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Abstract

Distributed Denial of Service (DDoS) cyberattacks represent a major secu-
rity risk for network operators and internet service providers. They thus
need to invest in security solutions to protect their network against DDoS
attacks. The present work focuses on deploying a network function virtu-
alization based architecture to secure a network against an on-going DDoS
attack. We assume that the target, sources and volume of the attack have
been identified. However, due to 5G network slicing, the exact routing of the
illegitimate flow in the network is not known by the internet service provider.
We seek to determine the optimal number and locations of virtual network
functions in order to remove all the illegitimate traffic while minimizing the
total cost of the activated virtual network functions. We propose a robust
optimization framework to solve this problem. The uncertain input param-
eters correspond to the amount of illegitimate flow on each path connecting
an attack source to the target and can take values within a predefined un-
certainty set. In order to solve this robust optimization problem, we develop
an adversarial approach in which the adversarial sub-problem is solved by a
Branch & Price algorithm. The results of our computational experiments,
carried out on medium-size randomly generated instances, show that the
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proposed solution approach is able to provide optimal solutions within short
computation times.

Keywords: Telecommunication networks, Cybersecurity, Distributed denial
of service, Network function virtualization, Robust optimization,
Adversarial approach, Mixed-integer linear programming, Branch & Price,
Column Generation

1. Introduction1

Distributed Denial of Service (DDoS) attacks are among the top threats2

to network operators and internet service providers (ISPs). A distributed3

denial of service is a type of cyberattack in which multiple compromised4

computer systems attack a target, such as a server or a website, and cause5

a denial of service for its legitimate users. DDoS flooding attacks are often6

launched through the use of botnets. A botnet is a network of user computers7

or Internet of Things (IoT) devices that are remotely controlled by a hacker8

through malwares. Under the direction of the hacker, an army of botnets9

can launch a DDoS attack against a target by simultaneously sending to it a10

large amount of traffic or service requests. The flood of incoming messages,11

connection requests or malformed packets exhausts the resources of the target12

and forces it to slow down or even shut down, thereby preventing it to provide13

service to its legitimate users.14

In recent years, the number, intensity and diversity of DDoS attacks have15

increased dramatically. Thus, in 2016, the BBC website was targeted by a16

DDoS attack of more than 600 Gbps and was unavailable for a few hours17

(Khandelwal, 2016). More recently, Amazon announced that its AWS Shield18

service mitigated a 2.3Tbps DDoS attack in February 2020 (AWS, 2020).19

There is also a continuous appearance of new attack vectors, i.e. new tech-20

niques enabling hackers to launch a DDoS attack, and new combinations of21

attack vectors: see e.g. the recent report provided in (Netscout Systems,22

2020) and (FBI, 2020). This trend is likely to continue and even accentu-23

ate in the near future. Namely, with the development of the Internet of24

Things, systems based on smart devices (such as sensors) connected to the25

Internet are widely deployed. This increases the vulnerability of networks26

and the number of potential DDoS targets: see among others Rahimi et al.27

(2018), Akpakwu et al. (2018), Fysarakis et al. (2016) and Silva et al. (2020).28

Furthermore, as mentioned e.g. by Grawe (2020), the COVID-19 pandemic29
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has forced organizations to accelerate their digital transformation plans, thus30

further increasing the attack surface for hackers and criminals.31

DDoS attacks can be very damaging for the organization they target. For32

instance, a survey carried out in 2017 by the cybersecurity company Kapersky33

Lab estimated the average cost of a DDoS attack for large (1000+) businesses34

to be around $2.3 millions (Berard, 2018). This cost mainly comprises the35

cost incurred in fighting the attack and restoring service, the investment in36

an offline or back-up system while online services are unavailable, the loss of37

revenue or business opportunities and the loss of trust from customers and38

partners.39

Many DDoS mitigation solutions have been proposed to protect organi-40

zations’ networks, servers and services. The traditional approach consists in41

deploying specialized hardware security appliances that are fixed in terms of42

strength, functionality and capacity. This means in particular that the loca-43

tion and capacity (in terms of the volume of malicious traffic it can process)44

of the defense appliances are determined in advance, before the DDoS attacks45

actually take place. As explained e.g. by Fayaz et al. (2015), companies are46

thus forced to over provision by deploying appliances capable of handling a47

high but predefined volume of attack at several points in the network. A48

second approach consists in using an external cloud-based DDoS protection49

service. In this case, when under attack, all the incoming traffic to the tar-50

geted service is diverted towards a cloud scrubbing center managed by a third51

party. In the scrubbing center, the traffic is inspected and only the legitimate52

traffic is routed back towards its destination. These cloud-based services are53

more flexible and scalable than dedicated hardware appliances. They how-54

ever raise concerns relative to customers’ privacy violation and often lead to55

increased latency (Alharbi and Aljuhani, 2017).56

Network Function Virtualization (NFV) is a recent network architecture57

concept in which network functions (e.g. network address translation, fire-58

walling, domain name service, etc.) are implemented as software and de-59

ployed as virtual machines running on general purpose commodity hardware60

(Jakaria et al., 2016). Virtualization increases manageability, reliability and61

performance of the network and allows a flexible and dynamic implemen-62

tation of the network services, which significantly reduces the cost of the63

infrastructure and simplifies the deployment of new services. These numer-64

ous benefits have convinced operators to largely embrace virtualization of65

network functions: see e.g. Donovan (2014) and Savi (2018).66

NFV offers new possibilities to counter DDoS attacks. In particular, its67
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flexibility and reactivity allows to postpone the DDoS defense deployment68

after the attack is detected. This allows to place adapted defense mechanisms69

where they are needed and to launch them depending on the scale of the70

attack (Fayaz et al., 2015). Moreover, NFV-based mitigation approaches do71

not require the use of an external service provider, which reduces the privacy72

and latency issues encountered by cloud-based DDoS mitigation.73

As mentioned e.g in Alharbi and Aljuhani (2017), Silva et al. (2020)74

and Jakaria et al. (2016), NFV is a promising technology to mitigate DDoS75

attacks. However, in order to fully leverage its potential, some difficulties76

should be overcome. First, virtual network functions (VNFs) are instan-77

tiated on virtual machines. These virtual machines consume the limited78

computing resources (CPU, memory,...) of the servers on which they run.79

When designing an NFV-based infrastructure to counter an on-going DDoS80

attack in a network, these limitations in the available computing resources81

should be taken into account. The number of VNFs which can be instan-82

tiated at each node of the network depends on the resources of the servers83

located at this node. Second, each VNF has a limited filtering capacity and84

can thus remove only part of the attack flow. The filtering capacity of a VNF85

corresponds to the maximum amount of malicious flow an instance of this86

VNF can stop. If the malicious flow going through a VNF is larger than its87

filtering capacity, the excess malicious flow is forwarded in the network and88

may thus reach its target. This translates into the fact that, in order to stop89

all the malicious traffic of an attack, several VNFs may have to be placed at90

different nodes on the paths used to route the flow between its source and its91

target. A carefully optimized VNF placement strategy taking into account92

both the limited computing resources in the network and the limited filtering93

capacity of a VNF is thus needed.94

In the present work, we focus on the deployment of an architecture based95

on the NFV technology to secure a network against DDoS attacks. We96

assume that the on-going attack has been detected and that its ingress points,97

its volume and its target have been identified. Based on this information,98

we seek to determine the optimal number and location of VNFs in order to99

remove all the illegitimate traffic while trying to minimize the total cost of100

the activated VNFs.101

We take here the perspective of an internet service provider (ISP) aim-102

ing at providing a DDoS mitigation service to its customers in a 5G net-103

work. Among the key features of 5G networks is network slicing: see e.g.104

Vyakaranam and Krishna (2018). Network slicing is an architecture in which105
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Figure 1: 5G network slicing

the physical network infrastructure managed by an ISP is partitioned into106

multiple virtual independent networks termed slices. Each slice is an iso-107

lated end-to-end network which is lent by the ISP to a single customer and108

is adapted to meet the specific requirements of this customer in terms of109

quality of service (bandwidth, reliability, latency, etc.). See Figure 1 for a110

graphical illustration of 5G network slicing. Network slicing thus provides111

an opportunity to the ISP to flexibly configure its physical network so as112

to simultaneously fulfill quality-of-service requirements that may strongly113

vary from one customer to the next. However, on each slice of the network,114

the routing of the flow will not be managed anymore by the ISP but by its115

customer which will rely on its own proprietary routing algorithms. This116

significantly enhances the difficulty for the ISP of providing a DDoS mitiga-117

tion service as it will not control the exact routing of the malicious flow that118

needs to be stopped.119

Our main contributions are thus threefold. First, we present a robust op-120

timization (RO) model to optimally design an NFV-based DDoS mitigation121

infrastructure in the context of 5G network slicing. This model explicitly122

takes into account the fact that the ISP is not aware of the exact routing123

of the attack flow. This is done by considering the malicious flow routing124

as an input parameter of the optimization problem which is subject to un-125

certainty. To the best of our knowledge, this is the first time such a robust126

optimization model is investigated to design a DDoS mitigation infrastruc-127

ture in 5G networks. Second, we propose an efficient algorithm to solve128

the robust optimization problem. This algorithm relies on an adversarial129

approach which decomposes the problem into a master problem and an ad-130

versarial sub-problem. The master problem seeks to optimally place the131
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filtering VNFs while taking into account a limited number of possible mali-132

cious flow routings. The adversarial sub-problem aims at finding the worst133

flow routing for a given VNF infrastructure and is used to generate new rout-134

ings, i.e. new constraints, to be taken into account in the master problem.135

Moreover, as the adversarial sub-problem involves an exponential number136

of decision variables, we develop a Branch & Price algorithm to solve it in137

a computationally efficient way. Third, we provide the results of computa-138

tional experiments carried out on medium-size randomly generated instances.139

These results show that the proposed solution algorithm is able to efficiently140

provide optimal or near-optimal solutions within short computation times.141

The paper is organized as follows. We first review the related literature142

in Section 2. We then provide in Section 3 a formal description of the prob-143

lem, discuss its modeling as a robust optimization problem and present a144

complexity analysis. We describe in Section 4 the adversarial solution ap-145

proach proposed to solve this RO problem. Numerical results carried out on146

medium-size randomly generated instances are provided in Section 5. Finally,147

Section 6 gives a conclusion and some research perspectives.148

2. Related works149

We provide in this section a brief overview of the works closely related to150

ours. We first discuss papers proposing NFV-based infrastructures for DDoS151

mitigation. We then consider papers dealing with the optimal placement152

of virtual network functions in a network for generic cases and focus on153

two recent works studying the optimal placement of VNFs in a network for154

the specific case of DDoS mitigation. Finally, we review the literature on155

the network flow interdiction problem as this problem shares some common156

features with our problem.157

2.1. NFV-based infrastructures for DDoS mitigation158

NFV-based infrastructures to counter DDoS attacks are investigated in159

several recent papers. Fung and McCormick (2015) propose a solution based160

on request prioritization to protect an online application server from a DDoS161

attack. The incoming requests to the servers are categorized into two pri-162

ority levels: requests from trusted sources are assigned a high priority and163

are guaranteed to be served whereas requests from untrusted sources are as-164

signed a low priority and will be served based on the resource availability165

on the server. The proposed architecture makes use of a VNF for priority166
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assignment and flow dispatching. Another widely used mitigation strategy167

against DDoS attacks is flow filtering: see e.g. Silva et al. (2020). Basically,168

flow filtering consists in analyzing the information contained in the headers169

of the data packets to block the malicious flow. The filtering process thus170

exploits information such as the source and destination IP addresses, the171

origin and destination ports or the network layer protocol to identify mali-172

cious packets and drop them. Jakaria et al. (2016), Rashidi et al. (2018) and173

Jakaria et al. (2019) investigate a DDoS mitigation framework in which this174

filtering process is carried out by VNFs which are dynamically allocated as175

needed depending on the volume of the attack. More precisely, their frame-176

work aims at protecting an online product server against a specific type of177

DDoS attacks, termed SYN floods, which exploit some weak points of the178

TCP internet protocol. This framework involves a dispatcher/load balancer179

which receives the incoming packets from the internet and distributes them180

to filtering VNFs instantiated on commodity servers. These VNFs verify181

the source IP address of each packet, drop the packet in case it is illegiti-182

mate or forward it to the product server in case its source is white-listed.183

Finally, Fayaz et al. (2015) and Alharbi and Aljuhani (2017) propose DDoS184

mitigation infrastructures in which VNFs may have a variety of functions185

depending on the type of the attack.186

2.2. Optimal placement of virtual network functions187

In their survey on network function placement, Li and Qian (2016) distin-188

guish between two types of placement problems. The first one corresponds189

to the case where independent network functions, i.e. functions which do190

not interact with one another, should be placed in the network. The second191

one, called service chaining, applies when each flow must traverse a prede-192

fined sequence of network functions (such as firewall → intrusion detection193

system → proxy) between its ingress point and its destination point in the194

network. Note that the problem under study in this work belongs to the195

first type of problem as we consider a single type of network functions. We196

refer the reader to Demirci and Sagiroglu (2019) for a general overview of the197

literature on the optimal placement of virtual network functions and focus198

in what follows on the specific context of DDoS mitigation.199

To the best of our knowledge, there are only two works dealing with200

the problem of optimally placing VNFs in a network to counter an on-going201

DDoS attack. Fayaz et al. (2015) develop the Bohatei system based on NFV202

and SDN (software-defined networking). Their system includes a resource203
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manager which determines the type, number and location of VNFs to be204

instantiated based on the available information on the ingress points, tar-205

get, type and volume of the on-going attack so as to minimize the costs206

related to the malicious flow traffic. They consider a case in which the mit-207

igation of each type of DDoS attack (e.g. SYN food, DNS amplification208

or UDP flood) is a multi-step process requiring the use of different types209

of network functions. They formulate the underlying optimization problem210

as a mixed-integer linear program and solve it using a two-step heuristic.211

Jakaria et al. (2019) consider an architecture involving two types of VNFs,212

namely dispatchers and filtering agents, to counter SYN flood attacks. They213

deploy these VNFs through virtual machines running on commodity servers.214

The objective is to process all the incoming traffic while using a minimum215

number of commodity servers. Their mathematical model is formulated as216

a constraint satisfaction (SAT) problem (Apt, 2003). It takes into account217

the limited computing resources of each commodity server, the limited band-218

width of the links between the dispatchers and the filtering agents and the219

relation between the packet filtering rate of a VNF and the computing re-220

sources allocated to the virtual machine on which it is instantiated. Note221

that, contrary to the problem under study here, both Fayaz et al. (2015) and222

Jakaria et al. (2019) assume in their problem modeling that the flow of the223

attack, once detected, can be flexibly routed towards the launched virtual224

machines.225

2.3. Network flow interdiction problem226

In the network flow interdiction problem, an attacker and a defender take227

measurements on a capacitated network. The defender seeks to maximize228

the flow through the network, while the attacker suppresses some arcs to229

minimize the maximum flow. Each arc has a removal cost. Thus, the goal230

for the attacker is to select a subset of arcs to remove without exceeding231

a fixed budget. The network interdiction problem is known to be an NP-232

complete problem: see Phillips (1993) and Wood (1993). However, it can233

be solved in polynomial time for certain categories of graphs such as planar234

graphs (Phillips, 1993; Wollmer, 1964).235

Different classes of the network flow interdiction problem are studied in236

the literature: see e.g. Church et al. (2004). Baffier et al. (2018) investi-237

gate an adaptive network interdiction flow problem. The defender aims to238

maximize the flow value and the attacker seeks to minimize the remaining239

flow value by removing a set of k links. The goal is to find a robust flow240
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against any k edge attack. A bilevel optimization framework is developed241

to address this problem. Naoum-Sawaya and Ghaddar (2017) also formu-242

late the problem as a bi-level mixed-integer program. An iterative cutting243

plane algorithm is proposed and implemented in a branch-and-cut approach.244

Lim and Smith (2007) study problems with discrete and continuous inter-245

dictions. They describe a linearized model to optimize the discrete network246

interdiction problem and compare it to a penalty model. For the continuous247

case, they describe an optimal partitioning algorithm as well as a heuristic248

procedure to estimate the optimal value of the objective function. Altner249

et al. (2010) propose two classes of polynomially separable valid inequalities250

for the Maximum Flow Network Interdiction Problem. An approximation251

factor-preserving reduction from a simpler interdiction problem is also devel-252

oped. Lei et al. (2018) consider maximum flow interdiction problem under253

interdiction-effect uncertainties. The problem is characterized as a Stack-254

elberg game. They consider risk-neutral and risk-averse behaviors of the255

two players. Five bi-level/tri-level programming models for different risk-256

preference combinations are investigated. An application of the network257

interdiction problem to security issues is studied by Guo et al. (2016). The258

problem is to optimally interdict illegal network flow in the context of the259

containment of the flow of drugs through the US-Mexico border patrol. A260

Stackelberg game model for network interdiction flow with a single source-261

destination flow is presented. The proposed solution approach is based on262

column generation and constraint generation algorithm. Fu and Modiano263

(2019) propose a new paradigm for network interdiction that models sce-264

narios. The interdiction is performed through injecting bounded-value flows265

to maximally reduce the throughput of the residual network. They study266

two problems under the paradigm: deterministic flow interdiction and ro-267

bust flow interdiction. An algorithm with logarithmic approximation ratio is268

developed.269

Note that the present works investigates a defender-attacker problem270

which significantly differs from the network flow interdiction problem. Namely,271

in our case, the defender, i.e. the internet service provider, allocates secu-272

rity resources without changing the network topology. Virtual functions are273

deployed on network nodes in order to suppress attacking flows but this274

security mechanism does not remove any component (node or link) in the275

network. Our goal is to minimize the costs of VNFs deployment while grad-276

ually eliminating the malicious flows, rather than destroying links to prevent277

the attacker from reaching its target. This implies significant differences in278
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the mathematical formulations of the problem. The methodologies proposed279

in the existing works can therefore not be directly applied to our problem.280

3. Problem description and mathematical modeling281

In this section, we first describe in a more formal way the optimization282

problem under study and present the proposed robust optimization model.283

We then provide a small illustrative example. Finally, we discuss the use284

of aggregated filtering constraints in the problem formulation and study its285

complexity status.286

3.1. Problem definition287

The network topology is modeled by a digraph G = (N ,L) in which N ,288

the set of nodes, represents specific equipment in the network and L, the set289

of arcs, corresponds to the links that can be used to route the traffic. The290

routing of the traffic in the network is limited by the bandwidth bl of each link291

l. In practice, part of this bandwidth is used to route the legitimate traffic in292

the network. In the present work, for the sake of simplicity, we assume that293

the bandwidth consumed by the legitimate traffic is negligible as compared294

to the one consumed by the illegitimate traffic. We thus consider that the295

illegitimate traffic may use all the bandwidth of a link if needed.296

The illegitimate traffic corresponding to the on-going DDoS attack is rep-297

resented as a set A of attacks: attack a ∈ A corresponds to an illegitimate298

traffic of F a Mbps between a source sa ∈ N and the target t ∈ N of the299

DDoS attack. Source nodes, {sa, a ∈ A}, are network access nodes (also300

termed gateways) managed by the ISP. They are able to compute the num-301

ber of incoming packets and to detect suspicious traffic entering the network.302

In contrast, the target node t is a strategic node belonging to an external net-303

work managed by a customer which subscribed to a security service provided304

by the ISP. The ISP must thus secure this node against the on-going DDoS305

attack but it is not allowed to install any software (i.e. to deploy VNFs) on306

this node. The malicious traffic corresponding to the attack thus has to be307

stopped before it reaches t.308

As explained in the introduction, in the present work, we consider the309

case in which an ISP lends slices of its physical network infrastructure to its310

customers and each of these customers uses its own flow routing algorithms311

to route the flow on the slice assigned to it. The result is that by the time the312

ISP has to decide on the NFV-based DDoS mitigation infrastructure, it does313
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not know the exact routing of the malicious flow to be stopped. Let Pa be314

the set of all potential paths between sa and t for attack a. N a,p (resp. La,p)315

denotes the set of nodes (resp. the set of links) belonging to path p ∈ Pa and316

Pa(n) denotes the subset of paths of Pa going through node n. The amount317

of malicious flow of attack a ∈ A on path p ∈ Pa, denoted by f̃a,p, is thus318

subject to uncertainty. However, even if the exact value of parameter f̃a,p
319

is unknown, there are some restrictions on its potential value. Namely, we320

know that the total amount of malicious flow routed on the paths belonging321

to Pa may not be greater than F a, the amount of illegitimate traffic of322

attack a. Moreover, the malicious flow routing must comply with the limited323

bandwidth of each link. These two pieces of information should be exploited324

as best as possible to avoid using more network resources than necessary for325

the DDoS attack mitigation.326

In the considered DDoS mitigation framework, VNFs are used to filter and327

stop the illegitimate traffic before it reaches its target. A VNF instantiated328

on a node n ∈ N of the network can be seen as a software running on the329

server located at node n and filtering the flow going through n. As explained330

in Section 2, this filtering process mainly consists in selectively stopping331

unwanted traffic by exploiting the information contained in the header of332

each data packet. This information can be the source, destination, port or333

routing protocol of the data packet to be processed.The filtering capacity of334

a VNF corresponds to the number of packets it can receive and process per335

second: if the malicious flow the VNF has to handle is larger than its filtering336

capacity, the excess flow is forwarded in the network and may thus reach its337

target. This filtering capacity is linked to the amount of computing resources338

consumed by the VNF on the server where it is instantiated. Indeed, data339

packets arriving at the VNF are first extracted and stored in memory. They340

then undergo several processing cycles on the available CPUs in order to341

analyze their content. Thus, the number of CPUs allocated to the VNF342

strongly limits its packet processing rate. Moreover, widely used filtering343

rules consist in analyzing the destination of a set of packets and storing them344

in memory. If there are too many packets targeting the same destination at345

the same time, these packets are considered as suspicious and are discarded.346

Consequently, the filtering process requires some memory to implement the347

malicious traffic filtering rules. The set of available VNF types is described by348

V = {1, ..., V }. A VNF of type v is characterized by its filtering capacity φv,349

its cost Kv and its computing resources consumption. The set of computing350

resources (CPU, memory, etc.) is denoted by R = {1, ..., R}. Let krv be the351
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amount of computing resource r required by the instantiation of one VNF of352

type v and Caprn the amount of computing resource r available at node n.353

Table 1 summarizes the notation used to describe the input parameters354

of the various mathematical models throughout the paper.355

The optimization problem consists in identifying the location and number356

of VNFs to be placed in the network so as to stop all the malicious flow before357

it reaches its target, and this whatever its routing through the network,358

while minimizing the cost of the instantiated VNFs and complying with the359

limitations on the computing resources.360

3.2. Mathematical formulation361

We propose to handle this optimization problem using a robust opti-362

mization (RO) approach. A robust optimization problem is an optimization363

problem in which some parameters are subject to uncertainty. In a RO prob-364

lem, the uncertainty on the input parameters is not described in terms of365

probability distributions but rather by means of an uncertainty set contain-366

ing all the possible values that these parameters may take. Solving a RO367

problem consists in finding a solution which is feasible for any realization of368

the uncertain parameters in the uncertainty set and which provides the best369

possible value of the objective function. The reader is referred to Gorissen370

et al. (2015) for a practical introduction on robust optimization.371

In the present case, the routing of the malicious flow in the network is372

not known by the ISP. The amount of malicious flow of attack a ∈ A on373

path p ∈ Pa, f̃a,p, can thus be seen as an uncertain input parameter for the374

problem of optimally placing VNFs to counter the DDoS attack. However,375

as mentioned in Subsection 3.1, even if the exact value of parameter f̃a,p
376

is unknown, its value should comply with two restrictions. First, for each377

attack a, the total flow routed in the network may not be larger than the378

total attack traffic, i.e. we have
∑

p∈Pa f̃a,p ≤ F a for each attack a ∈ A.379

Second, the flow routed on each link l of the network may not exceed the380

bandwidth bl of this link. We thus have
∑

a∈A
∑

p∈Pa s.t. l∈La,p f̃
a,p ≤ bl for381

each link l.382

This means that the uncertain malicious flow routing, f̃ = {f̃a,p s.t. a ∈383

A, p ∈ Pa}, belongs to the uncertainty set U defined by:384
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A Set of all on-going attacks to be stopped
C Collection of restricted sets of paths
G Graph representing the telecommunication network
L Set of links used to route the traffic in the network
La,p Set of all links belonging to path p ∈ Pa

N Set of nodes, i.e. of pieces of equipment in the network
N a,p Set of all nodes belonging to path p ∈ Pa

N (f̃) Subset of nodes through which part of the malicious flow transits when

it is routed according to routing f̃
Pa Set of all paths between sa and t
Pa(n) Subset of paths in Pa such that n ∈ N a,p

Pa
R Restricted set of paths for attack a
R Set of computing resources
U Uncertainty set
UR Restricted uncertainty set
V Set of available VNF types
A Number of attacks
bl Bandwidth of link l
Caprn Amount of computing resource r available at node n
F a Total illegitimate traffic of attack a

f̃a,p Unknown amount of malicious flow of attack a ∈ A routed on path p ∈ Pa

f̃ Unknown routing of the DDoS attack ; f̃ = {f̃a,p s.t. a ∈ A, p ∈ Pa}
f Given routing belonging to the uncertainty set U
Kv Cost of instantiating a VNF of type v
krv Amount of resource r required to instantiate a VNF of type v
R Number of computing resources
sa Source, i.e. ingress point, of attack a
t Target common to all on-going attacks
V Number of available VNF types
x Given placement of the filtering VNFs in the network
φv Filtering capacity of a VNF of type v

Table 1: Notation for the input parameters used in the various mathematical models
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Problem RVNFD
xvn Number of VNFs of type v placed at node n

Problem TP
da,pn Amount of filtering capacity placed at node n allocated to stopping

the malicious flow relative to attack a and routed on path p
Problem DMP (UR)
xvn Number of VNFs of type v placed at node n

Problems AP (x), RAP (x, C) and RAP (x, C)
fa,p Amount of flow related to attack a routed on path p
zn zn = 1 if some malicious flow transits through n, to 0 otherwise

Table 2: Notation for the decision variables used in the various mathematical models

U = {f̃ ≥ 0|
∑
p∈Pa

f̃a,p ≤ F a, ∀a ∈ A∑
a∈A

∑
p∈Pa s.t. l∈La,p

f̃a,p ≤ bl, ∀l ∈ L}

Note that the first restriction on f̃ is expressed as an inequality rather385

than as an equality. Namely, in some cases, it may not be possible to route all386

the malicious flow of the attack in the network due to the limited bandwidth387

of the network links. In these cases, expressing the restriction as an equality388

would lead to an empty uncertainty set. For the RO problem, this would389

mean that there is no malicious flow routed in the network, i.e. no malicious390

flow to be stopped by the VNF-based infrastructure, whereas in practice part391

(but not all) of the attack flow will be routed in the network.392

We introduce the integer decision variables xvn which represent the number393

of VNFs of type v placed at node n: see Table 2 for a summary of the decision394

variables used in the various mathematical models investigated in the paper.395

Using the previously introduced notation, the robust virtual network396

function deployment problem, which will be denoted by RVNFD in what397

follows, is formulated as follows:398
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Z∗ = min
∑
v∈V

∑
n∈N

Kvxvn (1)∑
v∈V

krvxvn ≤ Caprn ∀n ∈ N ,∀r ∈ R (2)∑
n∈N (f̃)

∑
v∈V

φvxvn ≥
∑
a∈A

∑
p∈Pa

f̃a,p ∀f̃ ∈ U (3)

xvt = 0 ∀v ∈ V (4)

xvn integer ∀n ∈ N ,∀v ∈ V (5)

The objective (1) is to minimize the total costs of the deployed VNFs.399

Constraints (2) ensure that the VNFs installed at each node n do not con-400

sume more than the available computing capacity for each computing re-401

source. Constraints (3) translate the fact that we seek to avoid any damage402

to the target by stopping all the malicious flow before it reaches it. In Con-403

straints (3), N (f̃) = {n ∈ N \ {t}|
∑

a∈A
∑

p∈Pa(n) f̃
a,p > 0} represents the404

subset of nodes n through which part of the malicious flow transits when405

considering the flow routing f̃ . Constraints (3) impose that, for each pos-406

sible routing f̃ , the total filtering capacity installed on the nodes traversed407

by a strictly positive amount of malicious flow in the routing f̃ , i.e on the408

nodes belonging to N (f̃), is larger than the total malicious flow actually409

routed through the network in f̃ . Constraints (4) forbid any filtering at the410

targeted node. Note that Constraints (3) are robust constraints that should411

hold for any flow routing belonging to the uncertainty set U .412

3.3. Small illustrative example413

Before discussing some theoretical aspects relative to the formulation and414

complexity of Problem RVNFD, we provide a small illustrative example to415

facilitate the understanding of the proposed models and methods.416

Let us consider a small network G including |N | = 5 nodes and |L| =417

5 links, each one with a bandwidth of bl = 15Mbsp. The malicious flow418

corresponding to the on-going DDoS attack enters the network at a gateway419

located at node 1 and targets a critical customer node located at node 5:420

we thus have A = 1, s1 = 1 and t = 5. We consider R = 1 computing421

resource corresponding to the number of CPUs available at each node: we422

have Cap1n = 4 CPUs available at node n ∈ {1, 2} and Cap1n = 2 CPUs423
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Figure 2: Small illustrative example: two possible routings for the malicious flow

5 Instantiated VNF

Figure 3: Small illustrative example: robust VNF placement

available at node n ∈ {3, 4}. There is a single type of filtering VNF, i.e.424

V = 1. Each instantiated VNF has a filtering capacity of φ1 = 5Mbps and425

requires k1,1 = 2 CPUs.426

Figure 2 displays two possible routings of the malicious flow. This one427

may use |P1| = 2 paths from node 1 to reach its target: path p = 1 corre-428

sponds to 1 → 2 → 5 and path p = 2 to 1 → 3 → 4 → 5. The routing429

displayed on the left correspond to f̃left = (f̃ 1,1
left, f̃

1,2
left) = (15, 5), the routing430

displayed on the right to f̃right = (f̃ 1,1
right, f̃

1,2
right) = (5, 15). f̃left and f̃right are431

two elements (in fact two extreme points) of the uncertainty set U .432

By solving Problem RVNFD for this small instance, we obtain the VNF433

placement shown in Figure 3. It consists in placing two VNFs at nodes 1434

and 2 (i.e. x11 = x12 = 2) and one VNF at nodes 3 and 4 (i.e. x13 = x14 = 1.)435

Finally, Figure 4 presents how the malicious flow may be filtered by the436

instantiated VNFs in case it is routed according to f̃left (see the network on437

the left) or according to f̃right (see the network on the right). Note how, in438

both cases, all the malicious flow is filtered and stopped before it reaches the439

target located at node 5.440
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Figure 4: Small illustrative example: malicious flow filtering for two possible routings

3.4. Discussion on the aggregated attack filtering constraints441

Constraints (3) can be seen as aggregated attack filtering constraints en-442

suring that the total filtering capacity installed on the set of nodes traversed443

by f̃ is larger than the total malicious flow routed through the network. As444

such, they do not guarantee that the filtering capacity installed on each po-445

tential path p ∈ Pa of each attack a is enough to stop all the flow related to446

attack a routed on this path, i.e. that the filtering capacity installed on each447

path p ∈ Pa is larger than f̃a,p. However, we show in what follows that, for448

any feasible solution x of Problem RVNFD and any flow f belonging to U ,449

we can find at least one allocation of the filtering capacity installed at each450

node n to the flows going through n such that all the malicious traffic can be451

filtered. This can be done by solving the following transportation problem452

denoted by TP.453

Let da,pn be the decision variable representing the amount of filtering ca-454

pacity installed at node n dedicated to stopping the malicious flow routed455

on path p ∈ Pa, a ∈ A.456

Z∗TP = min
∑
n∈N

∑
a∈A

∑
p∈Pa(n)

da,pn (6)

∑
a∈A

∑
p∈Pa(n)

da,pn ≤
∑
v∈V

φvxvn ∀n ∈ N \ {t} (7)

∑
n∈Na,p\{t}

da,pn ≥ f
a,p ∀a ∈ A,∀p ∈ Pa (8)

da,pn ≥ 0 ∀n ∈ N ,∀a ∈ A,∀p ∈ Pa(n) (9)

The objective (6) seeks to minimize the total amount of filtering capacity457

used to stop the malicious flow. Constraints (7) ensure that, at each node458
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n, the total amount of filtering capacity allocated to stop the flow routed on459

each path p ∈ Pa of each attack a going through node n is not larger that the460

amount of filtering capacity available at node n. Constraints (8) guarantee461

that, for each attack a and each path p ∈ Pa used to route the attack in f ,462

the total amount of filtering capacity dedicated to p on the nodes belonging463

to it is large enough to stop all the malicious flow routed on p before it reaches464

t.465

Proposition 1. If x is a feasible solution of Problem RVNFD and f a flow466

belonging to the uncertainty U , there exists at least one feasible solution for467

Problem TP, i.e. one allocation of the installed filtering capacity to the paths468

used by the attacks such that the total filtering capacity allocated to each path469

p of each attack a is larger than f
a,p

.470

Proof. The proof is done by contradiction.471

Let assume that Problem TP is unfeasible. It means that there exists472

a subset of attacks A′ ⊂ A and a subset of paths P ′a ⊂ Pa for each at-473

tack a ∈ A′ such that
∑

n∈N ′
∑

v∈V φ
vxvn <

∑
a∈A′

∑
p∈P ′a f

a,p
where N ′ =474

∪a∈A′,p∈P ′aN a,p. In other words, it exists a subset of paths P ′a, a ∈ A′, such475

that the total filtering capacity installed on the nodes belonging to N ′ is476

insufficient to stop the flow going through these nodes.477

Let us consider the routing f ′ defined by: f ′a,p = f
a,p

if a ∈ A′ and478

p ∈ P ′a and f ′a,p = 0 otherwise. We have N (f ′) = N ′. As f ′ belongs to479

the uncertainty set U and x is a feasible solution of Problem RVNFD, the480

constraint
∑

n∈N (f ′)

∑
v∈V φ

vxvn ≥
∑

a∈A′
∑

p∈P ′a f ′a,p should hold. This is in481

contradiction with the strict inequality written above.482

483

In other words, solving Problem TP provides a VNF placement ensuring484

that all the malicious flow of the attack will be stopped provided we use an485

allocation of the filtering capacity to the paths actually used by the attack486

which complies with Constraints (7)-(9). Lemma 1 guarantees that such an487

allocation exists. However, solving Problem RVNFD does not guarantee that488

any allocation of the installed filtering capacity to the paths actually used489

by the attack will enable the ISP to block all the malicious flow.490

3.5. Complexity analysis491

Proposition 2. Problem RVNFD is NP-hard, even if the uncertainty set U492

contains a finite and discrete set of potential routings.493
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Proof. The proof is done by reduction from the minimum set covering prob-494

lem.495

Consider an instance I ′ of the minimum set covering problem. I ′ includes496

N potential location sites (indexed by n = 1, ...N) for the facilities and D497

demand points (indexed by δ1, ..., δD). For each demand point δd, d = 1, ..., D,498

we define the subset of potential location sites, N (δd) ⊂ {1, ..., N}, which499

may cover it. The objective of the minimum set covering problem is to cover500

all demand points while minimizing the total number of opened facilities.501

This instance of the minimum set covering problem can be transformed502

into an instance I of Problem RVNFD as follows. The graph G = (N ,L) has503

N + 1 nodes and N links. The nodes indexed by n = 1...N correspond to504

nodes where VNFs may be instantiated by the ISP and the node indexed by505

N+1 corresponds to the target of the attack: we thus haveN = {1, ..., N+1}.506

There is a link l ∈ L between each node indexed by n = 1...N and the node507

indexed by N + 1. Each link has a bandwidth equal to bl = 1. The DDoS508

attack enters the network at A = N ingress points corresponding to the509

nodes indexed by n = 1...N (i.e. sa = a for a = 1...N) and targets node510

N + 1 (i.e. t = N + 1). We set F a = 1
A

for each attack a.511

Each attack a may thus use a single path to reach the target: for each a in512

A, |Pa| = 1 and the path indexed by (a, 1) corresponds to a→ t. A routing513

in the network is thus a vector fd = (f 1,1
d , ..., fa,1

d , ..., fA,1
d ) describing the flow514

of malicious traffic on the single path of each attack. For each demand point515

δd, d = 1...D, of the minimum set covering problem, we add a routing fd in516

the discrete uncertainty set UD with fa,p
d = 1

A
if node a belongs to N (δd) and517

fa,p
d = 0 otherwise.518

We consider a single computing resource (R = 1) with Cap1n = 1 for each519

node n in {1, ..., N}. There is a single type of VNF indexed by v = 1 with a520

cost equal to K1 = 1, a filtering capacity φ1 equal to 1 and a consumption of521

the computing resource k1,1 equal to 1. The total amount of malicious flow522

in any routing fd ∈ UD,
∑

a∈A F
a, is less than or equal to 1. Consequently,523

placing a VNF on any node belonging to N (fd) suffices to ensure that the524

aggregated filtering constraints (3) will be satisfied for routing fd.525

Moreover, as the sets N (δd) and N (fd) coincide for each d, a demand526

point δd will be covered in instance I ′ as long as a VNF is instantiated on527

a node belonging to N (fd) in instance I. As a consequence, determining,528

for instance I, the minimum cost VNF placement enabling to stop all the529

malicious flow, whatever its routing fd ∈ UD, provides the minimum set of530

potential location sites covering all demand points in instance I ′. Solving531
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instance I ′ of Problem RVNFD thus provides a solution to instance I of the532

minimum set covering problem.533

As the minimum set covering problem is known to be NP-hard (see e.g.534

Korte and Vygen (2012)), the results follows.535

536

Figure 5 illustrates this reduction on a small instance I ′ of the minimum537

set cover problem with N = 3 potential location sites (represented as dashed538

nodes indexed from 1 to 3) and D = 4 demand points represented by the539

nodes denoted by δ1 to δ4. We have N (δ1) = {1, 2}, N (δ2) = {1, 2, 3},540

N (δ3) = {2} and N (δ4) = {3}. The corresponding graph is displayed at the541

top of Figure 5.542

This instance of the minimum set covering problem can be transformed543

into an instance I of Problem RVNFD as follows. The corresponding graph544

G = (N ,L) has N + 1 = 4 nodes and N = 3 links: see the bottom part545

of Figure 5. The DDoS attack enters the network at A = 3 ingress points546

corresponding to the nodes indexed by n = 1...3 (i.e. s1 = 1, s2 = 2 and547

s3 = 3) and targets node t = 4. We set F a = 1
A

= 0.33 for each attack548

a. A routing fd = (f 1,1
d , f 2,1

d , f 3,1
d ) describes the amount of malicious flow549

routed on the single path a → 4 that may be used by each attack a to550

reach the target. For each demand point δd, d = 1...D, of the minimum551

set covering problem, we add a routing fd in the discrete uncertainty set552

UD such that fa,p
d = 1

A
if node a belongs to N (δd) and fa,p

d = 0 otherwise.553

This gives f1 = (0.33, 0.33, 0), f2 = (0.33, 0.33, 0.33), f3 = (0, 0.33, 0) and554

f4 = (0, 0, 0.33). We thus have N (δd) = N (fd) for each d = 1...D. We set555

R = 1, Cap1n = 1 for n = 1..3, V = 1, K1 = 1, φ1 = 1 and k1,1 = 1 as556

described in the proof of Proposition 2.557

The optimal solution of instance I ′ consists in placing a VNF at nodes 2558

and 3 as this suffices to ensure that the aggregated filtering constraints (3)559

will be respected for all routings in the discrete uncertainty set UD. This560

gives an optimal solution of instance I which consists in opening a facility at561

the potential sites 2 and 3.562

4. Solution approach563

As explained e.g. by Gorissen et al. (2015), Problem RVNFD may seem564

intractable as such as the number of constraints (3) is infinite. Two main565

ways have been proposed in the literature to handle this difficulty.566
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Figure 5: Reduction of an instance of the minimum set covering problem (top) into an
instance of Problem RVNFD (bottom)
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The first one consists in applying reformulation techniques which result567

in the formulation of a deterministic problem with a finite number of con-568

straints: see e.g. Bertsimas and Sim (2004). In our case, the use of these569

reformulation techniques is not possible. Namely, the worst case reformation570

of Constraints (3) would lead to the following expression:571

min
f̃∈U

∑
n∈N

I
(∑

a∈A

∑
p∈Pa(n)

f̃a,p > 0
)∑

v∈V

φvxvn −
∑
a∈A

∑
p∈Pa

f̃a,p > 0 (10)

where I
(∑

a∈A
∑

p∈Pa(n) f̃
a,p > 0

)
is an indicator function that is equal to572

one if
∑

a∈A
∑

p∈Pa(n) f̃
a,p > 0 and zero otherwise. The resulting inner mini-573

mization problem cannot be formulated as a linear program (but rather as a574

mixed-integer linear program) due to the presence of this indicator function.575

It is thus not possible to use the duality theory to reformulate it and obtain576

a computationally tractable robust counterpart as is commonly done in this577

type of reformulation approach.578

The second possible way of solving a RO problem such as Problem RVNFD579

consists in applying an adversarial approach. Such approaches are based on580

the decomposition of the initial problem into a master problem and a sub-581

problem. The master problem, called the decision maker problem in this582

context, can be seen as a restricted version of the original RO problem in583

which only a finite number of extreme points UR ⊂ U of the uncertainty584

set (instead of the whole uncertainty set U) are used to express the robust585

constraints. This problem is a deterministic optimization problem with a586

finite number of constraints and is thus computationally tractable. The sub-587

problem is called the adversarial problem. Given the solution provided by588

the decision maker problem, the adversarial problem seeks to find an extreme589

point of U for which this solution is infeasible. If no such extreme point can590

be found, the current solution of the decision maker problem is optimal for591

the initial RO problem. If such an extreme point is found, we add it to the592

restricted set UR and reiterate the process. The finite convergence of this593

algorithm is ensured by the fact that the uncertainty set U has a finite num-594

ber of extreme points. Adversarial approaches have been successfully used595

to solve RO problems arising in a variety of applications: see among others596

Bienstock and Özbay (2008), Attila et al. (2017), van Hulst et al. (2017) and597

Agra et al. (2018).598
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4.1. Adversarial approach599

The proposed adversarial approach thus iteratively solves the decision600

maker problem and the adversarial sub-problem. At each iteration, the deci-601

sion maker problem is solved using the current restricted uncertainty set UR602

and provides a placement of the VNFs x which is optimal for this restricted603

uncertainty set. x being given, the adversarial problem is solved to find the604

worst-case routing of the malicious flow for the VNF placement described by605

x, i.e. to find an extreme point of U wich maximises the infeasibility of x if it606

exists. In case such an extreme point is found, we update the restricted un-607

certainty set UR by adding the newly found routing f and go on to the next608

iteration. Otherwise, x is feasible for all extreme points of U , the current609

VNF placement x is optimal and the algorithm stops.610

4.1.1. Decision maker sub-problem611

The decision maker problem, denoted by DMP (UR), can be formulated612

as follows:613

Z∗DMP (UR) = min
∑
v∈V

∑
n∈N

Kvxvn (11)∑
v∈V

krvxvn ≤ Caprn ∀n ∈ N , ∀r ∈ R (12)∑
n∈N (f̃)

∑
v∈V

φvxvn ≥
∑
a∈A

∑
p∈Pa

f̃a,p ∀f̃ ∈ UR (13)

xvt = 0 ∀v ∈ V (14)

xvn integer ∀n ∈ N , ∀v ∈ V (15)

Problem DMP (UR) thus displays the same structure as the initial RO614

problem but the number of Constraints (13) is now finite. Moreover, as will615

be shown by the numerical experiments provided in Section 5, in practice,616

the cardinality of UR, and as a consequence the number of Constraints (13)617

involved in the formulation, remain rather limited when implementing the618

adversarial approach. Problem DMP (UR) can thus be directly solved by619

a mixed-integer linear programming solver with a reasonable computational620

effort.621
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4.1.2. Adversarial sub-problem622

Let us now focus on the adversarial sub-problem. In order to formulate623

it, we introduce the following decision variables:624

- fa,p: amount of malicious flow of attack a routed on path p ∈ Pa,625

- zn ∈ {0, 1}: zn = 1 if there is a positive amount of malicious flow transiting626

through node n, 0 otherwise.627

Given the current VNF placement x, the maximum amount of malicious628

flow which can reach its target can be found by solving the following mixed-629

integer linear program, denoted by AP (x).630

Z∗AP (x) =max
∑
a∈A

∑
p∈Pa

fa,p −
∑

n∈N\{t}

(
∑
v∈V

φvxvn)zn (16)

∑
p∈Pa

fa,p ≤ F a ∀a ∈ A (17)∑
a∈A

∑
p∈Pa s.t. l∈La,p

fa,p ≤ bl ∀l ∈ L (18)∑
a∈A

∑
p∈Pa(n)

fa
p ≤ (

∑
a∈A

F a)zn ∀n ∈ N \ {t} (19)

fa,p ≥ 0 ∀p ∈ Pa (20)

zn ∈ {0, 1} ∀n ∈ N (21)

The linear variables f thus describe the worst-case routing of the mali-631

cious flow for the VNF placement x. Constraints (17) ensure that, for each632

attack, the total amount of flow of attack a routed through the network is633

smaller that the total amount of flow of the attack F a. Note that due to the634

limited bandwidth of the network links, it might not be possible to route all635

the flow of attack a through the network: Constraints (17) are thus formu-636

lated as inequalities rather than as equalities. Constraints (18) guarantee637

that the flow routed on each link does not exceed its bandwidth. In other638

words, Constraints (17), (18) and (20) make sure that the solution of639

problem AP (x) provides a flow f belonging to the uncertainty set U .640

The objective function (16) seeks to maximize the amount of malicious641

flow which will reach its target, i.e. which will not be filtered by a VNF642

between its source and its target. Note that the filtering capacity
∑

v∈V φ
vxvn643

placed at node n can stop part of the malicious flow only if there is a644

positive flow routed through node n, i.e. only if
∑

a∈A
∑

p∈Pa(n) f
a
p > 0.645
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∑
a∈A

∑
p∈Pa fa

p −
∑

n∈N\{t}(
∑

v∈V φ
vxvn)zn thus computes the total amount646

of unfiltered flow as the difference between the total flow routed through the647

network,
∑

a∈A
∑

p∈Pa fa
p , and the total amount of ’active’ filtering capacity,648 ∑

n∈N\{t}(
∑

v∈V φ
vxvn)zn. This ’active’ filtering capacity is given by the sum649

of the filtering capacities installed at the nodes n through which a positive650

amount of malicious flow transits. Constraints (19) ensure that, for each651

node n, variable zn is equal to 1 as soon as there is some positive amount of652

malicious flow which is routed through node n.653

Note that, similar to what is done in Constraint (3) of the initial RO654

problem, in the objective function (16) of the adversarial sub-problem, the655

total amount of unfiltered flow is computed in an aggregate manner, i.e. by656

looking at the total routed flow and at the total active filtering capacity on657

all nodes of the network. In a feasible solution of problem AP (x), this might658

lead to an underestimation of the malicious flow which will reach its target.659

Namely, we may have a subset of nodes N ′ such that the total flow routed660

through the nodes n ∈ N ′,
∑

a∈A
∑

p∈∪n∈N′Pa(n) f
a
p , is smaller than the total661

filtering capacity placed on these nodes,
∑

n∈N ′(
∑

v∈V φ
vxvn). In this case,662

the actual filtering taking place at some of the nodes n ∈ N ′ is not equal to663 ∑
v∈V φ

vxvn but to a smaller value. More precisely, the total filtering taking664

place on the subset of nodes N ′ is equal to
∑

a∈A
∑

p∈∪n∈N′Pa(n) f
a
p rather665

than to
∑

n∈N ′(
∑

v∈V φ
vxvn). This means that the objective function (16)666

overestimates the actual filtering taking place on the part of the network667

corresponding to N ′ and thus underestimates the amount of unfiltered ma-668

licious flow. However, we show in what follows that such a situation cannot669

occur in an optimal solution of AP (x).670

Proposition 3. Any optimal solution of AP (x) provides the worst-case rout-671

ing for the given VNF placement x.672

Proof. Let us consider a solution of AP (x) in which there is at least one673

subset of nodes N ′ such that the total flow routed through the nodes n ∈ N ′,674 ∑
a∈A

∑
p∈∪n∈N′Pa(n) f

a
p , is smaller than

∑
n∈N ′(

∑
v∈V φ

vxvn). We show that675

this solution cannot be optimal for AP (x).676

It is namely possible to build another feasible solution of AP (x) by setting677

to 0 the flow on all the paths belonging to ∪n∈N ′Pa(n) and by setting zn to678

0 for all nodes n ∈ N ′. The objective value of the obtained solution will be679

increased by
∑

n∈N ′(
∑

v∈V φ
vxvn) −

∑
a∈A

∑
p∈∪n∈N′Pa(v) f

a
p > 0, i.e. will be680

strictly larger than the one of the initial solution. This latter can therefore681
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not be optimal.682

4.2. Resolution of the adversarial sub-problem683

The adversarial sub-problem AP (x) is a mixed-integer linear program684

which could theoretically be solved directly by a mathematical programming685

solver. However, the number of paths that could possibly be used to route686

the malicious flow of a given attack a between its source sa and the target t,687

and as a consequence the number of flow variables fa,p, grows exponentially688

fast with the network size.689

This difficulty may be overcome by using a column generation technique.690

In a column generation algorithm, we start solving problem AP (x) with a691

restricted number of flow variables (i.e. of columns), which provides an initial692

feasible solution. This initial solution is then improved by iteratively adding693

new flow variables (i.e. by generating new columns) to the formulation of694

the problem until no more improving flow variables can be found.695

Let RAP (x, C) be a restricted version of problem AP (x) in which only696

a subset of the flow variables fa,p are explicitly considered. Here, C denotes697

a collection of subsets of paths. More precisely, we have C = {Pa
R, a ∈ A}698

where Pa
R ⊂ Pa is the restricted subset of potential paths available for attack699

a taken into account in the problem formulation.700

RAP (x, C) can be formulated as follows:701

Z∗RAP (x, C) =max
∑
a∈A

∑
p∈Pa

R

fa
p −

∑
n∈N\{t}

(
∑
v∈V

φvxvn)zn (22)

∑
p∈Pa

R

fa
p ≤ F a ∀a ∈ A (23)

∑
a∈A

∑
p∈Pa

R s.t. l∈La,p
fa
p ≤ bl ∀l ∈ L (24)

∑
a∈A

∑
p∈Pa

R(n)

fa
p ≤ (

∑
a∈A

F a)zn ∀n ∈ N \ {t} (25)

fa
p ≥ 0 ∀p ∈ Pa

R (26)

zn ∈ {0, 1} ∀n ∈ N (27)

Note that RAP (x, C) displays the same structure as AP (x) but the ob-702

jective and constraints are expressed using a limited number of flow variables703
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fa,p, namely those corresponding to paths belonging to the restricted subset704

Pa
R, for each attack a ∈ A.705

The column generation process, i.e. the process of adding new flow706

variables fa,p, relies on the linear relaxation, denoted by RAP (x, C), of707

RAP (x, C).708

More precisely, at each iteration of the column generation algorithm, in709

order to identify improving flow variables to be added to the formulation, we710

first solve RAP (x, C) with the current collection of path subsets C. We then711

solve the pricing problem for each attack a ∈ A. It consists in finding a flow712

variable fa,p with a positive reduced cost, i.e. a flow variable whose inclusion713

in the linear programming formulation might lead to an improvement of the714

objective function, or determining that no such variable exists. If at least715

one improving flow variable is found, we carry on with a new iteration of the716

algorithm. If no such variable is found, it means that the current solution717

of RAP (x, C) is an optimal solution of the AP (x), the linear relaxation of718

AP (x), and we stop.719

Let αa be the dual value of Constraint (23) relative to attack a, βl the720

dual value of Constraint (24) relative to link l and γn the dual value of721

Constraint (25) relative to node n in the optimal solution of RAP (x, C).722

The reduced cost of variable fa,p is given by rca,p = 1 − (αa +
∑

l∈La,p βl +723 ∑
n∈Na,p γn).724

Given an attack a ∈ A, solving the pricing problem, i.e. identifying725

the variable fa,p with the largest reduced cost, thus amounts to finding the726

path p ∈ Pa with the smallest value of
∑

l∈La,p βl +
∑

n∈Na,p γn. This can727

be done by looking for the shortest path between sa and t in the weighted728

digraph (N ,L, w) in which each link l has a weight of wl = βl +γdest(l) where729

dest(l) is the destination node of link l. This shortest path problem can be730

solved in polynomial time by Dijskra’s algorithm. If a variable fa,p with a731

positive reduced cost is found, the corresponding path is added to Pa
R and732

the collection C is updated accordingly.733

Algorithm 1 provides a formal description of the column generation algo-734

rithm used to solve AP (x).735

Note that Algorithm 1 solves to optimality the linear relaxation of AP (x).736

In order to solve the original adversarial sub-problem AP (x), which is a737

mixed-integer linear program, we consider two alternative ways of using it.738

The first one corresponds to an exact Branch & Price algorithm. Basi-739

cally, a Branch & Price algorithm is a Branch & Bound method in which, at740

each node of the search tree, new variables may be added to the linear pro-741
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input : A VNF placement x and a collection of path subsets C
output: An updated collection of path subsets C
begin

repeat
stop ← 0
solve RAP (x, C) with a linear programming solver
get the dual values (α, β, γ) of Constraints (23)-(25)
for l=1 to L do

wl ← βl + γdest(l)
end
for a=1 to A do

find the shortest path ps between sa and t in (N ,L, w)
rcaps ← 1− (αa +

∑
l∈Laps

βl +
∑

n∈Na
ps
γn)

if rcaps > 0 then
stop ← 1
Pa

R ← Pa
R ∪ {ps}

end

end

until stop = 0 ;

end

Algorithm 1: Column generation algorithm solving AP (x) to opti-
mality

gramming relaxation. More precisely, the Branch & Price algorithm starts742

solving the restricted version of the adversarial sub-problem RAP (x, C) with743

an initial collection of path subsets C, using a branch-and-bound method.744

At each node of the Branch & Bound search tree, we use Algorithm 1 to745

solve AP (x) and add new columns in the formulation (i.e. new paths in C).746

When no new column can be generated by Algorithm 1, i.e. when the linear747

relaxation of the restricted master problem has been solved to optimality at748

the current Branch & Bound node, we either get an integer feasible solution749

of the initial problem AP (x) or we branch on a fractional variable zn to750

create new nodes in the search tree and continue with the Branch & Bound751

algorithm. The algorithm stops when there are no more open nodes in the752

search tree.753

The second one is a heuristic algorithm. In this case, we first solve AP (x)754

using Algorithm 1. When Algorithm 1 stops, we get the updated collection755
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of path subsets C, reintroduce the integrality constraints on variables zn, n ∈756

N , and solve the restricted problem RAP (x, C) as a mixed-integer linear757

program. Note that this algorithm may provide a sub-optimal solution of758

AP (x) as the collection of path subsets C obtained by solving AP (x) may759

not be the same as the one needed to obtain an optimal solution of AP (x).760

4.3. Summary of the proposed solution approach761

The overall proposed solution approach is described by Algorithm 2 for762

the case where the adversarial sub-problem is solved exactly and Algorithm 3763

for the case where the adversarial sub-problem is solved heuristically.764

In Algorithms 2 and 3, the restricted uncertainty set UR is initialized as765

an empty set whereas the restricted path subset Pa
R to be used for each attack766

a ∈ A initially contains a single path, namely the shortest path in terms of767

hops between the source of attack a and the target. Moreover, note that the768

subsets Pa
R, a ∈ A, are not reinitialized at each iteration of the adversarial769

algorithm. This means that the improving paths found while solving AP (xi),770

where xi denotes the solution of DMP (UR) found at iteration i of the ad-771

versarial algorithm, are part of the initial collection of path subsets provided772

to Algorithm 1 when it will be used to solve AP (xj), where xj denotes the773

solution of DMP (UR) found at any iteration j > i of the adversarial algo-774

rithm. Our preliminary numerical experiments namely showed that this was775

more computationally efficient than reinitializing the subsets Pa
R, a ∈ A, at776

each iteration of the adversarial algorithm.777

5. Numerical results778

5.1. Instances779

We randomly generated a set of medium-size instances of the problem780

following the indications provided by public data released by different cloud781

and telecom providers.782

Network. We used 4 internet network topologies. The first three ones783

correspond to three internet networks described in the Internet Topology Zoo784

library, IntelliFiber (N = 73, L = 96), Colt Telecom (N = 153, L = 179)785

and Cogentco (N = 197, L = 245): see Knight et al. (2011) and Knight et al.786

(2013) for more detail. We also used a topology corresponding to the former787

network of the French company Free (V = 120, E = 167): see Ferre (2010).788

Recall that the problem under study arises within the general context of789

5G network slicing. As a consequence, we do not consider in our problem790
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begin
UR ← ∅
build the weighted digraph G = (N ,L, w) with wl = 1,∀l ∈ L
for a=1 to A do

find the shortest path ps between sa and t in G
Pa

R ← {ps}
end
C ← {Pa

R, a ∈ A}
repeat

solve DMP (UR) and record the current VNF placement x
solve RAP (x, C) with a Branch & Price algorithm using
Algorithm 1 to generate new columns at each node of the
search tree and record the updated collection of path subsets
C
if Z∗RAP (x, C) > 0 then

record the optimal flow routing f
UR ← UR ∪ {f}

end

until Z∗RAP (x, C) ≤ 0;

end

Algorithm 2: Solution algorithm with an exact solution of the ad-
versarial sub-problem

the whole physical network installed by the ISP but only the portion of this791

network, i.e. the virtual network or slice, lent by the ISP to the customer792

currently undergoing a DDoS attack. Thus, the bandwidth bl of a link be-793

tween two nodes does not correspond to the total bandwidth of the physical794

link installed by the ISP between these nodes but only to the portion of795

this bandwidth allocated to the virtual network dedicated to the customer796

under attack. This is why we randomly generated values of bl correspond-797

ing to rather small transmission capacities. More precisely, the bandwidth798

bl of each link was randomly generated using a discrete distribution with a799

support equal to {4.8, 12, 20, 40, 100} Mbps.800

Computing resources. R = 2 types of computing resources were taken801

into account at each node: the number of CPUs and the memory. We con-802

sidered three types of nodes: low computing capacity with Cap = (8, 32),803

medium computing capacity with Cap = (40, 160) and high computing ca-804
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begin
UR ← ∅
build the weighted digraph G = (N ,L, w) with wl = 1,∀l ∈ L
for a=1 to A do

find the shortest path ps between sa and t in G
Pa

R ← {ps}
end
C ← {Pa

R, a ∈ A}
repeat

solve DMP (UR) and record the current VNF placement x
solve RAP (x, C) using Algorithm 1 and record the updated
collection of path subsets C

solve RAP (x, C) as a mixed-integer linear program
if Z∗RAP (x, C) > 0 then

record the optimal flow routing f
UR ← UR ∪ {f}

end

until Z∗RAP (x, C) ≤ 0;

end

Algorithm 3: Solution algorithm with a heuristic solution of the
adversarial sub-problem

pacity with Cap = (400, 1600). In each considered network topology, we805

assign each node to a type according to its degree. Thus, nodes with a806

degree less than 2 were assigned a low computing capacity, nodes with a de-807

gree between 3 and 5 were assigned a medium computing capacity and nodes808

with a degree larger than 6 were assigned a high computing capacity. Table 3809

provides a summary of the percentage of nodes assigned to each type (low,810

medium and high computing capacity) for each considered network topology.811

VNFs. V = 1 type of VNFs was considered requiring γ1,1 = 4 CPUs812

and γ1,2 = 16 units of memory, providing a filtering capacity of φn = 16813

Mbps, with a unit cost of K1 = 130.814

Attacks. The number of sources was set to A ∈ {5, 10, 15, 20, 30, 40}. In815

each instance, the sources and target of the attack were randomly selected.816

The intensity F a of each attack (in Mbps) was randomly generated following817

the normal distribution N (50, 25).818

For each considered network topology and value of A, we randomly gen-819
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Topology N L %Low %Medium %High
IntelliFiber 73 96 62% 37% 1%
Colt Telecom 153 179 72% 24% 4%
Cogentco 197 245 59% 39% 2%
Free 120 167 66% 28% 6%

Table 3: Percentage of nodes assigned to a low, medium or high computing capacity for
each network topology

erated 5 instances, leading to a total of 140 instances.820

5.2. Results821

Each generated instance was solved using Algorithms 2 and 3. In both822

cases, the decision maker problem was solved as a mixed-integer linear pro-823

gram using the CPLEX 12.8.9 solver with the default settings. The adver-824

sarial sub-problem was solved using either the Branch & Price algorithm825

embedded in the SCIP 7.0.0 solver (Algorithm 2) or the simplex and Branch826

& Cut algorithms embedded in the CPLEX 12.8.9 solver (Algorithm 3). All827

tests were carried out on an PC running under Windows 10 equipped with828

an Intel Core i5-8350U processor (4 cores, frequency of 1.9GHz) and a 16829

GB RAM with a 2400MHz speed. Note that the CPLEX 12.8.9 solver, in830

its default settings, is set to use a number of threads equal to the number of831

available cores whereas the SCIP 7.0.0 solver is by default single-threaded.832

For each algorithm, each network topology and each considered value of833

A, we report in Table 4 the average value over the 5 corresponding instances834

of:835

• Cost: the cost of the optimal VNF placement,836

• #IT : the average number of iterations of the algorithm,837

• #P : the total number of source-target paths added to C by column838

generation over the course of the algorithm,839

• Time: the total computation time in seconds of the algorithm.840

Algorithm 3 is an approximate solution algorithm which may provide a841

solution which is not feasible for the initial robust optimization problem,842

i.e. for Problem RVNFD. Indeed, as the adversarial sub-problem is solved843
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heuristically, the amount of malicious flow that will reach the target may844

be underestimated in some cases so that the filtering constraints (13) added845

to the decision maker problem may not be tight enough. In order to es-846

timate the impact of this heuristic resolution, we carry out the following847

post-optimization analysis. We consider the optimal VNF placement xapp848

obtained with Algorithm 3. We solve problem AP (xapp) exactly using the849

Branch & Price algorithm. We then record AD the actual damage, i.e. the850

amount of malicious flow which will actually reach its target, if we use the851

VNF placement xapp. We then compute the percentage of total unfiltered852

flow %UF as %UF = 100AD∑
a∈A Fa . We report in Table 4, for each set of 5853

instances, #Inf the number of instances for which the solution obtained854

with Algorithm 3 was infeasible and Max%UF the maximum percentage of855

unfiltered flow.856

Results from Table 4 first show that Algorithm 2 is able to provide optimal857

solutions to the RO problem with a reasonable computational effort. Namely,858

the average computation time, over the 140 considered instances, is 22s.859

This performance is mainly explained by the fact that both the number860

of iterations #IT of the algorithm (and as a consequence the number of861

Constraints (13) of DMP (UR)) and the number of source-target paths #P862

generated by column generation (and as a consequence the number of flow863

variables in AP (x)) stay limited.864

However, the computation time of Algorithm 2 exceeds 60s for 10 out865

of the 140 considered instances. This might be a problem as the decisions866

on the VNFs deployment should be taken as quickly as possible after the867

attack detection and identification. The approximate Algorithm 3 might868

prove useful in such cases. It is namely able to provide optimal solutions869

of the RO problem for 137 out of the 140 considered instances, and this870

with an average computation time below 3s and a maximum computation871

time of 25s. Moreover, for the 3 instances for which the solution provided872

by Algorithm 3 did not comply with the original robust constraints (3), the873

amount of malicious flow which could reach the target stays below 3%, which874

seems acceptable.875

6. Conclusion876

This paper described a new robust optimization approach for the defense877

against Distributed Denial of Service (DDoS) attacks in the context of 5G878
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network slicing. More precisely, we considered the problem of optimally de-879

ploying virtual network functions in order to stop an ongoing DDOS attack.880

We assumed that the target, sources and volume of the attack are identified881

but that the exact routing of the illegitimate traffic on the network is not882

known. To take into account these uncertainties, we proposed a robust opti-883

mization (RO) model and developed an adversarial approach to solve it. This884

iterative approach is based on the decomposition of the initial problem into885

a master problem and a sub-problem. The master problem is a restricted886

version of the original RO problem in which only a finite number of possible887

malicious flow routings are used to express the robust constraints. Consid-888

ering the current placement of VNF provided by the solution of the master889

problem, the adversarial sub-problem seeks to find a malicious flow routing890

that maximizes the amount of attack reaching its target. We tested the ef-891

ficiency of our algorithms on medium-sized randomly generated instances.892

The results of computation experiments show that our approach is able of893

providing optimal solutions in short computation times.894

Current work suggests several possible directions for future research. In895

terms of problem solving, it might be possible to further improve the decom-896

position approach by carrying out a polyhedral study of the problem and897

developing new valid inequalities to help solving it more quickly. As for the898

problem modeling, a first research direction could consist in studying a disag-899

gregated formulation of the robust filter constraints. This could ensure that900

the instantiated VNFs will be able to stop all the malicious flows regardless901

of the allocation of filtering capacities. It would also be interesting to study902

how the legitimate traffic, which will consume network resources and whose903

routing is also unknown, could be taken into account in the model.904
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France) and Andrea Lodi (Ecole Polytechnique Montréal, Canada) for their910
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Attila, Ö.N., Agra, A., Akartunalı, K., Arulselvan, A., 2017. A decomposi-927

tion algorithm for robust lot sizing problem with remanufacturing option,928

in: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha,929

A.M.A., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A. (Eds.),930

Computational Science and Its Applications – ICCSA 2017, Springer In-931

ternational Publishing. pp. 684–695.932

AWS, 2020. AWS Shield - Threat landscape report Q1 2020. https://aws-933

shield-tlr.s3.amazonaws.com/2020-Q1 AWS Shield TLR.pdf. Accessed934

2020-12-19.935

Baffier, J.F., Poirion, P.L., Suppakitpaisarn, V., 2018. Bilevel model for936

adaptive network flow problem. Electronic Notes in Discrete Mathematics937

64, 105–114. 8th International Network Optimization Conference - INOC938

2017.939

Berard, D., 2018. DDoS breach costs rise to over $2M for enterprises940

finds kaspersky lab report. https://usa.kaspersky.com/about/press-941

releases/2018 ddos-breach-costs-rise-to-over-2m-for-enterprises-finds-942

kaspersky-lab-report. Accessed 2020-12-19.943

36



Bertsimas, D., Sim, M., 2004. The price of robustness. Operations Research944

52, 35–53.945
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