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Symbolic Weighted Language Models,
Quantitative Parsing and

Automated Music Transcription

Florent Jacquemard and Lydia Rodriguez-de la Nava

INRIA and CNAM/Cedric lab, Paris, France

Abstract. We study several classes of symbolic weighted formalisms:
automata (swA), transducers (swT) and visibly pushdown extensions
(swVPA, swVPT). They combine the respective extensions of their sym-
bolic and weighted counterparts, allowing a quantitative evaluation of
words over a large or infinite input alphabet.
We present properties of closure by composition, the computation of
transducer-defined distances between nested words and languages, as
well as a PTIME 1-best search algorithm for swVPA. These results are
applied to solve in PTIME a variant of parsing over infinite alphabets.
We illustrate this approach with a motivating use case in automated
music transcription.

1 Introduction

Symbolic Weighted (sw) language models [12] (automata and transducers) com-
bine two important extensions of standard models. On the one hand, symbolic
extensions, like Symbolic Automata (sA [8]), can handle an infinite input alpha-
bet Σ, by guarding every transition with a predicate φ : Σ → B. The ability
of sA to compare input symbols is quite restricted, compared to other models
of automata extended e.g. with registers (see [20] for a survey), however, under
appropriate closure conditions on the set of predicates, all the good properties
enjoyed by automata over finite alphabets are still valid for sA.
On the other hand, Weighted Automata (wA [9]) extend qualitative evaluation of
input words to quantitative evaluation, by assigning to every transition a weight
value in a semiring S. The weights of the rules involved in a computation are
combined using the product operator ⊗ of S, whereas the sum operator ⊕ of S
is used to resolve ambiguity (typically, ⊕ selects, amongst two computations,
the best weighted one). These extensions have also been applied to evaluate
hierarchical structures, like trees [9, ch. 9], or nested words, with symbolic [7], or
weighted [6] extensions of Visibly Pushdown Automata (VPA [2]). With their
ability to evaluate data sequences quantitatively, sw models have found various
applications such as data stream processing [3], runtime verification of timed
systems [23] or robustness optimization for machine learning models [15].

The sw models with data storage defined in [12], where their expressive-
ness is extensively studied, are very general, and cover all the models cited



above, as well as those considered in this paper. Here, we consider simple mod-
els of sw-automata and transducers whose transitions are assigned functions
φ : Σ → S from input symbols in an infinite alphabet Σ into a semiring S (Sec-
tion 3). Such functions generalize the boolean guards of symbolic models, from
the Boolean codomain B to an arbitrary semiring S, and the constant values
of weighted models. We prove some properties of closure under composition
for those sw models, generalizing classical constructions for the composition of
transducers [19], and propose a polynomial time algorithm of search for a word of
minimal weight for swVPA (somehow a variant of reachability problems in push-
down automata [5]). We apply these results to the problem of parsing words
over infinite alphabet (sw-parsing), whose goal is: given an (unstructured) in-
put word s, to find a (structured) nested word t at a minimal distance from s,
where the distance, following [17], is defined by T (s, t) ⊗ A(t), T being a sw-
transducer (swT) and A a swVPA (Section 4). The notion of transducer-based
distances allows to consider different infinite alphabets for the input s and output
t. Moreover, the use of swVPA allows to search for an output t in the form of a
nested word, as a linear representation of a parse tree; sw-parsing is solved with
a Bar-Hillel, Perles and Shamir construction [11, ch. 13], and the best-search
algorithm for swVPA. We illustrate our approach with an application that mo-
tivated this work: automated music transcription, i.e. the problem of converting
a linear music recording given in input into a score in Common Western Music
Notation, a representation structured hierarchically [24].

Example 1. Let us consider a short input sequence I of musical events repre-
sented by symbols of the form e: τ in an infinite alphabet Σ, where e is a MIDI
key number in 21..108 [21], or the mark ‘start‘ or ‘end‘, and τ ∈ Q is a duration in
seconds. Such inputs typically correspond to the recording of a live performance:
I = start: 0.07, 69: 0.65, 71: 0.19, 73: 0.14, 74: 0.31, 76: 0.35, 77: 0.29, end: 0.

The output of parsing I is a nested word O, where separated notes are
grouped into hierarchical patterns. It is made of symbols a: τ ′ in an alphabet ∆,
where a is either a note name, (e.g., A4, G5, etc.), a continuation symbol ‘−‘, or a
markup symbol (opening or closing parenthesis). The time value τ ′ is a musical

duration. For instance, the music score
�� �
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Music engraving by LilyPond 2.20.0—www.lilypond.org

is represented by the
nested word: O = dm: 2, d2: 1, A4:

1
2 , d2: 1

2 , −: 1
4 , d2: 1

4 , B4:
1
8 , C]5:

1
8 , e2: 1

4 , e2: 1
2 , e2: 1,

dm: 1, d3: 1, D5:
1
3 , E5:

1
3 , F5:

1
3 , e3: 1, em: 1, em: 2 (see Figure 1). The symbol dm marks

the opening of a measure (a time interval of duration 1), while the subsequences
of O between markups dd: ` and ed: `, for some natural number d, represent the
division of a duration ` by d. The sequence O ∈ ∆∗ is a candidate solution for the

transcription of I ∈ Σ∗. Let us consider another candidate �
3

�
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Music engraving by LilyPond 2.20.0—www.lilypond.org

, repre-
sented by O′ = dm: 2, d2: 1, A4:

1
2 , d2: 1

2 , −: 1
4 , B4:

1
4 , e2: 1

2 , e2: 1, dm: 1, d3: 1, ‘C]5‘:0, D5:
1
3 ,

E5:
1
3 , F5:

1
3 , e3: 1, em: 1, em: 2. The quoted symbol ‘C]5‘ represents an appogiatura,

i.e. an ornamental note of theoretical duration 0. Roughly, sw-parsing associates
a weight value to each candidate, depending of its temporal distance to I and
notational complexity. Our goal is to find a best candidate. 3
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Fig. 1. Tree representation of the scores of Ex 1, linearized respectively into O and O′.

2 Preliminary Notions

Semirings. We shall consider weight values in a semiring 〈S,⊕,0,⊗,1〉: a struc-
ture of domain S, equipped with two associative binary operators ⊕ and ⊗, with
respective neutral elements 0 and 1, such that ⊕ is commutative, ⊗ distributes
over ⊕: ∀x, y, z ∈ S, x⊗(y⊕z) = (x⊗y)⊕(x⊗z), and (x⊕y)⊗z = (x⊗z)⊕(y⊗z),
0 is absorbing for ⊗: ∀x ∈ S, 0⊗ x = x⊗ 0 = 0.

A semiring S is commutative if ⊗ is commutative. It is idempotent if for every
x ∈ S, x ⊕ x = x. Every idempotent semiring S induces a partial ordering ≤⊕
called the natural ordering of S [16], defined by: for every x, y ∈ S, x ≤⊕ y iff x⊕
y = x. It is sometimes defined in the opposite direction [9, ch. 1]; we follow here
the direction that coincides with the usual ordering on the Tropical semiring
min-plus (Figure 2). An idempotent semiring S is called total if ≤⊕ is total, i.e.
when for every x, y ∈ S, either x⊕ y = x or x⊕ y = y.

Lemma 1 (Monotony, [16]). If 〈S,⊕,0,⊗,1〉 is idempotent, for every
x, y, z ∈ S, x ≤⊕ y implies x⊕ z ≤⊕ y ⊕ z, x⊗ z ≤⊕ y ⊗ z and z ⊗ x ≤⊕ z ⊗ y.

We say that S is monotonic wrt ≤⊕. Another important semiring property in
the context of optimization is superiority ((i) of Lemma 2), which generalizes the
non-negative weights condition in Dijkstra’s shortest-path algorithm. Intuitively,
it means that combining elements with ⊗ always increases their weight.

Lemma 2 (Superiority, Boundedness). Let 〈S,⊕,0,⊗,1〉 be an idempotent
semiring. The two following statements are equivalent: (i) for all x, y ∈ S, x ≤⊕
x⊗ y and y ≤⊕ x⊗ y (ii) for all x ∈ S, 1⊕ x = 1.

The property (i) of superiority implies that 1 ≤⊕ z ≤⊕ 0 for all z ∈ S (by
setting x = 1 and y = 0 in Lemma 2). From an optimization point of view, it
means that 1 is the best value, and 0 the worst. A semiring S with property (ii)
of Lemma 2 is called bounded in [16] and in the rest of the paper.

Lemma 3 ([16], Lemma 3). Every bounded semiring is idempotent.

We need to extend ⊕ to infinitely many operands. A semiring S is called com-
plete [9, ch. 1] if it has an operation

⊕
i∈I xi for every family (xi)i∈I of elements

in the domain of S, over an index set I ⊆ N, such that:
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domain ⊕ ⊗ 0 1

Boolean {⊥,>} ∨ ∧ ⊥ >
Viterbi [0, 1] ⊂ R max × 0 1

Tropical min-plus R+ ∪ {∞} min + ∞ 0

Fig. 2. Some commutative, bounded, total and complete semirings.

i. infinite sums extend finite sums: ∀j, k ∈ N, j 6= k,⊕
i∈∅

xi = 0,
⊕
i∈{j}

xi = xj ,
⊕

i∈{j,k}

xi = xj ⊕ xk,

ii. associativity and commutativity: for all partition (Ij)j∈J of I,⊕
j∈J

⊕
i∈Ij

xi =
⊕
i∈I

xi,

iii. distributivity of products over infinite sums: for all I ⊆ N, ∀x, y ∈ S,⊕
i∈I

(x⊗ yi) = x⊗
⊕
i∈I

yi, and
⊕
i∈I

(xi ⊗ y) = (
⊕
i∈I

xi)⊗ y.

Label Theories. The functions labelling the transitions of sw-automata and
transducers generalize the Boolean algebras of [8]. We consider alphabets, which
are non-empty countable sets of symbols denoted by Σ, ∆... and write Σ∗ for
the set of finite sequences (words) over Σ, ε for the empty word, Σ+ = Σ∗ \{ε},
and uv for the concatenation of u, v ∈ Σ∗.

Given a semiring 〈S,⊕,0,⊗,1〉, a label theory Φ̄ over S is an indexed family of
sets ΦΣ , resp. ΦΣ,∆, containing recursively enumerable functions of type Σ → S,
resp. Σ ×∆ → S, and such that if ΦΣ,∆ ∈ Φ̄, then ΦΣ ∈ Φ̄ and Φ∆ ∈ Φ̄, every
ΦΣ , ΦΣ,∆ ∈ Φ̄ contains all the constant functions of Σ → S, resp. Σ ×∆→ S,
for all ΦΣ,∆ ∈ Φ̄, η ∈ ΦΣ,∆, a ∈ Σ, b ∈ ∆, the partial application x 7→ η(x, b)
is in ΦΣ and the partial application y 7→ η(a, y) is in Φ∆, and Φ̄ is closed under
the following operators, derived from the operations of S:

– For all ΦΣ ∈ Φ̄, all φ ∈ ΦΣ , and α ∈ S, α ⊗ φ : x 7→ α ⊗ φ(x), and
φ⊗ α : x 7→ φ(x)⊗ α are in ΦΣ , and similarly for ⊕ and for ΦΣ,∆.

– For all ΦΣ ∈ Φ̄, all φ, φ′ ∈ ΦΣ , φ⊗ φ′ : x 7→ φ(x)⊗ φ′(x) is in ΦΣ .
– For all ΦΣ,∆ ∈ Φ̄, all η, η′ ∈ ΦΣ,∆, η⊗η′ : x, y 7→ η(x, y)⊗η′(x, y) is in ΦΣ,∆.
– For all ΦΣ , ΦΣ,∆ ∈ Φ̄, all φ ∈ ΦΣ and η ∈ ΦΣ,∆, φ⊗1η : x, y 7→ φ(x)⊗η(x, y)

and η ⊗1 φ : x, y 7→ η(x, y)⊗ φ(x) are in ΦΣ,∆.
– For all Φ∆, ΦΣ,∆ ∈ Φ̄, all ψ ∈ Φ∆ and η ∈ ΦΣ,∆, ψ⊗2η : x, y 7→ ψ(y)⊗η(x, y)

and η ⊗2 ψ : x, y 7→ η(x, y)⊗ ψ(y) are in ΦΣ,∆.
– Analogous closures hold for ⊕.

Example 2. We go back to Example 1. In order to align an input in Σ∗ with
a music score in ∆∗, we must account for the expressive timing of human per-
formance that results in small time shifts between an input event of Σ and a
notational event in ∆. These shifts can be weighted as a distance in ΦΣ,∆, de-
fined in the tropical min-plus semiring by δ(e: τ, a: τ ′) = |τ ′− τ | if a corresponds
to e (e.g. e is the MIDI key 69 and a is the note A4), or 0 otherwise. 3
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3 SW Visibly Pushdown Automata and Transducers

Let 〈S,⊕,0,⊗,1〉 be a commutative and complete semiring and let Σ and ∆
be countable alphabets called input and output respectively, such that ∆ is
partitioned into three disjoint subsets of symbols ∆i, ∆c and ∆r, called respec-
tively internal, call and return [2]. Let Φ̄ be a label theory over S, consisting of
Φe = ΦΣ , Φi = Φ∆i , Φc = Φ∆c , Φr = Φ∆r , Φei = ΦΣ,∆i and Φcr = Φ∆c,∆r .

Definition 1 (swVPT). A Symbolic Weighted Visibly Pushdown Transducer
over Σ, ∆, S, and Φ̄ is a tuple T = 〈Q,P, in, w̄, out〉, where Q is a finite set of
states, P is a finite set of stack symbols, in : Q→ S (respectively out : Q→ S) are
functions defining the weight for entering (respectively leaving) a state, and w̄ is a
tuplet composed of the transition functions : w10 : Q×Q→ Φe, w01 : Q×Q→ Φi,
w11 : Q×Q→ Φei, wc : Q×Q×P → Φc, wr : Q×P ×Q→ Φcr, w

e
r : Q×Q→ Φr.

For convenience, we extend the above transition functions as follows, for every
q, q′ ∈ Q, p ∈ P , e ∈ Σ, a ∈ ∆i, c ∈ ∆c, r ∈ ∆r, overloading their names:

w10(q, e, ε, q′) = φ(e) where φ = w10(q, q′),
w01(q, ε, a, q′) = φ(a) where φ = w01(q, q′),
w11(q, e, a, q′) = η(e, a) where η = w11(q, q′),
wc(q, ε, c, q

′, p) = φ(c) where φ = wc(q, q
′, p),

wr(q, c, p, ε, r, q
′) = η(c, r) where η = wr(q, p, q

′),
we
r (q, ε, r, q

′) = φ(r) where φ = we
r (q, q

′).

The swVPT T computes asynchronously on pairs 〈s, t〉 ∈ Σ∗ ×∆∗. Intuitively,
a transition wij(q, e, a, q

′), with i, j ∈ {0, 1} and e ∈ Σ ∪ {ε}, a ∈ ∆i ∪ {ε}, is
interpreted as follows: when reading e and a in the input and output words, it
increments the current position in the input word if and only if i = 1, and in the
output word iff j = 1, and changes state from q to q′. When e = ε (resp. a = ε),
the current symbol in the input (resp. output) is not read. These transitions
ignore the stack.
A transition of wc(q, ε, c, q

′, p) reads the call symbol c ∈ ∆c in the output word,
pushes it to the stack along with p ∈ P , and changes state from q to q′. As for
wr(q, c, p, ε, r, q

′) and we
r (q, ε, r, q

′) (used when the stack is empty), they read the
return symbol r in the output word and change state from q to q′. Additionally,
wr reads and pops from the stack a pair 〈c, p〉 and the symbol c is compared to r
by the function η = wr(q, p, q

′) ∈ Φcr.

Formally, the computations of the transducer T are defined with an intermediate
function weightT . A configuration q[γ] is composed of a state q ∈ Q and a
stack content γ ∈ Γ ∗, where Γ = ∆c × P , and weightT is a function from
[Q×Γ ∗]×Σ∗×∆∗× [Q×Γ ∗] into S, whose recursive definition enumerates each
of the possible cases for reading e ∈ Σ, a ∈ ∆i, c ∈ ∆c, or r ∈ ∆r (the empty
stack is denoted by ⊥, and the topmost symbol is the last pushed pair):

weightT
(
q[γ], ε, ε, q′[γ′]) = 1 if q = q′, γ = γ′ and 0 otherwise (1)
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weightT
(
q[γ], e u, ε, q′[γ′]

)
=
⊕
q′′∈Q

w10(q, e, ε, q′′)⊗ weightT
(
q′′[γ], u, ε, q′[γ′]

)
weightT

(
q[γ], ε, a v, q′[γ′]

)
=
⊕
q′′∈Q

w01(q, ε, a, q′′)⊗ weightT
(
q′′[γ], ε, v, q′[γ′]

)
weightT

(
q[γ], e u, a v, q′[γ′]

)
=
⊕
q′′∈Q

w10(q, e, ε, q′′)⊗ weightT
(
q′′[γ], u, a v, q′[γ′]

)
⊕
⊕
q′′∈Q

w01(q, ε, a, q′′)⊗ weightT
(
q′′[γ], e u, v, q′[γ′]

)
⊕
⊕
q′′∈Q

w11(q, e, a, q′′)⊗ weightT
(
q′′[γ], u, v, q′[γ′]

)
weightT

(
q[γ], u, c v, q′[γ′]

)
=
⊕
q′′∈Q
p∈P

wc(q, ε, c, q
′′, p)⊗ weightT

(
q′′
[
〈c, p〉
γ

]
, u, v, q′[γ′]

)

weightT
(
q

[
〈c, p〉
γ

]
, u, r v, q′[γ′]

)
=
⊕
q′′∈Q

wr

(
q, c, p, ε, r, q′′

)
⊗ weightT

(
q′′[γ], u, v, q′[γ′]

)
weightT

(
q[⊥], u, r v, q′[γ′]

)
=
⊕
q′′∈Q

we
r (q, ε, r, q

′′)⊗ weightT
(
q′′[⊥], u, v, q′[γ′]

)
We recall that, by convention, an empty sum with

⊕
is equal to 0.

The weight associated by T to an input/output pair 〈s, t〉 ∈ Σ∗ ×∆∗ is defined
according to empty stack semantics:

T (s, t) =
⊕
q,q′∈Q

in(q)⊗weightT
(
q[⊥], s, t, q′[⊥]

)
⊗ out(q′) (2)

Since 0 is absorbing for ⊗, and neutral for ⊕ in S, if a transition’s weight is
equal to 0, then the entire term is 0, meaning the transition is impossible. This is
analogous to the case of a transition’s guard not satisfied in symbolic models [8].

Symbolic Weighted Visibly Pushdown Automata. swVPA are the particular case
of swVPT that do not read in the input word, i.e. where all w10 and w11 are con-
stant functions equal to 0, or, equivalently, Σ = ∅ (see Appendix C for details).
They are a weighted extension of sVPA [7], from Boolean semirings to arbi-
trary semiring domains. A relationship between swVPA and sw-Tree Automata
is presented in Appendix F.

Example 3. We consider a swVPA A over ∆∗, with P = Q, computing a value of
notational complexity for a given score. In a sequence O ∈ ∆∗ like in Example 1,
∆i contains timed notes and continuations, and ∆c and ∆r contain respectively
opening and closing parentheses. To a call symbol dn: `, for some duration value `,
let us associate a transition for the division of ` by n: wc

(
q`, ε, dn: `, q `

n
, q′
)

=

αn ∈ S. And to the matching return symbol en: `, we associate a transition of
weight 1: wr

(
q `

n
, dn: `, q′, ε, en: `, q′

)
= 1, which jumps to the state q′ stored in

6



the stack. The choice of weight values for the call transitions can express some
preferences in term of the expected output notation: if we want to prioritize pairs
over triplets, in the Tropical min-plus semiring, then we would let α2 < α3. It
is able to compute on several representations of a piece of music, estimating for
each one a weight value depending on the preferences that we set. The algorithm
of Theorem 4 then allows to select the best weighted representation. 3

Symbolic Weighted Transducers. swT are the particular case of swVPT that
do not use the stack during their computations, because all wc, wr and we

r are
constant functions equal to 0, or, more simply, because ∆c = ∆r = ∅ (see App C).

The four first lines in expression (1) can be seen as a stateful definition of an
edit-distance between a word s ∈ Σ∗ and a word t ∈ ∆i

∗, see also [17]. Intuitively,
in this vision, w10(q, e, ε, q′) is the cost of the deletion of the symbol e ∈ Σ in s,
w01(q, ε, a, q′) is the cost of the insertion of a ∈ ∆i in t, and w11(q, e, a, q′) is
the cost of the substitution of e ∈ Σ by a ∈ ∆i. Following (2), the cost of a
sequence of such operations transforming s into t is the product in terms of ⊗ of
the individual costs of the operations involved, and the distance between s and
t is the sum in terms of ⊕ of all possible products.

Example 4. We propose a swT over Σ and ∆i that computes the distance be-
tween an input I ∈ Σ∗ and an output O ∈ ∆i

∗ like in Ex. 1 (for δ, see Ex. 2):

w11(q0, e: τ, a: τ ′, q0) and w11(q1, e: τ, a: τ ′, q0) = δ(e: τ, a: τ ′) if a 6= −
w01(q0, ε,−: τ ′, q0) = 1 w01(q1, ε,−: τ ′, q0) = 1 w10(q0, e: τ, ε, q1) = α

The continuation symbol ′−′ (e.g. in ties ˇ “
^̌

“( , or dots ˇ “‰ ) is skipped with no
cost (w01). We also want to consider performing errors, by switching to an error
state q1. Reading an extra event e is handled by w10 that switches to q1, with a
fixed α ∈ S, then w11 and w01 can switch back to q0. Finally, we let q0 be the
initial and final state, with in(q0) = out(q0) = 1, and in(q1) = out(q1) = 0. 3

Symbolic Weighted Automata. swA are particular cases of swT omitting the
output symbols, or equivalently, swVPA without markups (∆c = ∆r = ∅).

4 Symbolic Weighted Parsing

Parsing is the problem of structuring a linear representation (a finite word)
according to a language model [11]. We shall consider in this section the problem
of parsing over an infinite alphabet. Let S Σ, ∆, and Φ̄ be like in Section 3. We
assume to be given the following input:

– a swT T over Σ, ∆i, S, and Φ̄, defining a measure T : Σ∗ ×∆i
∗ → S,

– a swVPA A over ∆, S, and Φ̄, defining a measure A : ∆∗ → S,
– an (unstructured) input word s ∈ Σ∗.

7



For every u ∈ Σ∗ and t ∈ ∆∗, let dT (u, t) = T
(
u, t|∆i

)
, where t|∆i ∈ ∆i

∗ is the
projection of t onto ∆i, obtained from t by removing all symbols in ∆\∆i. Given
the above input, symbolic weighted parsing aims at of finding a (structured)
nested word t ∈ ∆∗ that minimizes d(s, t)⊗A(t) wrt ≤⊕, i.e. such that:

dT (s, t)⊗A(t) =
⊕
v∈∆∗

dT (s, v)⊗A(u) (3)

In the terminology of [17], sw-parsing is the problem of computing the dis-
tance (3) between the input word s and the weighted language over the output
alphabet defined by A, and returning a witness t.

Example 5. In the running example, the input is as follows: The swT T evaluates
a “fitness measure”: a temporal distance between a performance and a nested-
word representation of a music score (Example 4). The swVPA A expresses a
weight related to the complexity of music notation (Example 3). The input

word is I of Example 1. The notation
�� �

3

��14� � � �

Music engraving by LilyPond 2.20.0—www.lilypond.org

, will be favored over
�

3

�
��
� ��14� � ��

Music engraving by LilyPond 2.20.0—www.lilypond.org

when the weight assigned to the call d2 is less than the difference of
weight between the appogiatura ‘C]5‘ and the standard note C]5. The sw-parsing
framework, applied to music transcription, finds an optimal solution considering
both the fitness of the output to the input, and its notational complexity. 3

Nested words in ∆∗ can represent linearizations of labeled trees, and to any
Weighted Regular Tree Grammar (wRTG), we can associate in polynomial time
a swVPA computing the same weight (see Appendix F). Therefore, instead of a
swVPA in input, we may be given a wRTG, or a weighted CFG (wCFG), for a def-
inition closer to conventional parsing. The sw-parsing problem hence generalizes
the problem of searching for the best derivation tree of a wCFG G that yields a
given input word w, with an infinite input alphabet instead of a finite one and
transducer-defined distances instead of equality. It is however uncomparable to
the related problems of semiring parsing [10], and weighted parsing [18].

In Section 5, we present results on swVPT and subclasses (automata construction
and best-search algorithm) that can be applied for solving sw-parsing.

Theorem 1. The problem of Symbolic Weighted Parsing can be solved in PTI-
ME in the size of the input swT T , swVPA A and input word s, and the compu-
tation time of the functions and operators of the label theory.

Proof. We follow an approach of parsing as intersection [11, ch. 13]. First, we
associate to T and A a swVPT called (T ⊗ A), computing the product of the
respective weights for the two models (Theorem 2): i.e. (T⊗A)(u, t) = dT (u, t)⊗
A(t). Then, we construct a swVPA computing, for t ∈ ∆∗, (T ⊗ A)(s, t) =
dT (s, t)⊗A(t) (Theorem 3). Finally, with the algorithm of Theorem 4, we find a
best t ∈ ∆∗ minimizing the latter value wrt ≤⊕, i.e. a solution of sw-parsing. ut

8



5 Properties and Best-Search Algorithm

In the following results, we assume that the functions of a label theory Φ̄ are
given in a finite representation (e.g. Turing machine) in the definitions of swVPT,
and provide complexity bounds parameterized by the semiring operators and the
operators of Section 2 over the functions of Φ̄ (the latter might be represented
symbolically by structures like Algebraic Decision Diagrams [4]).
Similarly to VPA [2] and sVPA [7], the class of swVPT is closed under the binary
operators of the underlying semiring.

Proposition 1. Let T1, T2 be two swVPT over the same Σ, ∆, commutative S
and Φ̄. There exist two effectively constructible swVPT T1 ⊕ T2 and T1 ⊗ T2,
such that for every s ∈ Σ∗ and t ∈ ∆∗, (T1 ⊕ T2)(s, t) = T1(s, t) ⊕ T2(s, t) and
(T1 ⊗ T2)(s, t) = T1(s, t)⊗ T2(s, t).

Proof. Classical Cartesian product construction, similar to the case of the Boolean
semiring [7], see Appendix B for details. ut

The following result shows how to compose, in a single swVPT, the two measures
as input of sw-parsing: the swT computing input-output distance and the swVPA
expressing the weight of parse trees’ linearization.

Theorem 2. Given a swT T over Σ, ∆i, commutative S, and Φ̄, and a swVPA A
over ∆, S, Φ̄, one can construct in PTIME a swVPT T ⊗ A, over Σ, ∆, S, Φ̄,
such that ∀s ∈ Σ∗, t ∈ ∆∗, (T ⊗A)(s, t) = T (s, t|∆i)⊗A(t).

Proof. (sketch, see Appendix C for details). The state set of T⊗A is the Cartesian
product of the state sets of T and A, and every transition of T ⊗ A is either a
transition of T or a transition of A of the same kind (in these cases the state of
the other machine remains the same), or a product of two transitions w11 of T
and A. ut

The next result is the construction, as a swVPA, for the partial application of a
swVPT, fixing an input word s as its first argument.

Theorem 3. Given a swVPT T over Σ, ∆, commutative, complete and idempo-
tent S, and Φ̄, and given s ∈ Σ∗, there exists an effectively constructible swVPA
T (s) over ∆, S, and Φ̄, such that for every t ∈ ∆∗, T (s)(t) = T (s, t).

Proof. (sketch, see Appendix D). We construct an automaton that simulates,
while reading an output word t ∈ ∆∗, the synchronized computation of T on s
and t. The main difficulty comes from the transitions of T of the form w10, which
read in input s and ignore the output t. Since the automaton A(T ) only reads
the output word t, we add to A(T ) a corresponding ε-transition, and show how
to remove the ε-transitions from a swVPA while preserving its language. ut

We present now a procedure for searching a word of minimal weight for a swVPAA,
a variant of reachability problems in pushdown automata [5].
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First of all, for a complete semiring S, we consider the following operators on
the functions of a label theory Φ̄:⊕

Σ : ΦΣ → S, φ 7→
⊕
a∈Σ

φ(a)
⊕1

Σ : ΦΣ,∆ → Φ∆, η 7→
(
y 7→

⊕
a∈Σ

η(a, y)
)

⊕2
∆ : ΦΣ,∆ → ΦΣ , η 7→

(
x 7→

⊕
b∈∆

η(x, b)
)

Intuitively,
⊕

Σ returns the global minimum, wrt ≤⊕, of a function φ of ΦΣ ,

and
⊕1

Σ ,
⊕2

∆ return partial minimums of a function η of ΦΣ,∆. A label theory
is called effective when the three above operators applied on its functions are
recursively enumerable, and there exists a function returning a witness symbol
that reaches the minimum. In the complexity bounds, we assume a constant
time evaluation for these operators. Effectiveness of label theories is a strong
restriction, although realistic for the case study presented in this paper. It is
satisfied e.g. by functions with a codomain {0, α}, with α <⊕ 0, generalizing the
boolean guards of [7,8] to filters returning null or constant weight values.

Theorem 4. For a swVPA A over ∆, S commutative, complete, bounded and
total, and Φ̄ effective, one can construct in PTIME a word t ∈ ∆∗ such that A(t)
is minimal wrt the natural ordering ≤⊕ for S.

Proof. Let A = 〈Q,P, in, w̄, out〉. For every q, q′ ∈ Q, let b⊥(q, q′) be the min-
imum, wrt ≤⊕, of the function βq,q′ : t 7→ weightA(q[⊥], ε, t, q′[⊥]). By def-
inition of ≤⊕, and since S is complete and total, it holds that: b⊥(q, q′) =⊕
t∈∆∗

weightA
(
q[⊥], ε, t, q′[⊥]

)
(see (1) for the definition of weightA). Following (2),

and the algebraic properties of ⊗ and ⊕, the minimum of A(t) wrt ≤⊕ is:⊕
t∈∆∗

A(t) =
⊕
t∈∆∗

⊕
q,q′∈Q

in(q)⊗βq,q′(t)⊗ out(q′) =
⊕
q,q′∈Q

in(q)⊗ b⊥(q, q′)⊗ out(q′)

(4)
Hence, in order to prove Theorem 4, it is sufficient to show that for all q, q′ ∈ Q,
we can compute b⊥(q, q′) in PTIME. We proceed by searching for a best weighted
derivation in a S-labeled hypergraph GA associated to the swVPA A. It has a
set of vertices VA = (Q× {⊥,>} ×Q), where > is a new symbol representing a
non-empty stack, a set of hyperedges EA = (VA×VA)∪ (VA×VA×VA), and an
hyperedge labelling function ηA : EA → S defined as follows, for q0, q

′
0, q1, q2, q3 ∈

Q, (wi is another name for w01, like in Appendix C, Definition 3):

〈q0,⊥, q1〉, 〈q′0, γ, q2〉 7→ 0 if γ = > or (γ = ⊥ and q′0 6= q0)
〈q0,⊥, q1〉, 〈q0,⊥, q2〉 7→

⊕
∆i

wi(q1, q2)⊕
⊕

∆r
we
r (q1, q2)

〈q1,>, q2〉, 〈q0,⊥, q3〉 7→
⊕
p∈P

⊕
∆c

[
wc(q0, q1, p)⊗

⊕2
∆r

wr(q2, p, q3)
]

〈q1,>, q2〉, 〈q0,>, q3〉 7→
[ ⊕
q1=q0

⊕
∆i

wi(q2, q3)
]
⊕[⊕

p∈P

⊕
∆c

[
wc(q0, q1, p)⊗2

⊕2
∆r
wr(q2, p, q3)

]]
〈q0, γ1, q1〉, 〈q1, γ2, q2〉, 〈q0, γ, q2〉 7→ 1 if γ1 = γ2 = γ or 0 otherwise.
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Intuitively, a vertex v = 〈q,⊥, q′〉 (resp. v = 〈q,>, q′〉) of GA represents computa-
tions of A starting in state q with an empty stack (resp. non-empty stack γ), and
ending in state q′ with an empty stack (resp. the same non-empty stack γ). The
best weight of such computations is the best cumulated weight of hyperedges
along a derivation to v. More precisely, a derivation of GA is a VA-labeled binary
tree of the form, v, v(θ1) or v(θ1, θ2), where θ1 and θ2 are sub-derivations, and
its weight is defined by (for i = 1, 2, the root of θi, is labeled with vi ∈ VA):

– weight(〈q,⊥, q〉) = weight(〈q,>, q〉) = 1,
– weight(〈q,⊥, q′〉) = weight(〈q,>, q′〉) = 0 if q 6= q′,
– weight

(
v(θ1)

)
= weight(θ1)⊗ ηA(v1, v)

– weight
(
v(θ1, θ2)

)
= weight(θ1)⊗ weight(θ2)⊗ ηA(v1, v2, v).

With D(GA, v) denoting the set of derivations of GA with root labeled with
v ∈ VA, it holds that (see Appendix E for the proof of the following Lemma 4):

Lemma 4. For all q, q′ ∈ Q, b⊥(q, q′) =
⊕

θ∈D(GA,〈q,⊥,q′〉)

weight(θ).

Therefore, computing b⊥(q, q′) reduces to the search for a smallest weighted
derivation of GA (wrt≤⊕) rooted with 〈q,⊥, q′〉, a problem solvable in PTIME [13],
because S is monotonic wrt ≤⊕ and superior (Lemma 2). Therefore, by (4), the
minimum of t 7→ A(t), wrt ≤⊕, can be computed in PTIME.
Moreover, a witness t ∈ ∆∗ for this minimum can be associated to the appro-
priate best derivation, with no additional cost. For details on the extraction of
this witness, see Appendix E, the proof of Lemma 4, and Lemma 6. ut

Conclusion

We presented closure properties and one decision algorithm for three classes of
Symbolic Weighted language models: swVPT, swT and swVPA, and applied these
results to the problem of parsing with infinitely many input symbols (typically
timed events). In our approach to parsing, words are compared by computing
a distance between them, defined by a given sw-transducer, which allows to
consider finer word relationships than strict equality.

The application to automated music transcription suggested in a toy ex-
ample has been implemented in a C++ library [1], following the principles of
the present sw-parsing framework, although some differences; e.g. the automata
constructions are performed on-the-fly during best-search for efficiency reasons.
One advantage of this swVPA approach is the global view provided by the stack
during transcription, as opposed to other HMM-based approaches [22].

This work can be extended in several directions. The best-search algorithm
for swVPA could be generalized from 1-best to n-best [14], and to k-closed semir-
ings [16] (instead of bounded, which corresponds to 0-closed). One could also
study the generalization of the best-search algorithm of Theorem 4 to the com-
putation of the best possible output of a swVPT for a given input, or even to
the more general models of [12].
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Finally, the best-search algorithm presented here works offline, whereas an on-
the-fly approach coupling automata construction and best-search would be in-
teresting e.g. for online XML validation or filtering, or program monitoring [7].
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Appendices

A Lemmata on Semirings

Lemma 2 (Superiority, Boundedness). Let 〈S,⊕,0,⊗,1〉 be an idempotent
semiring. The two following statements are equivalent: (i) for all x, y ∈ S, x ≤⊕
x⊗ y and y ≤⊕ x⊗ y (ii) for all x ∈ S, 1⊕ x = 1.

Proof. (ii)⇒ (i) : x⊕ (x⊗ y) = x⊗ (1⊕ y) = x, by distributivity of ⊗ over ⊕.
Hence x ≤⊕ x⊗ y. Similarly, y ⊕ (x⊗ y) = (1⊕ x)⊗ y = y, hence y ≤⊕ x⊗ y.
(i)⇒ (ii) : by the second inequality of (i), with y = 1, 1 ≤⊕ x⊗ 1 = x, i.e., by
definition of ≤⊕, 1⊕ x = 1. ut

Lemma 3 ([16], Lemma 3). Every bounded semiring is idempotent.

Proof. By boundedness, 1⊕1 = 1, and idempotency follows by multiplying both
sides by x and distributing. ut

B Proof of Proposition 1

Proposition 1. Let T1, T2 be two swVPT over the same Σ, ∆, commutative S
and Φ̄. There exist two effectively constructible swVPT T1 ⊕ T2 and T1 ⊗ T2,
such that for every s ∈ Σ∗ and t ∈ ∆∗, (T1 ⊕ T2)(s, t) = T1(s, t) ⊕ T2(s, t) and
(T1 ⊗ T2)(s, t) = T1(s, t)⊗ T2(s, t).

Proof. We prove the closure under ⊗ (the case of ⊕ is similar).
Let T1 = 〈Q1, P1, in1, w̄1, out1〉 and T2 = 〈Q2, P2, in2, w̄2, out2〉. We can build
a swVPT T1 ⊗ T2 by a classical product construction. We define T1 ⊗ T2 =
〈Q,P, in, w̄, out〉, whose set of states Q = Q1 × Q2 is the Cartesian product of
the respective sets of states of T1 and T2, and auxiliary set of stack symbols
P = P1×P2 is the product of their sets of stack symbols. The state entering and
leaving functions in, out and the tuplet of transition functions w̄ are defined using
the label-theory operators of Section 2 as follows, for all 〈q1, q2〉, 〈q′1, q′2〉 ∈ Q and
〈p1, p2〉, 〈p′1, p′2〉 ∈ P :

in
(
〈q1, q2〉

)
= in1(q1)⊗ in2(q2)

out
(
〈q1, q2〉

)
= out1(q1)⊗ out2(q2)

w10

(
〈q1, q2〉, 〈q′1, q′2〉

)
= w10,1(q1, q

′
1)⊗ w10,2(q2, q

′
2)

w01

(
〈q1, q2〉, 〈q′1, q′2〉

)
= w01,1(q1, q

′
1)⊗ w01,2(q2, q

′
2)

w11

(
〈q1, q2〉, 〈q′1, q′2〉

)
= w11,1(q1, q

′
1)⊗ w11,2(q2, q

′
2)

wc

(
〈q1, q2〉, 〈q′1, q′2〉, 〈p1, p2〉

)
= wc,1(q1, q

′
1, p1)⊗ wc,2(q2, q

′
2, p2)

wr

(
〈q1, q2〉, 〈p1, p2〉, 〈q′1, q′2〉

)
= wr,1(q1, p1, q

′
1)⊗ wr,2(q2, p2, q

′
2)

we
r

(
〈q1, q2〉, 〈q′1, q′2〉

)
= we

r,1(q1, q
′
1)⊗ we

r,2(q2, q
′
2)

With these functions, T simulates the synchronized behaviour of T1 and T2. ut
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C Proof of Theorem 2

Before giving the details of the construction for the proof of Theorem 2, let us
first state explicitly the definitions of the classes swT and swVPA.

Definition 2 (swT). A Symbolic Weighted Transducer over Σ, ∆i, S, and Φ̄
is a tuple T = 〈Q, in, w̄, out〉, where Q is a finite set of states, in : Q→ S (respec-
tively out : Q → S) are functions defining the weight for entering (respectively
leaving) a state, and w̄ is composed of the transition functions : w10 : Q×Q→ Φe,
w01 : Q×Q→ Φi, w11 : Q×Q→ Φei.

We use the same extended notation for the transition functions w10, w01, w11

as in Section 3, Definition 1 and follow the definition of the computed weight in
(1) (4 first equations) and (2).

Definition 3 (swVPA). A Symbolic Weighted Visibly Pushdown Automaton
over ∆ = ∆i ]∆c ]∆r, S and Φ̄ is a tuple A = 〈Q,P, in, w̄, out〉, where Q is a
finite set of states, P is a finite set of stack symbols, in : Q → S (respectively
out : Q→ S) are functions defining the weight for entering (respectively leaving)
a state, and w̄ is a tuplet composed of the transition functions : wi : Q×Q→ Φi,
wc : Q×Q× P → Φc, wr : Q× P ×Q→ Φcr, w

e
r : Q×Q→ Φr.

The transition function wi is just a new name for w01 of Definition 1, used
in the case of swVPA. In the extended notation for the transition functions after
Definition 1, and the definition of the computed weight in (1) and (2), there
is no input symbol of Σ to read for swVPA (the corresponding argument is
always ε in this case). Hence for the sake of simplicity, let us restate explicitly
the equations without symbols of Σ, as follows. For the transition functions in
extended notation, we have with q, q′ ∈ Q and a ∈ ∆i, c ∈ ∆c, r ∈ ∆r:

wi(q, a, q
′) = φ(a) where φ = wi(q, q

′),
wc(q, c, q

′, p) = φ(c) where φ = wc(q, q
′, p),

wr(q, c, p, r, q
′) = η(c, r) where η = wr(q, p, q

′),
we
r (q, r, q

′) = φ(r) where φ = we
r (q, q

′).

And for the weight function, with v ∈ ∆∗:

weightA
(
q[γ], ε, q′[γ′]) = 1 if q = q′, γ = γ′ and 0 otherwise (5)

weightA
(
q[γ], a v, q[γ′]

)
=
⊕
q′′∈Q

wi(q, a, q
′′)⊗ weightA

(
q′′[γ], v, q[γ′]

)
weightA

(
q[γ], c v, q′[γ′]

)
=
⊕
q′′∈Q
p∈P

wc(q, c, q
′′, p)⊗ weightA

(
q′′
[
〈c, p〉
γ

]
, v, q′[γ′]

)

weightA
(
q

[
〈c, p〉
γ

]
, r v, q′[γ′]

)
=
⊕
q′′∈Q

wr

(
q, c, p, r, q′′

)
⊗ weightA

(
q′′[γ], v, q′[γ′]

)
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weightA
(
q[⊥], r v, q′[γ′]

)
=
⊕
q′′∈Q

we
r (q, r, q

′′)⊗ weightA
(
q′′[⊥], v, q′[γ′]

)
and, for t ∈ ∆∗:

A(t) =
⊕
q,q′∈Q

in(q)⊗weightA
(
q[⊥], t, q′[⊥]

)
⊗ out(q′) (6)

We recall the Theorem 2 from Section 5.

Theorem 2. Given a swT T over Σ, ∆i, commutative S, and Φ̄, and a swVPA A
over ∆, S, Φ̄, one can construct in PTIME a swVPT T ⊗ A, over Σ, ∆, S, Φ̄,
such that ∀s ∈ Σ∗, t ∈ ∆∗, (T ⊗A)(s, t) = T (s, t|∆i)⊗A(t).

Proof. Let T = 〈QT , inT , w̄T , outT 〉, where w̄T contains w10, w01, and w11, and
let A = 〈QA, inA, w̄A, outA〉 where w̄A contains wi, wc, wr, w

e
r .

The set of states of T ⊗A will be Q′ = QT ×QA, and its set of stack symbols
P ′ = P . The entering, leaving and transition functions of T ⊗A will simulate the
synchronized computations of T and A on respectively the pair 〈s, t|∆i〉 and t,
while reading a pair 〈s, t〉 ∈ Σ∗ ×∆∗. The state entering and leaving functions
of T ⊗A are defined, for all 〈qT , qA〉 ∈ Q′, by:

in′
(
〈qT , qA〉

)
= inT (qT )⊗ inA(qA)

out′
(
〈qT , qA〉

)
= outT (qT )⊗ outA(qA)

The transition functions of T ⊗A are defined by:

w′10
(
〈qT , qA〉, 〈q′T , qA〉

)
= w10(qT , q

′
T )

w′10
(
〈qT , qA〉, 〈q′T , q′A〉

)
= 0 when qA 6= q′A

w′01(〈qT , qA〉, 〈qT , q′A〉) = wi(qA, q
′
A)

w′01(〈qT , qA〉, 〈q′T , q′A〉) = 0 when qT 6= q′T
w′11(〈qT , qA〉, 〈q′T , q′A〉) = w11(qT , q

′
T )⊗2 wi(qA, q

′
A)

wc
′(〈qT , qA〉, 〈qT , q′A〉, p) = wc(qA, q

′
A, p)

wc
′(〈qT , qA〉, 〈q′T , q′A〉, p) = 0 when qT 6= q′T

wr
′(〈qT , qA〉, p, 〈qT , q′A〉) = wr(qA, p, q

′
A)

wr
′(〈qT , qA〉, p, 〈q′T , q′A〉) = 0 when qT 6= q′T
we
r
′(〈qT , qA〉, 〈qT , q′A〉) = we

r (qA, q
′
A)

we
r
′(〈qT , qA〉, 〈q′T , q′A〉) = 0 when qT 6= q′T

It means that, for all e ∈ Σ, a ∈ ∆i, c ∈ ∆c, r ∈ ∆r:

w′10
(
〈qT , qA〉, e, ε, 〈q′T , qA〉

)
= φ(e) where φ = w10(qT , q

′
T )

w′10
(
〈qT , qA〉, e, ε, 〈q′T , q′A〉

)
= 0 when qA 6= q′A

w′01(〈qT , qA〉, ε, a, 〈qT , q′A〉) = φ(a) where φ = wi(qA, q
′
A),

w′01(〈qT , qA〉, ε, a, 〈q′T , q′A〉) = 0 when qT 6= q′T
w′11(〈qT , qA〉, e, a, 〈q′T , q′A〉) = η(e, a)⊗ φ(a) where η = w11(qT , q

′
T ),

φ = wi(qA, q
′
A)
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wc
′(〈qT , qA〉, ε, c, 〈qT , q′A〉, p) = φ(c) where φ = wc(qA, q

′
A, p),

wc
′(〈qT , qA〉, ε, c, 〈q′T , q′A〉, p) = 0 when qT 6= q′T

wr
′(〈qT , qA〉, c, p, ε, r, 〈qT , q′A〉) = η(c, r) where η = wr(qA, p, q

′
A)

wr
′(〈qT , qA〉, c, p, ε, r, 〈q′T , q′A〉) = 0 when qT 6= q′T
we
r
′(〈qT , qA〉, ε, r, 〈qT , q′A〉) = φ(r) where φ = we

r (qA, q
′
A)

we
r
′(〈qT , qA〉, ε, r, 〈q′T , q′A〉) = 0 when qT 6= q′T

The transition w′10 performs their counterpart in T while reading one input
symbol e, ignoring A: the state qA of A is left unchanged in this transition, which
does not read the output symbol. On the other hand, the transitions w′01, wc

′,
wr
′, and we

r
′ perform their counterparts in A while reading one output symbol

a or c or r, and ignores T : the state qT of T is unchanged in these transitions,
and no input symbol is read. The transition w′11 simulates the computation of
both T and A simultaneously, while reading one input symbol e and one output
symbol a.

The proof of the correctness of the construction, i.e. that ∀s ∈ Σ∗, t ∈ ∆∗,
(T ⊗ A)(s, t) = T (s, t|∆i) ⊗ A(t), is a straighthforward double induction on the
length of s and t. ut

D Proof of Theorem 3

The swVPT of Definition 1 does not contain ε-transitions. However, this notion
shall be convenient in the proof Theorem 3. It is defined formally as follows.

Definition 4 (swVPTε). A Symbolic Weighted Visibly Pushdown Transducer
with ε-transitions over Σ, ∆, complete S, and Φ̄ is a tuple T = 〈Q,P, in, w̄, out〉,
where Q, P , in and out are like in Definition 1 and w̄ contains an additional
function w00 : Q×Q→ S.

The function weight of a swVPTε is computed by adding (with ⊕) the weight of

possible finite sequences ε-transitions w00. Formally, for a swVPTε T , let weight 6εT
be the function defined for T by the equations (1) (for the case of swVPT without
ε-transitions). Then weightT is the function [Q×Γ ∗]×Σ∗×∆∗× [Q×Γ ∗] into S,
defined by, for q, q′ ∈ Q, γ, γ′ ∈ Γ ∗, and u ∈ Σ∗, v ∈ ∆∗:

weightT
(
q[γ], u, v, q′[γ′]

)
=

⊕
q0...qn∈Q∗

q0=q

n−1⊗
i=0

w00(qi, qi+1)

⊗ weight 6εT
(
qn[γ], u, v, q′[γ′]

)
(7)

weight 6εT
(
q[γ], ε, ε, q′[γ′]) = 1 if q = q′, γ = γ′ and 0 otherwise

weight 6εT
(
q[γ], e u, ε, q′[γ′]

)
=
⊕
q′′∈Q

w10(q, e, ε, q′′)⊗ weightT
(
q′′[γ], u, ε, q′[γ′]

)
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weight 6εT
(
q[γ], ε, a v, q′[γ′]

)
=
⊕
q′′∈Q

w01(q, ε, a, q′′)⊗ weightT
(
q′′[γ], ε, v, q′[γ′]

)
weight 6εT

(
q[γ], e u, a v, q′[γ′]

)
=
⊕
q′′∈Q

w10(q, e, ε, q′′)⊗ weightT
(
q′′[γ], u, a v, q′[γ′]

)
⊕
⊕
q′′∈Q

w01(q, ε, a, q′′)⊗ weightT
(
q′′[γ], e u, v, q′[γ′]

)
⊕
⊕
q′′∈Q

w11(q, e, a, q′′)⊗ weightT
(
q′′[γ], u, v, q′[γ′]

)
weight 6εT

(
q[γ], u, c v, q′[γ′]

)
=
⊕
q′′∈Q
p∈P

wc(q, ε, c, q
′′, p)⊗ weightT

(
q′′
[
〈c, p〉
γ

]
, u, v, q′[γ′]

)

weight 6εT
(
q

[
〈c, p〉
γ

]
, u, r v, q′[γ′]

)
=
⊕
q′′∈Q

wr

(
q, c, p, ε, r, q′′

)
⊗ weightT

(
q′′[γ], u, v, q′[γ′]

)
weight 6εT

(
q[⊥], u, r v, q′[γ′]

)
=
⊕
q′′∈Q

we
r (q, ε, r, q

′′)⊗ weightT
(
q′′[⊥], u, v, q′[γ′]

)
The hypothesis that S is complete ensures that the possibly infinite sum in

the first equation of (7) is well defined. The next equations of (7) are the same

as in (1) where the weightT in the left-hand-side is replaced by weight 6εT . Note

that the weightT in the right-hand-side is not replaced by weight 6εT , meaning the
ε-transition of w00 can be performed at any compution step.

Lemma 5. For all swVPTε Tε over Σ, ∆, commutative, idempotent, and com-
plete S, and Φ̄, there exists one swVPT T over Σ, ∆, S, and Φ̄, of size polynomial
in the size of Tε and effectively constructible in PTIME in the size of Tε, such
that for all 〈s, t〉 ∈ Σ∗ ×∆∗, T (s, t) = Tε(s, t).

Proof. Let Tε = 〈Q,P, in, w̄, out〉. We build T = 〈Q,P, in, w̄′, out′〉; the construc-
tion of w̄′ and out′ follows the line of the ε-removal algorithm of [App27].
For all q, q′ ∈ Q, let

`00(q, q′) =
⊕

q0...qn∈Q∗
q0=q,qn=q

′

n−1⊗
i=0

w00(qi, qi+1)

Since by hypothesis, S is commutative and idempotent, it holds that:

Fact 1. For all q, q′ ∈ Q, there exists one sequence q0...qn ∈ Q∗ without repeti-
tion, such that q0 = q, qn = q′, and `00(q, q′) =

⊗n−1
i=0 w00(qi, qi+1).

Therefore, we can pre-compute every `00(q, q′) in at most |Q| iterations, with a
Viterbi algorithm [13] for finding a shortest path in the graph defined by w00.
Let, for all q′ ∈ Q,

out′(q) = `00(q, q′)⊗ out′(q′)
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and, for all q, q′ ∈ Q,

w′10(q, q′) =
⊕
q′′∈Q

`00(q, q′′)⊗ w′10(q′′, q′)

and similarly for w01, w11, wc, wr, w
e
r .

Fact 1, implies that: out′(q) =
⊕

q0...qn∈Q∗
q0=q

n−1⊗
i=0

w00(qi, qi+1)⊗ out(qn)

and w′10(q, q′) =
⊕

q0...qn∈Q∗
q0=q

n−1⊗
i=0

w00(qi, qi+1)⊗ w10(qn, q
′).

By (7), it follows that T (s, t) = Tε(s, t) for all 〈s, t〉 ∈ Σ∗ ×∆∗. ut

Theorem 3. Given a swVPT T over Σ, ∆, commutative, complete and idempo-
tent S, and Φ̄, and given s ∈ Σ∗, there exists an effectively constructible swVPA
T (s) over ∆, S, and Φ̄, such that for every t ∈ ∆∗, T (s)(t) = T (s, t).

Proof. Let T = 〈Q,P, in, w̄, out〉, where w̄ contains w10, w01, and w11, from Q×Q
into respectively Φe, Φi, and Φei, and wc : Q×Q×P → Φc, wr : Q×P ×Q→ Φcr,
we
r : Q×Q→ Φr and let s = e1 . . . ek.

We construct a swVPA with ε-transitions Tε(s) = 〈Q′, P ′, in′, w̄′, out′〉, with a
state set Q′ = [0..k]×Q, a set of stack symbols P ′ = P . The functions in′, out′

and w̄′, will simulate the synchronized computation of T on 〈s, t〉, while reading
an output word t ∈ ∆∗.
The state entering function of Tε(s) is defined by, for all q ∈ Q:

in′
(
〈0, q〉

)
= in(q)

in′
(
〈i, q〉

)
= 0 for 0 < i ≤ k

and the state leaving function is defined by, for all q ∈ Q:

out′
(
〈k, q〉

)
= out(q)

out′
(
〈i, q〉

)
= 0 for 0 ≤ i < k.

Regarding transition functions of w̄′, for all q, q′ ∈ Q,

wi
′(〈i, q〉, 〈i, q′〉) = w01(q, q′) for 0 ≤ i ≤ k

wi
′(〈i, q〉, 〈i+ 1, q′〉

)
: y 7→ w11(q, ei, y, q

′) for 0 ≤ i < k
wi
′(〈i, q〉, 〈i′, q′〉) = 0 for 0 ≤ i, i′ ≤ k, i′ 6= i, i′ 6= i+ 1.

The ε-transitions of Tε(s) are, for all q, q′ ∈ Q,

w00

(
〈i, q〉, 〈i+ 1, q′〉

)
= w10(q, ei, ε, q

′) for 0 ≤ i < k
w00

(
〈i, q〉, 〈i′, q′〉

)
= 0 for 0 ≤ i, i′ ≤ k, i′ 6= i+ 1.
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And the other transitions of Tε(s) are, for all q, q′ ∈ Q, p ∈ P ,

wc
′(〈i, q〉, 〈i, q′〉, p) = wc(q, q

′) for 0 ≤ i ≤ k
wc
′(〈i, q〉, 〈i′, q′〉, p) = 0 for 0 ≤ i, i′ ≤ k, i′ 6= i

wr
′(〈i, q〉, p, 〈i, q′〉) = wr(q, p, q

′) for 0 ≤ i ≤ k
wr
′(〈i, q〉, p, 〈i′, q′〉, ) = 0 for 0 ≤ i, i′ ≤ k, i′ 6= i
we
r
′(〈i, q〉, 〈i, q′〉) = we

r (q, q
′) for 0 ≤ i ≤ k

we
r
′(〈i, q〉, 〈i′, q′〉, ) = 0 for 0 ≤ i, i′ ≤ k, i′ 6= i

We can show that for all t ∈ ∆∗, Tε(s)(t) = T (s, t). Hence Theorem 3 follows,
by Lemma 5. ut

E End of proof of Theorem 4

Lemma 4 below shows that the computation of b⊥, and by extension the com-
putation of the minimum of A over ∆∗, reduces to the search of a best weighted
derivation in the hypergraph GA, defined in Section 5.

Lemma 4. For all q, q′ ∈ Q, b⊥(q, q′) =
⊕

θ∈D(GA,〈q,⊥,q′〉)

weight(θ).

The direction ≤⊕ of Lemma 4 follows from Lemma 6 below. In the following, we
use the notation from Appendix C where we consider the weights of computations
of swVPA as particular cases of swVPT, i.e. the argument in (1) that corresponds
to an input symbol of Σ (for a swVPT) is ignored. Note the use of the special
symbol > in configurations like q[>] in the expressions of weightA. With such
a symbol for γ in (1), the computation of weightA is ensured to start with a
non-empty stack, and never reads or pops the top of this stack.

Lemma 6 (Correctness). For all derivation θ ∈ D(GA, 〈q, γ, q′〉) such that
weight(θ) 6= 0, where γ ∈ {⊥,>} and q, q′ ∈ Q, there exists a word t ∈ ∆∗ such
that weightA(q[γ], t, q′[γ]) = weight(θ).

Proof. By induction on the size of the derivation θ rooted by 〈q, γ, q′〉.
The base case is when θ is composed of a single vertex. In order to ensure that
weight(θ) 6= 0, this vertex shall have the form 〈q,⊥, q〉 or 〈q,>, q〉. In both cases,
weight(θ) = 1, and by (1), weightA(q[⊥], ε, q′[⊥]) = weightA(q[>], ε, q′[>]) = 1.
Hence the property holds with t = ε.

If θ = v(θ1), where θ1 ∈ D(GA, v1), let us assume that Lemma 6 holds for θ1,
and a word t1 ∈ ∆∗. We do a case analysis on the hyperedge 〈v1, v〉.

Firstly, let us consider the case where v1 = 〈q0,⊥, q1〉 and v = 〈q0,⊥, q2〉 for some
q0, q1, q2 ∈ Q. By the hypothesis that S is total, we are in one of the following
two cases:
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– ηA(v1, v) =
⊕

∆i
wi(q1, q2). By effectiveness of Φ̄, there exists a ∈ ∆i such

that
⊕

∆i
wi(q1, q2) = wi(q1, a, q2). It follows that:

weight(θ) = weight(θ1)⊗ ηA(v1, v)
= weight(θ1)⊗ wi(q1, a, q2)
= weightA(q0[⊥], t1, q1[⊥])⊗ wi(q1, a, q2) by induction hypothesis
= weightA(q0[⊥], t1 a, q2[⊥])

by (1) and associativity, commutativity of ⊗,

and the lemma holds with t = t1 a.
– ηA(v1, v) =

⊕
∆r

we
r (q1, q2), and we can proceed similarly as above in order

to find t = t1 r as expected, for some r ∈ ∆r (case of an unmatched return
symbol).

Secondly, we consider the case where v1 = 〈q1,>, q2〉 and v = 〈q0,⊥, q3〉 for
q0, q1, q2, q3 ∈ Q. In this case,

ηA(v1, v) =
⊕
p∈P

⊕
∆c

[
wc(q0, q1, p)⊗

⊕2

∆r

wr(q2, p, q3)
]
.

By hypothesis, this value is not 0, hence there exists a stack symbol p ∈ P , a call
symbol c ∈ ∆c, and a return symbol r ∈ ∆r such that ηA(v1, v) = wc(q0, c, q1, p)⊗
wr(q2, c, p, r, q3). Therefore,

weight(θ) = weight(θ1)⊗ ηA(v1, v)
= weight(θ1)⊗ wc(q0, c, q1, p)⊗ wr(q2, c, p, r, q3)
= weightA(q1[>], t1, q2[>])⊗ wc(q0, c, q1, p)⊗ wr(q2, c, p, r, q3)

by induction hypothesis
= weightA(q0[⊥], c t1 r, q3[⊥])

by (1) and associativity, commutativity of ⊗,

and we can conclude with t = c t1 r.

Finally, let us consider the case where v1 = 〈q1,>, q2〉 and v = 〈q0,>, q3〉 for
q0, q1, q2, q3 ∈ Q. Since S is total, there are two cases for the value of ηA(v1, v).

– ηA(v1, v) =
⊕

∆i
wi(q2, q3) and q1 = q0. By effectiveness of Φ̄, there exists

a ∈ ∆i such that
⊕

∆i
wi(q2, q3) = w01(q2, ε, a, q3) = wi(q2, a, q3), and

weight(θ) = weight(θ1)⊗ ηA(v1, v)
= weight(θ1)⊗ wi(q2, a, q3)
= weightA(q0[>], t1, q2[>])⊗ wi(q2, a, q3) by induction hypothesis
= weightA(q0[>], t1 a, q3[>]),

and the lemma holds with t = t1 a.

– ηA(v1, v) =
⊕
p∈P

⊕
∆c

[
wc(q0, q1, p) ⊗

⊕2
∆r

wr(q2, p, q3)
]
. Since this value is

not 0 by hypothesis, there exists a stack symbol p ∈ P , a call symbol c ∈
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∆c, and a return symbol r ∈ ∆r such that ηA(v1, v) = wc(q0, c, q1, p) ⊗
wr(q2, c, p, r, q3), and,

weight(θ) = weight(θ1)⊗ ηA(v1, v)
= weight(θ1)⊗ wc(q0, c, q1, p)⊗ wr(q2, c, p, r, q3)
= weightA(q1[>], t1, q2[>])⊗ wc(q0, c, q1, p)⊗ wr(q2, c, p, r, q3)

by induction hypothesis
= weightA(q0[>], c t1 r, q3[>])

by (1) and associativity, commutativity of ⊗,

and the lemma holds with t = c t1 r.

If θ = v(θ1, θ2), where θ1 ∈ D(GA, v1) and θ2 ∈ D(GA, v2), for vertices v1, v2 ∈
VA, let us assume that Lemma 6 holds, on the one side for θ1 and a word t1 ∈ ∆∗,
on the other side for θ2 and a word t2 ∈ ∆∗. Since by hypothesis weight(θ) =
weight(θ1)⊗ weight(θ2)⊗ ηA(v1, v2, v) 6= 0, it holds that ηA(v1, v2, v) = 1.
Hence, by construction, v1 = 〈q0, γ, q1〉, v2 = 〈q1, γ, q2〉, and v = 〈q0, γ, q2〉, for
some for q0, q1, q2 ∈ Q and γ ∈ {⊥,>}. Then,

weight(θ) = weight(θ1)⊗ weight(θ2)⊗ ηA(v1, v2, v)
= weight(θ1)⊗ weight(θ2)
= weightA(q0[γ], t1, q1[γ])⊗ weightA(q1[γ], t2, q2[γ])

by induction hypothesis
= weightA(q0[γ], t1 t2, q2[γ]) by (1),

and we can conclude the lemma with t = t1 t2. ut

The direction ≥⊕ of Lemma 4 follows from the Lemma 7 below. In this lemma,
we call a word t ∈ ∆∗ well-parenthesised if it is either:

t = ε, the empty word, or
t = t1 a, for a ∈ ∆i and some well-parenthesised word t1, or
t = t1 r, for r ∈ ∆r, and some well-parenthesised word t1, or
t = c t1 r, for r ∈ ∆r, c ∈ ∆c, and some well-parenthesised word t1, or
t = t1t2, for some well-parenthesised words t1, t2.

Lemma 7 (Completeness). For all well-parenthesised t ∈ ∆∗, for all q, q′ ∈
Q, and γ ∈ {⊥,>}, there exists a derivation θ ∈ D

(
GA, 〈q, γ, q′〉

)
such that

weight(θ) ≤⊕ weightA(q[γ], t, q′[γ]).

Proof. By induction on the length of t. If the length of t is zero, then by (1),
weightA(q[γ], t, q′[γ]) = 1 if q = q′ and weightA(q[γ], t, q′[γ]) = 0 otherwise. In
both cases, we can choose the singleton derivation θ = 〈q, γ, q′〉.
Let us now assume that the length of t is strictly greater than 0. Since t is
well-parenthesised by hypothesis, we are in one of the following four cases.

If t = t1 a, for a ∈ ∆i, and some well-parenthesised word t1, by (1), it holds that

weightA(q[γ], t, q′[γ]) = weightA(q[γ], t1, q
′′[γ])⊗ wi(q

′′, a, q′)
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for some q′′ ∈ Q. By induction hypothesis, there exists a derivation θ1 ∈
D
(
GA, 〈q, γ, q′′〉

)
such that: weight(θ1) ≤⊕ weightA(q[γ], t1, q

′′[γ]). Let θ = 〈q, γ, q′〉(θ1).
If γ = ⊥, then we have:

weight(θ) = weight(θ1)⊗
[⊕

∆i

wi(q
′′, q′)⊕

⊕
∆r

we
r (q
′′, q′)

]
.

By monotony of S (Lemma 1),
⊕

∆i
wi(q

′′, q′)⊕
⊕

∆r
we
r (q
′′, q′) ≤⊕ wi(q

′′, a, q′).
If γ = >, then:

weight(θ) = weight(θ1)⊗

 ⊕
∆i
wi(q

′′, q′)

⊕
⊕
p∈P

⊕
∆c

[
wc(q, q, p)⊗2

⊕2
∆r
wr(q

′′, p, q′)
]

and again, by Lemma 1, F2 ≤⊕ wi(q
′′, a, q′) where F2 is the second factor of the

above expression. Altogether, it holds that:

weight(θ) ≤⊕ weight(θ1)⊗ wi(q
′′, a, q′)

≤⊕ weightA(q[γ], t1, q
′′[γ])⊗ wi(q

′′, a, q′) = weightA(q[γ], t, q′[γ]).

If t = t1 r, for r ∈ ∆r, and some well-parenthesised word t1: the proof is similar
to the above case.

If t = c t1 r for c ∈ ∆c, r ∈ ∆r, and some well-parenthesised word t1, we have,
by (1), for some p ∈ P and some q1, q2 ∈ Q:

weightA(q[γ], t, q′[γ]) = wc(q, c, q1, p)⊗weightA(q1[>], t1, q2[>])⊗wr(q2, c, p, r, q
′).

Note that in the intermediate computation from q1 to q2, the stack must not be
empty, because it contains at least the pair 〈c, p〉 on top.
By induction hypothesis, there exists a derivation θ1 ∈ D

(
GA, 〈q1,>, q2〉

)
such

that weight(θ1) ≤⊕ weightA(q1[>], t1, q2[>]). Let θ = 〈q, γ, q′〉(θ1). It holds that:

weight(θ) = weight(θ1)⊗ ηA(〈q1,>, q2〉, 〈q, γ, q′〉).

The hyperedge’s weight H = ηA(〈q1,>, q2〉, 〈q, γ, q′〉) can take one of the follow-
ing two values:

if γ = ⊥, H =
⊕
p′∈P

⊕
∆c

[
wc(q, q1, p

′)⊗
⊕2

∆r
wr(q2, p

′, q′)
]
,

if γ = >,H =
[⊕
q1=q

⊕
∆i

wi(q2, q
′)
]
⊕
[⊕
p′∈P

⊕
∆c

[
wc(q, q1, p

′)⊗2

⊕2
∆r
wr(q2, p

′, q′)
]]

.

By Lemma 1, in both cases, it holds that:

ηA(〈q1,>, q2〉, 〈q, γ, q′〉) ≤⊕ wc(q, c, q1, p)⊗ wr(q2, c, p, r, q
′).

Therefore,

weight(θ) ≤⊕ wc(q, c, q1, p)⊗ weight(θ1)⊗ wr(q2, c, p, r, q
′)

≤⊕ wc(q, c, q1, p)⊗ weightA(q1[>], t1, q2[>])⊗ wr(q2, c, p, r, q
′)

≤⊕ weightA(q[γ], t, q′[γ]).
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Finally, if t = t1t2 for t1, t2 two well-parenthesised words, we have,

weightA(q[γ], t, q′[γ]) = weightA(q[γ], t1, q
′′[γ])⊗ weightA(q′′[γ], t2, q

′[γ])

for some q′′ ∈ Q. The state γ of the stack is the same at the beginning and the
end of the computation on t1 (resp. t2) because this word is well-parenthesised.
By induction hypothesis, there exist derivations θ1 ∈ D

(
GA, 〈q, γ, q′′〉

)
and θ2 ∈

D
(
GA, 〈q′′, γ, q′〉

)
such that weight(θ1) ≤⊕ weightA(q[γ], t1, q

′′[γ]), and weight(θ2) ≤⊕
weightA(q′′[γ], t2, q

′[γ]).
Let θ = 〈q, γ, q′〉(θ1, θ2). It holds that:

weight(θ) = weight(θ1)⊗ weight(θ2)⊗ ηA(〈q, γ, q′′〉, 〈q′′, γ, q′〉, 〈q, γ, q′〉)
= weight(θ1)⊗ weight(θ2)
≤⊕ weightA(q[γ], t1, q

′′[γ])⊗ weightA(q′′[γ], t2, q
′[γ])

≤⊕ weightA(q[γ], t, q′[γ]).

ut

We can now complete the proof of Lemma 4, and Theorem 4. Let q, q′ ∈ Q.

If
⊕

θ∈D(GA,〈q,⊥,q′〉)

weight(θ) = 0, then for all derivation θ ∈ D(GA, 〈q,⊥, q′〉),

weight(θ) = 0, since this sum is finite and S is assumed total. Lemma 7 implies
that for all t ∈ ∆∗, weightA(q[⊥], t, q′[⊥]) = 0. Therefore, b⊥(q, q′) = 0 in this
case.
Let us now assume that ⊕

θ∈D(GA,〈q,⊥,q′〉)

weight(θ) = W 6= 0. (8)

There exists θq,q′ ∈ D(GA, 〈q,⊥, q′〉), such that W = weight(θq,q′). By Lemma 6,
there exists tq,q′ ∈ ∆∗ such that weightA(q[⊥], tq,q′ , q

′[⊥]) = weight(θq,q′) = W .
We can show by contradiction that for all t ∈ ∆∗, W ≤⊕ weightA(q[⊥], t, q′[⊥]).
Indeed, assume on the opposite that weightA(q[⊥], t, q′[⊥]) <⊕ W for some
t ∈ ∆∗. Since this weight is computed by starting and ending with an empty
stack, t is well-parenthesised, and by Lemma 7, there exists a derivation θ ∈
D(GA, 〈q,⊥, q′〉), and weight(θ) <⊕ W , contradicting (8).
Therefore, b⊥(q, q′) = weightA(q[⊥], tq,q′ , q

′[⊥]) = W .
Moreover, the above word tq,q′ is a witness reaching the minimum of the swVPA A
computed by Theorem 4.

F Nested Words and Parse Trees

The hierarchical structure of nested words, defined with the call and return
markup symbols, suggests a correspondence with trees. The lifting of this cor-
respondence to languages, of tree automata and VPA, has been discussed in [2],
and [6] for the weighted case. In this section, we describe a correspondence be-
tween the symbolic-weighted extensions of tree automata and VPA. It might be
folklore knowledge but we state it explicitly for the sake of clarity.
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Let Ω be a countable ranked alphabet, such that every symbol a ∈ Ω has a
rank rk(a) ∈ [0..M ] where M is a fixed natural number. We denote by Ωk the
subset of all symbols a ∈ Ω with rk(a) = k, where 0 ≤ k ≤M , and Ω>0 = Ω\Ω0.
The free Ω-algebra of finite, ordered, Ω-labeled trees is denoted by TΩ . It is the
smallest set such that Ω0 ⊂ TΩ , and, for all 1 ≤ k ≤ M , all a ∈ Ωk, and all
t1, . . . , tk ∈ TΩ , a(t1, . . . , tk) ∈ TΩ . Let us assume a commutative semiring S and
a label theory Φ̄ over S containing one set ΦΩk

for each k ∈ [0..M ].

Definition 5. A symbolic-weighted tree automaton (swTA) over Ω, S, and Φ̄
is a triplet A = 〈Q, in, w̄〉 where Q is a finite set of states, in : Q → S is the
starting weight function, and w̄ is a tuplet of transition functions containing, for
each k ∈ [0..M ], the function wk : Q×Qk → ΦΩk

.

We define a transition function w : Q × Ω ×
⋃M
k=0Q

k → S by (q1 . . . qk is ε if
k = 0):

w(q0, b, q1 . . . qk) = φ(b) where φ = wk(q0, q1 . . . qk).

Every swTA defines a mapping from trees of TΩ into S, based on the following
intermediate function weightA : Q× TΩ → S

weightA(q0, t) =
⊕

q1...qk∈Qk

w(q0, b, q1 . . . qk)⊗
k⊗
i=1

weightA(qi, ti) (9)

where q0 ∈ Q, and t = b(t1, . . . , tk) ∈ TΩ , with 0 ≤ k ≤ M (by convention, the
product from 1 to k is equal to 1 when k = 0).

Finally, the weight associated by A to t ∈ TΩ is

A(t) =
⊕
q∈Q

in(q)⊗weightA(q, t) (10)

Intuitively, w(q0, b, q1 . . . qk) can be seen as the weight of a production rule q0 →
b(q1, . . . , qk) of a regular tree grammar [App25], that replaces the non-terminal
symbol q0 by b(q1, . . . , qk). The above production rule can also be seen as a rule
of a weighted CF grammar, of the form [b] q0 := q1 . . . qk if k > 0, and [b] q0 := b
if k = 0. In the first case, b is a label for the rule, and in the second case,
it is also a terminal symbol. The weight of a labeled derivation tree t of the
weighted CF grammar associated to A as above, is weightA(q, t), when q is the
start non-terminal.

We shall now establish a correspondence between such a derivation tree t
and some word describing a linearization of t, in a way that weightA(q, t) can be
computed by a swVPA. Let Ω̂ be the countable (unranked) alphabet obtained
from Ω by: Ω̂ = ∆i ]∆c ]∆r, with ∆i = Ω0, ∆c = { 〈a| a ∈ Ω>0}, ∆r = { a〉 |
a ∈ Ω>0}. We associate to Ω̂ a label theory Φ̂ like in Section 3, and we define a
linearization of trees of TΩ into words of Ω̂∗ as follows:

lin(a) = a for all a ∈ Ω0,
lin
(
b(t1, . . . , tk)

)
= 〈b lin(t1) . . . lin(tk) b〉 when b ∈ Ωk for 1 ≤ k ≤M .
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Example 6. The trees in Figure 1 represent the two scores in Example 1, where
we showed that their linearizations are respectively O and O′. 3

Proposition 2. For all swTA A over Ω, S commutative, and Φ̄, there exists an
effectively constructible swVPA A′ over Ω̂, S and Φ̂ such that for all t ∈ TΩ,
A′
(
lin(t)

)
= A(t).

Proof. We follow Definition 3 in Appendix C for swVPA, i.e. wi = w01 and we ig-
nore the first symbol argument (input symbol) of Definition 1. Let A = 〈Q, in, w̄〉
where w̄ is presented as above by a function. We build A′ = 〈Q′, P ′, in′, w̄′, out′〉,
where Q′ =

⋃M
k=0Q

k is the set of sequences of state symbols of A, of length at
most M , including the empty sequence denoted by ε, and where P ′ = Q′ and
w̄′ is defined by (ū, q̄ ∈ Q′, p̄ ∈ P ′):

wi(q0 ū, a, ū) = w(q0, a, ε) for all a ∈ Ω0

wc(q0 ū, 〈c, q̄, ū) = w(q0, 〈c, q̄) for all c ∈ Ω>0

wr(ε, 〈c, p̄, c〉, p̄) = 1 for all c ∈ Ω>0

we
r (ū, c〉, q̄) = 0 for all c ∈ Ω>0

All cases not matched by one of the above equations have a weight 0, for instance
wr(ū, 〈c, p̄, d〉, q̄) = 0 if c 6= d or ū 6= ε or q̄ 6= p̄.
The entering and leaving weight functions in′, out′ : Q′ → S are defined by:

– in′(q) = in(q) for all q ∈ Q,
– in′(q̄) = 0 for every other (non-singleton) sequence q̄ ∈ Q′,
– in′(q̄) = 1 for all q̄ ∈ Q′.

ut
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