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ABSTRACT Data analysis is increasingly performed over data assembled from uncontrolled sources,
facing inconsistency in knowledge-representation conventions. The typical practice is to create “clean” data
for analysis, matching entities and merging variants to overcome differences in knowledge representation.
Despite progress in data management techniques to automate this process, it still needs labor-intensive
supervision from the analyst. In this paper, we evaluate the benefit of advanced statistical tools to
address directly many analytic tasks across data sources without such entity-matching cleaning. Reframing
analytical questions as machine-learning tasks enables to replace exact matching of entities by continuous
descriptions –vectorial embeddings– that expose similarities between entries.
But are analyses with less cleaning trustworthy? We answer this question with a thorough benchmark on
questions typical of socio-economic studies across 14 employee databases: we compare the approaches
based on machine learning to manual data cleaning (entity matching). It reveals that using embeddings
and machine learning improves results validity (smaller estimation error) more than manual cleaning, with
considerably less human labor. While machine learning is often combined with data management for the
purpose of cleaning, our study suggests that using it directly for analysis is beneficial because it captures
ambiguities hard to represent during curation.

INDEX TERMS data analysis, data cleaning, data integration, embeddings, entity-matching

I. INTRODUCTION

Data analysis is increasingly performed across non-
normalized data sources, facing data-integration challenges.
For instance estimating product prices must match offers
referring to the same product [1]; studying the influence
of climate warming on plant species must overcome vari-
ability in plant names [2], [3]; and early detection of acute
kidney injuries faces the heterogeneous vocabulary of clin-
ical notes [4]. Assembling and curating data into a clean
form for statistical analysis is often described as one of the
biggest hurdles to data science [2], [5], [6]. Even when the
schemas are aligned, data curation needs some form of en-
tity matching. Indeed, across different information systems,
there are often different ways to represent the same concept,
e.g. “professor”, “prof”, or “professeur”. Entity matching
bridges the various knowledge-representation conventions

FIGURE 1. Entity matching across two employee databases.

across sources to produce normalized entries (see Fig. 1).
Though this curation process can be partly automated [7],
[8], it remains challenging and time-consuming as it requires
tedious manual supervision and quality assurance across a
large number of entries. Yet, with current analytic methodol-
ogy this task is central to the validity of downstream analyses.

Here we show that more sophisticated analysis pipelines
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FIGURE 2. An analysis of salary as a function of experience for different
job types, considering variants of administrative assistant and project manager,
computed by matching & averaging, or embedding & learning. Thick magenta
lines are the most natural query.

can alleviate the need for careful curation to answer many
data-science questions. We empirically benchmark such ap-
proaches, drawing examples from studies of the determinants
of salary, in data journalism [9] or academia [10]–[12], which
ask quantitative questions such as:

1. For a given job, how does salary evolve with experience?
2. For a given job, what is the 0.75-quantile of salaries?
3. What is the typical male-female pay gap?

Answering these questions from data assembled across
different employers must overcome the lack of correspon-
dences in job titles: as illustrated on Fig. 1, the same job
title appears with multiple variants, such as senior research
associate and sr research assoc. This problem is typically
addressed via entity matching procedures, available in in-
creasingly sophisticated data-integration softwares such as
Wrangler [13], Tamr [14], OpenRefine [15]. Despite these
tools, entity matching remains a difficult task as it often
involves domain expertise or faces the lack of clear cor-
respondences in entities across sources. Is such matching
necessary to the validity of the analysis, or can more complex
statistical pipelines do without?

In this paper, we show that applying advanced statistical
techniques directly to non-normalized data can avoid labour-
intensive data curation for many analytical questions. We
benchmark whether relying more on machine learning and
less on manual data cleaning compromises or not the validity
of the analysis. To answer this important question, we for-
malize how many analyses boil down to estimating statistical
quantities, and use various experiments that give an unbiased
measure of the corresponding estimation error.

The quantities needed for the analytical questions can be
estimated with machine-learning models applied to contin-
uous embeddings of entries that represent ambiguities. A
suitably trained model can be directly queried to give e.g. the
evolution of salary with experience for a given job, giving
a less noisy result than standard techniques after best-effort
manual cleaning (see Fig. 2). Machine learning is already

increasingly used in data integration to create more uniform
data warehouses [16], [17] or to clean their entries [18],
[19]. Instead, our study applies it directly to the analytical
question, as this can be easier than curating the data for fun-
damental reasons. First the analytic task provides supervision
[20]–[22], while cleaning needs examples of curated data.
Second, representing ambiguities in the analysis often leads
to more accurate results.

We first give a brief summary of how data cleaning is
used to enable data analysis with diverse sources; after which
we show how data-science questions can be formulated in
terms of machine learning on embeddings of entries. We then
study the validity of the results: on an analysis of wages
across 14 data sources, we compare manual data cleaning
to a simple machine-learning approach using embeddings
of entries. Qualitatively and quantitatively, analyzing the
non-normalized data gives better results. Finally, we discuss
perspectives on adapting data-analysis practices to rely less
on cleaning.

II. THE CLASSIC VIEW: CLEANING FOR ANALYTICS
ACROSS SOURCES
A. ENTITY MATCHING TO INTEGRATE DATA
Integrating data often faces alignment challenges, in par-
ticular if it is assembled across sources. Notably, corre-
spondences are first needed at the schema level: different
sources may come with different structures, e.g. columns
(relations) of different names for the same information, or
information split differently across columns [23]. Bridging
such mismatches is known as schema matching, and is often
required as a data-preparation step. However, it tends to
burden less the human operator than instance-level entity
matching, because there are less matches to check. We thus
focus on entity matching in the remainder, though there are
many other aspects to data quality [19].

Entity matching
For data integration, entity matching strives to match dif-
ferent variants that denote the same entity [24]. Classic
situations include deduplication of multiple variants of the
same entity in a given table, or record linkage, matching
entities across two tables [25]. Matching entries to uncover
categories is necessary for standard statistical procedures to
answer a question conditional to a non-normalized category:
analyzing one quantity –such as salary– keeping another –
job title– constant. [26]. Conversely, computing marginal
quantities, such as the overall distribution of salary, does not
require entity matching as it relies on aggregates of all the
data (assuming that there are no duplicate across the sources).

Entity-matching techniques rely on an appropriate simi-
larity —typically across strings— and threshold to assign
entries to the same entity. The issue is that both similarity
and threshold must be tailored to domain specificities and
the resulting matches must often be manually reviewed. The
process is thus labor intensive.
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TABLE 1. A few example rows of the employee tables.

JOB TITLE HIRING DATE SEX ETHNICITY SALARY ($)

Police Officer 17/03/2005 M White 85 000
Security Manager 24/06/2017 F Asian 70 000
Energy Analyst 04/11/1998 F Black 105 000
Librarian 11/09/2011 M Hispanic 50 000

Automating the match of entities is challenging because
it is an unsupervised-learning problem [27], unless there
are known matches for supervision [28]–[30]. Such matches
must typically be constructed manually by a user, though
active learning can reduce human intervention [18], [31].
Dedicated data-integration softwares, such as OpenRefine,
facilitate the process with a user interface. The software sug-
gests potential matches and enables users to tune parameters
and match entries in a semi-automated way.

Automation tools can use techniques capturing natural
language semantics, which shares with entity matching the
challenge of relating multiple forms that denote the same
things. For instance, natural language processing tools such
as fastText [32] provide word embeddings resilient to
morphological variations. Embeddings have led to many
recent progresses in entity-matching pipelines [8], [30], [33],
[34].

Cleaning real-world salary data
To answer our questions on salary, we consider data from a
study of salaries in Texas state institutions 1, as illustrated in
Table 1. The tables are assembled across 14 different employ-
ers and the Job Title information is particularly challenging:
without normalization there are about 14 000 different job
positions for a total of around 160 000 employees.

We performed manual entity matching on the job titles
using OpenRefine. We first cleaned common abbreviations
as they are the main hurdle to entity matching: string met-
rics struggle to capture their similarities. Typical exam-
ples include (sr/senior), (asst/assistant) or (mgr/manager).
Some abbreviations can have multiple or complex meanings
(tech/technology, technician, technical), (CMC/Chemical,
Manufacturing and Control). Such manual cleaning is thus
limited by the domain expertise of the operator. We then
used OpenRefine to search and manually merge variants
across sources. Around 1000 job titles were paired in the
process, which took about 3 days. We believe that a more
thorough entity matching —especially on rare job titles—
can be performed, but would require intensive human labour
to bring minor improvements.

B. STANDARD ANALYTICAL PRACTICE: MATCHING &
AVERAGING
In general, the analytic questions can be formalized as es-
timating a quantity y for a population or group of instances
who share a set of attributesX: for instance, the typical salary

1Data available on https://dx.doi.org/10.21227/wfjs-ya22

of a project manager with 3 years of experience. To that end,
the standard technique consists in matching & averaging:

1) a query onX to match and select the relevant instances.
2) a procedure (typically a form of averaging) to aggre-

gate the results and estimate y.

Even when the entities in the data are normalized, a success-
ful analysis may require to match them with the vocabulary
used by the analyst: for instance in some data the correct
query for project manager may be mgr project (Fig. 2).

In our example analysis, studying determinants of salary,
the motivation to unite data sources is to establish a more
general result: project-manager salaries or male-female pay
gap may vary across employers; there may be no instance
of a project manager with 3 years of experience in a given
employer. The underlying problem is that of statistical es-
timation: to compute the quantity that represents best the
complete population from the instances at hand. If the entity
matching is valid, matching & averaging estimates are unbi-
ased from a statistical point of view. But they may exhibit
high variance, as the data often exhibits a small number of
representatives from a given category. A paradox of statistics
is that the most accurate way of estimating the mean of
a population from a small sample may not be the sample
average, but biasing estimates with other sources of informa-
tion (see Stein’s paradox [35]). For instance, estimating the
typical salary of an associate professor can leverage similar
populations: professor, lecturer. Drawing information across
similar entities is related to the notion of semantic queries in
databases [36], as opposed to exact value matching, used in
matching & averaging.

III. ANSWERING ANALYTICAL QUESTIONS WITH
MACHINE LEARNING
We now give the statistical underpinnings of approaches
based on machine learning. We specifically consider the three
analytical questions of our example study on determinants of
salary. While these originally do not appear to be machine
learning problems, we show that they can be reformulated
as such. An overview of our analysis pipeline is depicted in
Figure 3.

A. SALARY EVOLUTION AND QUANTILES
To study the evolution of one quantity, salary, as function of
another, experience, matching & averaging methods typically
group employees by job and experience level, and compute
the mean salary in each group. This quantity is an estimate of
the conditional expectation E[Salary | Job, Experience].

Instead of averaging on groups, a machine-learning model
trained to predict the salary given the job and experience level
can estimate this quantity. Indeed, modeling the salary as
a function fθ(Job, Experience) gives a consistent2 estimate
of the conditional expectation E[Salary | Job, Experience] if

2A consistent statistical procedure converges to the population values with
increasing data size.
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Job Title Experience (years) Salary

mgr project 2 100,000$

2128 project manager 5 110,000$

firefighter 10 75,000$

Q: How does the salary of a project manager evolve with experience ?

Job Title Experience (years) Salary

0.1   0.7  …  0.45 2 100,000$

0.1   0.65  …  0.5 5 110,000$

0.9   -0.3  …  0.1 10 75,000$

Machine-learning 
model

1) Represent job titles by embeddings capturing similarities

2) Train a machine-learning model to predict 
salaries from embeddings and experience

mgr project
2128 project manager

firefighter

3) Query the trained model to estimate the salary of a project 
manager at different experience levels, without matching job titles

project manager

4) With embeddings, the model implicitly matches
job titles to provide more accurate estimates

Job Title: “project manager”
Experience: 1, 2, … , 30

Non-normalized job titles

FIGURE 3. Overview of our “embedding & learning” pipeline to answer analytical questions on non-normalized data.

model parameters θ are optimized on the data to minimize
the mean squared error on the salary [37, section 1.5.5].

Unlike averaging, casting the analytic question into a
machine-learning task does not require matching. Rather
than viewing each job title j as a discrete category, we can
represent it by a vector j ∈ Rp, that will serve as features to
train the machine-learning model fθ.

The crucial point here is that these vectors should capture
the similarities between job titles. For instance, administra-
tive assistant and administrative asst should have close repre-
sentations. This allows the machine-learning model to lever-
age these similarities and implicitly account for matching.
We use in our experiments pretrained fastText embeddings
[32], which readily provide vector representations for strings
and account for semantic and morphological similarities.
Other approaches to encode string similarities into vectors
could be used as well [26], [38].

A wide variety of machine-learning models can be used
to estimate the quantity of interest. For our experiments
we use gradient boosted tree models from scikit-learn [39],
as they generally perform well in prediction tasks. Besides
avoiding tedious entity-matching, machine-learning models
can form weakly-parametric estimators that are resilient to
other imperfections in the data. For instance, imperfect corre-
spondences between schemas across the sources lead to miss-
ing values: some sources may not have all the information.
Despite these missing values, supervised learning can give
optimal estimates without relying on probabilistic modeling
of the missing-data mechanism [40], [41].

A model can be trained to estimate different statistical
quantities by choosing the measure of error (loss) that it
minimizes [42]: a mean squared error leads to conditional ex-
pectations. Similarly, a model fθ(Job) trained with a quantile
loss estimates a quantile of the salary distribution for a given

job [43]. The appendix (sec. VII-A and VII-B) gives more
details about the specific implementation of the analysis.

B. PAY GAP ACROSS SEX: COUNTERFACTUAL
ANALYSIS
Many of the advanced analyses and visualizations of rich
data sources pertain to understanding causes and effects.
For instance, when studying salaries, measuring and under-
standing the causes of gender gap is a long-running question
[12], [44], [45]. Shedding light on this question requires
contrasting salaries for man and woman at similar position,
with similar experience... Can it be done without cleaning the
data?

Counterfactual analysis provides a good framework to
address quantitatively the question of gender pay gap. A
counterfactual is a thought experiment measuring the effect
on the outcome of interest —the salary yi— of changing
only the feature of interest Wi —here the sex— for an
individual i. Borrowing from clinical trials, Wi is called the
“treatment” in the literature. The outcome yi can take two
potential values depending on Wi: yi(0) = yi(Wi = 0) or
yi(1) = yi(Wi = 1) (1 for a man, 0 for a woman), though
for each individual only one of these is observed in the data.

The analytical quantity of interest is the typical gender pay
gap, known as the average treatment effect τ = E[y(1) −
y(0)]: the average difference in outcome for the same indi-
vidual under scenario Wi = 1 and Wi = 0, i.e. that differ
only by their sex [46], [47]. In general, it does not suffice
to subtract the average salary of men from that of women:
E[y|W = 1] − E[y|W = 0] 6= τ . Indeed, the populations
of men and women may not be directly comparable in the
database. For instance, women may need to interrupt their
careers during maternity leave, causing them to have less
work experience and thus lower salaries. To account for such
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TABLE 2. Illustration of the potential outcome framework. The data
contains an observation of a male white firefighter with 15 years of experience,
but not a matching female employee; likewise with an hispanic female post-doc
with 2 years of experience. The challenge is to interpolate the missing data.

Covariates X Outcome
JOB TITLE EXPERIENCE ETHNICITY

Treatment
W (man?) y(0) y(1)

Firefighter 15 White 1 NA 75000
Post-doc 2 Hispanic 0 60000 NA

confounding factors and isolate the effect of interest, the
potential outcome framework (Table 2) uses covariates, extra
information X on each individual, such as the job title or the
experience level, allowing us to directly compare salaries for
men and women with the same features.

To estimate the average treatment effect, modern causal
inference techniques either rely on estimates of the out-
come given the covariates and the treatment, E[y|X,W ],
or estimates of the propensity-score P(W = 1|X), i.e. the
probability for an employee to be a man given its covariates.
The first quantity can be estimated using regression models,
trained to predict y from X and W , as detailed before.
Similarly, the propensity-score can be estimated with clas-
sification models, trained to predict W from X , when they
are calibrated [48]. Finally, powerful causal-inference tools
combine both estimates for more robustness [49]. State-of-
the-art approaches already rely on machine-learning models
to adapt to biases and noise in the input data [50], [51]. The
appendix (sec. VII-D) details the exact models used in our
experiments to estimate the average treatment effect.

A pattern: machine learning

Because machine learning can capture complex links in
complex data, it is increasingly used in data science to
estimate quantities of interest to the analyst, whether they
are intermediate quantities, as for counterfactual analysis
(subsection III-B), or the direct answer to the question of
interest, as for conditional links (subsection III-A). For data
integration, this evolution brings exciting new opportunities:
machine-learning models do not need to rely on averaging,
and hence do not need actual matching of entities across
sources. Rather, they can use vector representations that ex-
press, even indirectly, relevant similarities between entities.

IV. EMPIRICAL STUDY: LEARNING VERSUS CLEANING

Using machine learning can be less labor-intensive, as it does
not require human-guided entity matching. But does it come
at a cost to the validity of the results? We now compare
empirically learning and matching-based approaches for the
different analytic questions.3

3The code and data to reproduce our experiments is available on Code
Ocean: https://codeocean.com/capsule/6435573/tree

A. EXPERIMENTAL DETAILS
Measuring estimation error
How to compare estimators of a quantity such as conditional
expectation of salary given job title? Even without entity-
matching noise, the data at hand is limited and its mean is
an imperfect estimate of the unknown population quantity
y. We adapt a classic procedure of machine learning: we
leave out a test fraction of the databases, and use the rest
of the data to derive estimates ŷtrain. Applying an averaging-
based estimator on the test data provides another estimate
ŷtest, that is unbiased though noisy. Importantly, as it has been
estimated from different data than ŷtrain, its estimation error
is independent. We can thus use the difference between ŷtrain
and ŷtest over multiple splits —a cross-validation loop— to
quantify the estimation error of the procedure that we use to
compute ŷtrain.

Analytical approaches studied
We compare several approaches to estimate the quantities
relevant to our analytical questions (implementation details
are provided in the appendix):

1) Matching & averaging, as described in subsec-
tion II-B.

2) Embedding & learning: strategies of section III, rely-
ing only on standard machine-learning tools. Gradient
boosted tree models from scikit-learn [39] are trained,
using pretrained fastText embeddings [32] to represent
the job titles, capturing semantic and morphological
similarities.

3) Embedding & fuzzy matching: the notion of contin-
uous similarities, as between embeddings, can also be
exploited to define weighted averages. We modify the
matching & averaging procedure to use fuzzy matches
and weights defined with a cosine string similarity on
the job title with an affine decay and a cut-off at zero.

Parameters such as the affine decay and cut-off, or the
hyper-parameters of the machine-learning models are tuned
in a nested cross-validation procedure. To study the effect
of entity matching, we apply these techniques on raw and
manually matched entries.

B. QUALITATIVE RESULTS: DISPERSION ACROSS
VARIANTS
The curves of salary as a function of experience represented
on Fig. 2 are computed either with a matching-based or a
learning-based approach. Machine-learning estimates lever-
age job similarities and have low dispersion across variants of
project manager or administrative assistant. This robustness
reduces the need for manual matching: taking the model
output on any variant provides reliable estimates that are rep-
resentative of the whole population. It is more convenient and
reliable for an analyst to query the model for “project man-
ager” or “administrative assistant” (thick magenta curves),
than to search the database for all variants and average
them. Beyond the dispersion across variants, matching &
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TABLE 3. Cross-validated errors for salary, quantile, and
propensity-score estimation. We report here estimates of the
propensity-score P (W = 1|J) conditionally to the job title, rather than on all
covariates, as matching-based estimates are very noisy in that case. RMSE =
Root Mean Square error. MAE = Mean Absolute Error.

Estimation method Manual
matching

Salary
(RMSE)

Quantile
(MAE)

Propensity
(Brier score)

Matching & averaging Yes 55634 31802 0.231
Embedding & Fuzzy matching No 52812 30955 0.195
Embedding & Fuzzy matching Yes 51506 28851 0.192

Embedding & Learning No 52683 28726 0.189
Embedding & Learning Yes 50614 26713 0.184

averaging curves appear more noisy; in particular they fail to
capture well the evolution of salary with experience. Finally,
machine-learning estimates show plausible extrapolations for
queries where there is no data with exact matches, such as
project managers with more than 25 years of experience.

C. QUANTITATIVE RESULTS: CROSS-VALIDATED
ERRORS
To go beyond the face validity of Fig. 2, we use cross-
validation, as detailed in subsection IV-A, to quantify which
approach best estimates the population quantities. The 14
databases are randomly split into two sets of 7 databases:
one to compute estimates for salary, quantile, and propensity-
score; and the other to measure their error, reported in Ta-
ble 3. Results show that for all three quantities embeddings
notably reduce the error compared to exact matching and
perform best when combined with learning. Adding manual
matching on top of embeddings improves further, but the ben-
efit is smaller than that brought by embeddings & learning.
The residual error is due to variance in individual salary that
is not explained by the attributes of the employees present in
the databases, such as the appreciation of the manager.

D. ESTIMATION OF COUNTERFACTUALS
How do the differences in estimation errors reported in
Table 3 impact complex end-user analytical questions? We
investigate their impact on estimation of salary gap across
sex. Fig. 4 gives average treatment effects computed with
statistical methods –IPS and AIPS [52]– based on embedding
& learning approaches, as well as manual matching and
fuzzy-matching estimates (see appendix). To force the need
for analysis across the databases, we create a sex imbalance
by dropping randomly a fraction of either men or women
in each database, with 50/50 probability. As a result, the
estimation relies on employees of opposite sex with matching
job titles across databases. Machine learning methods have
much less variance than matching and averaging methods,
but both approaches lead to estimates across databases (large
sex imbalance) that do not depart for values obtained within
databases (no sex imbalance). On the other hand, fuzzy
matching creates sizeable bias: an analysis performed across
databases differs markedly from an analysis comparing em-
ployees inside each database. The low variance of machine-
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FIGURE 4. Salary gap: Average treatment effect computed with added sex
imbalance in individual databases, forcing the need for analysis across
databases. The error bars give the quartiles across random deletion of men or
women records.

learning methods comes from their implicit interpolation,
visible on Fig. 2: if a given employee lacks an opposite-sex
with the same covariates, the model will use information
from similar profiles.

V. DISCUSSION: HOW MUCH CAN LEARNING REPLACE
CLEANING?
On the data-integration problem that we have studied, relying
more on learning rather than on cleaning facilitates the data
analysis, and actually improves the validity of the results
without manual labor. This result depart from classic data-
management practices, and we now discuss its interpretation
and impact for analytical practices.

A. CLEANING IS IN THE EYE OF THE BEHOLDER
Cleaning is analysis
Studying the salary gap showcases the importance of analysis
across data sources: for the highest-payed positions, finding
employees of opposite sex requires considering multiple
companies. Matching entities faces the fundamental chal-
lenge that there might not be exact correspondences: not
every institution has a chief data officer (CDO) and the near-
est match may be chief technology officer (CTO). Omitting
companies without CDO will bias the analysis by excluding
large tech companies.

The notion of cleaning, to make data more uniform, carries
in itself analytical choices which may bias the results [53],
[54]. While vinaigrette is just French for salad dressing, its
use on an American’s restaurant menu signals upper-scale
clientele. Merging the two will lead to loss of information.
From an ontological point of view, the solution would be to
create a new category, posh salad dressing. But maintaining
a complete and consistent ontology, catering for all the edge
cases, requires manual work each time new data is integrated.
Should the necessity to merge entities be considered as a bug
of analytic pipelines, rather than a feature? New tools that
do not require exact matches can give more reliable analyses
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in the face of ambiguity, as illustrated by the estimation of
salary gap across databases with sex imbalance (Fig. 4).

Manually curating entity matching brings to the data a
consistency that is good practice in production settings. Yet,
as illustrated in our empirical study, favoring more advanced
statistics down the line facilitates valid analysis. It can indeed
be easier to pass on uncertainties to the statistical analysis
tools than to resolve them in a relational store. The best data
representation, clean or fuzzy, is tied to the analytic question.

B. SUPERVISION FACILITATES INTEGRATING DATA
WITH AMBIGUITIES
Representing uncertainty in relational systems helps tackling
ambiguities [36], [55], [56] or curating data [57]. However,
extending relational data management to a general proba-
bilistic framework is intrinsically hard. Indeed, unlike with
the relational algebra, queries in a probabilistic database
can suffer non-polynomial complexity [58]. Approximate
probabilities [59], [60] or fuzzy logic and similarities [61]
have better tractability. Yet how to weight similarities to best
capture ambiguities is often a challenge in itself.

Using supervised learning to answer a given statistical
question alleviates the need for probabilistic models. In par-
ticular, many recent success rely on discriminative modeling
using empirical risk minimization, as with deep learning [62].
It is crucial to the success of our empirical study: optimizing
the statistical models gives accurate estimates from non-
probabilistic similarities –word representations that were not
tailored to the question at hand. Such an approach goes much
further than fuzzy matching (Fig. 4), as supervised learning
can be seen as implicitly tuning scaling factors and thresholds
to combine information optimally while minimizing noise.

Embeddings to capture ambiguities
Entity embeddings are crucial to the success of our approach,
to expose ambiguities to the analysis step. Our proof of
principle purposely used a very simple implementation: a
general-purpose machine-learning model applied on off-the-
shelf word embeddings. Yet, it is noteworthy that it leads to
analyses on the unaligned data more accurate than standard
statistical approaches on data cleaned with three days of
manual labor using a dedicated software (Table 3, Fig. 4).
There is ample room to use better embeddings of entries, for
instance training them from the data at hand to adapt to its
specificities, via the string forms [38] or the relations to other
entities [63] including distant relational information [64].

C. THE ROAD AHEAD: RETHINKING ANALYTIC
PIPELINES
More complex data-integration pipelines
The data-integration problem studied in section III is very
simple: it consists in analyzing the union of tables across
sources. In relational algebra terms, the machine-learning
models replace a GroupBy followed by aggregations. How-
ever, data integration often calls for joining and aggregating
across tables of different nature. Tackling these operations

using machine learning on embeddings will require exploring
new tools, for instance adapting similarity joins to merge
information across tables [65], [66], logic inferences on top
of entity embeddings [67], or graph CNNs for relational data
[68].

Back to the data scientist: opening up black boxes
Without explicitly merging variants into a small number
of human-recognizable entities, data-analysis pipelines can
be complicated to audit for the human analyst. And yet,
such human inspection of pipelines is often important for
validation and debugging. Understanding analytic pipelines
based on machine learning rather than cleaning will need
techniques from the growing field of black-box model expla-
nation in AI [69]: counterfactual reasoning can be applied to
understand how data-assembly pipeline transforms an input
[70]; permutation importance can gauge how a given attribute
impacts the results by shuffling its values across instances
[71]; finally, entity embeddings can be crafted to relate to
human-comprehensible notions, for instance revealing latent
categories [38].

D. CLEANING OR LEARNING? TWO COMPLEMENTARY
TOOLS
Replacing explicit cleaning by machine learning follows
the trend from “schema on write” to “schema on read”:
it displaces the burden from the data producer to the data
consumer [72].

Cleaning is difficult, but it comes with the hope that the
efforts will yield long-lasting benefits, useful for multiple
usages of the data. These hopes are certainly well-grounded.
Yet cleaning never ends; ambiguities in entity matching must
be revisited given a new topic of analysis, or a new data
source to integrate [5]. On the other hand, while varia-
tions may capture nuances –vinaigrette being posh for salad
dressing–, expressing the exact same entity in two different
ways is often an unnecessary hurdle to data integration.
Standard vocabularies, as the universal resource identifier
(URI) developed for linked data [73], address these hurdles.
They are complementary to a strategy based on embedding
and learning, and can be priceless to bridge data sources,
even if only a fraction of the entities can be expressed
within the vocabulary. An analysis using machine learning
to tackle ambiguities will be more successful if there are
only few of these ambiguities. If data is normalized enough,
data integration can leverage off-the-shelf embeddings, as
FastText used in our proof of concept. These continuous
embeddings are complementary to standard vocabularies.

VI. CONCLUSION: LEARNING CUTS HUMAN LABOR
BUT KEEPS VALID RESULTS
Ambiguities often arise when analyzing data, for instance if it
comes from different sources with different conventions. The
analysis then faces a fundamental challenge of validity: has
the data been merged right, so as not to bias the results? The
correct correspondence between entities across different data
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representations depends on the goal of the analysis: when
integrating a “CDO” –chief data officer– into a employee
directory that does not know such role, it could be legitimate
to convert “CDO” to “executive officer” to study salary, or
“data scientist” to study expertise.

The traditional view is that data cleaning is necessary to a
valid analysis: carefully establish correspondences, typically
combining automated approaches with manual supervision
and quality assurance. Rather, our benchmark shows that
valid answers to a given analytic question can be assembled
by exposing ambiguities to a machine-learning pipeline. In-
deed, many questions that do not explicitly call for machine
learning can be formulated using such models as flexible
estimators of the underlying quantities. Our empirical com-
parison of a simple machine-learning approach to a labor-
intensive manual cleaning shows that learning improved the
quality of the analysis as much, if not more, than the cleaning.
We hope that it can provide a point of reference to future
analysts, and justify saving time on manual cleaning.
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VII. APPENDIX: IMPLEMENTATION DETAILS
We describe here the estimation methods used in our em-
pirical evaluation. Subsections A, B and C correspond to
the analytical tasks of Table 3: the evolution of salary with
experience, salary quantiles across jobs, and the proportion
of women across jobs. Subsection D focuses on the causal
inference problem of Figure 4: estimating the effect of gender
on salaries, accounting for confounding factors.

A. SALARY EVOLUTION AS A FUNCTION OF
EXPERIENCE
For a given job, we aim to estimate the mean salary as a
function of work experience. This amounts to estimating the
conditional expectation τ = E[Salary | Job, Experience].

1) Matching & averaging
We form a group G(j, e) of employees with the job j and
experience level e of interest, and compute the empirical
mean of the employee salaries yi.

τ̂matching(j, e) =
1

|G(j, e)|
∑

1≤i≤n
i∈G(j,e)

yi

Note that in our experiments, we estimate τ for job titles in
the test set. Some of them have no equivalent in the training
set and thus cannot be matched, meaning that G would be
empty. In this case, we include in G all employees with the
desired experience level, regardless of their jobs.

2) Embeddings & fuzzy matching
Matching and averaging provides noisy estimates when the
group G(j, e) contains few employees. To obtain reliable
estimates in these cases, fuzzy matching averages manual
matching estimates τ̂matching(j′, e) over several jobs j′, giving
more weight to jobs j′ that are similar to the job j of interest:

τ̂ fuzzy(j, e) =

∑
j′∈J

τ̂matching(j′, e) · sim(j′, j)∑
j′∈J

sim(j′, j)

with J the set of all job titles and sim(j′, j) ≥ 0 the string
similarity between the job j′ and the job j of interest.

To define the string similarity sim(j1, j2) between job
titles, we encode them into vectors j1, j2 using a pretrained
fastText model 4 and compute their cosine similarity:

c(j1, j2) =
j1 · j2
||j1|| ||j2||

∈ [−1, 1]

We finally obtain the similarity score by rescaling the cosine
similarity into [0, 1], based on a threshold t that we tune to
minimize cross-validation errors:

sim(j1, j2) =

{
c(j1,j2)−t

1−t if c(j1, j2) ≥ t
0 otherwise

We select the threshold in the following range of values: t ∈
{0.9, 0.8, 0.7, 0.6, 0.5}.

4The fastText model for english words can be downloaded here:
https://fasttext.cc/docs/en/crawl-vectors.html.

3) Embedding & learning
We can estimate τ by training a machine-learning model
fθ to predict the salary of an employee given its job and
experience level. Importantly, we optimize model parameters
θ to minimize the mean squared error:

θ̂ = arg min
θ

(
1

n

n∑
i=1

(yi − fθ(ji, ei))2

)
(1)

where yi, ji and ei are the salary, job title and experience
level of the ith employee. Indeed, minimizing the mean
squared error leads to estimates of the conditional expecta-
tion [37, section 1.5.5].

Once trained, we can directly query the model to estimate
the mean salary for the desired job j and experience level e:

τ̂ learning(j, e) = fθ̂(j, e)

In our experiments, we use gradient boosted regression trees5

as machine-learning model fθ. We also use vector representa-
tions ji of the job titles as features (obtained from a pretrained
fastText model) to implicitly account for entity-matching.

We also tune the learning rate α ∈ {0.01, 0.03, 0.1, 0.3}
of the model to minimize cross-validation errors.

B. SALARY QUANTILES
We are also interested in the distribution of salaries among
employees with job j. More precisely, we aim to estimate the
0.75-quantile, i.e. the salary τ(j) so that 75% of employees
with job j earn less than τ(j).

1) Matching & averaging
To estimate this quantity, we group employees based on their
jobs, and then compute the empirical 0.75-quantile of salaries
τ̂matching(j) for each group.

2) Embeddings & fuzzy matching
We follow the same procedure that we used to estimate the
mean salary given the job and experience level (see Section
VII-A2), with τ̂ fuzzy(j) being a weighted average of the
“matching & averaging” estimates.

3) Embedding & learning
We can estimate τ(j) by training a machine-learning model
fθ to predict the salary of an employee given its job. To esti-
mate quantiles, we optimize model parameters θ to minimize
the quantile loss, instead of the mean squared error:

θ̂ = arg min
θ

(
1

n

n∑
i=1

ρα(yi − fθ(ji))

)
(2)

where ρα(x) =

{
−x (1− α), if x ≤ 0
αx, otherwise

with α = 0.75 the quantile to estimate.

5See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
HistGradientBoostingRegressor.html
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As before, we can directly query the model to estimate the
0.75-quantile of salaries among employees with job j:

τ̂ learning(j) = fθ̂(j)

Again, we use gradient boosted regression trees for predic-
tion and fastText embeddings to encode job titles. We also
tune the learning rate α ∈ {0.01, 0.03, 0.1, 0.3} of the model
to minimize cross-validation errors.

C. PROPORTION OF MEN ACROSS JOBS
We aim here to estimate the percentage τ(j) of men among
employees with job j.

1) Matching & averaging
As before, we simply group employees by job titles, and
compute the empirical frequency of men in each job.

2) Embeddings & fuzzy matching
We apply the same procedure as in the previous subsections.

3) Embedding & learning
We can estimate τ(j) by training a classification model fθ
to predict the gender W of an employee given its job j.
The model output fθ(j) = τ̂ learning(j) then estimates the
probability that an employee with job j is a man. Model
parameters are optimized to minimize the logistic loss:

θ̂ = arg min
θ

(
1

n

n∑
i=1

−Wi log(fθ(ji))− (1−Wi) log(1− fθ(ji))

)
(3)

where Wi and ji are the gender and job of the ith employee.
As before, we use gradient boosted trees as classification

model 6 and use pretrained fastText embeddings to encode
job titles. The learning rate of the model is also tuned to
minimize cross-validation errors.

D. CAUSAL EFFECT OF GENDER ON SALARY
As described in Section III-B, we are interested in the aver-
age treatment effect (ATE) τ = E[y(W = 1) − y(W = 0)]:
the average salary gap between a man and a woman, all
else being equal. In our experiments we use the following
features: job title, experience level, ethnicity and the type
of employer (city, county, university, hospital). Including
these features allows to compare salaries between similar
employees and isolate the effect of gender.

Note that the ethnicity feature is also non-normalized:
multiple variants for each ethnicity exist in the data (e.g.
“Black”, “BLK”, “Black or African American”). When es-
timating the ATE with manual or fuzzy matching techniques,
we thus had to group similar ethnicities into 7 categories.

6See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
HistGradientBoostingClassifier.html

When using machine-learning models for estimation, we
simply encoded ethnicities into vectors of dimension 10,
using a Gamma-Poisson factorization7 [38]. Besides, these
vectors can capture nuances that would have been lost in
the matching process otherwise: for instance when grouping
“Mexican” with “Hispanic or Latino”.

We could easily estimate the ATE if for each employee
we had access to y(1) and y(0), i.e. salaries under scenario
W = 1 (employee is a man) and W = 0 (employee is a
woman):

τ̂ =
1

n

n∑
i=1

yi(1)− yi(0) (4)

Unfortunately, we either observe yi = yi(1) or yi = yi(0)
in the data. To be able to apply Eq. 4, we can replace the
unobserved salary yunobs

i by an estimate.

1) Matching & averaging

A simple way to estimate the unobserved salary yunobs
i is to

consider the set Oi of employees with the same features as
employee i but of opposite sex, and take their average salary.
However, this is not always possible: some employees may
have no counterpart of the opposite sex in the data. We thus
consider only the set M of employees for which Oi is not
empty.

τ̂matching =
1

|M |
∑
i∈M

Wi(yi− ŷiunobs)+(1−Wi)(ŷi
unobs−yi)

(5)
with

ŷi
unobs =

1

|Oi|
∑
k∈Oi

yk (6)

2) Embeddings & fuzzy matching

Dismissing employees that have no counterpart of the oppo-
site sex in the data can bias the results. To avoid this, we allow
our estimate of yunobs

i to include employees from similar, but
non-identical jobs. For an employee i so that Oi = ∅, we
consider instead the sets O(j)

i of employees with the same
features, except for their job title j 6= ji, and of opposite
sex.

For each set O(j)
i we compute the average salary ȳ(O

(j)
i ).

Finally, we estimate yunobs
i as a weighted average over the

different ȳ(O
(j)
i ), based on the similarity between j and ji.

τ̂ fuzzy =
1

n

n∑
i=1

Wi(yi− ŷiunobs)+(1−Wi)(ŷi
unobs−yi) (7)

7An implementation of this approach is available in the dirty-cat package:
https://dirty-cat.github.io/stable/ (see GapEncoder)
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with

ŷi
unobs =



1
|Oi|

∑
k∈Oi

yk if Oi 6= ∅

∑
j∈J

ȳ(O
(j)
i ) sim(j,ji)∑

j∈J

sim(j,ji)
otherwise

(8)

We use the same similarity score as in section VII-A2, with a
threshold t = 0.8.

3) Embeddings & learning
Modern causal inference tools rely on machine-learning
models, for instance to estimate yunobs

i . Typically, a func-
tion fθ is trained to predict yi given the employee covari-
ates/features Xi (job, experience level, ...) and its gender Wi.
As before, parameters θ are optimized to minimize the mean
squared error. We obtain the following estimate:

τ̂ =
1

n

n∑
i=1

[
Wi(yi − fθ̂(Xi,W = 0))

+ (1−Wi)(fθ̂(Xi,W = 1)− yi)
]

(9)

Other approaches are based on inverse propensity weight-
ing. They rely on estimates of the propensity score e(Xi) =
P (Wi = 1|Xi) – the probability of being a man given
features Xi – to account for imbalances between men and
women covariates in the ATE:

τ̂ =
1

n

n∑
i=1

Wi yi
ê(Xi)

− (1−Wi) yi
1− ê(Xi)

(10)

A machine-learning model fθ trained to predict the gender
of an employee from its covariates provides estimates of the
propensity score: fθ̂(Xi) = ê(Xi).

Powerful methods combines both approaches for more
robustness [49]. We use such techniques in our experiments
to estimate the ATE:

τ̂ learning =
1

n

n∑
i=1

[
ŷi,1 − ŷi,0

+
Wi

êi
(yi − ŷi,1)− 1−Wi

1− êi
(yi − ŷi,0)

]
(11)

Salary estimates ŷi,0/1 = f
(y)

θ̂
(Xi,W = 0/1) are ob-

tained from the machine-learning model f (y)

θ̂
, trained to

predict the salary y from covariates X and gender W . Simi-
larly, propensity-score estimates êi = f

(w)

θ̂
(Xi) are obtained

from the machine-learning model f (w)

θ̂
, trained to predict the

gender W from covariates X .
A technical subtlety is that we use a cross-fitting procedure

to estimate salaries and propensity-scores [50]. Instead of
fitting machine-learning models on all the data and then
taking models output as estimates, we split samples in K
folds and obtain estimates for each fold using models fitted
on the K − 1 remaining folds.

As before, we use gradient boosted trees models. Their
learning rates ∈ [0.1, 0.3, 0.5] and maximum depths ∈ [8,
12, None] are tuned to minimize cross-validation errors.
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