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ABSTRACT

In this paper we address the problem of deconvolution of
an image corrupted with Poisson noise by reformulating the
restoration process as a constrained minimization of a suit-
able regularized data fidelity function. The minimization step
is performed by means of an interior-point approach, in which
the constraints are incorporated within the objective function
through a barrier penalty and a forward–backward algorithm
is exploited to build a minimizing sequence. The key point
of our proposed scheme is that the choice of the regulariza-
tion, barrier and step-size parameters defining the interior
point approach is automatically performed by a deep learning
strategy. Numerical tests on Poisson corrupted benchmark
datasets show that our method can obtain very good per-
formance when compared to a state-of-the-art variational
deblurring strategy.

Index Terms— Interior point method, proximal al-
gorithms, deep unfolding, neural network, Poisson image
restoration.

1. INTRODUCTION

Image restoration is a challenging problem that aims at re-
covering an accurate estimate of an original image from de-
graded observations. The degradations, often unavoidable in
practical situations, may arise in various forms, such as low
resolution, motion blur, or noise. In this paper, we focus on
the particular task of deblurring images corrupted by Poisson
noise, which has applications in many fields such as astron-
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omy, medicine, and fluorescence microscopy (see e.g. [1] and
references therein).

If we consider a discrete version of an object x̄ ∈ RN
observed as an image y ∈ RM through an optical system
modeled by the linear operator H ∈ RM×N and corrupted by
a Poisson noise process D, then the image formation model
can be written as:

y = D(Hx̄). (1)

We will focus on the case when H models the 2D convolu-
tion of the image with a kernel assumed to be known from a
physical model or prior identification step.

An approximation to the solution x̄ in Problem (1) can
be computed by means of variational methods, where one
seeks to minimize a cost function expressed as the sum of a
data-fitting term and a regularization function, which encodes
a priori knowledge about x̄ and penalizes unfeasible solu-
tions. Furthermore, some additional prior information about
the sought variable x̄ can be incorporated through constraints
limiting the domain of search. In this paper, we choose the
regularization function to be a smoothed variant of the To-
tal Variation (TV) [2]. The formulation of the data-fidelity
term standard methods relies upon the Maximum Likelihood
approach [3], which leads, in the Poisson noise case, to the
Kullback–Leibler (KL) divergence [4, 5] or alternatively, to
the Anscombe transform [6, 7, 8, 9]. The latter, defined as a
variance–stabilizing transformation, approximately converts
Poisson data into a signal in which the noise can be treated
as additive Gaussian noise. Because it is easy to compute
and most importantly, it is defined for non–negative values
of its variables, unlike the KL divergence, we opt here for
the Anscombe transform approach. Therefore, the regular-
ized minimization problem reads:

min
x∈C

1

2
‖φ(Hx)− φ(y)‖22 + λTV(x) (2)

where λ ∈]0,+∞[ is a regularization parameter, C is a subset
of RN that we will set equal to the hypercube [0, 1]N , and φ



is the Anscombe transform, defined as φ(z) = 2
√
z + 3/8

where the square root is applied on each component of the
vector z ∈ RM .

The resulting constrained minimization problem can be
addressed by an Interior Point Method (IPM), which converts
(2) into an unconstrained problem penalized by a logarith-
mic barrier function. An approximation to the solution can
then be obtained by using iterative solvers such as a proxi-
mal forward–backward algorithm [10, 11]. In such a case,
the overall scheme relies on a significant number of parame-
ters, namely the regularization parameter, the barrier parame-
ter and step-size sequences. Existing approaches offer a way
to choose such parameters based on statistical considerations
or heuristic analysis, but may respectively lead to a substan-
tial increase of the computational cost or a loss in terms of
efficiency and versatility of the restoration scheme. To over-
come those issues, we propose to learn the above-mentioned
parameters through the powerful framework of Deep Neural
Networks (DNN). The proximal IPM is thus unfolded over a
finite number of iterations and the parameters to be learned
are untied across the layers of the network, in a similar fash-
ion that what was proposed in [12] in the case of image de-
blurring subject to Gaussian noise. The resulting architec-
ture combines the benefits of the variational–based method
and deep learning techniques. Our proposed algorithm is all
the more appealing as very few existing works use machine
learning approaches to address the problem of deblurring im-
ages corrupted by Poisson noise. GradNet [13], combining
a Bayesian MAP estimator of noise level and a CNN-based
gradient descent for deblurring, as well as the cascaded archi-
tecture for training the fidelity term in [14], are two interesting
strategies for deblurring-and-denoising problems which how-
ever are not specific to Poisson noise. On the contrary, the
dictionary learning approach developed in [15] offers an ap-
pealing way of deblurring images corrupted by Poisson noise,
but does not exploit the potential of deep learning.

This paper is organized as follows: in Section 2, we de-
scribe the proximal interior point optimization method. In
Section 3, we present the proposed neural network architec-
ture. Finally, Section 4 is dedicated to the numerical experi-
ments.

2. PROXIMAL INTERIOR POINT METHOD

2.1. Interior point approach

Let us denote by f(·, y) = 1
2‖φ(·) − φ(y)‖22 the data-fidelity

term and h(·, y, λ) the cost function to be minimized: for ev-
ery x ∈ RN ,

h(x, y, λ) = f(Hx, y) + λTV(x) (3)

=
1

2
‖φ(Hx)− φ(y)‖22 + λ

N∑
i=1

√
(DV x)2i + (DHx)2i

δ2
+ 1

where δ > 0 is a smoothing parameter for the total variation,
and DV ∈ RN×N and DH ∈ RN×N are the vertical and
horizontal gradient operators, respectively.

Problem (2) does not have a closed form solution, hence
an iterative solver must be used. Several resolution ap-
proaches are available, either based on projected gradient
strategies, ADMM, primal–dual schemes, or interior point
techniques [16, 17]. Here, we focus on the method described
in [12], where the interior point framework is combined
with a proximal forward–backward strategy. This method
first amounts to replacing the initial constrained optimization
problem by a sequence of unconstrained problems:

min
x∈RN

h(x, y, λ) + µkB(x) (4)

where {µk}k∈N ⊂]0,+∞[ are the so-called barrier param-
eters, which vanish along the minimization process, and
B : RN → R ∪ {+∞} is the logarithmic barrier function
defined, for every x ∈ RN , as:

B(x) =

{
−
∑N
j=1 (ln(xi) + ln(1− xi)) if x ∈]0, 1[N

+∞ otherwise.

The forward–backward proximal interior point method in
[12] can then be written as Algorithm 1, where ∇1h denotes
the partial gradient of h with respect to the first variable and
the proximity operator is defined as [11]:

proxγµB(x) = arg min
u∈RN

1

2
‖x− u‖2 + γµB(u)

for all (γ, µ) ∈]0,+∞[2 and x ∈ RN .

Algorithm 1: Forward–backward proximal IPM
Let x0 ∈ int C, γ > 0 and {γk}k∈N ⊂ [γ,+∞[

for k = 0, 1, . . . do
xk+1 = proxγkµkB(xk − γk∇1h(xk, y, λ))

end

2.2. Unfolding of forward–backward proximal IPM

In IPMs, the sequences of the barrier and step-size parame-
ters, {µk}k∈N and {γk}k∈N are usually chosen according to
some heuristic rules, so that the convergence of the method
to a minimizer of the objective function is guaranteed. How-
ever, such handcrafted variational methods do not necessarily
capture perceptual image quality well, nor lead to satisfactory
reconstructions. As for the regularization parameter λ, exist-
ing techniques based on statistical considerations do offer a
way of selecting it, but may lead to a significant increase of
the computational cost.

To overcome those limitations, Algorithm 1 is unfolded
over a finite number of iterations K so that the stepsize, bar-
rier and regularization parameters are learned by means of a
data-driven approach.



Fig. 1: iRestNet architecture [12]. A stands for the update rule (5)

3. IRESTNET ARCHITECTURE

3.1. Overview

Unfolding Algorithm 1 allows us to incorporate Deep Neu-
ral Networks to the overall scheme, and thus to determine an
optimal setting for the above-mentioned parameters through a
supervised learning process. In order to increase the flexibil-
ity of the model, the parameter λ is furthermore untied across
the network, leading to the update rule at a given iteration
k ∈ {0, . . . ,K − 1}:

xk+1 = proxγkµkB(xk − γk∇1h(xk, y, λk)). (5)

Each unfolded iteration k ∈ {0, . . . ,K−1} is represented
by a layer Lk, which is built as the combination of three hid-
den structures, L(µ)

k , L(γ)
k and L(λ)

k , followed by the update
(5). Structures L(µ)

k , L(γ)
k and L(λ)

k infer the parameters µk,
γk and λk, respectively. After the K th layer, we make use of
a post-processing layer, denoted as Lpp. The resulting archi-
tecture, depicted in Figure 1, was originally presented in the
paper [12] under the name iRestNet and will be referred to as
such in the remaining of this article.

3.2. Hidden structures

The structures of L(µ)
k , L(γ)

k and L(λ)
k were designed to best

infer the corresponding parameters. First, the stepsize is cho-
sen to be estimated as:

γk = L(γ)
k = Softplus(ak), k ∈ {0, . . . ,K − 1}, (6)

where ak is a scalar parameter learned during the training of
the network, and the Softplus function

Softplus(z) = ln(1 + exp(z)), ∀z ∈ R (7)

is a strictly positive activation function that can be seen a
smooth approximation of the ReLU function.

Secondly, the hidden structure L(µ)
k , built to determine the

barrier parameter, is composed of two consecutive convolu-
tional and average pooling layers, followed by a fully con-
nected layer, as illustrated in Figure 2.

Finally, the regularization parameter λk at a given itera-
tion k ∈ {0, . . . ,K − 1} is obtained by the following expres-
sion:

λk = L(λ)
k =

Softplus(bk)σ̂ (φ(y))

η(xk) + Softplus(ck)
(8)

where bk and ck are scalar parameters learned by the network,
η(xk) is the standard deviation of the concatenated spatial
gradients of xk, [(DV xk)>(DHxk)>], and σ̂ (φ(y)) is an ap-
proximation of the noise level in the Anscombe transform of
the blurred image. The noise level is approximated according
to the method formulated in [18]:

σ̂ (z) = median(|WHz|)/0.6745, ∀z ∈ RN (9)

where |WHz| is the vector collecting the absolute value of the
diagonal coefficients of the first level Haar wavelet decom-
position of z. This architecture offers the advantage of not
requiring any prior knowledge about the noise level and thus
can be applied to input images with different noise standard
deviations.

As for the post-processing layer Lpp, it is made of 9 di-
lated convolutional layers with filters of size 3 × 3. The di-
lation factors of the convolutions from the first layer to the
last one are set respectively to 1, 2, 3, 4, 5, 4, 3, 2 and 1, and
the number of feature maps in each middle layer is set to 64.
Furthermore, a ReLU activation function as well as a batch
normalization are used after each convolution. Finally, a skip
connection between the input and the output of Lpp is added,
making of this post-processing structure a residual neural net-
work. The last activation function is chosen to be the Sigmoid
function.



Fig. 2: Architecture of hidden structure L(µ)
k

4. NUMERICAL EXPERIMENTS

4.1. Problem formulation and experimental setting

We consider the non-blind color image deblurring prob-
lem (1), where N = 3n is the number of pixels over the
3 RGB channels, y = {y(j)}1≤j≤3 ∈ R3n is the blurred
color image, x̄ = {x̄(j)}1≤j≤3 ∈ R3n is the ground-truth
and H ∈ R3n×3n is a linear operator that models the circular
convolution of a known blur kernel with each channel of the
color image. We set the smoothing parameter δ to 0.01 in
all experiments, which appears as an appropriate order of
magnitude, and the number of unfolded iterations K to 40.

4.2. Datasets

To train our version of iRestNet, we use a training set com-
posed of 1200 RGB images, among which 1000 stem from
the COCO training set and the remaining 200 come from the
Berkeley segmentation (BSD500) training set. The validation
set is made of 100 images taken from BSD500 and the perfor-
mance of the proposed method is evaluated both on the 200
RGB images of the BSD500 test set, and on the 30 RGB im-
ages of Flickr30 test set used in [19]. The test images are
center-cropped using a window of size 256× 256.

Blurred images are created by convolving the images with
the following 25× 25 blur kernels:

GaussA: Gaussian kernel with a standard deviation of
1.6 pixels. Models atmospheric turbulence.

GaussB: Gaussian kernel with a standard deviation of
3 pixels.

MotA/B: Eight/third test kernel from [20] (real-world
camera shake kernels)

Square: Square uniform kernel of size 7× 7.

Finally, Poisson noise has been added to the blurred images
by means of the Python routine noise.py available online 1.

1https://github.com/scikit-image/scikit-image/
blob/master/skimage/util/noise.py

4.3. Training

An iRestNet network is trained for each degradation model.
A greedy approach is used to train the first 30 layers. Those
layers are trained one after the other, so that the number of
layers is not limited by the hardware. In concrete terms, the
images of the training set are randomly cropped using a 256×
256 window, blurred with the given kernel, corrupted with
Poisson noise, and then passed through the first layer L0 in
minibatches of 10 images. The training of L0 stops after 40
epochs, and its outputs are saved and used as inputs to train
L1. The same process is repeated over the first 30 layers, the
output of each layer Lk becoming the input of the next one
Lk+1. The rest of the networkLpp◦L39◦· · ·◦L30 is trained as
one block over 500 epochs. The learning rate is initialized to
0.001 for all the layers, and multiplied by 0.9 every 50 epochs.
In order to accelerate the training, the weights of Lk+1 are
initialized with the weights of Lk, for k ∈ {1, . . . ,K − 1}.

Training our version of iRestNet is performed using Py-
torch [21] with an Adam optimizer [22]. The training loss
to be minimized in the learning process is chosen to be the
Structural Similarity index (SSIM) [23], which measures the
perceptual difference between two images. All trainings are
conducted using a GeForce GTX 1080 GPU and take approx-
imately 4 days to be completed, for each blur kernel. Process-
ing a test image through the trained network only takes about
1.4 sec.

4.4. Compared method and evaluation metrics

For the assessment of image quality, we make use of the
SSIM. The reconstruction given by our proposed method
is compared with a solution to Problem (2) obtained by
the scaled gradient projection algorithm (SGP) [24, 25],
which is a variable metric forward–backward method. We
used the original Matlab routines which are available at
www.unife.it/prin/software and were adapted to address
the box-constrained minimization of (3). To the best of our
knowledge, for the problem of image restoration under Pois-
son noise, there are no machine nor deep learning methods,
for which codes are available online. Thus we only made
comparisons with SGP.



Groundtruth Blurred: 0.781 iRestNet: 0.943 SGP B: 0.933 SGB D: 0.905

Fig. 3: Visual results and SSIM obtained with the different methods on one image from Flickr30 test set degraded with GaussA.

4.5. Results

In Tables 1–2 we report the SSIM values of the reconstruc-
tions obtained with iRestNet and SGP for the two test datasets
considered. While for iRestNet, the untied regularization pa-
rameters λk are learned through the training of the network,
for SGP, the unique parameter λ can be determined in several
ways. In all our experiments, we first compare iRestNet with
a version of SGP in which λ is selected as follow: 20 different
values of the regularization parameter are tested, and we re-
tain the one leading to the highest SSIM. This method ensures
that the chosen λ is the best one according to our evaluation
criterion. However, it implies that this version of SGP, de-
noted SGP B, requires the knowledge of the groundtruth. In
order to compare iRestNet with algorithms that are not based
on the groundtruth, we also show the results obtained by se-
lecting λ according to some automatic rule. In particular, we
generated satisfactory reconstruction by setting λ according
to Morozov’s discrepancy principle [26] (SGP D), where the
noise level has been estimated with (9).

GaussA GaussB MotA MotB Square
Blurred 0.695 0.545 0.406 0.576 0.570

iRestNet 0.909 0.760 0.955 0.978 0.898
SGP B 0.883 0.720 0.965 0.972 0.873
SGP D 0.829 0.697 0.897 0.918 0.845

Table 1: SSIM results on the BSD500 test dataset.

GaussA GaussB MotA MotB Square
Blurred 0.743 0.576 0.399 0.618 0.605

iRestNet 0.931 0.809 0.955 0.978 0.917
SGP B 0.917 0.780 0.974 0.978 0.914
SGP D 0.869 0.755 0.933 0.949 0.877

Table 2: SSIM results on the Flickr30 test dataset.

Except for MotA, the mean SSIM achieved with iRestNet
over all the experiments is greater than those obtained with the
SGP methods. In particular, iRestNet provides SSIMs higher
than the best SGP ones we could get by having access to the

groundtruth. In the particular instance where iRestNet is not
as good as SGP B, it anyway leads to the second highest aver-
age SSIM, thus providing better results than SGP D. Further-
more, iRestNet offers the advantage of not requiring any tun-
ing of the parameters of the variational problem, as those are
learned during the training of the network. Figure 3 shows an
example of reconstructions obtained with the different meth-
ods for a Flickr30 image and the GaussA blur kernel. It is
worth mentioning that no image was taken from Flickr30 for
training iRestNet. Therefore, the results on the Flickr30 test
set show how well the performance of the trained networks
are transferable on test sets with statistics that are different
from those of the training set.

5. CONCLUSION

This paper extends the scope of the hybrid interior point/deep
learning approach developed in [12] to the case of images
corrupted by Poisson noise, by exploiting the properties
of the Anscombe transform. The resulting scheme corre-
sponds to a sequence of neural network layers associated
with forward–backward steps, in which the parameters are
learned by maximizing a loss function evaluated on a set of
training images. The proposed approach is able to provide
satisfactory restorations and always outperforms the com-
pared variational approach with automatically set parameters.
Future work will involve the inclusion of a variable metric
in the forward–backward step [27, 28], as well as a further
generalization to other nonlinear problems.
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