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ABSTRACT Data analysis is increasingly performed over data assembled from uncontrolled sources, facing
inconsistency in knowledge-representation conventions. The typical practice is to create ‘‘clean’’ data for
analysis, matching entities and merging variants to overcome differences in knowledge representation.
Despite progress in data management techniques to automate this process, it still needs labor-intensive
supervision from the analyst. In this paper, we evaluate the benefit of advanced statistical tools to address
directly many analytic tasks across data sources without such entity-matching cleaning. Reframing analytical
questions as machine-learning tasks enables to replace exact matching of entities by continuous descrip-
tions –vectorial embeddings– that expose similarities between entries. But are analyses with less cleaning
trustworthy? We answer this question with a thorough benchmark on questions typical of socio-economic
studies across 14 employee databases: we compare the approaches based on machine learning to manual data
cleaning (entity matching). It reveals that using embeddings and machine learning improves results validity
(smaller estimation error) more than manual cleaning, with considerably less human labor. While machine
learning is often combined with data management for the purpose of cleaning, our study suggests that using
it directly for analysis is beneficial because it captures ambiguities hard to represent during curation.

INDEX TERMS Data analysis, data cleaning, data integration, embeddings, entity-matching.

I. INTRODUCTION
Data analysis is increasingly performed across non-
normalized data sources, facing data-integration challenges.
For instance estimating product prices must match offers
referring to the same product [1]; studying the influence
of climate warming on plant species must overcome vari-
ability in plant names [2], [3]; and early detection of acute
kidney injuries faces the heterogeneous vocabulary of clin-
ical notes [4]. Assembling and curating data into a clean
form for statistical analysis is often described as one of
the biggest hurdles to data science [2], [5], [6]. Even when
the schemas are aligned, data curation needs some form of
entity matching. Indeed, across different information sys-
tems, there are often different ways to represent the same
concept, e.g. ‘‘professor’’, ‘‘prof’’, or ‘‘professeur’’. Entity
matching bridges the various knowledge-representation con-
ventions across sources to produce normalized entries
(see Fig. 1). Though this curation process can be partly
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FIGURE 1. Entity matching across two employee databases.

automated [7], [8], it remains challenging and time-
consuming as it requires tedious manual supervision and
quality assurance across a large number of entries. Yet,
with current analytic methodology this task is central to the
validity of downstream analyses.

Here we show that more sophisticated analysis pipelines
can alleviate the need for careful curation to answer many
data-science questions. We empirically benchmark such
approaches, drawing examples from studies of the determi-
nants of salary, in data journalism [9] or academia [10]–[12],
which ask quantitative questions such as:
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FIGURE 2. An analysis of salary as a function of experience for different
job types, considering variants of administrative assistant and project
manager, computed by matching & averaging, or embedding & learning.
Thick magenta lines are the most natural query.

1.For a given job, how does salary evolve with experience?
2. For a given job, what is the 0.75-quantile of salaries?
3. What is the typical male-female pay gap?
Answering these questions from data assembled across dif-

ferent employers must overcome the lack of correspondences
in job titles: as illustrated on Fig. 1, the same job title appears
with multiple variants, such as senior research associate and
sr research assoc. This problem is typically addressed via
entity matching procedures, available in increasingly sophis-
ticated data-integration softwares such as Wrangler [13],
Tamr [14], OpenRefine [15]. Despite these tools, entity
matching remains a difficult task as it often involves domain
expertise or faces the lack of clear correspondences in entities
across sources. Is such matching necessary to the validity
of the analysis, or can more complex statistical pipelines do
without?

In this paper, we show that applying advanced statisti-
cal techniques directly to non-normalized data can avoid
labour-intensive data curation for many analytical questions.
We benchmark whether relying more on machine learning
and less on manual data cleaning compromises or not the
validity of the analysis. To answer this important question,
we formalize how many analyses boil down to estimat-
ing statistical quantities, and use various experiments that
give an unbiased measure of the corresponding estimation
error.

The quantities needed for the analytical questions can be
estimated with machine-learning models applied to continu-
ous embeddings of entries that represent ambiguities. A suit-
ably trained model can be directly queried to give e.g. the
evolution of salary with experience for a given job, giving
a less noisy result than standard techniques after best-effort
manual cleaning (see Fig. 2). Machine learning is already
increasingly used in data integration to create more uni-
form data warehouses [16], [17] or to clean their entries
[18], [19]. Instead, our study applies it directly to the analyt-
ical question, as this can be easier than curating the data for
fundamental reasons. First the analytic task provides super-
vision [20]–[22], while cleaning needs examples of curated

data. Second, representing ambiguities in the analysis often
leads to more accurate results.

We first give a brief summary of how data cleaning is
used to enable data analysis with diverse sources; after which
we show how data-science questions can be formulated in
terms of machine learning on embeddings of entries. We then
study the validity of the results: on an analysis of wages
across 14 data sources, we compare manual data cleaning
to a simple machine-learning approach using embeddings
of entries. Qualitatively and quantitatively, analyzing the
non-normalized data gives better results. Finally, we discuss
perspectives on adapting data-analysis practices to rely less
on cleaning.

II. THE CLASSIC VIEW: CLEANING FOR ANALYTICS
ACROSS SOURCES
A. ENTITY MATCHING TO INTEGRATE DATA
Integrating data often faces alignment challenges, in particu-
lar if it is assembled across sources. Notably, correspondences
are first needed at the schema level: different sources may
come with different structures, e.g. columns (relations) of
different names for the same information, or information split
differently across columns [23]. Bridging such mismatches is
known as schema matching, and is often required as a data-
preparation step. However, it tends to burden less the human
operator than instance-level entity matching, because there
are less matches to check. We thus focus on entity matching
in the remainder, though there are many other aspects to data
quality [19].

1) ENTITY MATCHING
For data integration, entity matching strives to match different
variants that denote the same entity [24]. Classic situations
include deduplication of multiple variants of the same entity
in a given table, or record linkage, matching entities across
two tables [25]. Matching entries to uncover categories is
necessary for standard statistical procedures to answer a ques-
tion conditional to a non-normalized category: analyzing one
quantity –such as salary– keeping another –job title– con-
stant. [26]. Conversely, computing marginal quantities, such
as the overall distribution of salary, does not require entity
matching as it relies on aggregates of all the data (assuming
that there are no duplicate across the sources).

Entity-matching techniques rely on an appropriate simi-
larity —typically across strings— and threshold to assign
entries to the same entity. The issue is that both similarity
and threshold must be tailored to domain specificities and
the resulting matches must often be manually reviewed. The
process is thus labor intensive.

Automating the match of entities is challenging because
it is an unsupervised-learning problem [27], unless there
are known matches for supervision [28]–[30]. Such
matches must typically be constructed manually by a
user, though active learning can reduce human interven-
tion [18], [31]. Dedicated data-integration softwares, such as
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TABLE 1. A few example rows of the employee tables.

http://openrefine.org/OpenRefine, facilitate the process with
a user interface. The software suggests potential matches and
enables users to tune parameters and match entries in a semi-
automated way.

Automation tools can use techniques capturing natural
language semantics, which shares with entity matching the
challenge of relating multiple forms that denote the same
things. For instance, natural language processing tools such as
fastText [32] provide word embeddings resilient to mor-
phological variations. Embeddings have led to many recent
progresses in entity-matching pipelines [8], [30], [33], [34].

2) CLEANING REAL-WORLD SALARY DATA
To answer our questions on salary, we consider data from a
study of salaries in Texas state institutions,1 as illustrated in
Table 1. The tables are assembled across 14 different employ-
ers and the Job Title information is particularly challenging:
without normalization there are about 14 000 different job
positions for a total of around 160 000 employees.

We performed manual entity matching on the job titles
using OpenRefine. We first cleaned common abbreviations
as they are the main hurdle to entity matching: string met-
rics struggle to capture their similarities. Typical exam-
ples include (sr/senior), (asst/assistant) or (mgr/manager).
Some abbreviations can have multiple or complex meanings
(tech/technology, technician, technical), (CMC/Chemical,
Manufacturing and Control). Such manual cleaning is thus
limited by the domain expertise of the operator. We then used
OpenRefine to search and manually merge variants across
sources. Around 1000 job titles were paired in the process,
which took about 3 days. We believe that a more thorough
entity matching —especially on rare job titles— can be per-
formed, but would require intensive human labour to bring
minor improvements.

B. STANDARD ANALYTICAL PRACTICE: MATCHING AND
AVERAGING
In general, the analytic questions can be formalized as esti-
mating a quantity y for a population or group of instances who
share a set of attributes X : for instance, the typical salary of a
project manager with 3 years of experience. To that end, the
standard technique consists in matching & averaging:

1) a query on X to match and select the relevant instances.
2) a procedure (typically a form of averaging) to aggregate

the results and estimate y.

1Data available on https://dx.doi.org/10.21227/wfjs-ya22

Evenwhen the entities in the data are normalized, a successful
analysis may require to match them with the vocabulary used
by the analyst: for instance in some data the correct query for
project manager may be mgr project (Fig. 2).
In our example analysis, studying determinants of salary,

the motivation to unite data sources is to establish a more
general result: project-manager salaries or male-female pay
gap may vary across employers; there may be no instance
of a project manager with 3 years of experience in a given
employer. The underlying problem is that of statistical esti-
mation: to compute the quantity that represents best the
complete population from the instances at hand. If the entity
matching is valid, matching & averaging estimates are unbi-
ased from a statistical point of view. But they may exhibit
high variance, as the data often exhibits a small number of
representatives from a given category. A paradox of statistics
is that the most accurate way of estimating the mean of
a population from a small sample may not be the sample
average, but biasing estimates with other sources of informa-
tion (see Stein’s paradox [35]). For instance, estimating the
typical salary of an associate professor can leverage similar
populations: professor, lecturer. Drawing information across
similar entities is related to the notion of semantic queries in
databases [36], as opposed to exact value matching, used in
matching & averaging.

III. ANSWERING ANALYTICAL QUESTIONS WITH
MACHINE LEARNING
We now give the statistical underpinnings of approaches
based onmachine learning.We specifically consider the three
analytical questions of our example study on determinants of
salary. While these originally do not appear to be machine
learning problems, we show that they can be reformulated
as such. An overview of our analysis pipeline is depicted in
Figure 3.

A. SALARY EVOLUTION AND QUANTILES
To study the evolution of one quantity, salary, as function of
another, experience, matching & averaging methods typically
group employees by job and experience level, and compute
the mean salary in each group. This quantity is an estimate of
the conditional expectation E[Salary | Job, Experience].

Instead of averaging on groups, a machine-learning model
trained to predict the salary given the job and experience
level can estimate this quantity. Indeed, modeling the salary
as a function fθ (Job, Experience) gives a consistent2 estimate
of the conditional expectation E[Salary | Job, Experience] if
model parameters θ are optimized on the data to minimize the
mean squared error on the salary [37, section 1.5.5].

Unlike averaging, casting the analytic question into a
machine-learning task does not require matching. Rather than
viewing each job title j as a discrete category, we can represent

2A consistent statistical procedure converges to the population values with
increasing data size.
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FIGURE 3. Overview of our ‘‘embedding & learning’’ pipeline to answer analytical questions on non-normalized data.

it by a vector j ∈ Rp, that will serve as features to train the
machine-learning model fθ .

The crucial point here is that these vectors should
capture the similarities between job titles. For instance,
administrative assistant and administrative asst should have
close representations. This allows the machine-learning
model to leverage these similarities and implicitly account
for matching. We use in our experiments pretrained
fastText embeddings [32], which readily provide vec-
tor representations for strings and account for seman-
tic and morphological similarities. Other approaches to
encode string similarities into vectors could be used as
well [26], [38].

A wide variety of machine-learning models can be used to
estimate the quantity of interest. For our experiments we use
gradient boosted tree models from scikit-learn [39], as they
generally perform well in prediction tasks. Besides avoiding
tedious entity-matching, machine-learning models can form
weakly-parametric estimators that are resilient to other imper-
fections in the data. For instance, imperfect correspondences
between schemas across the sources lead to missing values:
some sources may not have all the information. Despite
these missing values, supervised learning can give optimal
estimates without relying on probabilistic modeling of the
missing-data mechanism [40], [41].

A model can be trained to estimate different statisti-
cal quantities by choosing the measure of error (loss) that
it minimizes [42]: a mean squared error leads to condi-
tional expectations. Similarly, a model fθ (Job) trained with
a quantile loss estimates a quantile of the salary distribution
for a given job [43]. The appendix (sec. VI-A and VI-B)
gives more details about the specific implementation of the
analysis.

B. PAY GAP ACROSS SEX: COUNTERFACTUAL ANALYSIS
Many of the advanced analyses and visualizations of rich
data sources pertain to understanding causes and effects. For
instance, when studying salaries, measuring and understand-
ing the causes of gender gap is a long-running question [12],
[44], [45]. Shedding light on this question requires contrast-
ing salaries for man and woman at similar position, with
similar experience. . .Can it be done without cleaning the
data?

Counterfactual analysis provides a good framework to
address quantitatively the question of gender pay gap.
A counterfactual is a thought experiment measuring the effect
on the outcome of interest —the salary yi—of changing only
the feature of interestWi —here the sex— for an individual i.
Borrowing from clinical trials, Wi is called the ‘‘treatment’’
in the literature. The outcome yi can take two potential values
depending on Wi: yi(0) = yi(Wi = 0) or yi(1) = yi(Wi = 1)
(1 for a man, 0 for a woman), though for each individual only
one of these is observed in the data.

The analytical quantity of interest is the typical gender pay
gap, known as the average treatment effect τ = E[y(1) −
y(0)]: the average difference in outcome for the same indi-
vidual under scenario Wi = 1 and Wi = 0, i.e. that differ
only by their sex [46], [47]. In general, it does not suffice
to subtract the average salary of men from that of women:
E[y|W = 1] − E[y|W = 0] 6= τ . Indeed, the populations
of men and women may not be directly comparable in the
database. For instance, women may need to interrupt their
careers during maternity leave, causing them to have less
work experience and thus lower salaries. To account for such
confounding factors and isolate the effect of interest, the
potential outcome framework (Table 2) uses covariates, extra
information X on each individual, such as the job title or the
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TABLE 2. Illustration of the potential outcome framework. The data
contains an observation of a male white firefighter with 15 years of
experience, but not a matching female employee; likewise with an
hispanic female post-doc with 2 years of experience. The challenge
is to interpolate the missing data.

experience level, allowing us to directly compare salaries for
men and women with the same features.

To estimate the average treatment effect, modern causal
inference techniques either rely on estimates of the outcome
given the covariates and the treatment, E[y|X ,W ], or esti-
mates of the propensity-score P(W = 1|X ), i.e. the prob-
ability for an employee to be a man given its covariates.
The first quantity can be estimated using regression mod-
els, trained to predict y from X and W , as detailed before.
Similarly, the propensity-score can be estimated with clas-
sification models, trained to predict W from X , when they
are calibrated [48]. Finally, powerful causal-inference tools
combine both estimates for more robustness [49]. State-of-
the-art approaches already rely on machine-learning models
to adapt to biases and noise in the input data [50], [51]. The
appendix (sec. VI-D) details the exact models used in our
experiments to estimate the average treatment effect.

1) A PATTERN: MACHINE LEARNING
Because machine learning can capture complex links in
complex data, it is increasingly used in data science to
estimate quantities of interest to the analyst, whether they
are intermediate quantities, as for counterfactual analysis
(subsection III-B), or the direct answer to the question of
interest, as for conditional links (subsection III-A). For data
integration, this evolution brings exciting new opportunities:
machine-learning models do not need to rely on averaging,
and hence do not need actual matching of entities across
sources. Rather, they can use vector representations that
express, even indirectly, relevant similarities between entities.

IV. EMPIRICAL STUDY: LEARNING VERSUS CLEANING
Using machine learning can be less labor-intensive, as it does
not require human-guided entity matching. But does it come
at a cost to the validity of the results? We now compare
empirically learning and matching-based approaches for the
different analytic questions.3

A. EXPERIMENTAL DETAILS
1) MEASURING ESTIMATION ERROR
How to compare estimators of a quantity such as conditional
expectation of salary given job title? Even without entity-
matching noise, the data at hand is limited and its mean is

3The code and data to reproduce our experiments is available on Code
Ocean: https://codeocean.com/capsule/6435573/tree

an imperfect estimate of the unknown population quantity y.
We adapt a classic procedure of machine learning: we leave
out a test fraction of the databases, and use the rest of the
data to derive estimates ŷtrain. Applying an averaging-based
estimator on the test data provides another estimate ŷtest,
that is unbiased though noisy. Importantly, as it has been
estimated from different data than ŷtrain, its estimation error
is independent. We can thus use the difference between ŷtrain
and ŷtest over multiple splits —a cross-validation loop— to
quantify the estimation error of the procedure that we use to
compute ŷtrain.

2) ANALYTICAL APPROACHES STUDIED
We compare several approaches to estimate the quantities
relevant to our analytical questions (implementation details
are provided in the appendix):

1) Matching & averaging, as described in
subsection II-B.

2) Embedding & learning: strategies of section III, rely-
ing only on standard machine-learning tools. Gradient
boosted tree models from scikit-learn [39] are trained,
using pretrained fastText embeddings [32] to represent
the job titles, capturing semantic and morphological
similarities.

3) Embedding & fuzzy matching: the notion of contin-
uous similarities, as between embeddings, can also be
exploited to define weighted averages. We modify the
matching & averaging procedure to use fuzzy matches
and weights defined with a cosine string similarity on
the job title with an affine decay and a cut-off at zero.

Parameters such as the affine decay and cut-off, or the
hyper-parameters of the machine-learning models are tuned
in a nested cross-validation procedure. To study the effect
of entity matching, we apply these techniques on raw and
manually matched entries.

B. QUALITATIVE RESULTS: DISPERSION ACROSS
VARIANTS
The curves of salary as a function of experience represented
on Fig. 2 are computed either with a matching-based or a
learning-based approach. Machine-learning estimates lever-
age job similarities and have low dispersion across vari-
ants of project manager or administrative assistant. This
robustness reduces the need for manual matching: taking
the model output on any variant provides reliable estimates
that are representative of the whole population. It is more
convenient and reliable for an analyst to query the model
for ‘‘project manager’’ or ‘‘administrative assistant’’ (thick
magenta curves), than to search the database for all variants
and average them. Beyond the dispersion across variants,
matching& averaging curves appear more noisy; in particular
they fail to capture well the evolution of salary with expe-
rience. Finally, machine-learning estimates show plausible
extrapolations for queries where there is no data with exact
matches, such as project managers with more than 25 years
of experience.
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TABLE 3. Cross-validated errors for salary, quantile, and propensity-score
estimation. We report here estimates of the propensity-score P(W = 1|J)
conditionally to the job title, rather than on all covariates,
as matching-based estimates are very noisy in that case. RMSE = Root
Mean Square error. MAE = Mean Absolute Error.

C. QUANTITATIVE RESULTS: CROSS-VALIDATED ERRORS
To go beyond the face validity of Fig. 2, we use cross-
validation, as detailed in subsection IV-A, to quantify
which approach best estimates the population quantities. The
14 databases are randomly split into two sets of 7 databases:
one to compute estimates for salary, quantile, and propensity-
score; and the other tomeasure their error, reported in Table 3.
Results show that for all three quantities embeddings notably
reduce the error compared to exact matching and perform
best when combined with learning. Adding manual match-
ing on top of embeddings improves further, but the bene-
fit is smaller than that brought by embeddings & learning.
The residual error is due to variance in individual salary
that is not explained by the attributes of the employees
present in the databases, such as the appreciation of the
manager.

D. ESTIMATION OF COUNTERFACTUALS
How do the differences in estimation errors reported in
Table 3 impact complex end-user analytical questions? We
investigate their impact on estimation of salary gap across
sex. Fig. 4 gives average treatment effects computed with
statistical methods –IPS and AIPS [52]– based on embed-
ding & learning approaches, as well as manual match-
ing and fuzzy-matching estimates (see appendix). To force
the need for analysis across the databases, we create a
sex imbalance by dropping randomly a fraction of either
men or women in each database, with 50/50 probability.
As a result, the estimation relies on employees of oppo-
site sex with matching job titles across databases. Machine
learning methods have much less variance than matching
and averaging methods, but both approaches lead to esti-
mates across databases (large sex imbalance) that do not
depart for values obtained within databases (no sex imbal-
ance). On the other hand, fuzzy matching creates size-
able bias: an analysis performed across databases differs
markedly from an analysis comparing employees inside each
database. The low variance of machine-learning methods
comes from their implicit interpolation, visible on Fig. 2:
if a given employee lacks an opposite-sex with the same
covariates, the model will use information from similar
profiles.

FIGURE 4. Salary gap: Average treatment effect computed with added sex
imbalance in individual databases, forcing the need for analysis across
databases. The error bars give the quartiles across random deletion of
men or women records.

V. DISCUSSION: HOW MUCH CAN LEARNING REPLACE
CLEANING?
On the data-integration problem that we have studied, relying
more on learning rather than on cleaning facilitates the data
analysis, and actually improves the validity of the results
without manual labor. This result depart from classic data-
management practices, and we now discuss its interpretation
and impact for analytical practices.

A. CLEANING IS IN THE EYE OF THE BEHOLDER
1) CLEANING IS ANALYSIS
Studying the salary gap showcases the importance of analysis
across data sources: for the highest-payed positions, find-
ing employees of opposite sex requires considering multiple
companies. Matching entities faces the fundamental chal-
lenge that there might not be exact correspondences: not
every institution has a chief data officer (CDO) and the near-
est match may be chief technology officer (CTO). Omitting
companies without CDO will bias the analysis by excluding
large tech companies.

The notion of cleaning, to make data more uniform, car-
ries in itself analytical choices which may bias the results
[53], [54]. While vinaigrette is just French for salad dressing,
its use on an American’s restaurant menu signals upper-scale
clientele. Merging the two will lead to loss of information.
From an ontological point of view, the solution would be to
create a new category, posh salad dressing. But maintaining
a complete and consistent ontology, catering for all the edge
cases, requires manual work each time new data is integrated.
Should the necessity to merge entities be considered as a
bug of analytic pipelines, rather than a feature? New tools
that do not require exact matches can give more reliable
analyses in the face of ambiguity, as illustrated by the esti-
mation of salary gap across databases with sex imbalance
(Fig. 4).
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Manually curating entity matching brings to the data a
consistency that is good practice in production settings. Yet,
as illustrated in our empirical study, favoring more advanced
statistics down the line facilitates valid analysis. It can indeed
be easier to pass on uncertainties to the statistical analysis
tools than to resolve them in a relational store. The best data
representation, clean or fuzzy, is tied to the analytic question.

B. SUPERVISION FACILITATES INTEGRATING DATA WITH
AMBIGUITIES
Representing uncertainty in relational systems helps tackling
ambiguities [36], [55], [56] or curating data [57]. However,
extending relational data management to a general proba-
bilistic framework is intrinsically hard. Indeed, unlike with
the relational algebra, queries in a probabilistic database
can suffer non-polynomial complexity [58]. Approximate
probabilities [59], [60] or fuzzy logic and similarities [61]
have better tractability. Yet how to weight similarities to best
capture ambiguities is often a challenge in itself.

Using supervised learning to answer a given statistical
question alleviates the need for probabilistic models. In par-
ticular, many recent success rely on discriminative modeling
using empirical risk minimization, as with deep learning [62].
It is crucial to the success of our empirical study: optimizing
the statistical models gives accurate estimates from non-
probabilistic similarities –word representations that were not
tailored to the question at hand. Such an approach goes much
further than fuzzy matching (Fig. 4), as supervised learning
can be seen as implicitly tuning scaling factors and thresholds
to combine information optimally while minimizing noise.

1) EMBEDDINGS TO CAPTURE AMBIGUITIES
Entity embeddings are crucial to the success of our approach,
to expose ambiguities to the analysis step. Our proof of
principle purposely used a very simple implementation: a
general-purpose machine-learning model applied on off-the-
shelf word embeddings. Yet, it is noteworthy that it leads to
analyses on the unaligned data more accurate than standard
statistical approaches on data cleaned with three days of
manual labor using a dedicated software (Table 3, Fig. 4).
There is ample room to use better embeddings of entries, for
instance training them from the data at hand to adapt to its
specificities, via the string forms [38] or the relations to other
entities [63] including distant relational information [64].

C. THE ROAD AHEAD: RETHINKING ANALYTIC PIPELINES
1) MORE COMPLEX DATA-INTEGRATION PIPELINES
The data-integration problem studied in section III is very
simple: it consists in analyzing the union of tables across
sources. In relational algebra terms, the machine-learning
models replace a GroupBy followed by aggregations. How-
ever, data integration often calls for joining and aggregating
across tables of different nature. Tackling these operations
using machine learning on embeddings will require exploring

new tools, for instance adapting similarity joins to merge
information across tables [65], [66], logic inferences on top
of entity embeddings [67], or graph CNNs for relational
data [68].

2) BACK TO THE DATA SCIENTIST: OPENING UP
BLACK BOXES
Without explicitly merging variants into a small number
of human-recognizable entities, data-analysis pipelines can
be complicated to audit for the human analyst. And yet,
such human inspection of pipelines is often important for
validation and debugging. Understanding analytic pipelines
based on machine learning rather than cleaning will need
techniques from the growing field of black-box model expla-
nation in AI [69]: counterfactual reasoning can be applied
to understand how data-assembly pipeline transforms an
input [70]; permutation importance can gauge how a given
attribute impacts the results by shuffling its values across
instances [71]; finally, entity embeddings can be crafted to
relate to human-comprehensible notions, for instance reveal-
ing latent categories [38].

D. CLEANING OR LEARNING? TWO COMPLEMENTARY
TOOLS
Replacing explicit cleaning by machine learning follows
the trend from ‘‘schema on write’’ to ‘‘schema on read’’:
it displaces the burden from the data producer to the data
consumer [72].

Cleaning is difficult, but it comes with the hope that the
efforts will yield long-lasting benefits, useful for multiple
usages of the data. These hopes are certainly well-grounded.
Yet cleaning never ends; ambiguities in entity matching must
be revisited given a new topic of analysis, or a new data source
to integrate [5]. On the other hand, while variations may
capture nuances –vinaigrette being posh for salad dressing–,
expressing the exact same entity in two different ways is often
an unnecessary hurdle to data integration. Standard vocabu-
laries, as the universal resource identifier (URI) developed
for linked data [73], address these hurdles. They are com-
plementary to a strategy based on embedding and learning,
and can be priceless to bridge data sources, even if only a
fraction of the entities can be expressedwithin the vocabulary.
An analysis using machine learning to tackle ambiguities will
be more successful if there are only few of these ambiguities.
If data is normalized enough, data integration can leverage
off-the-shelf embeddings, as FastText used in our proof of
concept. These continuous embeddings are complementary to
standard vocabularies.

VI. CONCLUSION: LEARNING CUTS HUMAN LABOR BUT
KEEPS VALID RESULTS
Ambiguities often arise when analyzing data, for instance if
it comes from different sources with different conventions.
The analysis then faces a fundamental challenge of validity:
has the data been merged right, so as not to bias the results?
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The correct correspondence between entities across different
data representations depends on the goal of the analysis: when
integrating a ‘‘CDO’’ –chief data officer– into a employee
directory that does not know such role, it could be legitimate
to convert ‘‘CDO’’ to ‘‘executive officer’’ to study salary,
or ‘‘data scientist’’ to study expertise.

The traditional view is that data cleaning is necessary to a
valid analysis: carefully establish correspondences, typically
combining automated approaches with manual supervision
and quality assurance. Rather, our benchmark shows that
valid answers to a given analytic question can be assem-
bled by exposing ambiguities to a machine-learning pipeline.
Indeed, many questions that do not explicitly call for machine
learning can be formulated using such models as flexible
estimators of the underlying quantities. Our empirical com-
parison of a simple machine-learning approach to a labor-
intensive manual cleaning shows that learning improved
the quality of the analysis as much, if not more, than the
cleaning. We hope that it can provide a point of refer-
ence to future analysts, and justify saving time on manual
cleaning.

APPENDIX: IMPLEMENTATION DETAILS
We describe here the estimation methods used in our empir-
ical evaluation. Subsections A, B and C correspond to the
analytical tasks of Table 3: the evolution of salary with
experience, salary quantiles across jobs, and the proportion
of women across jobs. Subsection D focuses on the causal
inference problem of Figure 4: estimating the effect of gender
on salaries, accounting for confounding factors.

A. SALARY EVOLUTION AS A FUNCTION OF EXPERIENCE
For a given job, we aim to estimate the mean salary as a
function of work experience. This amounts to estimating the
conditional expectation τ = E[Salary | Job, Experience].

1) MATCHING AND AVERAGING
We form a group G(j, e) of employees with the job j and
experience level e of interest, and compute the empirical
mean of the employee salaries yi.

τ̂matching(j, e) =
1

|G(j, e)|

∑
1≤i≤n
i∈G(j,e)

yi

Note that in our experiments, we estimate τ for job titles in the
test set. Some of them have no equivalent in the training set
and thus cannot be matched, meaning thatGwould be empty.
In this case, we include in G all employees with the desired
experience level, regardless of their jobs.

2) EMBEDDINGS AND FUZZY MATCHING
Matching and averaging provides noisy estimates when the
group G(j, e) contains few employees. To obtain reliable
estimates in these cases, fuzzy matching averages manual
matching estimates τ̂matching(j′, e) over several jobs j′, giving

more weight to jobs j′ that are similar to the job j of interest:

τ̂ fuzzy(j, e) =

∑
j′∈J

τ̂matching(j′, e) · sim(j′, j)∑
j′∈J

sim(j′, j)

with J the set of all job titles and sim(j′, j) ≥ 0 the string
similarity between the job j′ and the job j of interest.

To define the string similarity sim(j1, j2) between job titles,
we encode them into vectors j1, j2 using a pretrained fastText
model 4 and compute their cosine similarity:

c(j1, j2) =
j1 · j2
||j1|| ||j2||

∈ [−1, 1]

We finally obtain the similarity score by rescaling the cosine
similarity into [0, 1], based on a threshold t that we tune to
minimize cross-validation errors:

sim(j1, j2) =


c(j1, j2)− t

1− t
, if c(j1, j2) ≥ t

0, otherwise

We select the threshold in the following range of values:
t ∈ {0.9, 0.8, 0.7, 0.6, 0.5}.

3) EMBEDDING AND LEARNING
We can estimate τ by training a machine-learning model
fθ to predict the salary of an employee given its job and
experience level. Importantly, we optimize model parameters
θ to minimize the mean squared error:

θ̂ = argmin
θ

(
1
n

n∑
i=1

(yi − fθ (ji, ei))2
)

(1)

where yi, ji and ei are the salary, job title and experience
level of the ith employee. Indeed, minimizing the mean
squared error leads to estimates of the conditional expectation
[37, section 1.5.5].

Once trained, we can directly query the model to estimate
the mean salary for the desired job j and experience level e:

τ̂ learning(j, e) = f
θ̂
(j, e)

In our experiments, we use gradient boosted regression trees5

as machine-learning model fθ . We also use vector representa-
tions ji of the job titles as features (obtained from a pretrained
fastText model) to implicitly account for entity-matching.

We also tune the learning rate α ∈ {0.01, 0.03, 0.1, 0.3} of
the model to minimize cross-validation errors.

B. SALARY QUANTILES
We are also interested in the distribution of salaries among
employees with job j. More precisely, we aim to estimate the
0.75-quantile, i.e. the salary τ (j) so that 75% of employees
with job j earn less than τ (j).

4The fastText model for english words can be downloaded here:
https://fasttext.cc/docs/en/crawl-vectors.html.

5See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
HistGradientBoostingRegressor.html

8 VOLUME 10, 2022



A. Cvetkov-Iliev et al.: Analytics on Non-Normalized Data Sources: More Learning, Rather Than More Cleaning

1) MATCHING AND AVERAGING
To estimate this quantity, we group employees based on their
jobs, and then compute the empirical 0.75-quantile of salaries
τ̂matching(j) for each group.

2) EMBEDDINGS AND FUZZY MATCHING
We follow the same procedure that we used to estimate
the mean salary given the job and experience level (see
Section VI-A2), with τ̂ fuzzy(j) being a weighted average of
the ‘‘matching & averaging’’ estimates.

3) EMBEDDING AND LEARNING
We can estimate τ (j) by training a machine-learning model fθ
to predict the salary of an employee given its job. To estimate
quantiles, we optimize model parameters θ to minimize the
quantile loss, instead of the mean squared error:

θ̂ = argmin
θ

(
1
n

n∑
i=1

ρα(yi − fθ (ji))

)
(2)

where

ρα(x) =

{
−x (1− α), if x ≤ 0
α x, otherwise

with α = 0.75 the quantile to estimate.
As before, we can directly query the model to estimate the

0.75-quantile of salaries among employees with job j:

τ̂ learning(j) = f
θ̂
(j)

Again, we use gradient boosted regression trees for prediction
and fastText embeddings to encode job titles. We also tune
the learning rate α ∈ {0.01, 0.03, 0.1, 0.3} of the model to
minimize cross-validation errors.

C. PROPORTION OF MEN ACROSS JOBS
We aim here to estimate the percentage τ (j) of men among
employees with job j.

1) MATCHING AND AVERAGING
As before, we simply group employees by job titles, and
compute the empirical frequency of men in each job.

2) EMBEDDINGS AND FUZZY MATCHING
We apply the same procedure as in the previous subsections.

3) EMBEDDING & LEARNING
We can estimate τ (j) by training a classification model fθ to
predict the gender W of an employee given its job j. The
model output fθ (j) = τ̂ learning(j) then estimates the probability
that an employee with job j is a man. Model parameters are
optimized to minimize the logistic loss:

θ̂ = argmin
θ

(
1
n

n∑
i=1

−Wi log(fθ (ji))

−(1−Wi) log(1− fθ (ji))
)

(3)

where Wi and ji are the gender and job of the ith employee.

As before, we use gradient boosted trees as classification
model6 and use pretrained fastText embeddings to encode job
titles. The learning rate of the model is also tuned to minimize
cross-validation errors.

D. CAUSAL EFFECT OF GENDER ON SALARY
As described in Section III-B, we are interested in the average
treatment effect (ATE) τ = E[y(W = 1) − y(W = 0)]:
the average salary gap between a man and a woman, all else
being equal. In our experiments we use the following features:
job title, experience level, ethnicity and the type of employer
(city, county, university, hospital). Including these features
allows to compare salaries between similar employees and
isolate the effect of gender.

Note that the ethnicity feature is also non-normalized: mul-
tiple variants for each ethnicity exist in the data (e.g. ‘‘Black’’,
‘‘BLK’’, ‘‘Black or African American’’). When estimating
the ATE with manual or fuzzy matching techniques, we thus
had to group similar ethnicities into 7 categories. When
using machine-learning models for estimation, we simply
encoded ethnicities into vectors of dimension 10, using a
Gamma-Poisson factorization7 [38]. Besides, these vectors
can capture nuances that would have been lost in thematching
process otherwise: for instance when grouping ‘‘Mexican’’
with ‘‘Hispanic or Latino’’.

We could easily estimate the ATE if for each employee we
had access to y(1) and y(0), i.e. salaries under scenarioW = 1
(employee is a man) and W = 0 (employee is a woman):

τ̂ =
1
n

n∑
i=1

yi(1)− yi(0) (4)

Unfortunately, we either observe yi = yi(1) or yi = yi(0)
in the data. To be able to apply Eq. 4, we can replace the
unobserved salary yunobsi by an estimate.

1) MATCHING AND AVERAGING
A simple way to estimate the unobserved salary yunobsi is to
consider the set Oi of employees with the same features as
employee i but of opposite sex, and take their average salary.
However, this is not always possible: some employees may
have no counterpart of the opposite sex in the data. We thus
consider only the set M of employees for which Oi is not
empty.

τ̂matching =
1
|M |

∑
i∈M

Wi(yi − ŷiunobs)

+(1−Wi)(ŷiunobs − yi) (5)

with

ŷiunobs =
1
|Oi|

∑
k∈Oi

yk (6)

6See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
HistGradientBoostingClassifier.html

7An implementation of this approach is available in the dirty-cat package:
https://dirty-cat.github.io/stable/ (see GapEncoder)
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2) EMBEDDINGS AND FUZZY MATCHING
Dismissing employees that have no counterpart of the oppo-
site sex in the data can bias the results. To avoid this, we allow
our estimate of yunobsi to include employees from similar,
but non-identical jobs. For an employee i so that Oi = ∅,
we consider instead the sets O(j)

i of employees with the same
features, except for their job title j 6= ji, and of opposite sex.

For each set O(j)
i we compute the average salary ȳ(O(j)

i ).
Finally, we estimate yunobsi as a weighted average over the
different ȳ(O(j)

i ), based on the similarity between j and ji.

τ̂ fuzzy =
1
n

n∑
i=1

Wi(yi − ŷiunobs)+ (1−Wi)(ŷiunobs − yi) (7)

with

ŷiunobs =



1
|Oi|

∑
k∈Oi

yk , if Oi 6= ∅∑
j∈J

ȳ(O(j)
i ) sim(j, ji)∑

j∈J
sim(j, ji)

, otherwise

(8)

We use the same similarity score as in section VI-A2, with a
threshold t = 0.8.

3) EMBEDDINGS AND LEARNING
Modern causal inference tools rely onmachine-learningmod-
els, for instance to estimate yunobsi . Typically, a function fθ is
trained to predict yi given the employee covariates/features
Xi (job, experience level, . . . ) and its gender Wi. As before,
parameters θ are optimized to minimize the mean squared
error. We obtain the following estimate:

τ̂ =
1
n

n∑
i=1

[
Wi(yi − fθ̂ (Xi,W = 0))

+ (1−Wi)(fθ̂ (Xi,W = 1)− yi)
]

(9)

Other approaches are based on inverse propensity weight-
ing. They rely on estimates of the propensity score e(Xi) =
P(Wi = 1|Xi) – the probability of being a man given features
Xi – to account for imbalances between men and women
covariates in the ATE:

τ̂ =
1
n

n∑
i=1

Wi yi
ê(Xi)

−
(1−Wi) yi
1− ê(Xi)

(10)

A machine-learning model fθ trained to predict the gender
of an employee from its covariates provides estimates of the
propensity score: f

θ̂
(Xi) = ê(Xi).

Powerful methods combines both approaches for more
robustness [49]. We use such techniques in our experiments
to estimate the ATE:

τ̂ learning =
1
n

n∑
i=1

[̂
yi,1 − ŷi,0

+
Wi

êi
(yi − ŷi,1)−

1−Wi

1− êi
(yi − ŷi,0)

]
(11)

Salary estimates ŷi,0/1 = f (y)
θ̂

(Xi,W = 0/1) are obtained

from the machine-learning model f (y)
θ̂

, trained to predict
the salary y from covariates X and gender W . Similarly,
propensity-score estimates êi = f (w)

θ̂
(Xi) are obtained from

themachine-learningmodel f (w)
θ̂

, trained to predict the gender
W from covariates X .

A technical subtlety is that we use a cross-fitting procedure
to estimate salaries and propensity-scores [50]. Instead of
fitting machine-learning models on all the data and then
takingmodels output as estimates, we split samples inK folds
and obtain estimates for each fold using models fitted on the
K − 1 remaining folds.

As before, we use gradient boosted trees models. Their
learning rates ∈ [0.1, 0.3, 0.5] and maximum depths ∈
[8, 12, None] are tuned to minimize cross-validation errors.
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