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Abstract. The deployment of interactive facilities in avionic digital cockpits for 
critical applications is a challenge today. The dependability of the user interface 
and its related supporting software must be consistent with the criticality of the 
functions to be controlled. The approach proposed in this paper aims at describ-
ing how fault prevention and fault tolerance techniques can be combined to 
address this challenge. Following the ARINC 661 standard, a model-based de-
velopment of interactive objects (namely widgets and layers) aims at providing 
zero-default software. Regarding remaining software faults in the underlying 
runtime support and also physical faults, the approach is based on fault toler-
ance design patterns, like self-checking components and replication techniques. 
The proposed solution relies on the space and time partitioning provided by the 
executive support following the ARINC 653 standard. Defining and designing 
resilient interactive cockpits is a necessity in the near future as these command 
and control systems provide a great opportunity to improve maintenance and 
evolutivity of avionic systems. 

Keywords: Interactive Systems, Self Checking Components, Widgets, 
Dependability, Fault Tolerance, Resilient Computing. 

1 Introduction 

In the late 70’s the aviation industry developed a new kind of display system 
integrat-ing multiple displays and known as “glass cockpit”. Using integrated 
displays it was possible to gather under a single screen a lot of information usually 
statically attached to multiple independent traditional mechanical gauges. This 
generation of glass cock-pits uses several displays with electronic technology. It 
receives information from aircraft system applications of embedded equipment, 
then processes and displays this information to crew members. In order to send 
controls to the aircraft systems, the crew members have to use physical buttons 
usually made available next to the displays. Control and display are processed 
independently (different hardware and 



software) and without integration. This is something that is about to change radically 
with interactive cockpit applications which have started to replace (e.g. with Airbus 
A380) the glass cockpit. The main reason is that it makes possible to integrate infor-
mation from several aircraft systems in a single user interface in the cockpit. This 
integration is nowadays required in order to allow flight crew to handle the always 
increasing number of instruments which manage more and more complex informa-
tion. Such integration takes place through interactive applications featuring graphical 
input and output devices and interaction techniques as in any other interactive con-
texts (web applications, games, home entertainment, mobile devices …). The interac-
tive system in the cockpit is called Control and Display System (CDS). It performs 
various operational services of major importance for flight crew and allows the dis-
play of aircraft parameters using LCD screens (as in the glass cockpit), but it also 
allows the pilots to graphically interact with these parameters using a keyboard and a 
mouse to control aircraft systems. 

If the information displayed on (or controlled by) the CDS is critical, its general 
architecture must be fault-tolerant. Similarly, on the user side, the information flow 
between the pilot and the CDS has to ensure safe flight operations, avoiding the enter-
ing of wrong or incomplete data and displaying only correct information (with respect 
to the inner state of the aircraft). Ensuring such dependability of information is not an 
easy task due to the high number of hardware and software components involved.  

In this paper, we propose an approach for assessing dependability of interactive 
cockpits. The approach is based on conventional fault tolerance techniques applied to 
interactive objects, at various abstraction levels. The approach also relies on the error 
confinement facilities provided by the runtime support, namely an ARINC 653 oper-
ating system kernel [2]. Such runtime platform provides both space and time parti-
tioning. Today the interaction is devoted to non-critical avionic functions and the 
management of the interaction is located into one partition for the whole interactive 
system. The basic idea is to design fault tolerant interactive entities using multiple 
partitions providing error confinement on redundant Display Units.  

The paper is organized as follows. In section 2 we describe the problem statement 
in more details before illustrating the architecture of interactive cockpits using the 
A380 example in section 3. We put focus in this section to the organization of a digi-
tal interactive system following the ARINC 661 standard [1]. In section 4, we de-
scribe our approach to improve the dependability of interactive systems for avionic 
critical applications. The architecture of our fault tolerant solution is described in 
section 5 and is based on a conventional approach for fault tolerant computing in 
avionics, the COM-MON approach [15]. Section 6 concludes this paper. 

2 Problem Statement 

It is worth noting that, currently, the interactive approach is only used in avionics for 
non-safety critical functions. The challenge is now to use this interactive approach for 
critical functions.  



The interactive system can be viewed at various levels of abstraction, from indi-
vidual widgets at the bottom level up to more complex interactive entities associated 
to so-called user applications, namely the interactive counterpart of avionic functions. 
The specifications of interactive objects (widgets and layers) are defined in the 
ARINC 661 standard. Such complex system is subject to faults that can impair the 
correct rendering of information and the delivery of input information to avionic func-
tions. In this work, we focus on dependability issues of the CDS, as a computer-based 
system so the type of faults considered ranges from software to hardware faults and 
we do not consider human errors. We understand that such errors are definitely of 
interest as far as man-machine interface and interactive systems are considered. How-
ever the evolution of conventional cockpits to total digital cockpits is a revolution and 
raises the challenge of its dependability with respect to conventional software and 
hardware faults. The dependability of such complex computer-based systems should 
be as high as possible depending on the associated failure cases considered:  as far as 
critical functions are concerned, the system must be developed in compliance with the 
highest assurance level, so-called DAL A (Design Assurance Level A) according to 
the D0178B development process standard [15].  

The approach proposed in this work is two-fold and relies both on fault prevention 
and fault tolerance approaches. To deal with software faults, we advocate the use of a 
model-based approach of interactive applications, limiting as far as possible software 
faults in the resulting interactive entities. A formalism based on Petri Nets is used to 
formalize the specifications of interactive objects (widgets and layers). This formal 
representation of the interactive objects is interpreted at runtime by a virtual machine. 
Regarding physical faults, we advocated a fault tolerance approach relying on the N-
Self Checking Programming paradigm [3] and taking advantage of the ARINC 653 
features and redundant hardware. 

The long-term interest of such digital cockpit is its flexibility. The lifetime of a 
civil aircraft is about 40 years and is subject to many evolutions and updates. This 
digital cockpit approach vs. the physical approach offers a clear benefit in this respect, 
provided the dependability of the interactive system is guaranteed when changes oc-
cur. This calls thus for resilient computing [15] solutions by definition, which is the 
long-term aim of this work. 

3 Interactive Cockpit Architecture 

3.1 Cockpit Architecture Overview: An Example 

In this paper, we will take the example of the Airbus A380 cockpit (see Fig. 1). The 
interactive control and display system (CDS) of the Airbus A380 is composed of 2 
input devices called KCCUs (Keyboard and Cursor Control Unit) and 8 output devic-
es called DUs (Display Unit). Only some of the 8 DUs allow the crew to use the inte-
ractivity, the other ones are only used for displaying information. 

A DU device is composed of a LCD screen, a graphic processing unit and a central 
processing unit running an ARINC 653 [2] operating system kernel. The software 
responsible for the interactivity is processed in the DU within one partition. 
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4 Overall Approach 

In this section, we first present the main assumptions we make, the functional failures 
we want to prevent and the fault model we consider to select the appropriate fault 
tolerance strategies. Then we propose our approach for embedding dependability 
mechanisms within an interactive cockpit. Our approach is two-fold, we first use a 
model-based approach to develop our software and deal with software faults, then we 
introduce well-known dependability mechanisms to deal with physical faults. 

4.1 Main Hypotheses and Functional Failures to Cover 

The focus of this paper is on the interactive system dependability, more precisely, the 
CDS dependability. Human-errors are out of the scope of our study, the target being 
here the dependability of CDS as a computer-based system. As the CDS is a really 
large and complex entity, we decided to focus first on the server reliability. To con-
centrate on this problem, we assume the following: 

• The communication between the CDS and aircraft system is reliable. The data
transfer is without corruption and this can easily be achieved using conventional
reliable protocols on a FIFO communication channel.

• The reliability of user applications (UA), the display related part of an avionic
function, is out of the scope of this work, we consider that all information received
by the CDS from aircraft systems is correct.

• The displays of the CDS are reliable, graphical commands sent to the LCD screen
are always correctly displayed.

• The KCCU is sending reliable data to the server.

Our main interest is to ensure that the server processes correctly input events from 
crew members, and send graphical commands to the LCD screen according to the 
data received from user applications. Three possible failures must be avoided: 

• Erroneous Display: Transmission of an erroneous value to the display according
to the data received from aircraft systems (e.g. a widget receives the value x to
render and transmits to the display another value);

• Erroneous Control: Transmission of a different action from the one done by crew
members (e.g. a crew member clicks on Button1 but the event Click-Button2 is
sent to the application);

• Inadvertent Control: Transmission of an action without any crew members’
action (e.g. an event click is sent to the application without crew action on input
devices).

The fault model considered in our study encompasses physical faults ranging from 
crash faults, due to a power supply failure of an electronic board for instance, to more 
subtle faults like Single Event Effects [15]. Regarding software faults, the model-based 
design approach proposed in the next section aims at limiting very much the introduc-
tion of design faults in the development process. Furthermore, to consider transient 



software faults the interactive software and the base executive software, namely the 
ARINC 653 kernel will be developed at the highest assurance level (DAL A) and thus 
considered as a zero-default piece of software.  

4.2 Using ICO Formal Modeling to Design Interactive Cockpits 

In the domain of the design of safety-critical interactive systems, the use of a formal 
specification technique is extremely valuable because it provides non-ambiguous, 
complete and concise models. The advantages of using such formalisms are widened 
if they are provided with formal analysis techniques that allow proving properties 
about the design [3], thus giving an early verification to the designer before the appli-
cation is actually implemented [5].  

The Interactive Cooperative Objects (ICO) is a formal description technique dedi-
cated to the specification and verification of interactive systems [11]. It uses concepts 
borrowed from the object-oriented approach (dynamic instantiation, classification, 
encapsulation, inheritance, client/server relationship) to describe the structural or 
static aspects of interactive systems, and uses high-level Petri nets [7] to describe their 
dynamic or behavioural aspects. As an extension of the Cooperative Objects formal-
isms it has been designed to describe behavioural aspects of objects-based distributed 
systems [4]. The formalism is able to handle the specific aspects of interactive sys-
tems. In a nutshell, the ICO formalism can be described as follows: 

• ICO is Petri net based, suitable to specify the behaviour of event driven-interactive
systems and concurrent human-computer interactions, but also able to describe the
inner states of the Interactive Application.

• The formalism enables the handling of more complex data structure (typed places
and tokens, transitions with actions and preconditions, variable names on arcs).

• ICO objects react to external events according to their internal state and they can
produce events.

• An object is defined as the set of four elements: an extended Petri Net describing
the behaviour of the interactive object, a presentation part, and two functions (the
activation function and the rendering function) that make the link between the co-
operative objet and the presentation part (events from input devices and output on
the LCD screens).

In previous work [3], we have proposed the use of ICO formal modeling for describ-
ing in a complete and unambiguous way both standard widgets and interactive appli-
cations following ARINC 661 specifications. 

Any widget corresponds to a collection of interconnected Petri Nets. For instance, 
the ICO model of the PicturePushButton (PPB) may be divided in 7 sub-parts (one 
handling mouse click events and the other 6 for managing one parameter each: Visi-
ble, Enable, PictureReference, LabelString, StyleSet, Highlighted). 

To illustrate the model, we show in Fig. 4 the handling of mouse click events. The Pic-
turePushButton has two internal states: it can be (i) pressed or (ii) released. State changes 
are due to user actions (mouse down events, mouse click events). The mouse click events 
are relayed to the widget via the processMouseClicked method. They are handled only if 
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and sends an error if the functional outputs and the controller ones are different. Both 
options tolerate transient software faults, the second aiming at tolerating design faults. 

In the last self-checking options, the safety properties checker checks some proper-
ties defined as safety ones. We check if the outputs are consistent with the inputs. 
This last option tolerates transient faults or remaining design faults that impair the 
safety properties. 

Self-Checking Widgets  
As a start, we have used the option 1 to implement self-checking widgets.  A self-
checking widget [14] is made up of 5 interconnected components (see Fig. 5): 

• The self-checking widget (or façade) is the global widget, coordinating the data
flow to and from the other sub-components. This encapsulation of the other inner
components makes it possible to hide (as much as possible) the self-checking na-
ture of the component which can interact with the rest of the application.

• The dispatcher: events received by the self-checking widget are received by the
dispatcher. The dispatcher duplicates this event and sends it both to the functional
and controller using a simple atomic broadcast protocol (all or nothing semantics).

• The functional component is the behavioral model of the non-fault-tolerant wid-
get. The outputs are sent both to the self-checking widget and the comparator.

• The controller is a second version of the widget. It only implements the functional-
ities that have to be supervised by the controller. The controller sends its output to
the comparator.

• The comparator is in charge of comparing the functional and controller outputs.

The dispatcher and the comparator have obviously important roles and should be 
zero-default. They are quite simple and are subject to intensive testing.  

The comparator raises errors that may invalidate outputs as shown in Fig. 5. Two 
kinds of comparison that can be performed: one related to parameters modification 
and the other related to event notification. When the comparator receives an output 
from the functional component (resp. the controller) it waits for the corresponding 
output from the controller (resp. the functional component). Following the reception 
of these two outputs, 3 types of errors can occur: (i) one of the outputs is not received, 
(ii) one of the outputs is received too late with respect to the defined temporal win-
dow, (iii) the outputs don’t carry the same value. In case of error, the comparator
raises an error event.

One of the key aspects of the proposed architecture is that it allows the segregation 
of the five sub-components (e.g. each sub-component may be executed on different 
processors with different resources). Indeed, a self-checking mechanism is not enough 
to ensure fault-tolerance if a fault occurring on one component might interfere with 
the behavior of another component. This would be the case if all the components of 
the architecture were executed in the same partition. ARINC 653 [2] defines such 
partitioning in avionic systems and our contribution relies on this notion (section 5).  
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an interactive object developed using ICO relies on several software layers: a Petri 
Net simulator (e.g. PetShop [11] in our case) or code generated from the model, a 
virtual machine (a JVM in our case), display and event managers belonging to the 
CDS and at last the ARINC 653 operating system kernel. 

To cover both transient faults and permanent hardware faults, it is mandatory to 
take into account error confinement areas to isolate the functional part and the con-
troller part of the self-checking objet, whatever it is a widget or a layer.  

5.1 Architectural Issues 

Ideally the functional part should be located in one partition, the controller in a second 
partition and the dispatcher and the comparator in a third partition. A simplification 
can be to locate the controller, the dispatcher and the comparator in a single partition, 
the three components being considered as a verification logic. A partition providing 
space and time segregation prevent faults having an impact on both the function and 
its controller counterpart.  

To tolerate crash faults, two copies of the self-checking widget should be located 
on two different DUs, as a physical unit. Only one is considered active at a given 
point in time. This approach follows the N-Self-Checking Components principle early 
mentioned in this paper. Because interactive objects hold a persistent state, a master-
slave replication strategy is mandatory. Two design patterns of duplex protocols can 
be envisaged: a checkpointing-based strategy (primary-backup replication protocol) 
or an active replication strategy (e.g. a leader-follower replication protocol). In short 
the architecture can be sketched as follows: 

a) the functional part F1 of the interactive object is located in P1 on DU1
b) the controller part C1 of the interactive object is located in P1 on DU2
c) a replica of the functional part F2 is located on P2 on the DU2
d) the controller part C2 of the functional part replica is located in P2 on DU1

Fig. 7 illustrates these implementation choices: F1/C1 is the master and F2/C2 is the 
slave. The slave does not interact with the crew, only the master does. This means that 
inputs from the crew on the master ICO object are forwarded to the slave object. 
Events produced by the slave, if it is an active copy, are not forwarded to the UA, 
only events from the master are delivered to the UA. More details on design patterns 
for resilient computing can be found in [8]. 

Each partition contains an ARINC 661 server, implemented as an ICO model al-
lowing the communication between the ICO interactive object (layer or widget) and 
the UA or the input and output devices. In order to execute ICO models all partitions 
include a JVM on top of which our Petshop tool is running. This is the option we 
consider now in our experiments, which is conformant to the fault assumptions early 
described. This option does not consider remaining development faults within the 
Petshop tool or the JVM, i.e. common mode faults in the executive software. We 
come back to this point in the next section. 
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object specification can be implemented as a controller if some aspects of the ICO 
object have no impact on dependability and can be ignored. Moving forward with this 
approach leads in fact to the third option, where the controller only checks safety 
properties, i.e. executes user-defined executable assertions. A white box approach 
enables assertions to benefit from deeper observability of the ICO object behavior. 

Whatever the implementation option is (widget or layer), the resource overhead 
(timing, communication, etc.) has to be considered. We plan to provide measures 
related to (i) the complexity of the model (number of states and transitions) but also 
(ii) to communication overheads (number and size of messages) between functional
and controller partitions.

6 Conclusion and Perspectives 

In this paper, we have shown that safety critical applications (such as interactive 
cockpits applications) raise specific concerns with regard to fault-tolerance and resi-
lience. We have presented an approach to increase safety critical interactive system 
resilience by enriching them with fault-tolerance mechanisms. We proposed to intro-
duce a self-checking mechanism at two abstraction levels of the interactive system: 
the widget and the layer.  

These two approaches can be used separately or jointly. The design choice (self-
checking widget or self-checking layer) is left open to the UA designer according to 
the criticality of the avionic function considered in general, but also with respect to 
the criticality of the parameter (or event) to be obtained or the parameter to be dis-
played. For instance, the UA designer can choose to use the layer approach yet, he 
can use jointly the widget approach for really critical information. We also presented 
an architecture compliant with our approach. To go further, we are currently applying 
our approach to the FCU Backup application mentioned in the paper. 

The approach presented in this paper has been implemented in Java as a first proof 
of concepts, but the final implementation might be different. We are currently investi-
gating in more details the notion of self-checking layer and plan to implement the 
FCU Backup case study on a realistic platform. 
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