
HAL Id: hal-03647155
https://hal.science/hal-03647155

Submitted on 21 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-Tolerant Interactive Cockpits for Critical
Applications: Overall Approach

Camille Fayollas, David Navarre, Jean-Charles Fabre, Philippe Palanque,
Yannick Deleris

To cite this version:
Camille Fayollas, David Navarre, Jean-Charles Fabre, Philippe Palanque, Yannick Deleris. Fault-
Tolerant Interactive Cockpits for Critical Applications: Overall Approach. 4th International Workshop
on Software Engineering for Resilient Systems (SERENE 2012), Sep 2012, Pisa, Italy. pp.32-46,
�10.1007/978-3-642-33176-3_3�. �hal-03647155�

https://hal.science/hal-03647155
https://hal.archives-ouvertes.fr

Fault-Tolerant Interactive Cockpits
for Critical Applications: Overall Approach

Camille Fayollas1,2,3, Jean-Charles Fabre3, David Navarre2,
Philippe Palanque2, and Yannick Deleris1

1 AIRBUS Operations, 316 Route de Bayonne, 31060, Toulouse, France
Yannick.Deleris@airbus.com

2 ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France
{fayollas,navarre,palanque}@ irit.fr

3 LAAS-CNRS, 7 avenue du colonel Roche, F-31077 Toulouse, France
Jean-Charles.Fabre@laas.fr

Abstract. The deployment of interactive facilities in avionic digital cockpits for
critical applications is a challenge today. The dependability of the user interface
and its related supporting software must be consistent with the criticality of the
functions to be controlled. The approach proposed in this paper aims at describ-
ing how fault prevention and fault tolerance techniques can be combined to
address this challenge. Following the ARINC 661 standard, a model-based de-
velopment of interactive objects (namely widgets and layers) aims at providing
zero-default software. Regarding remaining software faults in the underlying
runtime support and also physical faults, the approach is based on fault toler-
ance design patterns, like self-checking components and replication techniques.
The proposed solution relies on the space and time partitioning provided by the
executive support following the ARINC 653 standard. Defining and designing
resilient interactive cockpits is a necessity in the near future as these command
and control systems provide a great opportunity to improve maintenance and
evolutivity of avionic systems.

Keywords: Interactive Systems, Self Checking Components, Widgets,
Dependability, Fault Tolerance, Resilient Computing.

1 Introduction

In the late 70’s the aviation industry developed a new kind of display system
integrat-ing multiple displays and known as “glass cockpit”. Using integrated
displays it was possible to gather under a single screen a lot of information usually
statically attached to multiple independent traditional mechanical gauges. This
generation of glass cock-pits uses several displays with electronic technology. It
receives information from aircraft system applications of embedded equipment,
then processes and displays this information to crew members. In order to send
controls to the aircraft systems, the crew members have to use physical buttons
usually made available next to the displays. Control and display are processed
independently (different hardware and

software) and without integration. This is something that is about to change radically
with interactive cockpit applications which have started to replace (e.g. with Airbus
A380) the glass cockpit. The main reason is that it makes possible to integrate infor-
mation from several aircraft systems in a single user interface in the cockpit. This
integration is nowadays required in order to allow flight crew to handle the always
increasing number of instruments which manage more and more complex informa-
tion. Such integration takes place through interactive applications featuring graphical
input and output devices and interaction techniques as in any other interactive con-
texts (web applications, games, home entertainment, mobile devices …). The interac-
tive system in the cockpit is called Control and Display System (CDS). It performs
various operational services of major importance for flight crew and allows the dis-
play of aircraft parameters using LCD screens (as in the glass cockpit), but it also
allows the pilots to graphically interact with these parameters using a keyboard and a
mouse to control aircraft systems.

If the information displayed on (or controlled by) the CDS is critical, its general
architecture must be fault-tolerant. Similarly, on the user side, the information flow
between the pilot and the CDS has to ensure safe flight operations, avoiding the enter-
ing of wrong or incomplete data and displaying only correct information (with respect
to the inner state of the aircraft). Ensuring such dependability of information is not an
easy task due to the high number of hardware and software components involved.

In this paper, we propose an approach for assessing dependability of interactive
cockpits. The approach is based on conventional fault tolerance techniques applied to
interactive objects, at various abstraction levels. The approach also relies on the error
confinement facilities provided by the runtime support, namely an ARINC 653 oper-
ating system kernel [2]. Such runtime platform provides both space and time parti-
tioning. Today the interaction is devoted to non-critical avionic functions and the
management of the interaction is located into one partition for the whole interactive
system. The basic idea is to design fault tolerant interactive entities using multiple
partitions providing error confinement on redundant Display Units.

The paper is organized as follows. In section 2 we describe the problem statement
in more details before illustrating the architecture of interactive cockpits using the
A380 example in section 3. We put focus in this section to the organization of a digi-
tal interactive system following the ARINC 661 standard [1]. In section 4, we de-
scribe our approach to improve the dependability of interactive systems for avionic
critical applications. The architecture of our fault tolerant solution is described in
section 5 and is based on a conventional approach for fault tolerant computing in
avionics, the COM-MON approach [15]. Section 6 concludes this paper.

2 Problem Statement

It is worth noting that, currently, the interactive approach is only used in avionics for
non-safety critical functions. The challenge is now to use this interactive approach for
critical functions.

The interactive system can be viewed at various levels of abstraction, from indi-
vidual widgets at the bottom level up to more complex interactive entities associated
to so-called user applications, namely the interactive counterpart of avionic functions.
The specifications of interactive objects (widgets and layers) are defined in the
ARINC 661 standard. Such complex system is subject to faults that can impair the
correct rendering of information and the delivery of input information to avionic func-
tions. In this work, we focus on dependability issues of the CDS, as a computer-based
system so the type of faults considered ranges from software to hardware faults and
we do not consider human errors. We understand that such errors are definitely of
interest as far as man-machine interface and interactive systems are considered. How-
ever the evolution of conventional cockpits to total digital cockpits is a revolution and
raises the challenge of its dependability with respect to conventional software and
hardware faults. The dependability of such complex computer-based systems should
be as high as possible depending on the associated failure cases considered: as far as
critical functions are concerned, the system must be developed in compliance with the
highest assurance level, so-called DAL A (Design Assurance Level A) according to
the D0178B development process standard [15].

The approach proposed in this work is two-fold and relies both on fault prevention
and fault tolerance approaches. To deal with software faults, we advocate the use of a
model-based approach of interactive applications, limiting as far as possible software
faults in the resulting interactive entities. A formalism based on Petri Nets is used to
formalize the specifications of interactive objects (widgets and layers). This formal
representation of the interactive objects is interpreted at runtime by a virtual machine.
Regarding physical faults, we advocated a fault tolerance approach relying on the N-
Self Checking Programming paradigm [3] and taking advantage of the ARINC 653
features and redundant hardware.

The long-term interest of such digital cockpit is its flexibility. The lifetime of a
civil aircraft is about 40 years and is subject to many evolutions and updates. This
digital cockpit approach vs. the physical approach offers a clear benefit in this respect,
provided the dependability of the interactive system is guaranteed when changes oc-
cur. This calls thus for resilient computing [15] solutions by definition, which is the
long-term aim of this work.

3 Interactive Cockpit Architecture

3.1 Cockpit Architecture Overview: An Example

In this paper, we will take the example of the Airbus A380 cockpit (see Fig. 1). The
interactive control and display system (CDS) of the Airbus A380 is composed of 2
input devices called KCCUs (Keyboard and Cursor Control Unit) and 8 output devic-
es called DUs (Display Unit). Only some of the 8 DUs allow the crew to use the inte-
ractivity, the other ones are only used for displaying information.

A DU device is composed of a LCD screen, a graphic processing unit and a central
processing unit running an ARINC 653 [2] operating system kernel. The software
responsible for the interactivity is processed in the DU within one partition.

Fi

The type of user interfac
661 specification [1]. Beyon
defines the communication
components of an interactiv
server architecture.

Fig. 2. Simplified Architectur
(b) CDS, (c) ARINC 661 Proto

The server is part of the
composed of the following e

• Input and output device
screens. They allow crew

• Window and widget man
and a set of graphical e
rendered on the LCD scr
creation of widgets, man
the corresponding widge
screens.

ig. 1. Airbus A380 interactive cockpit

ces that can be proposed on these DUs is based on ARI
nd that user interface aspect, ARINC 661 specification a

n protocol (see Fig. 2(c)) between the various architectu
ve cockpit (see Fig. 2). The ARINC 661 is based on clie

re compliant with ARINC 661 specification standard : (a) Cr
ocol; (d)Aircraft System

e CDS (Control & Display System) in Fig. 2 (b) and i
elements:

s: KCCUs (Keyboard and Cursor Control Unit) and L
w members to interact with the application.
nagers: composed of an event manager, a display mana
elements (called widgets) distributed in a set of windo
reens. For instance, the CDS is responsible for handling
naging KCCU graphical cursors, dispatching the event
ets and the rendering of graphical information on the L

INC
also
ural
ent-

rew;

it is

LCD

ager
ows
the

s to
LCD

The CDS manages informat

• Aircraft Systems (Fig.
through dedicated so-ca
turing a graphical user
event notifications sent b
cal aircraft components
methods called SetParam
cording to state changes

• Crew members (Fig. 2 (
monitoring the aircraft s
craft system through inp
instance, they can click o
value in an EditBoxNum

3.2 Interactive Softwar

The cockpit interactive use
be compared to a desktop c

Fi

Each DU display surface
in one or more layers. A la
the interactive facilities req
data within this layer and
can be seen as a widget tree
the basic interactive compo

• Pushbutton: dedicated to

• Radio buttons: selection

• EditBoxNumeric: for ent

The construction of the str
called containers that can c
the widgets they contain ch

tion for two types of clients:

2(d)): information to and from aircraft systems flo
lled User Applications (UAs) which are applications f
interface for a given avionic function. They process

by the widgets (and might trigger commands on the phy
s).They can also update the widgets (by calling upd
meters) in order to provide feedback to the flight crew
which occurred in the aircraft systems.
(a)): they have the responsibility of flying the aircraft
systems through the LCD screens and controlling the
put devices. They interact with the displayed widgets.
on a button in order to trigger a command, enter a nume

meric to send a value to an avionic function.

re Organisation

er interfaces use a windowing concept (see Fig. 3) that
omputer system windowing.

ig. 3. ARINC 661 windowing concept

e is divided into windows. Each window can be subdivi
yer is associated to one UA and represents the display

quired by an avionic function. The UA and the CDS sh
its hierarchical structure. The layer hierarchical struct

e. The layer is the highest level of this tree. The widgets
nents such as:

o commands triggering.

of one option amongst a set of available ones.

tering numeric values.

ructural widget tree is made possible by specials widg
contain other widgets. We called the containers parents
ildren.

ows
fea-
the

ysi-
date
ac-

t by
air-
For
eric

can

ded
and

hare
ture
are

gets
and

4 Overall Approach

In this section, we first present the main assumptions we make, the functional failures
we want to prevent and the fault model we consider to select the appropriate fault
tolerance strategies. Then we propose our approach for embedding dependability
mechanisms within an interactive cockpit. Our approach is two-fold, we first use a
model-based approach to develop our software and deal with software faults, then we
introduce well-known dependability mechanisms to deal with physical faults.

4.1 Main Hypotheses and Functional Failures to Cover

The focus of this paper is on the interactive system dependability, more precisely, the
CDS dependability. Human-errors are out of the scope of our study, the target being
here the dependability of CDS as a computer-based system. As the CDS is a really
large and complex entity, we decided to focus first on the server reliability. To con-
centrate on this problem, we assume the following:

• The communication between the CDS and aircraft system is reliable. The data
transfer is without corruption and this can easily be achieved using conventional
reliable protocols on a FIFO communication channel.

• The reliability of user applications (UA), the display related part of an avionic
function, is out of the scope of this work, we consider that all information received
by the CDS from aircraft systems is correct.

• The displays of the CDS are reliable, graphical commands sent to the LCD screen
are always correctly displayed.

• The KCCU is sending reliable data to the server.

Our main interest is to ensure that the server processes correctly input events from
crew members, and send graphical commands to the LCD screen according to the
data received from user applications. Three possible failures must be avoided:

• Erroneous Display: Transmission of an erroneous value to the display according
to the data received from aircraft systems (e.g. a widget receives the value x to
render and transmits to the display another value);

• Erroneous Control: Transmission of a different action from the one done by crew
members (e.g. a crew member clicks on Button1 but the event Click-Button2 is
sent to the application);

• Inadvertent Control: Transmission of an action without any crew members’
action (e.g. an event click is sent to the application without crew action on input
devices).

The fault model considered in our study encompasses physical faults ranging from
crash faults, due to a power supply failure of an electronic board for instance, to more
subtle faults like Single Event Effects [15]. Regarding software faults, the model-based
design approach proposed in the next section aims at limiting very much the introduc-
tion of design faults in the development process. Furthermore, to consider transient

software faults the interactive software and the base executive software, namely the
ARINC 653 kernel will be developed at the highest assurance level (DAL A) and thus
considered as a zero-default piece of software.

4.2 Using ICO Formal Modeling to Design Interactive Cockpits

In the domain of the design of safety-critical interactive systems, the use of a formal
specification technique is extremely valuable because it provides non-ambiguous,
complete and concise models. The advantages of using such formalisms are widened
if they are provided with formal analysis techniques that allow proving properties
about the design [3], thus giving an early verification to the designer before the appli-
cation is actually implemented [5].

The Interactive Cooperative Objects (ICO) is a formal description technique dedi-
cated to the specification and verification of interactive systems [11]. It uses concepts
borrowed from the object-oriented approach (dynamic instantiation, classification,
encapsulation, inheritance, client/server relationship) to describe the structural or
static aspects of interactive systems, and uses high-level Petri nets [7] to describe their
dynamic or behavioural aspects. As an extension of the Cooperative Objects formal-
isms it has been designed to describe behavioural aspects of objects-based distributed
systems [4]. The formalism is able to handle the specific aspects of interactive sys-
tems. In a nutshell, the ICO formalism can be described as follows:

• ICO is Petri net based, suitable to specify the behaviour of event driven-interactive
systems and concurrent human-computer interactions, but also able to describe the
inner states of the Interactive Application.

• The formalism enables the handling of more complex data structure (typed places
and tokens, transitions with actions and preconditions, variable names on arcs).

• ICO objects react to external events according to their internal state and they can
produce events.

• An object is defined as the set of four elements: an extended Petri Net describing
the behaviour of the interactive object, a presentation part, and two functions (the
activation function and the rendering function) that make the link between the co-
operative objet and the presentation part (events from input devices and output on
the LCD screens).

In previous work [3], we have proposed the use of ICO formal modeling for describ-
ing in a complete and unambiguous way both standard widgets and interactive appli-
cations following ARINC 661 specifications.

Any widget corresponds to a collection of interconnected Petri Nets. For instance,
the ICO model of the PicturePushButton (PPB) may be divided in 7 sub-parts (one
handling mouse click events and the other 6 for managing one parameter each: Visi-
ble, Enable, PictureReference, LabelString, StyleSet, Highlighted).

To illustrate the model, we show in Fig. 4 the handling of mouse click events. The Pic-
turePushButton has two internal states: it can be (i) pressed or (ii) released. State changes
are due to user actions (mouse down events, mouse click events). The mouse click events
are relayed to the widget via the processMouseClicked method. They are handled only if

the widget is enable and vis
otherwise, the mouse click e
PicturePushButton ICO mod
modeled as (i) the various st
method calls he can proces
events it can trigger (e.g. A66
Fig. 4). The entire behavioral

Fig. 4. ICO model of the m

4.3 Introducing Depen

Many dependability strateg
duced in [3] and [15], ideal
self-checking component pr
fail-stop component. The e
expected to be very high, m
vice continuity. This concep
nic systems: the COM/MO
Programming (NSCP)-base
approach to two abstractio
widgets, the second one bei

According to [3], "a self
and an acceptance test or
with this definition, we can
ponent associated with a con
for the implementation of a

• Option 1: A copy of the
voting mechanism (calle

• Option 2: A diversified
voting mechanism (the c

• Option 3: A safety prop
for the verification of a
object semantics in its op

In the two first self-check
are processing inputs at th

sible. In this case, the event A661_EvtSelection is trigger
events are discarded. Fig. 4 is only a small part of the en
del, which is composed of 37 places and 24 transitions. I
tates it can be in (e.g. visible, enable, pressed), (ii) the se
ss (e.g. processMouseClick, setLabelString), (iii) the set
61_EvtSelection) and (iv) when such events are triggered (
l description of the PPB can be found in [14].

management of mouse click events for the PicturePushButton

dability Mechanisms into Interactive Cockpits

gies rely on the notion of self-checking component as in
lly grouping a function and its corresponding controller
rovides error-confinement and can be thus considered a
error detection coverage of a self-checking componen
making thus replication strategies possible to provide
pt has been used for many safety-critical functions in av

ON approach [15] is the basis for various N-Self-Check
ed architectures [3]. We decided to apply the self-check
n levels of our interactive system, the first one being
ing the layers.
lf-checking software component consists of either a vari
two variants and a comparison algorithm". In accorda
 generalize a self-checking component to a functional co
ntroller or checker. Then, several options can be conside
self-checking interactive object:

e functional component (called controller or checker) an
ed comparator).

variant of the functional component (as a controller) an
comparator)
perties checker, the controller being responsible in this c
 number of safety properties associated to the interact
perational context.

king options, the functional and the controller compone
he same time, the comparator then compares both outp

red;
ntire
It is

et of
t of
(see

ntro-
r. A
as a

nt is
ser-
vio-
king
king

the

iant
ance
om-
ered

nd a

nd a

case
tive

ents
puts

and sends an error if the functional outputs and the controller ones are different. Both
options tolerate transient software faults, the second aiming at tolerating design faults.

In the last self-checking options, the safety properties checker checks some proper-
ties defined as safety ones. We check if the outputs are consistent with the inputs.
This last option tolerates transient faults or remaining design faults that impair the
safety properties.

Self-Checking Widgets
As a start, we have used the option 1 to implement self-checking widgets. A self-
checking widget [14] is made up of 5 interconnected components (see Fig. 5):

• The self-checking widget (or façade) is the global widget, coordinating the data
flow to and from the other sub-components. This encapsulation of the other inner
components makes it possible to hide (as much as possible) the self-checking na-
ture of the component which can interact with the rest of the application.

• The dispatcher: events received by the self-checking widget are received by the
dispatcher. The dispatcher duplicates this event and sends it both to the functional
and controller using a simple atomic broadcast protocol (all or nothing semantics).

• The functional component is the behavioral model of the non-fault-tolerant wid-
get. The outputs are sent both to the self-checking widget and the comparator.

• The controller is a second version of the widget. It only implements the functional-
ities that have to be supervised by the controller. The controller sends its output to
the comparator.

• The comparator is in charge of comparing the functional and controller outputs.

The dispatcher and the comparator have obviously important roles and should be
zero-default. They are quite simple and are subject to intensive testing.

The comparator raises errors that may invalidate outputs as shown in Fig. 5. Two
kinds of comparison that can be performed: one related to parameters modification
and the other related to event notification. When the comparator receives an output
from the functional component (resp. the controller) it waits for the corresponding
output from the controller (resp. the functional component). Following the reception
of these two outputs, 3 types of errors can occur: (i) one of the outputs is not received,
(ii) one of the outputs is received too late with respect to the defined temporal win-
dow, (iii) the outputs don’t carry the same value. In case of error, the comparator
raises an error event.

One of the key aspects of the proposed architecture is that it allows the segregation
of the five sub-components (e.g. each sub-component may be executed on different
processors with different resources). Indeed, a self-checking mechanism is not enough
to ensure fault-tolerance if a fault occurring on one component might interfere with
the behavior of another component. This would be the case if all the components of
the architecture were executed in the same partition. ARINC 653 [2] defines such
partitioning in avionic systems and our contribution relies on this notion (section 5).

Fig. 5. S

As presented in Fig. 5, a
is the result of the merge of
ture (the self-checking-com
classic non-self-checking w
comparator). Each compon
space, we will not present th

Self-Checking Layers
The approach presented ab
without any knowledge of t
basic interactive componen
Indeed, to cover both transi
functional component and i
tion, self-checking interact
following the principle of N
for every widget does not
noting that an interactive a
ber will then be really very
hundreds of widgets) even
will need to be fault-toleran

To solve this issue, we p
level: the layer. The layer is
for one UA. In this case, t
level, but safety properties
its attached UA. The granu
stract and semantic level.

To illustrate more concr
layer grouping 138 widgets
trol Unit (FCU) Backup. Th
such as buttons, knobs, disp
Information System (EFIS)

Self-checking widget functional architecture

adding fault-tolerance mechanism to the PicturePushBut
f the five subparts of the self-checking component archit
mponent façade, the dispatcher, the functional, i.e.
widget as presented in section 4.3, the controller and
nent is modeled in a different Petri Net model. For lack
hese components here.

bove is very generic as it can be applied to each wid
the application: as explained in section 3, the widget is
nt. Therefore, this approach can be resource consumi
ient and permanent hardware faults, we need to isolate
its controller in different partitions (see section 5). In ad
tive objects must be replicated on different display un
N-Self Checking Programming. Four partitions on 2 D
seem acceptable due to resource overheads. It is wo

application can contain a lot of widgets, the partition nu
y high (a standard user application requires about seve
if not every widgets will be considered as critical and t

nt.
propose to apply the self-checking mechanism to an up
s a logical unit merging all the widgets for one applicati
the objective is not to validate every output at the wid
related to a sequence of interactions between the layer

ularity of the verification is done in this case at a more

etely a layer, we give an example in Fig. 6 containing
s: it is an interactive cockpit application called Flight C
he FCU is a hardware panel (i.e. several electronic devi
plays …) providing two types of services: Electronic Fli
 and Auto Flight System (AFS).

tton
tec-
the
the

k of

get,
the

ing.
the

ddi-
nits,
DUs
orth
um-
eral
then

pper
ion,
dget
and
ab-

one
Con-
ices
ight

Fig. 6. Snapshot of the FC

The FCU Backup applic
cover all FCU functions in
interactive pages: EFIS Co
the eight LCD screens (for
for the First Officer. Both
KCCUs which gathers in th

As the layer is directly co
associated with the applicati
quences of widget actions, w

A simple example can b
EditBoxNumeric on the lef
displayed in two different u
sen using the PicturePushB
correspond to the verificatio
a click on the PicturePushB

A self-checking layer i
properties checker (option
viously, the layer is a very
el. The application of the s
properties have to be check

5 Fault-Tolerant A

The self-checking interactiv
detection coverage regardin

CU Backup application in Airbus A380 (left EFIS, right AFS)

ation (see Fig. 6) is designed as an ARINC 661 layer to
case of failure of the physical FCU. It is composed of t

ontrol Panel (CP) and AFS CP and is displayed on two
the A380) in the cockpit, one for the Captain and the ot

h crew members can interact with the application via
he same hardware component a keyboard and a trackball
onnected to an application, it is easy to define safety asserti
ion semantics. Beyond self-checking widgets and generic

we have to consider safety properties that can be checked.
be found on the FCU-Backup application (see Fig. 6). T
ft of EFIS CP displays the atmospheric pressure. It can
units (inHg or hPa). The atmospheric pressure unit is c

Button just behind the EditBoxNumeric. A safety prope
on that the unit and value are modified in a right way up

Button.
mplementation relies in part on a controller as a saf
3 defined in section 4.3). Furthermore, as explained p

big and complex entity and thus very complicated to m
self-checking pattern to a layer is of interest when saf

ked, because of their semantic nature.

Architecture

ve objects (widgets and layers) aim at improving the er
ng the fault model described previously. The execution

o re-
two
o of
ther
the

l.
ions

c se-

The
n be
cho-
erty
pon

fety
pre-

mod-
fety

rror
n of

an interactive object developed using ICO relies on several software layers: a Petri
Net simulator (e.g. PetShop [11] in our case) or code generated from the model, a
virtual machine (a JVM in our case), display and event managers belonging to the
CDS and at last the ARINC 653 operating system kernel.

To cover both transient faults and permanent hardware faults, it is mandatory to
take into account error confinement areas to isolate the functional part and the con-
troller part of the self-checking objet, whatever it is a widget or a layer.

5.1 Architectural Issues

Ideally the functional part should be located in one partition, the controller in a second
partition and the dispatcher and the comparator in a third partition. A simplification
can be to locate the controller, the dispatcher and the comparator in a single partition,
the three components being considered as a verification logic. A partition providing
space and time segregation prevent faults having an impact on both the function and
its controller counterpart.

To tolerate crash faults, two copies of the self-checking widget should be located
on two different DUs, as a physical unit. Only one is considered active at a given
point in time. This approach follows the N-Self-Checking Components principle early
mentioned in this paper. Because interactive objects hold a persistent state, a master-
slave replication strategy is mandatory. Two design patterns of duplex protocols can
be envisaged: a checkpointing-based strategy (primary-backup replication protocol)
or an active replication strategy (e.g. a leader-follower replication protocol). In short
the architecture can be sketched as follows:

a) the functional part F1 of the interactive object is located in P1 on DU1
b) the controller part C1 of the interactive object is located in P1 on DU2
c) a replica of the functional part F2 is located on P2 on the DU2
d) the controller part C2 of the functional part replica is located in P2 on DU1

Fig. 7 illustrates these implementation choices: F1/C1 is the master and F2/C2 is the
slave. The slave does not interact with the crew, only the master does. This means that
inputs from the crew on the master ICO object are forwarded to the slave object.
Events produced by the slave, if it is an active copy, are not forwarded to the UA,
only events from the master are delivered to the UA. More details on design patterns
for resilient computing can be found in [8].

Each partition contains an ARINC 661 server, implemented as an ICO model al-
lowing the communication between the ICO interactive object (layer or widget) and
the UA or the input and output devices. In order to execute ICO models all partitions
include a JVM on top of which our Petshop tool is running. This is the option we
consider now in our experiments, which is conformant to the fault assumptions early
described. This option does not consider remaining development faults within the
Petshop tool or the JVM, i.e. common mode faults in the executive software. We
come back to this point in the next section.

It is worth noting that the
ing 2 DUs. Yet, depending
DUs can also be studied bas

5.2 Performance Issues

The performance of the arc
analyzed through different a

From a dependability vi
model-based development
ARINC 661 standard defin
scription is obtained using
and implements the expecte
a so-called user application
and the UA or the input and
eled in ICO. The execution
a JVM. The remaining des
even the server) can be a
first solution can be to use
part (F1/P1/DU1 in Fig. 7
controller is a copy of the f
ent. One can also consider u
in different partitions. A si
has been used in the B777 a

Whatever the option is,
653 kernel clearly isolates
from other ICO objects run
and infinite loops have no s
on the same DU. In option
from the functional interact

Fig. 7. Fault tolerant architecture

e proposed fault tolerant architecture implementation is
on the requirements, other implementations with 3 or m
sed on this principle.

s: Discussion

chitectural solution proposed in the previous section can
angles: dependability and resource overheads.
iewpoint, the proposed solution relies first on the use o

that minimizes the introduction of design faults. T
nes the behavior of the widgets and a non-ambiguous

the ICO formalism. The model is interpreted at runti
ed interactive objects for a given avionic function throu

n (UA). The communication between the interactive obj
d output devices is insured by an ARINC 661 server m

n relies on a specific Petri Net interpreter running on top
sign faults in the executive support (Petshop, the JVM
problem for critical applications. To address this issue
the Petri Net interpreter in one partition for the functio

7) and generate code for the controller (C1/P1/DU2). T
functional part, but in this case the runtime image is dif
using several implementations of the JVM (diversificati
imilar approach based on different ADA runtime suppo
architecture [17].

the space and time partitioning provided by the ARI
s the functional part of a self-checking interactive obj
nning in different partitions. Errors due to memory fa
side effects on ICO objects running in companion partiti
ns 2 and 3 proposed in Section 4.3, the controller diff
tive objects. A reduced version of the functional interact

us-
more

n be

of a
The
de-
ime
ugh
ject

mod-
p of

M, or
e, a
onal
The
ffer-
ion)
orts

INC
ject

aults
ions
ffers
tive

object specification can be implemented as a controller if some aspects of the ICO
object have no impact on dependability and can be ignored. Moving forward with this
approach leads in fact to the third option, where the controller only checks safety
properties, i.e. executes user-defined executable assertions. A white box approach
enables assertions to benefit from deeper observability of the ICO object behavior.

Whatever the implementation option is (widget or layer), the resource overhead
(timing, communication, etc.) has to be considered. We plan to provide measures
related to (i) the complexity of the model (number of states and transitions) but also
(ii) to communication overheads (number and size of messages) between functional
and controller partitions.

6 Conclusion and Perspectives

In this paper, we have shown that safety critical applications (such as interactive
cockpits applications) raise specific concerns with regard to fault-tolerance and resi-
lience. We have presented an approach to increase safety critical interactive system
resilience by enriching them with fault-tolerance mechanisms. We proposed to intro-
duce a self-checking mechanism at two abstraction levels of the interactive system:
the widget and the layer.

These two approaches can be used separately or jointly. The design choice (self-
checking widget or self-checking layer) is left open to the UA designer according to
the criticality of the avionic function considered in general, but also with respect to
the criticality of the parameter (or event) to be obtained or the parameter to be dis-
played. For instance, the UA designer can choose to use the layer approach yet, he
can use jointly the widget approach for really critical information. We also presented
an architecture compliant with our approach. To go further, we are currently applying
our approach to the FCU Backup application mentioned in the paper.

The approach presented in this paper has been implemented in Java as a first proof
of concepts, but the final implementation might be different. We are currently investi-
gating in more details the notion of self-checking layer and plan to implement the
FCU Backup case study on a realistic platform.

Acknowledgment. This work is partly funded by Airbus under the contract R&T
Display System X31WD1107313.

References

1. ARINC 661 Cockpit Display System Interfaces to User Systems. ARINC Specification
661. Airlines Electronic Engineering Committee (2002)

2. ARINC 653 Avionics Application Software Standard Interface. ARINC Specification 653.
Airlines Electronic Engineering Committee, July 15 (2003)

3. Barboni, E., Conversy, S., Navarre, D., Palanque, P.: Model-Based Engineering of
Widgets, User Applications and Servers Compliant with ARINC 661 Specification. In:
Doherty, G., Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323, pp. 25–38. Springer,
Heidelberg (2007)

4. Bastide, R., Sy, O., Palanque, P.: A formal notation and tool for the engineering of
CORBA systems. Concurrency: Practice and Experience (Wiley) 12, 1379–1403 (2000)

5. Degani, A., Heymann, M.: Analysis and Verification of Human-Automation Interfaces.
Human Centered Computing: Cognitive, Social and Ergonomic Aspects. In: Proceedings
of the 10th Int. Conf. on HCI, vol. 3, pp. 185–189. Erlbaum, Mahwah (2003)

6. DO-178B: Software Considerations in Airbone Systems and Equipment Certification.
RTCA Inc., EUROCAE (December 1992)

7. Genrich, H.J.: Predicate/Transitions Nets. In: Jensen, K., Rozenberg, G. (eds.) High-Levels
Petri Nets: Theory and Application, pp. 3–43. Springer, Heidelberg (1991)

8. Gibert, V., Machin, M., Fabre, J.-C., Stoicescu, M.: Design for Adaptation of Fault Toler-
ance Strategies. Rapport LAAS no 12198, 35 p (April 2012)

9. Laprie, J.-C.: From Dependability to Resilience. In: IEEE/IFIP International Conference
on Dependable Systems and Networks, Anchorage, Alaska, USA (June 2008)

10. Laprie, J.-C., Arlat, J., Béounes, C., Kanoun, K.: Definition and Analysis of hardware and
software Fault-Tolerant Architectures. IEEE Computer 23(7), 39–51 (1990)

11. Navarre, D., Palanque, P., Bastide, R.: A Tool-Supported Design Framework for
Safety Critical Interactive Systems in Interacting with computers, vol. 15/3, pp. 309–328.
Elsevier, Amsterdam (2003)

12. Navarre, D., Palanque, P., Ladry, J.-F., Barboni, E.: ICOs: a Model-Based User Interface
Description Technique dedicated to Interactive Systems Addressing Usability, Reliability
and Scalability. ACM Trans. on Computer-Human Interaction 16(4), 1–56 (2009)

13. Normand, E.: Single-event effects in avionics. IEEE Transactions on Nuclear
Science 43(2), 461–474 (1996)

14. Tankeu-Choitat, A., Navarre, D., Palanque, P., Deleris, Y., Fabre, J.-C., Fayollas, C.: Self-
checking components for dependable interactive cockpits using formal description tech-
niques. In: Proc. of 17th IEEE Pacific Rim Int. Symp. on Dependable Computing (PRDC
2011), Pasadena, California, USA (2011)

15. Traverse, P., Lacaze, I., Souyris, J.: Airbus Fly-by-Wire: A Total Approach to Dependabil-
ity. In: Proceedings 18th IFIP World Computer Congress, Building the Information Socie-
ty, Toulouse, France, August 22-27, pp. 191–212 (2004)

16. Yau, S.S., Cheung, R.C.: Design of self-Checking Software. In: Proc. Int. Conf. on Relia-
ble Software, pp. 450–457. IEEE Computer Society Press, Los Angeles (1975)

17. Yeh, Y.C. (Bob): Design Considerations in Boeing 777 Fly-By-Wire Computers. In: Third
IEEE International High-Assurance Systems Engineering Symposium, p. 64 (1998)

