
HAL Id: hal-03647159
https://hal.science/hal-03647159

Submitted on 20 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Tasks and Systems Models as a Tool for
Specifying and Assessing Automation Designs

Célia Martinie, Philippe Palanque, Eric Barboni, Marco Winckler, Martina
Ragosta, Alberto Pasquini, Paola Lanzi

To cite this version:
Célia Martinie, Philippe Palanque, Eric Barboni, Marco Winckler, Martina Ragosta, et al.. Formal
Tasks and Systems Models as a Tool for Specifying and Assessing Automation Designs. International
Conference on Application and Theory of Automation in Command and Control Systems, May 2011,
Barcelone, Spain. pp.50-59. �hal-03647159�

https://hal.science/hal-03647159
https://hal.archives-ouvertes.fr

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

50

Formal Tasks and Systems Models as a Tool for
Specifying and Assessing Automation Designs

Célia Martinie, Philippe Palanque,
Eric Barboni, Marco Winckler

University Paul Sabatier, IRIT
118, route de Narbonne

31062 Toulouse Cedex 9
{martinie, palanque, winckler}@irit.fr

Martina Ragosta, Alberto Pasquini,
Paola Lanzi
DeepBlue Srl

Piazza Buenos Aires 20, 00198 Roma - Italy
{martina.ragosta, alberto.pasquini,

paola.lanzi}@dblue.it

ABSTRACT
Designing interactive computing systems in such a way
that as much functions as possible are automated has been
the driving direction of research and engineering both in
aviation and in computer science for many years. In the
80’s many studies (e.g. [8] related to the notion of mode
confusion) have demonstrated that fully automated
systems are out of the grasp of current technologies and
that additionally migrating functions [2] from the operator
to the system might have disastrous impact on safety and
usability and operationality of systems. Allocating
functions to an operator or automating them, raises issues
that require a complete understanding of both operations
to be carried out by the operator and the behavior of the
interactive system. This paper proposes a contribution for
reasoning about automation designs using a model-based
approach exploiting both task models and system models.
Tasks models are meant to describe goals, tasks and
actions to be performed by the operator while system
models represent the entire behaviour of the interactive
system. Tasks models and systems models thus represent
two different views of the same world: one or several
users interacting with a computing system in order to
achieve their goals. In previous work we have
demonstrated how these two views can be integrated at
the model level and additionally at the tool level [7]. In
this paper we present how such representations can
support the assessment of alternative design options for
automation.

Categories and Subject Descriptors
I.6.4 [Model Validation and Analysis]. H.5.2 [User
Interfaces]: Evaluation/methodology.
General Terms
Human Factors, Performance.
Keywords
Interactive critical systems design, formal models, levels
of automation.

1 INTRODUCTION
Nowadays, operators of safety critical systems are facing
more and more sources of information competing for
attention which might affect their abilities to complete
their tasks. Automation (i.e. delegation of user’s tasks to
the system) can reduce tasks’ complexity and time
consumption allowing operators to focus on other tasks.
However, too much (or inadequate) automation can lead
to complacency, loss of situational awareness, or skill
degradation, whereas not enough automation can lead to
an unmanageable, unsafe or problematic workload [10].
Due to the fact that system automation can have a huge
impact on human performance, there is a need for
methods and tools making it possible to assess the impact
of automation levels at design time. Indeed assessing
automation designs later in the development process
might result in requirements for changes too late for
making it possible to integrate them. In the field of
Human-Computer Interaction (HCI), there is a consensus
on the importance and usefulness of providing designers
with complete and unambiguous descriptions of both
users’ tasks and system. One of the ways of reaching this
goal is to use models in the design and development
process of interactive systems. Models make it possible to
represent in an abstract and high-level way information
and are (most of the time) associated with tools that allow
reasoning on the models.
Task models, such as CTT [9] and HAMSTERS [1] have
proved useful in expressing in an exhaustive manner the
goals of the users and the activities they are expected to
carry out in order to reach these goals. System models
describe important aspects of the user interface such as
the set of states the system can be in, the set of actions the
system is able to perform, the set of events the system is
able to react to and the state changes that occur when
such events or actions are performed. Such detailed
description covers the behavioral aspects of the system
but also how this behavior is related to the user interface
both in terms of output (how states and state changes are
represented to the users) and input (how users can trigger
system actions while interacting with the input devices).
These two models have to be embedded in the
development process of interactive systems in a
complementary way as they correspond to two different
views on the same world (one being centered on

Copyright © 2011 IRIT PRESS. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Re-publication of
material on this page requires permission by the copyright owners.
ATACCS’2011, 26-27 May 2011, Barcelona, Spain.

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

51

operator’s behavior and the other being centered on
system’s behavior).
In this paper we describe how the synergistic use of these
two representations can be fruitfully used for the design
and the assessment of several designs of interactive
systems featuring autonomous behaviors. The
contribution is done at two different levels: first at the
notation and tool levels by showing how the existing
notations ICO and HAMSTER can be extended to

integrate descriptions of autonomous behaviors. Second a
development process explicating where automation
designs take place and how the notations (and their
associated tools) are used within this development
process.
Section 2 provides an overview of task models, system
models and how they can be related to each other in order
to integrate the operator view with the system view.
Section 3 presents a case study demonstrating how these
models can be used to support the description and the
analysis of automation designs. A discussion on the
advantages and limitations of the approach is presented in
section 4 together with a description of how the work
presented here is related to previous work in the field.

2 MODELS SUPPORTING THE DESCRIPTION OF
AUTOMATION DESIGN

Models represent an abstract view of what they are aimed
at describing. Such abstraction makes it possible for the
designer to have a representation of the system avoiding
to deal too early in design process with too much details.

This section presents a very short description of tasks
models and interactive systems models. While it focuses
on two formalisms (HAMSTERS and ICOs) the concepts
introduced here would hold for many others formalisms.
However, both HAMSTERS and ICOs exhibit
specificities that allow, for instance, going from the
abstract model to the implementation of the interactive
application. We believe this is a critical characteristic as
it avoids possible discrepancies between the abstract

representation and the concrete application.
2.1 Task Models
Task models are aimed at supporting the design and
evaluation of user centered applications and appliances
[4]. In our approach (of which a diagrammatic
representation is proposed in Figure 1), the users’
activities and goals corresponding to the missions they
have to perform, are detailed in task models using
HAMSTERS1 notation and tool [1]. This notation and
tool enables structuring users’ goals and sub-goals into a
hierarchical tasks tree in which qualitative temporal
relationship amongst tasks are described by operators.

2.1.1 Modeling requirements for describing tasks
Within a model-based UI development methodology, the
creation of the task model is a commonly agreed-upon
starting point [21]. Tasks analysis is a central element of
user centred design approaches. For this reason a lot of

1 http://www.irit.fr/recherches/ICS/softwares/hamsters/

ICO
Notation &
PetShop

Tool

Iterative Construction of
System Model

Preliminary
System
Model

HAMSTER
Notation &
HAMSTERS

Tool

Iterative Construction of
Tasks Model

Preliminary
Task Model

Adaptation of Tasks
and System Models to
Ensure Compatibility

Models Analysis

Check Performance
and Complexity

Objectives

Towards User
Testing,

Training Design
and Operation

OKProposal for
mending the

System Model

Not OK

Figure 1. The iterative model-based design life cycle using both tasks and system models

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

52

work has been devoted to it and to its integration in the
development process of interactive systems. Analyzing
the tasks undertaken by current operators and the tasks to
be accomplished by operators of a future system is
necessary to ensure client requirements are met and
satisfy the end users.
A task model is a representation of user tasks often
involving some form of interaction with a system
influenced by its contextual environment. We use the
word “influenced” (as opposed to “driven” by the
environment) to highlight our thoughts on user’s having
an underlying goal and hence plan in their mind before
attempting to perform a task. This contrasts Suchman’s
[21] theory of situated action. This theory analyses user
behavior through emergent actions of users during a
particular activity. Situation action dismisses the role of
predetermined intentions and goals of a user as part of the
analysis. There is no intentionality in situation action
since what happens is always developing ad-hoc out of
the current situation. While Suchman’s view may be true
for gaming and leisure activities it is clear that in the
application domain considered in this work, training
goals, performance and task efficiency are critical to the
correct and safe operation of the system.

Notations for describing tasks models should be powerful
enough to encompass all the information that is necessary
for describing user’s activities while interacting with
computer systems. This includes:

Structuring mechanisms for representing activities in a
hierarchical way and for making it possible to structure
large task models;

The description of artefacts used to perform a task
should be close to the representation of objects
manipulated by the system;

User tasks should include elements of the behaviour
expected from the system; e.g. user providing an input
to the system, requesting a feedback or any kind of
system output, or both actions at the same time.

Task models should be able to express both qualitative
temporal relationships (e.g. task ordering such as
concurrency, sequence, interleaving, …) and
quantitative temporal relationships (e.g. amount of
time required to perform a task). These relationships
are needed to describe time constraints applied during
system execution;

It must be possible to describe tasks models as unities
that cooperate rather than monolithic models. This
aspect would support a better mapping between tasks
and different system’s modules.

2.1.2 Overview of the HAMSTER formalism
HAMSTERS is an acronym that stands for Human-
centered Assessment and Modeling to Support Task
Engineering for Resilient Systems. It is inspired from
existing notations, in particular from Concur Task Trees
(CTT) [9] and has thus been intended to remain
compatible (at the users level) with it. Indeed both can be

considered as hierarchical and graphical models
representation relationship between tasks by means of
operators (see Table II). However, HAMSTERS involves
extensions such as conditions associated to task
executions, data flow across task models etc. extending
its expression power beyond the one of CTT.
Additionally, it is publicly available, featuring a task
simulator and providing a dedicated API for observing
editing and simulation events.

Table 1. Tasks Types in Hamster notation
 a) Abstract Task b) User Tasks

c) System Task d) Interactive Task

As summarized in Table 1, the elements of task models in
HAMSTERS include:

Abstract task: a task that involves sub tasks of any
types.

System function: a function performed only by the
system.

User task: a generic task describing a user activity. It
can be specialized (from left to right on Table I) as
Motor task (e.g. pressing a button), Cognitive task
(e.g. comparing value, remembering information), or
Perceptive task (e.g. reading some information).

Interactive task: a task describing an interaction
between the user and the system. It can be refined
(from left to right on Table I) into Input task when
the users provide input to the system, Output task
when the system provides an output to the user and
InputOutput task (both but in an atomic way).

Goals or sub-goals are modeled using the type of task
called “abstract”. An abstract task can be refined in 3
types of tasks: “user task”, “system tasks” and
“interactive tasks”. A “user task” can be refined in the
following sub-types: “perceptive task”, “cognitive task”
and “motor task”. An interactive task can be refined in the
following sub-types: “input task”, “output task”. Figure 5
shows an example of such models. The element at the
root of the tree (called “ManageWXRApplication”)
corresponds to a goal to be reached and is thus of
“abstract task” type. In order to reach this goal the
operator has to perform many actions of various types
that are described in the lower part of the tree.

As for CTT, each task in HAMSTERS can be iterative,
optional or both (as graphically shown in Figure 2).

Figure 2. Icons of Optional, Iterative and both
iterative and optional tasks

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

53

More precisely iterative refers to a task that can be
executed one or several times but can be interrupted or
suspended by another task. An optional task is a task that
does not necessarily needs to be executed. During the
simulation, an optional task will be proposed with the
following task(s) to be executed. Again, as in CTT
temporal relationship between tasks is represented by
means of operators as described by Table 2.

Table 2. Illustration of the Operator Types in
Hamsters

Operator/
type Symbol Description

Enable >>

ENABLE operator allows its tasks and/or
task group and/or operator groups to
execute one after the other, from left to
right.

Concurrent

|||

CONCURRENT operator allows tasks
and/or tasks belonging to task groups
and/or operator groups to execute “at the
same time” in any order.

Choice []

CHOICE operator allows the user to select
the first available task to execute among
each available sub-branch. When a task is
executed, HAMSTERS disables all the
other branches that don’t contain the
executed task.

Disable [>

DISABLE operator shall deactivate the
execution of the first branch when a task is
executed on the second branch. DISABLE
operator shall have 2 and only 2 branches.

Suspend-
resume |>

SUSPEND-RESUME operator suspends
the execution of the first task or branch
when task is executed on the second
branch.

Order

Independent
|=|

ORDER INDEPENDENT operator allows
its tasks and/or task groups and/or
operator groups to execute one after
another, in any order.

In HAMSTERS, the notion of object represents the
elements of the world manipulated by tasks. HAMSTERS
offers constructs for representing the information flow
between tasks. One example of such information flow can
be seen in Figure 3 with the symbol “TC list”
representing a list of information flowing from one task to
another one.

Figure 3. Input (right-hand side of a task) and output

(left-hand side of a task) flow in HAMSTERS

Extension for handling large task models
Task modeling activities become cumbersome and hard to
manage when performed on large, real-life systems.
However, one of the main goals of task models is to
provide designers with a structured and complete
description of the users tasks especially when these user
tasks are numerous and/or complex. In [22], we proposed
structuring mechanisms to support the effective
exploitation of task models for large scale application.

Extension for dealing with automation
HAMSTERS notation enables to model in a structured
manner human activities to accomplish a goal. To
accomplish the modeling, a task type has to be associated
to each stage of the Parasuraman model of human
information processing [10] as well as other models such
as the action theory [24] and the human processor model
[23].
In case of close loop between perception and action (in
case of low level interaction with a graphical widget for
instance) such human activity is represented by
InputOutput tasks (see last icon in Table 1). In the
previous version of HAMSTERS, “Perception/working
memory” and “Decision making” system functions can
only be modeled as cognitive tasks. It was thus not
possible to describe in detail users’ tasks if automation
has to be considered. In order to describe more precisely
these two aspects, we have introduced two new sub-types
of cognitive task (Figure 2):

Perception/working memory is represented with a
cognitive analysis task (left-hand side of Figure 4).
Decision making is represented with a cognitive
decision task (right-hand side of Figure 4).

Figure 4. Illustration of Cognitive analysis and
decision task types

More detailed information on how automation can be
represented and integrated within iterative processes for
analyzing and designing interactive satellite control room
applications can be found in [25].

2.1.3 Tool support with HAMSTERS
Beyond the notation, HAMSTERS is a tool making it
possible for designers to edit the tasks models but also to
run them. This simulation functionality is critical as it
makes it possible to see directly the behavior of the tasks
model. These runs correspond to scenarios extracted from
the task model. These scenarios can be stored and reused
for further purposes such as non-regression testing when
task models are modified or included in the training
program of the operators.

2.2 System models
In our approach, system modeling is done using ICO [6]
which is a formal description technique dedicated to the

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

54

modeling of interactive applications. This formalism
makes it possible to describe the entire interactive
application including both behavioral aspects (states and
state changes) and interaction aspects (events triggered on
the user interface and graphical rendering).
Interactive Applications design is bringing the user’s
perspective in system-centered software engineering. This
section highlights the reasons why we use a Petri nets-
based formalism to model Interactive Applications and
details the key elements of the formal notation we are
using.

2.2.1 Modeling requirements for Interactive
Applications

Formal description techniques have proven their value in
several domains and provide a unique support to
understand, design and develop systems and check their
properties. Nevertheless, as detailed in [13], Interactive
Applications feature specificities that have to be taken
into account by formal description techniques. Some of
these constraints come from the fact that requiring
additional modeling conditions to ensure their usability
and reliability:

As users will be interacting with the Interactive
Application in an asynchronous and non-predictable
way, we need a representation that allows the
modeling of concurrent input and output users’

actions. This is even more critical for interactive
cockpits as both the pilot and the first officer have a
KCCU at their disposal. The CDS behavior must be
fully multimodal allowing, for instance, the
synergistic handling of two input device as well as
the fusion of information they produce. A detailed
presentation of such requirements is available at [14].

The notation has to be capable of dealing with the
event-driven architecture of interactive systems as
interactions between users and Interactive
Applications will take place through events produce
through users’ actions on the input devices.
The notation has to be able to describe in a complete
way all the states of the Interactive Application and
how the various events are leading to state changes.
The notation has to be capable of representing and
manipulating in an integrated way data structure
and control structure of the application as these
applications manipulate a large quantity of
information and as this information influences their
behavior.

2.2.2 Overview of the ICO formalism - previous use
and grounding of ICOs

The Interactive Cooperative Objects formalism is
compliant with the requirements introduced in previous
section and can be decomposed in 4 elements.
First, it is Petri Net based, and then suitable to specify the
behaviour of event driven-interactive systems and
concurrent human computer interactions and to describe
the inner states of the Interactive Application. The
interested reader is encouraged to have a look at [15] for
a complete description of this point. The formalism also
supports two arc extensions [16]: test arcs and

generalized inhibitor arcs.
Second, it is built upon the OO Petri nets paradigm [17],
which enables the handling of more complex data
structure (typed places and tokens, transitions with
actions and preconditions, variable names on arcs).
Third, software interface description and communication
capabilities are added to OO Petri nets. This new type of

Figure 5. Task model of the manage WXR application activity

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

55

OO Petri net is called Cooperative Object [15] and allows
objects of this type to react to external events according
to their inner state and to produce events. They are also
able to offer services that can be called by of COs. Such
communication follows the client-server protocol pattern
introduced in [18] and is described using Service Input
Port and Service Output Port formalism.
Lastly, the ICO formalism [6] defines an object as the set
of 4 elements: a Cooperative Object, a presentation part,
an activation function and a rendering function.
The presentation part defines the external appearance of
the object; it ranges from a set of windows to a single
widget. The activation function associates a given input
event (from the user action on the input device) to the
corresponding Cooperative Object service. The rendering
function associates a change in the inner state of a
Cooperative Object to an output to the user via the
graphical interface.
This formalism has been used in various application
domain and for describing various types on interaction

techniques and user interfaces. It presents the following
additional advantages:

The specification encompasses both "input" aspects
of the interaction (i.e. how user actions impact the
inner state of the application, and which actions are
enabled at any given time) and "output" aspects (i.e.
according to which state change the application
displays information relevant to the user). Input is
typically event-based while output is state-based.

The specification is fully executable and modifiable
at runtime, which gives the possibility to prototype
and test an application before it is fully implemented
[19].

An example of the description of the behavioral part of
ICOs is given in Figure 8 and Figure 9.

2.2.3 Tool support with PetShop
PetShop2, is the CASE tool associated CASE to the ICO
formalism. It allows editing models and their execution.
The models of Figure 8 and Figure 9 have been edited
using PetShop. In conformance with Petri nets, ellipses
correspond to places (and support the description of the
states the system can be in) while rectangles are called
transitions and correspond to the action the system can
perform. Transitions are connected to places representing
the fact that some actions (represented graphically by
transitions) can only be performed if the system is in a
given state. A precise description of the structure and
functioning of PetShop can be found in [20].

2.3 Articulation between models

Our approach, summarized in Figure 1, is based on the
synergistic integration of the tasks and system models.
While system models and tasks models might be
developed independently, the process exhibits the
necessity to ensure conformance and compatibility for
these two views. For instance each interactive task in the
task model should correspond to an interactive object on

2 http://www.irit.fr/recherches/ICS/softwares/petshop/

ICO
Notation &
PetShop

Tool

Iterative Construction of
System Model

Preliminary
System
Model

HAMSTER
Notation &
HAMSTERS

Tool

Iterative Construction of
Tasks Model

Preliminary
Task Model

Adaptation of Tasks
and System Models to
Ensure Compatibility

Models & Automation
Levels Analysis

Check Performance
and Complexity

Objectives

Towards User
Testing,

Training Design
and Operation

OK
Identification of
Tasks to Migrate

Not OK /
decision to
automate

Proposal for
extending the
System Model

Figure 6. The iterative model-based design life cycle exhibiting automation design activities

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

56

the user interface and thus in the system model. Beyond
that, sequences of action in the task model should be
accepted by the behavioral description of the system
model.
The foundations of this integration have been proposed in
[7], while the effective integration between HAMSTERS
and ICOS has been developed in [1]. The suite of
notations and tools presented in the two previous
paragraphs, Petshop and HAMSTERS, allows editing the
correspondences between task models and system
models, and then to identify at runtime, which steps of the
execution on the task model and on the system model is
currently being performed.
In Figure 1, the left-hand part of the diagram corresponds
to the system part while the right-hand side corresponds
to the task part. The modeling process can either start
with a preliminary system model or with a preliminary
task model. In such a case, the task model complexity is
assessed (analysis box of the diagram). If the complexity
is too high, then the system has to be improved by, for
instance, including more functions (that might have been
previously attributed to the operator i.e. represented in the
task model). If some functions are “migrated’ to the
system model, then the task model has to be mended in
order to take into account this migration.
The resulting tasks and systems models have to be
checked for compatibility (represented by the box
“Adaptation of Tasks and System Model to ensure
Compatibility” at the top of the diagram in Figure 1). This
guarantees the consistency between the actions and
sequence of actions offered by the user interface of the
system and the user’s goals and activities.
When both the systems models and the tasks models have
been produced and their compatibility has been assessed
the tasks models are analyzed in terms of complexity and
performance. Indeed, the system that has been produced
might cover all the tasks of the users but these tasks might
remain too cumbersome and error prone. If the analysis
exhibits such results then the system models have to be
modified. Such modifications will have to be transmitted
to the tasks models as the tasks are heavily dependent (at
least at the lower level of the task tree) on the system they
are meant to be executed on.

3 SYNERGISTIC USE OF TASK AND SYSTEM
MODELS: A CASE STUDY ON WXR

To illustrate the approach presented above, we will apply
it to an example from the domain of interactive cockpits.
We will use an application currently deployed in many
cockpits of commercial aircrafts called WXR (Weather
Radar System).

3.1 Informal description
Figure 7 presents a screenshot of the WXR application.
This application provides two functionalities to the crew
members. The first one, on which we will focus, is
dedicated to the mode selection of weather radar. The
operation of changing from one mode to another one can
be performed in the upper part of the window. The
second functionality, available in the lower part of the

window, is dedicated to the adjustment of the weather
radar orientation.

Figure 7. Screenshot of the WXR application

The crew members have to be aware of the running status
of the application, in order to ensure that the weather
radar can be set up correctly. Some tasks such as the
testing of the weather radar are rather repetitive and of
limited interest with respect to the piloting activity. In this
section dedicated to the case study we will describe how
the testing of the WXR application could be automated
and how both HAMSTERS and ICOs can support the
precise and unambiguous description of such migration of
function from the operator to an autonomous part of the
system.

3.2 Designing a first iteration of the WXR
application

Figure 5 presents an excerpt of the task model describing
the pilot’s activities for managing the WXR application
(due to space constraints, the manage tilt angle sub-parts
are folded, as showed by symbol). As explained above
this task model is hierarchical and the temporal
relationships are represented by means of operators i.e.
symbols such as >> for a sequence between two tasks.
From the left sub tree “test the WXR application”, we see
that the crew can periodically decide (“decide application
needs to be tested” “cognitive task” type) to switch from
current application mode to test mode. This action on the
task model corresponds to the TST radio button of the
interactive application presented in Figure 2. Once
“switch to TST” “input interaction” task has been
performed a graphical notification from the system
informs them about the status of the application. It can be
either “notice that WXR is OK” or “notice that WXR is
KO” both tasks being of “output interactive” type. If the
status is incorrect (the test has failed) they might decide
to reset the WXR application.
Figure 8 presents the ICOs model corresponding to the
behavior of the interactive part of the WXR application.
This application allows crew members to modify the
current mode of the application. A click event on a radio
button (OFF, STDBY, TST, WXON or WXA) triggers the
corresponding transition (off_T1, stdby_T1, tst_T1,
wxon_T1 or wxa_T1) in the model. As defined by the
arcs, once triggered, a transition takes the token from
place MODE_SELECTION, changes its value and puts it

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

57

back in the place. When the token is deposited in the
place, the rendering function changes the application
visual appearance according to the token value. In this
case, a black disc appears included in the grey disc of the
selected radio button (see “Off” radio button in Figure 7).

Figure 8. System model of the mode selection part of the

WXR application
As stated above, when both the task model and the system
model have been edited, a correspondence is defined by,
for instance, connecting “interactive input” tasks with
system model transitions and “interactive output” tasks
with system rendering. This correspondence enables a
first compatibility check between the interactive
functionalities that the system is providing and the tasks
that the users have to perform.
Figure 6 presents a refinement of the design process
presented in Figure 1 dedicated to automation design
issues. As introduced before the design driver of the
iterative process is the issue of performance of the couple
tasks-system. Increasing automation, for instance by
migrating functions from the tasks to the systems, is, at
first glance, a very good candidate improving the
performance. However, it is not an easy task to make
explicit which tasks have to be migrated and how the
system has to be modified in order to be able to perform
the tasks previously performed by the users and
represented in the task model.
The point of the paper is not to provide design guidelines
for the design of automation i.e. which functions have to
be migrated and how, but on the other side to demonstrate
that the notations and their supporting tools are able to
make explicit such evolutions.
Next sections present how some repetitive tasks (the
testing of the weather radar) can be migrated to the
system side and how such migration has a significant
impact on the complexity of user’s activities.

3.3 First analysis for automation design: task
migration

When analyzing the task model in Figure 5, we can see
that the three main activities for the crew members are:
“test WXR application”, “manage modes” and “manage
tilt angle”. The first operation is mainly relying on
information acquisition and action implementation

function types of the Parasuraman four-stage model of
human information processing [10]. Furthermore, as this
operation is quite repetitive and has to be handled
periodically, in might occur concurrently with the other
two operations and thus, depending on their workload, the
crew members might forget to perform the test. This
functionality is thus a good candidate for migration and
we propose automate it partly. Indeed, in order to keep
the members aware of the status of the application,
analysis and decisional sub-tasks are not automated.

3.4 Second iteration of the WXR application
Figure 10 represents the task model corresponding to the
tasks associated with the partly automated version of the
WXR application. In that case the crew members don’t
have to handle the application testing which is now
performed automatically by the system. This is
represented in the task model by the added “system” task
called “WXR application auto testing”. However, the
crew still has to check that the auto testing has been
completed successfully (as in the manual testing case).

Figure 9. System model of the mode selection part of the

WXR application with the automated testing

Figure 9 represents the new version of the system model.
A new place has been added, “AUTO_TESTING”, as
well as a new transition “autoTest_T1”. The time
parameter [2000] of that transition models the fact this
action will be performed every 20 seconds (and is not
related to crew events on the user interface). After this
check (once the token comes back to place
“MODE_SELECTION”) the rendering function of the
model updates the visual appearance of the application
depending on the token value. For example, if the value
of “new_ms” token is negative (meaning that the test
failed) the rendering function will display every radio
button and associated label in red, so that the crew
members notice it which is modeled by the “notice WXR
is KO” interactive output task in Figure 10.
As for the previous examples, when the models have been
built they are connected to assess their compatibility. The
results of the qualitative analysis now fulfill Parasuraman
criteria and the application could be carried out for
usability and operation testing (as represented at the
bottom of the process described in Figure 1).

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

58

4 DISCUSSION AND RELATED WORK
A lot of work has been carried out in the past in the area
of Automation. Parasuraman and al. [10] have proposed a
classification of level of automation, a simplified model
of human information processing and evaluation criteria
as a framework for automation design. In [11], Proud and
al. proposed the LOA (Level Of Autonomy) Assessment
Tool (based on a LOA Assessment Scale) which outputs
analytical summaries of the appropriate Level of
Autonomy for particular functions of an Autonomous
Flight Management system. Cummings and al. [3]
identified a refinement mechanism for the decision
making step, to help in deciding which one of the human
or of the system should perform a given decision task.
Lastly, Johansson and al. [5] developed a simulation tool
to analyze the effect of the level of automation and
emphasize the importance of a simulation framework to
have a feedback on design choices before deploying the
system.
Our approach supports this philosophy as 1) it enables to
analyze and test the conformance of the actions that have
to be distributed between the user and the system and 2) it
enables to perform simulations of the designed
application with real users.
The case study has presented both the task and system
models of two design iterations of an interactive cockpit
application. These models have been analyzed in order to
identify potential candidates for automation. The point
was not to present here how to design more usable,
reliable and safe interactive systems but to demonstrate

that notations supporting a clear dichotomy between
user’s tasks and system functions make it possible to
represent in a complete and unambiguous way allocation
of function [2] and tasks migrations.
This work is the first step towards the definition of
processes, notation and tools for assessing the
performance of socio-technical systems featuring (partly-)
autonomous behaviors. That work will take into account
standard and erroneous behaviors both on the system side
(usually called failures [27]) and on the user’s side
(usually called slips and mistakes [26]).

ACKNOWLEDGEMENTS
This work has been partly funded by R&T CNES Tortuga
R-S08/BS-0003-029 and by Eurocontrol research
network HALA! on Higher Automation Levels in
Aviation.

REFERENCES
1. Barboni E., Ladry J-F., Navarre D., Palanque P.,

Winckler M. Beyond Modelling: An Integrated
Environment Supporting Co-Execution of Tasks and
Systems Models. In Proc. of EICS '10. ACM, 143-
152.

2. Boy G. Cognitive Function Analysis for Human-
Centered Automation of Safety-Critical Systems.
Proceedings of ACM CHI 1998: 265-272

3. Cummings M.L., Bruni S., Collaborative Human-
Automation Decision Making, Springer Handbook of
Automation, pp. 437-447, 2009.

Figure 10. Task model of the manage WXR application activity when application testing has been automated

Barcelona, Spain, May 26-27, 2011 ATACCS’2011 | RESEARCH PAPERS

59

4. Diaper, D., Stanton, N. A. (eds.) The Handbook of
Task Analysis for Human-Computer Interaction.
Lawrence Erlbaum Associates, 2004. 650 p.

5. Johansson B., Fasth A., Stahre J., Heilala J., Leong S.,
Tina Lee Y., Riddick F., Enabling Flexible
Manufacturing Systems by using level of automation
as design parameter, Proc. of the 2009 Winter
Simulation Conference, 13-16 dec. 2009.

6. Navarre, D., Palanque, P., Ladry, J., and Barboni, E.
2009. ICOs: A model-based user interface description
technique dedicated to interactive systems addressing
usability, reliability and scalability. ACM Trans.
Computer.-Hum. Interact. 16, 4 (Nov. 2009), pp. 1-
56.

7. Navarre, D., Palanque, P., Winckler, M. Task Models
and System Models as a Bridge between HCI and
Software Engineering. “Human-Centered Software
Engineering Models, Patterns and Architectures for
HCI”. Springer (HCI Series), 2009, pp. 357-385.

8. Palmer, E. "Oops, it didn't arm." - A Case Study of
Two Automation Surprises . 8th International
Symposium on Aviation Psychology, Ohio State
University, 1995.

9. Paterno, F., Mancini, C. and Meniconi, S.
ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In: Proc. of Interact’97.
Chapman & Hall (1997), 362-369.

10.Parasuraman, R.; Sheridan, T.B.; Wickens, C.D. "A
model for types and levels of human interaction with
automation" Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Trans. on, vol.30, no.3,
pp.286-297, May 2000.

11.Proud, R. W., Hart, J. J., & Mrozinski, R. B. (2003).
“Methods for Determining the Level of Autonomy to
Design into a Human Spaceflight Vehicle: A Function
Specific Approach,” Proc. Performance Metrics for
Intelligent Systems (PerMIS ’03), September 2003.

12.Sarter, N. D., Woods D. How in the World Did I Ever
Get Into That Mode? Mode Error and Awareness in
Supervisory Control, Human Factors, 37(1), (1995).

13. Bastide R., Palanque P. A Petri Net Based
Environment for the Design of Event-Driven
Interfaces. 16th International Conference on
Application and theory of Petri Nets (ATPN'95),
LNCS, Springer Verlag, Torino, Italy, 20-22 June
1995.

14. Ladry J-F., Navarre D., Palanque P. Formal
Description Techniques to Support the Design,
Construction and Evaluation of Fusion Engines for
SURE (Safe Usable, Reliable and Evolvable)
Multimodal Interfaces. In: ICMI-MLMI 2009, ACM,
p. 135-142, 2009.

15. Bastide R., Palanque P. Modeling a Groupware
Editing Tool with Cooperative Objects. Concurrent
Object-Oriented Programming and Petri Nets. G.
Agha, F. De Cindio (Eds.), Springer-Verlag, V. 2001,
LNCS, 305-319.

16. Lakos, C, & Christensen, S. A General Systematic
Approach to Arc Extensions for Coloured Petri Nets."
15th International Conference on Application and
Theory of Petri Nets, ICATPN'94, Zaragoza. LNCS
no. 815. Berlin, Springer (1994) 338-57.

17. Lakos, C. Language for Object-Oriented Petri Nets.
#91-1. Department of Computer Science, University
of Tasmania, 1991.

18. Ramamoorthy, C. V., and Ho, G. S. "Performance
Evaluation of Asynchronous Concurrent Systems."
IEEE Transactions of Software Engineering 6, no. 5
(1980) 440-449.

19. Palanque P., Ladry J-F, Navarre D., Barboni E. High-
Fidelity Prototyping of Interactive Systems can be
Formal too 13th International Conference on Human-
Computer Interaction (HCI International 2009) San
Diego, CA, USA.

20.Bastide R., Navarre D. & Palanque P. & (2003) A
Tool-Supported Design Framework for Safety Critical
Interactive Systems. Interacting with computers,
Elsevier, Vol. 15(3), 309-328.

21. Suchman, L. A., Plans and situated actions: the
problem of human-machine communication. 1987. 0-
521-33739-9.

22.Martinie, C., P. Palanque, et M. Winckler. Structuring
and Composition Mechanism to Address Scalability
Issues in Task Models. LNCS INTERACT. Lisbonne,
Portugal: Springer, 2011.

23.Card S.K., Moran T.P. & Newell A. The psychology
of Human-Computer Interaction. Lawrence Elbaum
Associates, 1983.

24.Norman D. The design of everyday things. MIT press
1998.

25.Martinie C., Palanque P., Barboni E. & Ragosta M.
Task-Model Based Assessment of Automation Levels:
Application to Space Ground Segments. IEEE
International Conference on Systems, Man and
Cybernetics, Anchorage, IEEE Computer Society,
2011.

26. J. Reason: Human Error. 1990. Cambridge University
Press.

27. Avizienis A., Laprie J-C., Randell B., Landwehr C.
Basic Concepts and Taxonomy of Dependable and
Secure Computing. IEEE Trans. Dependable Sec.
Comput. 1(1): 11-33, 2004.

