ⊕ x ⊗ 1 = x, i.e., by definition of ≤ ⊕ , 1 ⊕ x = 1.
Lemma 3 ([16], Lemma 3). Every bounded semiring is idempotent.

Proof. By boundedness, 1⊕1 = 1, and idempotency follows by multiplying both sides by x and distributing.

B Proof of Proposition 1

Proposition 1. Let T 1 , T 2 be two swVPT over the same Σ, ∆, commutative S and Φ. There exist two effectively constructible swVPT T 1 ⊕ T 2 and T 1 ⊗ T 2 , such that for every s ∈ Σ * and t ∈ ∆ * , (T

1 ⊕ T 2 )(s, t) = T 1 (s, t) ⊕ T 2 (s, t) and (T 1 ⊗ T 2 )(s, t) = T 1 (s, t) ⊗ T 2 (s, t).
Proof. We prove the closure under ⊗ (the case of ⊕ is similar). Let T 1 = Q 1 , P 1 , in 1 , w1 , out 1 and T 2 = Q 2 , P 2 , in 2 , w2 , out 2 . We can build a swVPT T 1 ⊗ T 2 by a classical product construction. We define T 1 ⊗ T 2 = Q, P, in, w, out , whose set of states Q = Q 1 × Q 2 is the Cartesian product of the respective sets of states of T 1 and T 2 , and auxiliary set of stack symbols P = P 1 × P 2 is the product of their sets of stack symbols. The state entering and leaving functions in, out and the tuplet of transition functions w are defined using the label-theory operators of Section 2 as follows, for all q 1 , q 2 , q 1 , q 2 ∈ Q and p 1 , p 2 , p 1 , p 2 ∈ P : in q 1 , q 2 = in 1 (q 1 ) ⊗ in 2 (q 2 ) out q 1 , q 2 = out 1 (q 1 ) ⊗ out 2 (q 2 ) w 10 q 1 , q 2 , q 1 , q 2 = w 10,1 (q 1 , q 1 ) ⊗ w 10,2 (q 2 , q 2 ) w 01 q 1 , q 2 , q 1 , q 2 = w 01,1 (q 1 , q 1 ) ⊗ w 01,2 (q 2 , q 2 ) w 11 q 1 , q 2 , q 1 , q 2 = w 11,1 (q 1 , q 1 ) ⊗ w 11,2 (q 2 , q 2 ) w c q 1 , q 2 , q 1 , q 2 , p 1 , p 2 = w c,1 (q 1 , q 1 , p 1 ) ⊗ w c,2 (q 2 , q 2 , p 2 ) w r q 1 , q 2 , p 1 , p 2 , q 1 , q 2 = w r,1 (q 1 , p 1 , q 1 ) ⊗ w r,2 (q 2 , p 2 , q 2 ) w e r q 1 , q 2 , q 1 , q 2 = w e r,1 (q 1 , q 1 ) ⊗ w e r,2 (q 2 , q 2 ) With these functions, T simulates the synchronized behaviour of T 1 and T 2 .

C Proof of Theorem 2

Before giving the details of the construction for the proof of Theorem 2, let us first state explicitly the definitions of the classes swT and swVPA.

Definition 2 (swT). A Symbolic Weighted Transducer over Σ, ∆ i , S, and Φ is a tuple T = Q, in, w, out , where Q is a finite set of states, in : Q → S (respectively out : Q → S) are functions defining the weight for entering (respectively leaving) a state, and w is composed of the transition functions :

w 10 : Q×Q → Φ e , w 01 : Q × Q → Φ i , w 11 : Q × Q → Φ ei .
We use the same extended notation for the transition functions w 10 , w 01 , w 11 as in Section 3, Definition 1 and follow the definition of the computed weight in (1) (4 first equations) and ( 2).

Definition 3 (swVPA).

A Symbolic Weighted Visibly Pushdown Automaton over ∆ = ∆ i ∆ c ∆ r , S and Φ is a tuple A = Q, P, in, w, out , where Q is a finite set of states, P is a finite set of stack symbols, in : Q → S (respectively out : Q → S) are functions defining the weight for entering (respectively leaving) a state, and w is a tuplet composed of the transition functions :

w i : Q × Q → Φ i , w c : Q × Q × P → Φ c , w r : Q × P × Q → Φ cr , w e r : Q × Q → Φ r .
The transition function w i is just a new name for w 01 of Definition 1, used in the case of swVPA. In the extended notation for the transition functions after Definition 1, and the definition of the computed weight in (1) and (2), there is no input symbol of Σ to read for swVPA (the corresponding argument is always ε in this case). Hence for the sake of simplicity, let us restate explicitly the equations without symbols of Σ, as follows. For the transition functions in extended notation, we have with q, q ∈ Q and a ∈ ∆ i , c ∈ ∆ c , r ∈ ∆ r : w i (q, a, q ) = φ(a) where φ = w i (q, q ), w c (q, c, q , p) = φ(c) where φ = w c (q, q , p), w r (q, c, p, r, q ) = η(c, r) where η = w r (q, p, q ), w e r (q, r, q ) = φ(r) where φ = w e r (q, q ).

And for the weight function, with v ∈ ∆ * :

weight A q[γ], ε, q [γ ]) = 1 if q = q , γ = γ and 0 otherwise (5) weight A q[γ], a v, q[γ ] = q ∈Q w i (q, a, q ) ⊗ weight A q [γ], v, q[γ ] weight A q[γ], c v, q [γ ] = q ∈Q p∈P w c (q, c, q , p) ⊗ weight A q c, p γ , v, q [γ ] weight A q c, p γ , r v, q [γ ] = q ∈Q w r q, c, p, r, q ⊗ weight A q [γ], v, q [γ ] weight A q[⊥], r v, q [γ ] = q ∈Q w e r (q, r, q ) ⊗ weight A q [⊥], v, q [γ ]
and, for t ∈ ∆ * :

A(t) = q,q ∈Q in(q) ⊗ weight A q[⊥], t, q [⊥] ⊗ out(q ) (6) 
We recall the Theorem 2 from Section 5.

Theorem 2. Given a swT T over Σ, ∆ i , commutative S, and Φ, and a swVPA A over ∆, S, Φ, one can construct in PTIME a swVPT T ⊗ A, over Σ, ∆, S, Φ,

such that ∀s ∈ Σ * , t ∈ ∆ * , (T ⊗ A)(s, t) = T (s, t| ∆ i ) ⊗ A(t).
Proof. Let T = Q T , in T , wT , out T , where wT contains w 10 , w 01 , and w 11 , and let A = Q A , in A , wA , out A where wA contains w i , w c , w r , w e r . The set of states of T ⊗ A will be Q = Q T × Q A , and its set of stack symbols P = P . The entering, leaving and transition functions of T ⊗ A will simulate the synchronized computations of T and A on respectively the pair s, t| ∆ i and t, while reading a pair s, t ∈ Σ * × ∆ * . The state entering and leaving functions of T ⊗ A are defined, for all q T , q A ∈ Q , by:

in q T , q A = in T (q T ) ⊗ in A (q A ) out q T , q A = out T (q T ) ⊗ out A (q A )
The transition functions of T ⊗ A are defined by: w 10 q T , q A , q T , q A = w 10 (q T , q T ) w 10 q T , q A , q T , q A = 0 when q A = q A w 01 ( q T , q A , q T , q A ) = w i (q A , q A ) w 01 ( q T , q A , q T , q A ) = 0 when q T = q T w 11 ( q T , q A , q T , q A ) = w 11 (q T , q T ) ⊗ 2 w i (q A , q A ) w c ( q T , q A , q T , q A , p) = w c (q A , q A , p) w c ( q T , q A , q T , q A , p) = 0 when q T = q T w r ( q T , q A , p, q T , q A ) = w r (q A , p, q A ) w r ( q T , q A , p, q T , q A ) = 0 when q T = q T w e r ( q T , q A , q T , q A ) = w e r (q A , q A ) w e r ( q T , q A , q T , q A ) = 0 when q T = q T It means that, for all e ∈ Σ, a

∈ ∆ i , c ∈ ∆ c , r ∈ ∆ r :
w 10 q T , q A , e, ε, q T , q A = φ(e) where φ = w 10 (q T , q T ) w 10 q T , q A , e, ε, q T , q A = 0 when q A = q A w 01 ( q T , q A , ε, a, q T , q A ) = φ(a)

where φ = w i (q A , q A ), w 01 ( q T , q A , ε, a, q T , q A ) = 0 when q T = q T w 11 ( q T , q A , e, a, q T , q A ) = η(e, a) ⊗ φ(a) where η = w 11 (q T , q T ), φ = w i (q A , q A ) w c ( q T , q A , ε, c, q T , q A , p) = φ(c) where φ = w c (q A , q A , p), w c ( q T , q A , ε, c, q T , q A , p) = 0 when q T = q T w r ( q T , q A , c, p, ε, r, q T , q A ) = η(c, r) where η = w r (q A , p, q A ) w r ( q T , q A , c, p, ε, r, q T , q A ) = 0 when q T = q T w e r ( q T , q A , ε, r, q T , q A ) = φ(r) where φ = w e r (q A , q A ) w e r ( q T , q A , ε, r, q T , q A ) = 0 when q T = q T

The transition w 10 performs their counterpart in T while reading one input symbol e, ignoring A: the state q A of A is left unchanged in this transition, which does not read the output symbol. On the other hand, the transitions w 01 , w c , w r , and w e r perform their counterparts in A while reading one output symbol a or c or r, and ignores T : the state q T of T is unchanged in these transitions, and no input symbol is read. The transition w 11 simulates the computation of both T and A simultaneously, while reading one input symbol e and one output symbol a.

The proof of the correctness of the construction, i.e. that ∀s ∈ Σ * , t ∈ ∆ * , (T ⊗ A)(s, t) = T (s, t| ∆ i ) ⊗ A(t), is a straighthforward double induction on the length of s and t.

D Proof of Theorem 3

The swVPT of Definition 1 does not contain ε-transitions. However, this notion shall be convenient in the proof Theorem 3. It is defined formally as follows.

Definition 4 (swVPT ε ). A Symbolic Weighted Visibly Pushdown Transducer with ε-transitions over Σ, ∆, complete S, and Φ is a tuple T = Q, P, in, w, out , where Q, P , in and out are like in Definition 1 and w contains an additional function w 00 :

Q × Q → S.
The function weight of a swVPT ε is computed by adding (with ⊕) the weight of possible finite sequences ε-transitions w 00 . Formally, for a swVPT ε T , let weight ε T be the function defined for T by the equations (1) (for the case of swVPT without ε-transitions). Then weight T is the function [Q×Γ * ]×Σ * ×∆ * ×[Q×Γ * ] into S, defined by, for q, q ∈ Q, γ, γ ∈ Γ * , and u ∈ Σ * , v ∈ ∆ * :

weight T q[γ], u, v, q [γ ] = q0...qn∈Q * q0=q n-1 i=0 w 00 (q i , q i+1 ) ⊗ weight ε T q n [γ], u, v, q [γ ] ( 7 
)
weight ε T q[γ], ε, ε, q [γ ]) = 1 if q = q , γ = γ and 0 otherwise weight ε T q[γ], e u, ε, q [γ ] = q ∈Q w 10 (q, e, ε, q ) ⊗ weight T q [γ], u, ε, q [γ ] weight ε T q[γ], ε, a v, q [γ ] = q ∈Q w 01 (q, ε, a, q ) ⊗ weight T q [γ], ε, v, q [γ ]
weight ε T q[γ], e u, a v, q [γ ] = q ∈Q w 10 (q, e, ε, q ) ⊗ weight T q [γ], u, a v, q [γ ] ⊕ q ∈Q w 01 (q, ε, a, q ) ⊗ weight T q [γ], e u, v, q [γ ] ⊕ q ∈Q w 11 (q, e, a, q ) ⊗ weight T q [γ], u, v, q [γ ]

weight ε T q[γ], u, c v, q [γ ] = q ∈Q p∈P w c (q, ε, c, q , p) ⊗ weight T q c, p γ , u, v, q [γ ] weight ε T q c, p γ , u, r v, q [γ ] = q ∈Q w r q, c, p, ε, r, q ⊗ weight T q [γ], u, v, q [γ ] weight ε T q[⊥], u, r v, q [γ ] = q ∈Q w e r (q, ε, r, q ) ⊗ weight T q [⊥], u, v, q [γ ]
The hypothesis that S is complete ensures that the possibly infinite sum in the first equation of ( 7) is well defined. The next equations of ( 7) are the same as in [START_REF]library qparse for music transcription[END_REF] where the weight T in the left-hand-side is replaced by weight ε T . Note that the weight T in the right-hand-side is not replaced by weight ε T , meaning the ε-transition of w 00 can be performed at any compution step. Lemma 5. For all swVPT ε T ε over Σ, ∆, commutative, idempotent, and complete S, and Φ, there exists one swVPT T over Σ, ∆, S, and Φ, of size polynomial in the size of T ε and effectively constructible in PTIME in the size of T ε , such that for all s, t ∈ Σ * × ∆ * , T (s, t) = T ε (s, t).

Proof. Let T ε = Q, P, in, w, out . We build T = Q, P, in, w , out ; the construction of w and out follows the line of the ε-removal algorithm of [App27]. For all q, q ∈ Q, let 00 (q, q ) = q0...qn∈Q * q0=q,qn=q n-1 i=0 w 00 (q i , q i+1 ) Since by hypothesis, S is commutative and idempotent, it holds that: Fact 1. For all q, q ∈ Q, there exists one sequence q 0 ...q n ∈ Q * without repetition, such that q 0 = q, q n = q , and 00 (q, q ) = n-1 i=0 w 00 (q i , q i+1 ). Therefore, we can pre-compute every 00 (q, q ) in at most |Q| iterations, with a Viterbi algorithm [START_REF] Huang | Advanced dynamic programming in semiring and hypergraph frameworks[END_REF] for finding a shortest path in the graph defined by w 00 . Let, for all q ∈ Q, out (q) = 00 (q, q ) ⊗ out (q )

and, for all q, q ∈ Q, w 10 (q, q ) = q ∈Q 00 (q, q ) ⊗ w 10 (q , q )

and similarly for w 01 , w 11 , w c , w r , w e r .

Fact 1, implies that: out (q) = q0...qn∈Q * q0=q n-1 i=0

w 00 (q i , q i+1 ) ⊗ out(q n ) and w 10 (q, q ) = q0...qn∈Q * q0=q n-1 i=0

w 00 (q i , q i+1 ) ⊗ w 10 (q n , q ). By [START_REF] D'antoni | Symbolic Visibly Pushdown Automata[END_REF], it follows that T (s, t) = T ε (s, t) for all s, t ∈ Σ * × ∆ * .

Theorem 3. Given a swVPT T over Σ, ∆, commutative, complete and idempotent S, and Φ, and given s ∈ Σ * , there exists an effectively constructible swVPA T (s) over ∆, S, and Φ, such that for every t ∈ ∆ * , T (s)(t) = T (s, t).

Proof. Let T = Q, P, in, w, out , where w contains w 10 , w 01 , and w 11 , from Q×Q into respectively Φ e , Φ i , and Φ ei , and w c :

Q × Q × P → Φ c , w r : Q × P × Q → Φ cr , w e r : Q × Q → Φ r and let s = e 1 . . . e k .
We construct a swVPA with ε-transitions T ε (s) = Q , P , in , w , out , with a state set Q = [0..k] × Q, a set of stack symbols P = P . The functions in , out and w , will simulate the synchronized computation of T on s, t , while reading an output word t ∈ ∆ * . The state entering function of T ε (s) is defined by, for all q ∈ Q: in 0, q = in(q) in i, q = 0 for 0 < i ≤ k and the state leaving function is defined by, for all q ∈ Q:

out k, q = out(q) out i, q = 0 for 0 ≤ i < k.

Regarding transition functions of w , for all q, q ∈ Q, w i i, q , i, q = w 01 (q, q ) for 0 ≤ i ≤ k w i i, q , i + 1, q : y → w 11 (q, e i , y, q ) for 0 ≤ i < k

w i i, q , i , q = 0 for 0 ≤ i, i ≤ k, i = i, i = i + 1.
The ε-transitions of T ε (s) are, for all q, q ∈ Q, w 00 i, q , i + 1, q = w 10 (q, e i , ε, q ) for 0 ≤ i < k w 00 i, q , i , q = 0 for 0 ≤ i, i ≤ k, i = i + 1.

And the other transitions of T ε (s) are, for all q, q ∈ Q, p ∈ P , w c i, q , i, q , p = w c (q, q ) for 0 ≤ i ≤ k w c i, q , i , q , p = 0 for 0 ≤ i, i ≤ k, i = i w r i, q , p, i, q = w r (q, p, q ) for 0 ≤ i ≤ k w r i, q , p, i , q , = 0 for 0 ≤ i, i ≤ k, i = i w e r i, q , i, q = w e r (q, q ) for 0 ≤ i ≤ k w e r i, q , i , q , = 0 for 0 ≤ i, i ≤ k, i = i

We can show that for all t ∈ ∆ * , T ε (s)(t) = T (s, t). Hence Theorem 3 follows, by Lemma 5.

E End of proof of Theorem 4

Lemma 4 below shows that the computation of b ⊥ , and by extension the computation of the minimum of A over ∆ * , reduces to the search of a best weighted derivation in the hypergraph G A , defined in Section 5.

Lemma 4. For all q, q ∈ Q, b ⊥ (q, q ) = θ∈D(G A , q,⊥,q )

weight(θ).

The direction ≤ ⊕ of Lemma 4 follows from Lemma 6 below. In the following, we use the notation from Appendix C where we consider the weights of computations of swVPA as particular cases of swVPT, i.e. the argument in (1) that corresponds to an input symbol of Σ (for a swVPT) is ignored. Note the use of the special symbol in configurations like q[ ] in the expressions of weight A . With such a symbol for γ in (1), the computation of weight A is ensured to start with a non-empty stack, and never reads or pops the top of this stack. Lemma 6 (Correctness). For all derivation θ ∈ D(G A , q, γ, q ) such that weight(θ) = 0, where γ ∈ {⊥, } and q, q ∈ Q, there exists a word t ∈ ∆ * such that weight A (q[γ], t, q [γ]) = weight(θ).

Proof. By induction on the size of the derivation θ rooted by q, γ, q . The base case is when θ is composed of a single vertex. In order to ensure that weight(θ) = 0, this vertex shall have the form q, ⊥, q or q, , q . In both cases, weight(θ) = 1, and by (1), weight A

(q[⊥], ε, q [⊥]) = weight A (q[ ], ε, q [ ]) = 1.
Hence the property holds with t = ε.

If θ = v(θ 1 ), where θ 1 ∈ D(G A , v 1 ), let us assume that Lemma 6 holds for θ 1 , and a word t 1 ∈ ∆ * . We do a case analysis on the hyperedge v 1 , v .

Firstly, let us consider the case where v 1 = q 0 , ⊥, q 1 and v = q 0 , ⊥, q 2 for some q 0 , q 1 , q 2 ∈ Q. By the hypothesis that S is total, we are in one of the following two cases: for some q ∈ Q. By induction hypothesis, there exists a derivation θ 1 ∈ D G A , q, γ, q such that: weight(θ 1 ) ≤ ⊕ weight A (q[γ], t 1 , q [γ]). Let θ = q, γ, q (θ 1 ). If γ = ⊥, then we have:

weight(θ) = weight(θ 1 ) ⊗ ∆ i w i (q , q ) ⊕ ∆r w e r (q , q ) .
By monotony of S (Lemma 1), ∆ i w i (q , q ) ⊕ ∆r w e r (q , q ) ≤ ⊕ w i (q , a, q ). If γ = , then: weight(θ) = weight(θ 1 ) ⊗   ∆ i w i (q , q ) ⊕ p∈P ∆c w c (q, q, p) ⊗ 2 2 ∆r w r (q , p, q )   and again, by Lemma 1, F 2 ≤ ⊕ w i (q , a, q ) where F 2 is the second factor of the above expression. Altogether, it holds that: weight(θ) ≤ ⊕ weight(θ 1 ) ⊗ w i (q , a, q ) ≤ ⊕ weight A (q[γ], t 1 , q [γ]) ⊗ w i (q , a, q ) = weight A (q[γ], t, q [γ]).

If t = t 1 r, for r ∈ ∆ r , and some well-parenthesised word t 1 : the proof is similar to the above case. If t = c t 1 r for c ∈ ∆ c , r ∈ ∆ r , and some well-parenthesised word t 1 , we have, by [START_REF]library qparse for music transcription[END_REF], for some p ∈ P and some q 1 , q 2 ∈ Q:

weight A (q[γ], t, q [γ]) = w c (q, c, q 1 , p)⊗weight A (q 1 [ ], t 1 , q 2 [ ])⊗w r (q 2 , c, p, r, q ). Note that in the intermediate computation from q 1 to q 2 , the stack must not be empty, because it contains at least the pair c, p on top. By induction hypothesis, there exists a derivation θ 1 ∈ D G A , q 1 , , q 2 such that weight(θ 1 ) ≤ ⊕ weight A (q 1 [ ], t 1 , q 2 [ ]). Let θ = q, γ, q (θ 1 ). It holds that:

weight(θ) = weight(θ 1 ) ⊗ η A ( q 1 , , q 2 , q, γ, q ). The hyperedge's weight H = η A ( q 1 , , q 2 , q, γ, q ) can take one of the following two values: if γ = ⊥, H = p ∈P ∆c w c (q, q 1 , p ) ⊗ 2 ∆r w r (q 2 , p , q ) , if γ = , H = q1=q ∆ i w i (q 2 , q ) ⊕ p ∈P ∆c w c (q, q 1 , p )⊗ 2 2 ∆r w r (q 2 , p , q ) . By Lemma 1, in both cases, it holds that:

η A ( q 1 , , q 2 , q, γ, q ) ≤ ⊕ w c (q, c, q 1 , p) ⊗ w r (q 2 , c, p, r, q ). Therefore, weight(θ) ≤ ⊕ w c (q, c, q 1 , p) ⊗ weight(θ 1 ) ⊗ w r (q 2 , c, p, r, q ) ≤ ⊕ w c (q, c, q 1 , p) ⊗ weight A (q 1 [ ], t 1 , q 2 [ ]) ⊗ w r (q 2 , c, p, r, q ) ≤ ⊕ weight A (q[γ], t, q [γ]).

Finally, if t = t 1 t 2 for t 1 , t 2 two well-parenthesised words, we have, weight A (q[γ], t, q [γ]) = weight A (q[γ], t 1 , q [γ]) ⊗ weight A (q [γ], t 2 , q [γ])

for some q ∈ Q. The state γ of the stack is the same at the beginning and the end of the computation on t 1 (resp. t 2 ) because this word is well-parenthesised. By induction hypothesis, there exist derivations θ 1 ∈ D G A , q, γ, q and θ 2 ∈ D G A , q , γ, q such that weight(θ 1 ) ≤ ⊕ weight A (q[γ], t 1 , q [γ]), and weight(θ 2 ) ≤ ⊕ weight A (q [γ], t 2 , q [γ]). Let θ = q, γ, q (θ 1 , θ 2 ). It holds that: weight(θ) = weight(θ 1 ) ⊗ weight(θ 2 ) ⊗ η A ( q, γ, q , q , γ, q , q, γ, q ) = weight(θ 1 ) ⊗ weight(θ 2 ) ≤ ⊕ weight A (q[γ], t 1 , q [γ]) ⊗ weight A (q [γ], t 2 , q [γ]) ≤ ⊕ weight A (q[γ], t, q [γ]).

We can now complete the proof of Lemma 4, and Theorem Let q, q ∈ Q. If θ∈D(G A , q,⊥,q ) weight(θ) = 0, then for all derivation θ ∈ D(G A , q, ⊥, q ), weight(θ) = 0, since this sum is finite and S is assumed total. Lemma 7 implies that for all t ∈ ∆ * , weight A (q[⊥], t, q [⊥]) = 0. Therefore, b ⊥ (q, q ) = 0 in this case.

Let us now assume that θ∈D(G A , q,⊥,q ) weight(θ) = W = 0.

There exists θ q,q ∈ D(G A , q, ⊥, q ), such that W = weight(θ q,q ). By Lemma 6, there exists t q,q ∈ ∆ * such that weight A (q[⊥], t q,q , q [⊥]) = weight(θ q,q ) = W . We can show by contradiction that for all t ∈ ∆ * , W ≤ ⊕ weight A (q[⊥], t, q [⊥]). Indeed, assume on the opposite that weight A (q[⊥], t, q [⊥]) < ⊕ W for some t ∈ ∆ * . Since this weight is computed by starting and ending with an empty stack, t is well-parenthesised, and by Lemma 7, there exists a derivation θ ∈ D(G A , q, ⊥, q ), and weight(θ) < ⊕ W , contradicting [START_REF] D'antoni | The power of symbolic automata and transducers[END_REF]. Therefore, b ⊥ (q, q ) = weight A (q[⊥], t q,q , q [⊥]) = W . Moreover, the above word t q,q is a witness reaching the minimum of the swVPA A computed by Theorem 4.

F Nested Words and Parse Trees

The hierarchical structure of nested words, defined with the call and return markup symbols, suggests a correspondence with trees. The lifting of this correspondence to languages, of tree automata and VPA, has been discussed in [START_REF] Alur | Adding Nesting Structure to Words[END_REF], and [START_REF] Caralp | Visibly Pushdown Automata with Multiplicities: finiteness and k-boundedness[END_REF] for the weighted case. In this section, we describe a correspondence between the symbolic-weighted extensions of tree automata and VPA. It might be folklore knowledge but we state it explicitly for the sake of clarity.

3 1 4

 34 Music engraving by LilyPond 2.20.0-www.lilypond.org

  Tree representation of the scores of Ex 1, linearized respectively into O and O .

	2 Preliminary Notions

Semirings. We shall consider weight values in a semiring S, ⊕, 0, ⊗, 1 : a structure of domain S, equipped with two associative binary operators ⊕ and ⊗, with respective neutral elements 0 and 1, such that ⊕ is commutative, ⊗ distributes over ⊕: ∀x, y, z ∈ S, x⊗(y⊕z) = (x⊗y)⊕(x⊗z), and (x⊕y)⊗z = (x⊗z)⊕(y⊗z), 0 is absorbing for ⊗

  ,∆ i and Φ cr = Φ ∆c,∆r . S, and Φ is a tuple T = Q, P, in, w, out , where Q is a finite set of states, P is a finite set of stack symbols, in : Q → S (respectively out : Q → S) are functions defining the weight for entering (respectively leaving) a state, and w is a tuplet composed of the transition functions : w 10 : Q×Q → Φ e , w 01 : Q×Q → Φ i , w 11 :

	Definition 1 (swVPT). A Symbolic Weighted Visibly Pushdown Transducer
	over Σ, ∆,

Acknowledgments.

The authors would like to thank the reviewers at CIAA for their useful remarks.

η A (v 1 , v) = ∆ i w i (q 1 , q 2 ). By effectiveness of Φ, there exists a ∈ ∆ i such that ∆ i w i (q 1 , q 2 ) = w i (q 1 , a, q 2 ). It follows that:

= weight(θ 1 ) ⊗ w i (q 1 , a, q 2 ) = weight A (q 0 [⊥], t 1 , q 1 [⊥]) ⊗ w i (q 1 , a, q 2 ) by induction hypothesis = weight A (q 0 [⊥], t 1 a, q 2 [⊥]) by [START_REF]library qparse for music transcription[END_REF] and associativity, commutativity of ⊗, and the lemma holds with t = t 1 a. η A (v 1 , v) = ∆r w e r (q 1 , q 2 ), and we can proceed similarly as above in order to find t = t 1 r as expected, for some r ∈ ∆ r (case of an unmatched return symbol).

Secondly, we consider the case where v 1 = q 1 , , q 2 and v = q 0 , ⊥, q 3 for q 0 , q 1 , q 2 , q 3 ∈ Q. In this case,

w r (q 2 , p, q 3 ) .

By hypothesis, this value is not 0, hence there exists a stack symbol p ∈ P , a call symbol c ∈ ∆ c , and a return symbol r ∈ ∆ r such that η A (v 1 , v) = w c (q 0 , c, q 1 , p)⊗ w r (q 2 , c, p, r, q 3 ). Therefore,

= weight(θ 1 ) ⊗ w c (q 0 , c, q 1 , p) ⊗ w r (q 2 , c, p, r, q 3 ) = weight A (q 1 [ ], t 1 , q 2 [ ]) ⊗ w c (q 0 , c, q 1 , p) ⊗ w r (q 2 , c, p, r, q 3 ) by induction hypothesis = weight A (q 0 [⊥], c t 1 r, q 3 [⊥]) by [START_REF]library qparse for music transcription[END_REF] and associativity, commutativity of ⊗, and we can conclude with t = c t 1 r.

Finally, let us consider the case where v 1 = q 1 , , q 2 and v = q 0 , , q 3 for q 0 , q 1 , q 2 , q 3 ∈ Q. Since S is total, there are two cases for the value of η A (v 1 , v).

η A (v 1 , v) = ∆ i w i (q 2 , q 3 ) and q 1 = q 0 . By effectiveness of Φ, there exists a ∈ ∆ i such that ∆ i w i (q 2 , q 3 ) = w 01 (q 2 , ε, a, q 3 ) = w i (q 2 , a, q 3 ), and

and the lemma holds with t = t 1 a. η A (v 1 , v) = p∈P ∆c w c (q 0 , q 1 , p) ⊗ 2 ∆r w r (q 2 , p, q 3 ) . Since this value is not 0 by hypothesis, there exists a stack symbol p ∈ P , a call symbol c ∈ ∆ c , and a return symbol r ∈ ∆ r such that η A (v 1 , v) = w c (q 0 , c, q 1 , p) ⊗ w r (q 2 , c, p, r, q 3 ), and,

by ( 1) and associativity, commutativity of ⊗, and the lemma holds with t = c t 1 r. 

Hence, by construction, v 1 = q 0 , γ, q 1 , v 2 = q 1 , γ, q 2 , and v = q 0 , γ, q 2 , for some for q 0 , q 1 , q 2 ∈ Q and γ ∈ {⊥, }. Then, 1), and we can conclude the lemma with t = t 1 t 2 .

The direction ≥ ⊕ of Lemma 4 follows from the Lemma 7 below. In this lemma, we call a word t ∈ ∆ * well-parenthesised if it is either: t = ε, the empty word, or t = t 1 a, for a ∈ ∆ i and some well-parenthesised word t 1 , or t = t 1 r, for r ∈ ∆ r , and some well-parenthesised word t 1 , or t = c t 1 r, for r ∈ ∆ r , c ∈ ∆ c , and some well-parenthesised word t 1 , or t = t 1 t 2 , for some well-parenthesised words t 1 , t 2 .

Lemma 7 (Completeness). For all well-parenthesised t ∈ ∆ * , for all q, q ∈ Q, and γ ∈ {⊥, }, there exists a derivation θ ∈ D G A , q, γ, q such that weight(θ) ≤ ⊕ weight A (q[γ], t, q [γ]).

Proof. By induction on the length of t. If the length of t is zero, then by (1), weight A (q[γ], t, q [γ]) = 1 if q = q and weight A (q[γ], t, q [γ]) = 0 otherwise. In both cases, we can choose the singleton derivation θ = q, γ, q . Let us now assume that the length of t is strictly greater than 0. Since t is well-parenthesised by hypothesis, we are in one of the following four cases.

If t = t 1 a, for a ∈ ∆ i , and some well-parenthesised word t 1 , by [START_REF]library qparse for music transcription[END_REF], it holds that

Let Ω be a countable ranked alphabet, such that every symbol a ∈ Ω has a rank rk(a) ∈ [0..M ] where M is a fixed natural number. We denote by Ω k the subset of all symbols a ∈ Ω with rk(a) = k, where 0 ≤ k ≤ M , and Ω >0 = Ω\Ω 0 . The free Ω-algebra of finite, ordered, Ω-labeled trees is denoted by T Ω . It is the smallest set such that Ω 0 ⊂ T Ω , and, for all 1 ≤ k ≤ M , all a ∈ Ω k , and all t 1 , . . . , t k ∈ T Ω , a(t 1 , . . . , t k ) ∈ T Ω . Let us assume a commutative semiring S and a label theory Φ over S containing one set Φ Ω k for each k ∈ [0..M ]. Definition 5. A symbolic-weighted tree automaton (swTA) over Ω, S, and Φ is a triplet A = Q, in, w where Q is a finite set of states, in : Q → S is the starting weight function, and w is a tuplet of transition functions containing, for each k ∈ [0..M ], the function

We define a transition function w :

w(q 0 , b, q 1 . . . q k ) = φ(b) where φ = w k (q 0 , q 1 . . . q k ).

Every swTA defines a mapping from trees of T Ω into S, based on the following intermediate function weight

where q 0 ∈ Q, and t = b(t 1 , . . . , t k ) ∈ T Ω , with 0 ≤ k ≤ M (by convention, the product from 1 to k is equal to 1 when k = 0).

Finally, the weight associated by A to t ∈ T Ω is

Intuitively, w(q 0 , b, q 1 . . . q k ) can be seen as the weight of a production rule q 0 → b(q 1 , . . . , q k ) of a regular tree grammar [App25], that replaces the non-terminal symbol q 0 by b(q 1 , . . . , q k ). The above production rule can also be seen as a rule of a weighted CF grammar, of the form [b] q 0 := q 1 . . . q k if k > 0, and [b] q 0 := b if k = 0. In the first case, b is a label for the rule, and in the second case, it is also a terminal symbol. The weight of a labeled derivation tree t of the weighted CF grammar associated to A as above, is weight A (q, t), when q is the start non-terminal.

We shall now establish a correspondence between such a derivation tree t and some word describing a linearization of t, in a way that weight A (q, t) can be computed by a swVPA. Let Ω be the countable (unranked) alphabet obtained from Ω by: Ω

We associate to Ω a label theory Φ like in Section 3, and we define a linearization of trees of T Ω into words of Ω * as follows:

Example 6. The trees in Figure 1 represent the two scores in Example 1, where we showed that their linearizations are respectively O and O . 3

Proposition 2. For all swTA A over Ω, S commutative, and Φ, there exists an effectively constructible swVPA A over Ω, S and Φ such that for all t ∈ T Ω , A lin(t) = A(t).

Proof. We follow Definition 3 in Appendix C for swVPA, i.e. w i = w 01 and we ignore the first symbol argument (input symbol) of Definition 1. Let A = Q, in, w where w is presented as above by a function. We build A = Q , P , in , w , out , where Q = M k=0 Q k is the set of sequences of state symbols of A, of length at most M , including the empty sequence denoted by ε, and where P = Q and w is defined by (ū, q ∈ Q , p ∈ P ): w i (q 0 ū, a, ū) = w(q 0 , a, ε) for all a ∈ Ω 0 w c (q 0 ū, c , q, ū) = w(q 0 , c , q) for all c ∈ Ω >0 w r (ε, c , p, c , p) = 1 for all c ∈ Ω >0 w e r (ū, c , q) = 0 for all c ∈ Ω >0

All cases not matched by one of the above equations have a weight 0, for instance w r (ū, c , p, d , q) = 0 if c = d or ū = ε or q = p. The entering and leaving weight functions in , out : Q → S are defined by:

in (q) = in(q) for all q ∈ Q, -in (q) = 0 for every other (non-singleton) sequence q ∈ Q , -in (q) = 1 for all q ∈ Q .