2,2'-Ethylenebis(1,3-dithiane) as polydentate m2-, m4and m5-assembling ligand for the construction of sulphur-rich $\mathrm{Cu}(\mathrm{I}), \mathrm{Hg}(\mathrm{II})$ and heterometallic $\mathrm{Cu}(\mathrm{I}) / \mathrm{Hg}(\mathrm{II})$ coordination polymers featuring uncommon network architectures

Lydie Viau, Michael Knorr, Lena Knauer, Lukas Brieger, Carsten Strohman

- To cite this version:

Lydie Viau, Michael Knorr, Lena Knauer, Lukas Brieger, Carsten Strohman. 2,2'-Ethylenebis(1,3dithiane) as polydentate $\mathrm{m} 2-\mathrm{m} 4$ - and m5-assembling ligand for the construction of sulphur-rich $\mathrm{Cu}(\mathrm{I})$, $\mathrm{Hg}(\mathrm{II})$ and heterometallic $\mathrm{Cu}(\mathrm{I}) / \mathrm{Hg}(\mathrm{II})$ coordination polymers featuring uncommon network architectures. Dalton Transactions, 2022, 51 (19), pp.7581-7606. 10.1039/D2DT00800A . hal-03647065

HAL Id: hal-03647065

https://hal.science/hal-03647065

Submitted on 8 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2,2'-Ethylenebis(1,3-dithiane) as polydentate $\mu_{2^{-}}, \mu_{4^{-}}$and $\mu_{5^{-}}$ assembling ligand for the construction of sulphur-rich $\mathrm{Cu}(\mathrm{I})$, $\mathrm{Hg}(\mathrm{II})$ and heterometallic $\mathrm{Cu}(\mathrm{I}) / \mathrm{Hg}(\mathrm{II})$ coordination polymers featuring uncommon network architectures

Lydie Viau, ${ }^{*}[\mathrm{a}]$ Michael Knorr, ${ }^{*}[\mathrm{a}]$ Lena Knauer, ${ }^{[\mathrm{b}]}$ Lukas Brieger, ${ }^{[\mathrm{b}]}$ and Carsten Strohmann ${ }^{*}[\mathrm{~b}]$
a) Institut UTINAM UMR CNRS 6213, Université Bourgogne Franche-Comté, F-25030 Besançon, France. Corresponding authors: E-mail: michael.knorr@univ-fcomte.fr; lydie.viau@univ-fcomte.fr b) Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, D-44227 Dortmund, Germany. E-mail: carsten.strohmann@tu-dortmund.de

Abstract

With the aim to elaborate novel and inexpensive sulphur-rich materials featuring unusual network architectures, the coordination chemistry of the tetradentate thiaheterocycle 1,2-di(1,3-dithian-2-yl)ethane $\mathbf{L} 1$ ligand toward CuX and HgX_{2} salts was investigated. When $\mathbf{L} \mathbf{1}$ is reacted with CuI in a 1:1 ratio, a two-dimensional $\mathrm{CP}\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P 1})$ is formed, in which two out of four S atoms of $\mathbf{L} 1$ remain non-coordinated. A particularity is the occurrence of three different type of $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right]$ rhomboids as SBU (Secondary Building Unit), which differ in the $\mathrm{Cu} \cdots \mathrm{Cu}$ distances. Upon treatment of $\mathbf{L} 1$ with CuI in a 1:2 ratio, $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L} \mathbf{1}\right)\right]_{n}$ (CP2) is obtained, in which each S atom of $\mathbf{L} 1$ coordinates to one copper centre forming a 2 D layer. Contrary to CP1, CP2 contains a single type of $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right] \mathrm{SBU}$, but with a particular short $\mathrm{Cu} \cdots \mathrm{Cu}$ bond length of 2.6132(9) \AA. Raising the ligand-to-CuI ratio to 1:4 affords the 2D material $\left[\left\{\mathrm{Cu}\left(\mu_{4}-\mathrm{I}\right)\left(\mu_{2}-\mathrm{I}\right) \mathrm{Cu}\right\}_{2}\left(\mu_{4}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P 3})$, in which $\left[\mathrm{Cu}\left(\mu_{4}-\mathrm{I}\right)\left(\mu_{2}-\mathrm{I}\right) \mathrm{Cu}\right]_{n}$ ribbons are interconnected through μ_{4}-bridging $\mathbf{L} 1$ ligands. Upon reaction of $\mathbf{L} \mathbf{1}$ with CuBr in a 1:2 ratio, a 2D CP $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{2}\left(\mu_{4}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P 4})$ is formed, in which the Cu atoms are bridged by a single $\mu_{2}-\mathrm{Br}$ ligand giving rise to $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right) \mathrm{Cu}\right]_{\mathrm{n}}$ ribbons. Employing a 1:3 ratio, a 1 D ribbon $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\right.\right.\right.$ $\left.\mathrm{Br})\}_{3}(\mathrm{MeCN})\left(\mu_{4}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P 5})$ is generated, which five out of the six different copper atoms present a tetrahedral geometry, while the sixth one is only three-coordinated. CP5 also presents two different $\mathbf{L} \mathbf{1}$ ligands that differ by the coordination mode of the sulphur atoms (S acting as 2 or as 4 electron-donor). With CuCl , a 2D network $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L} \mathbf{1}\right)\right]_{n}(\mathbf{C P 6})$ is generated.

$\mathbf{L 1}$ coordinates also on HgX_{2} salts to yield CPs whose architecture depends on the ligand-tometal ratio. The meander-shaped 1D CP $\left[\left(\mathrm{HgI}_{2}\right)\left(\mu_{2}-\mathbf{L 1}\right)\right]_{n}(\mathbf{C P} 7)$ and the linear 1D ribbons of $\mathbf{C P 8}$ and CP11 $\left[\left(\mathrm{HgX}_{2}\right)\left(\mu_{2}-\mathbf{L} 1\right)\right]_{n}(\mathrm{X}=\mathrm{Br}, \mathrm{Cl})$ result from treatment with $\mathbf{L} 1$ in a 1:1 ratio. In the case of HgBr_{2}, using a $2: 1$ metal-to-ligand ratio, 1 D polymeric $\left[\left\{\operatorname{BrHg}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{HgBr}\right\}\left(\mu_{2}-\mathbf{L} 1\right)\right]$ (CP9) is produced. HgI_{2} and HgBr_{2} have also been reacted with 2-methyl-1,3-dithiane $\mathbf{L 2}$ yielding the molecular complexes $\left[\left\{\operatorname{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{HgI}\right\}\left(\kappa^{1}-\mathbf{L 2}\right)_{2}\right](\mathrm{D} 1)$ and $\left[\mathrm{HgBr}_{2}\left(\kappa^{1}-\mathbf{L 2}\right)_{2}\right](\mathbf{M 1})$. A heterometallic 1D material $\left[\left\{\operatorname{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \operatorname{HgI}\left(\mu_{2}-\mathrm{I}\right)_{2}\left\{\mathrm{Cu}(\mathrm{MeCN})_{2}\right\}_{2}\left(\mu_{2}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P 1 2})\right.$ results from treatment of CP1 with HgI_{2}.

Introduction

Coordination polymers (CPs), especially those formed by assembly of inexpensive copper(I) salts with organosulphur ligands such as thioether R-S-R and thiolates R-S present interesting structural and photophysical properties. ${ }^{1}$ Complexes, CPs and even MOFs with different dimensionality (0D to 3D) and secondary building units (SBUs) could be constructed depending on the nature of the ligands, the metal-to-ligand ratio and the experimental conditions (solvent, temperature etc..). Beside their interest in crystal engineering, these materials have also found applications in sensing, optoelectronics ${ }^{2}$ and catalysis. ${ }^{3}$ They have also been used as precursors to prepare materials i.e. $\gamma-\mathrm{CuI}$ nanocrystals ${ }^{4}$ or as a precursor for CuI -based thermoelectric composites, exhibiting a moderate to high Seebeck coefficient (543-1308 $\mu \mathrm{V} \mathrm{K}{ }^{-1}$) at elevated temperature. ${ }^{5}$ Stretchable, luminescent and self-healing hybrid films were obtained using polymers bearing thioethers functions allowing further coordination to copper iodide. ${ }^{6}$

Several research groups, including ours, have been interested in the formation of various CPs by reacting copper(I) salts with different mono or dithioether ligands. Though the results of the self-assembly process are difficult to predict, Schlachter et al have recently reviewed on networks built upon chalcogenoether and chalcogenone assemblies, providing some very interesting trends based on the architecture of the assembling ligands and the nature of the halide. ${ }^{7}$ In particular, for sensing applications, the design of porous 3D CP materials plays a crucial role. One may expect that the construction of highdimensional CPs and MOFs is favoured using tridentate or tetradentate ligands. Different polydentate phosphine- and amine-based ligands have been used for the assembly of $\mathrm{Cu}(\mathrm{I})$ complexes and CPs, however examples of $\mathrm{Cu}(\mathrm{I})$-based CPs obtained using polydentate organosulfur ligands are much scarce. One of the first example is the coordination of the tridentate thioether ligand $\mathrm{MeSi}\left(\mathrm{CH}_{2} \mathrm{SMe}\right)_{3}$ with CuX salts that led to the formation of 1D CPs. ${ }^{8}$ In 2001, Brooks et al. reported the coordination of [12]aneS4 (1,4,7,10tetrathiacyclododecane) or [16]aneS4(1,5,9,13-tetrathiacyclohexadecane) with CuBr or CuI leading to the formation of either discrete molecular entities or CPs with 2D or 3D structures containing rhomboid dimers as SBU when the metal to ligand ratio is increased. ${ }^{9}$ 3D CuI-based CPs containing the calix[4]-bis-thiacrown were reported by Lee et al. in 2008^{10} and 2D CPs were obtained by assembly of CuI with p-tert-
butylthiacalix[4]-arene. ${ }^{11}$ The cyclophane derivative 2,11,20,29-tetrathiadodecahydro[3.3.3.3] cyclophane reacts with CuI in MeCN in a $1: 1$ molar ratio to generate a 3D CP built upon rhomboid dimers as SBUs. ${ }^{12}$ In a collaborative work, our group has reported on the network assembly of octadentate thioether-decorated octasilsesquioxanes with CuI salts under mild conditions yielding 3D POSS-based CPs incorporating dinuclear or close-cubanes SBUs. ${ }^{13}$ The tetradentate thioether functionalized silanes $\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{SR}\right)_{4}(\mathrm{R}=\mathrm{Me}$ or Ph$)$ was found to react with HgBr_{2} yielding 1D CPs, where HgBr_{2} moieties are connected by doubly bidentate chelating thioether ligands. ${ }^{14}$

Five-, six- and seven-membered dithiaheterocycles have been used in the past by several groups as ligand in coordination chemistry. ${ }^{15,16}$ In the case of 1,3-dithianes, it has been demonstrated that the parent compound 1,3-dithiacyclohexane may be coordinated as mono- and bidentate ligand to a series of early and late transition metal complexes. Several CPs have been built up by treatment of 1,3 -dithiane with $\mathrm{AgNO}_{3}, \mathrm{AgBF}_{4}$ and AgPF_{6}, respectively. ${ }^{17}$ Keller and Knaust reacted $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{BF}_{4}$ with that dithiaheterocycle and obtained four coordination networks depending on metal-to-ligand ratio and solvent conditions used. ${ }^{18}$ In the context of our research work on the coordination chemistry of dithiolanes and dithianes with $\mathrm{Cu}(\mathrm{I})$ salts, we have recently investigated in an exhaustive manner the possibility to construct coordination polymers using both parent 1,3-dithiane and a series of derivates substituted at the 2 -position such as such as 2 -isobutyl-1,3dithiane, 2-Me3Si-1,3-dithiane, 2-phenyl-1,3-dithiane, 2-ferrocenyl-1,3-dithiane and 2-methyl-1,3-dithiane. ${ }^{19-23}$ Notably with the latter ligand, we demonstrated that CPs with uncommon architectures and dimensionalities ranging from discrete 0 D to 3 D can be obtained, in function of the nature of $\mathrm{CuX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CN})$ and the metal-to-ligand ratio. We highlighted furthermore that with CuI an original 3D network $\left[\left\{\mathrm{Cu}_{8}\left(\mu_{3}-\mathrm{I}\right)_{8}\right\}\left(\mu_{2}-2-\right.\right.$ methyl-1,3-dithiane $\left.)_{4}\right]_{n}$ can be constructed, which incorporates strongly luminescent and unprecedented octanuclear $\mathrm{Cu}_{8} \mathrm{I}_{8} \mathrm{~S}_{8}$ clusters as SBUs (Secondary Building Units). ${ }^{21}$ The original idea of the present work was to try to obtain 3D CPs showing interesting structural and photophysical properties. For this, we raised the number of available S-donor sites from two to four using 2,2'-ethylenebis(1,3-dithiane) $\mathbf{L} 1$ ligand. We herein present our results on the coordination of $\mathbf{L 1}$ vis-à-vis CuX salts under varying reaction conditions. This cyclic bisdithioacetal, which has hitherto never been explored as ligand system, was
chosen due to its structural resemblance with 2-methyl-1,3-dithiane $\mathbf{L 2}$, since it combines formally two $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~S}_{2} \mathrm{CH}_{2}$ moieties (Chart 1). This investigation on the coordination chemistry of $\mathbf{L} \mathbf{1}$ has been extended towards other soft metal salts, namely HgBr_{2} and HgI_{2} and we present the crystal structures of all novel CPs including that of L1. For comparison, HgI_{2} and HgBr_{2} were also treated with $\mathbf{L} 2$ and the resulting materials were characterized by means of single-crystal X-ray diffraction studies. Exploiting the presence of numerous uncoordinated S-donor sites in some of our sulphur-rich CuX materials presented in this work, we also succeed to use one example as precursor for a heterometallic $\mathrm{HgI}_{2} \mathrm{CuI}$ array and present here the crystal structure of the of the unique 1 D ribbon of $\left[\left\{\operatorname{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \operatorname{HgI}\left(\mu_{2^{-}}\right.\right.\right.$ $\left.\mathrm{I})_{2}\left\{\mathrm{Cu}(\mathrm{MeCN})_{2}\right\}_{2}\left(\mu_{2}-\mathrm{L} 1\right)\right]_{n}(\mathbf{C P 1 2})$.

Chart 1. Overview of the investigated dithiane ligands and CPs including those previously published

Results and discussion

Structural Characterization of $\boldsymbol{L} \mathbf{1}$

The ethylene-bridged compound 2,2'-ethylenebis(1,3-dithiane) $\mathbf{L} \mathbf{1}$ was first synthesized in 1968 by Seebach et al. via treatment of 2,5-dimethoxytetrahydrofuran with 1,3propanethiol. ${ }^{24} \mathbf{L} \mathbf{1}$ is also an interesting ligand in organic chemistry and is used as starting material for the preparation of cis-jasmone or the preparation of γ-diketones, 2,5bis(trialkylsilyl)furans and 2,6-bis(trialkylsilyl)-4H-pyrans. ${ }^{25}$ Except for the parent compound 1,3-dithiane and 2-phenyl-1,3-dithiane, most other 1,3-dithiane are liquids at ambient temperature. Therefore, the structural database is quite limited. Since $\mathbf{L} 1$ is also a solid, we recrystallized a commercial sample from hot EtOH and obtained a crystalline product suitable for an X-ray analysis. The molecular structure of this sulphur-rich compound is shown in Fig. 1, the crystallographic refinement data are gathered in Table S1. The six-membered dithiane-heterocycle of $\mathbf{L} 1$ adopts the chair conformation encountered also in 2-phenyl-1,3-dithiane. ${ }^{26}$ Like the phenyl group in the latter thiaheterocycle, the C 2 atom of methylene group linking the two six-membered rings occupies the equatorial position. The mid-point of the C2-C2\# bond constitutes the symmetry centre of the two identical moieties. The bond lengths and angles in $\mathbf{L} \mathbf{1}$ are normal for this kind of molecules and deserve no further comments.

Figure 1. Molecular structure of L1. Selected bond lengths (\AA) and angles (${ }^{\circ}$): C1-S1 1.8134(6), C1-S2 1.8139(7), C3-S1 1.819(7), C5-S2 1.8111(7), C1-C2 1.5275(9), C2-C2\# 1.5301(13); S2-C1-S1 112.72(3), C3-S1-C1 98.75(3), C5-S2-C1 99.00(3), S1-C1-C2 108.15(4), S2-C1-C2 110.05(4), C1-C2-C2\# 113.12(7), C3-C4-C5 112.86(6).

Reaction of $\mathbf{L 1}$ with CuI

The reaction of CuI with 1 equivalent of $\mathbf{L 1}$ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}$ mixture affords $\mathbf{C P 1}$ in 89% yield (Scheme 1). X-ray suitable single crystals crystallizing in the monoclinic space group $\mathrm{P}_{2} / \mathrm{n}$ were obtained from dissolution of solid samples in hot MeCN . In CP1, two sulphur atoms of $\mathbf{L 1}$ remain non-coordinated (Figures 2 and S1). Noteworthy, CP1 also contains three different types of rhomboids featuring different metric parameters. Within the $\mathrm{Cu} 2-\mathrm{Cu} 2 \mathrm{SBU}$, the $\mathrm{Cu}-\mathrm{Cu}$ distance is the shortest $(d \mathrm{Cu} 2 \cdots \mathrm{Cu} 22.8399(5) \AA$) and reaches $2.8820(4) \AA$ within the $\mathrm{Cu} 1-\mathrm{Cu} 4 \mathrm{SBU}$ and $2.9436(5) \AA$ in the $\mathrm{Cu} 3-\mathrm{Cu} 3 \mathrm{SBU}$. Examples of CPs incorporating different types of $\mathrm{Cu}\left(\mu_{2}-\mathrm{X}\right)_{2} \mathrm{Cu}$ rhomboids within the same array are quite rare. We have already encountered such observations in two cases: a 1D $\mathrm{CP}\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}\right\}\left(\mu-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{2}\right]_{n}$, showing two different type of $\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}$ SBUs with $\Delta(\mathrm{Cu}-\mathrm{Cu} 0.0356 \AA)$ and in a 1 D ribbon $\left[\left\{\mathrm{Cu}\left(\mu_{2^{-}}\right.\right.\right.$ $\left.\mathrm{I})_{2} \mathrm{Cu}\right\}(\mathrm{MeCN})_{2}\left(\mu_{2}\right.$-2-phenyl-1,3-dithiane $\left.)\right]_{n}$ that possesses also two different type of $\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}$ SBUs with $\Delta(\mathrm{Cu}-\mathrm{Cu} 0.0489 \AA) .{ }^{22,27}$ The difference in the $\mathrm{Cu}-\mathrm{Cu}$ distance in CP1 is clearly much more significant with $\Delta(\mathrm{Cu}-\mathrm{Cu} 0.1037 \AA)$. To our knowledge, the occurrence of three different rhomboids in a network is unprecedented.

When the reaction was performed in a 1:2 ratio, the resulting colourless product was crystallographically characterized as a 2 D CP of composition $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L} \mathbf{1}\right)\right]_{n}$ (CP2) (Scheme 1). Likewise, as in CP1, the $\mathbf{C P 2}$ network is also built upon $\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}$ rhomboids but unlike in CP1, all sulphur atoms are now coordinated in a μ $1 \kappa S: 2 \kappa S: 3 \kappa S: 4 \kappa S$ coordination mode (Figures 3 and S2). Both copper(I) ions of the central dimeric $\mathrm{Cu}_{2} \mathrm{I}_{2}$ motif possess the same fourfold coordination to two iodine and two sulphur atoms, respectively, resulting in a distorted tetrahedral geometry. A more striking observation is the short $\mathrm{Cu}-\mathrm{Cu}$ distance of 2.6131(9) \AA. This distance is much shorter than what was already observed for other 2D CPs containing the $\mathrm{S}_{2} \mathrm{Cu}_{2} \mathrm{I}_{2} \mathrm{~S}_{2}$ motif obtained by the reaction of CuI with the parent 2-methyldithiane $\mathbf{L 2}(d \mathrm{Cu} \cdots \mathrm{Cu} 2.7664 \AA),{ }^{21}$ the bis(benzylthio)butane $(d \mathrm{Cu} \cdots \mathrm{Cu} 2.796 \AA)^{28}$ and 1,4-bis(phenylthio)but-2-ene ligands $(d \mathrm{Cu} \cdots \mathrm{Cu} 2.6485 \AA){ }^{29}$ This distance is even shorter than that found in [$\left.\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{THT})_{4}\right]$ $(\mathrm{THT}=$ tetrahydrothiophene $)\left(d \mathrm{Cu} \cdots \mathrm{Cu} 2.675(2) \AA \AA^{16}\right.$.

Increasing further the CuI amount to 4 equivalents led to the formation of the 2D CP3 containing $\mathrm{Cu} 1\left(\mu_{2}-\mathrm{I}_{2}\right)\left(\mu_{4}-\mathrm{I}_{1}\right) \mathrm{Cu} 2$ SBUs (Figures 4 and S 3). Each $\mathrm{Cu} 1-\mathrm{Cu} 2$ segment is
bridged by a μ_{2}-type I 2 atom with $\mathrm{Cu} 1-\mathrm{I} 2$ and $\mathrm{Cu} 2-\mathrm{I} 2$ distances of $2.5953(10) \AA$ and $2.5791(10) \AA$, respectively. Three $\mathrm{Cu} 1-\mathrm{Cu} 2$ segments are capped by a μ_{4} type I1 ligand with two coordination to the same $\mathrm{Cu} 1-\mathrm{Cu} 2$ segments and two to Cu 1 and Cu 2 atoms coming from two different segments. Quite similar motifs were encountered in the 1D ribbon obtained by reaction of 2-trimethylsilyl-1,3-dithiane with CuI. ${ }^{22}$ However, the connectivity between copper atoms differs in CP3 with much shorter $\mathrm{Cu} 1-\mathrm{Cu} 2$ distance: 2.8584(13) \AA vs $3.3975 \AA$ but much longer $\mathrm{Cu} 2-\mathrm{Cu} 2$ and $\mathrm{Cu} 1-\mathrm{Cu} 1$ separations $3.361 \AA v s$ $2.8203 \AA$ for $\mathrm{Cu} 1-\mathrm{Cu} 1$ and $3.578 \AA$ vs $3.362 \AA$ for $\mathrm{Cu} 2-\mathrm{Cu} 2$. The experimental and simulated PXRD spectra of CP1, CP2 and CP3 are depicted in the Supporting Information as Fig. S11, S12 and S13, respectively..

L1

2D CP1 $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathrm{L} 1\right)_{2}\right]_{n}$

2D CP2 $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathrm{L} 1\right)\right]_{n}$

2D CP3 $\left[\left\{\mathrm{Cu}\left(\mu_{4^{-}}\right)\left(\mu_{2^{-}}\right) \mathrm{Cu}\right\}_{2}\left(\mu_{4}-\mathrm{L} 1\right)\right]_{n}$

Scheme 1. Synthesis of CP1, CP2 and CP3 employing various CuI-to-L1 ratios.

Figure 2. View down the a axis on a segment of the 2D layer of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L} 1\right)_{2}\right]_{n}(\mathbf{C P} 1)$. Selected bond lengths (Å) at $100 \mathrm{~K}: \mathrm{Cu} 1-\mathrm{I} 12.6701(3), \mathrm{Cu} 1-\mathrm{I} 4^{4} 2.6761(3), \mathrm{Cu} 2-\mathrm{I} 2$ 2.6518(3), Cu2²﹎I2 2.6832(3), Cu3-I3 2.6440(3), $\mathrm{Cu}^{3}-\mathrm{I} 3$ 2.6936(3), Cu4-I4 2.6518(3), Cu4 ${ }^{1}-\mathrm{I} 12.6761(3), \mathrm{Cu} 1-\mathrm{Cu} 4{ }^{1}$ 2.8820(4), Cu2$\mathrm{Cu}{ }^{2} 2.8399(5), \mathrm{Cu}-\mathrm{Cu} 3^{3} 2.9436(5), \mathrm{Cu} 1-\mathrm{S} 2$ 2.2880(5), Cu1-S3 2.2924(5), Cu2-S6 2.2829(5), Cu2-S7 2.2788(5), Cu3-S10 2.3139(5), Cu3-S11 2.3183(5), Cu4-S14 2.3157(5), Cu4-S15 2.3123(5), Symmetry transformations used to generate equivalent atoms: ${ }^{1}+x,+y, 1+z ;{ }^{2} 1-x, 2-y, 1-z ;{ }^{3} 1-x, 1-y, 1-z ;{ }^{4}+x,+y,-1+z$.

Figure 3. View down the b axis on a segment of the 2D layer of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L 1}\right)\right]_{n}(\mathbf{C P 2})$. Selected bond lengths (\AA) at $100 \mathrm{~K}: \mathrm{Cu}-\mathrm{S} 12.3025(9), \mathrm{Cu}-\mathrm{S} 22.3045(9), \mathrm{Cu}-\mathrm{Cu} \# 2.6131(9), \mathrm{Cu}-\mathrm{I} 2.6414(5), \mathrm{Cu}-\mathrm{I} \#$ $2.6690(5)$. Symmetry transformations used to generate equivalent atoms: ${ }^{1}-x, 2-y, 1-y ;{ }^{2}-1+x,+y,+z ;{ }^{3} 1-x, 2-$ $y, 2-z$.

Figure 4. Top View down the c direction on a segment of the 2D layer of $\left[\left\{\mathrm{Cu}\left(\mu_{4}-\mathrm{I}\right)\left(\mu_{2}-\mathrm{I}\right) \mathrm{Cu}\right\}_{2}\left(\mu_{4}-\mathbf{L} \mathbf{1}\right)\right]_{n}$ (CP3). Selected bond lengths (Å) at $100 \mathrm{~K}: ~ \mathrm{I} 1-\mathrm{Cu} 1^{1} 2.7914(10), \mathrm{I} 1-\mathrm{Cu} 12.6056(9), \mathrm{I} 1-\mathrm{Cu} 22.6043(11), \mathrm{I} 1-$ $\mathrm{Cu} 2^{2} 2.8749(12), \mathrm{I} 2-\mathrm{Cu} 1^{3} 2.5953(10), \mathrm{I} 2-\mathrm{Cu} 22.5791(10), \mathrm{Cu} 1-\mathrm{Cu} 2^{4} 2.8584(13), \mathrm{Cu} 1-\mathrm{S} 12.2713(17), \mathrm{Cu} 2-$ S2 2.2624(17) Symmetry transformations used to generate equivalent atoms: ${ }^{1}-x, 1-y, 1-z ;{ }^{2} 1-x, 1-y, 1-z$; ${ }^{3} 1+x,+y,+z ;{ }^{4}-1+x,+y,+z ;{ }^{5} 1-x,-y, 1-z$. Bottom view of the $\mathrm{Cu} 1-\mathrm{Cu} 2$ segments spanned by $\mu_{2}-\mathrm{I}$ and $\mu_{4}-\mathrm{I}$ atoms.

Reaction of $\mathbf{L 1}$ with CuBr

We recently reported the coordination of the 2-methyl-1,3-dithiane $\mathbf{L} 2$ ligand toward $\mathbf{C u B r}$ in a $1: 1$ ratio. The crystal structure evidences the formation of the $1 \mathrm{D} C P\left[\left\{\mathrm{Cu}\left(\mu_{2}-\right.\right.\right.$ $\left.\left.\mathrm{Br})_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathrm{L} 2\right)_{2}\right]_{n}$ in which the SBUs are constituted of dinuclear $\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}$ rhomboids spanned by both sulphur atoms of $\mathbf{L} 2$ with nonbonding $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts of 3.176 Å. ${ }^{21,22}$

To compare the coordination properties of $\mathbf{L} 1 \mathbf{v s} . \mathbf{L 2}$, we reacted CuBr with $\mathbf{L} \mathbf{1}$ employing a 2:1 metal-to-ligand ratio (Scheme 2). After addition of the ligand to a MeCN solution of CuBr , instantaneous precipitation of a large amount of a colourless product was noticed. However, since we failed to obtain X-ray-suitable single-crystals from hot MeCN, a part of the sample was dissolved in refluxing propionitrile in which crystals suitable for X-Ray analyses could be obtained. The resulting 2D material of composition $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{2}\left(\mu_{4}-\right.\right.$ $\mathbf{L} 1)]_{n} \mathbf{C P 4}$ crystallized in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$ (Figures 5 and S4). The homogeneity of the sample was ascertained by recording the PXRD pattern (Fig. S12). Surprisingly, despite the similar reaction conditions for the preparation of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\right.\right.\right.$ $\left.\left.\mathrm{I})_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathrm{L} 1\right)\right]_{n}(\mathbf{C P} 2)$, the 2 D architecture of $\mathbf{C P 4}$ shown in Figure 5 is strikingly different. The Cu atoms are not associated in the form of rhomboidal $\mathrm{Cu}(\mu-\mathrm{Br})_{2} \mathrm{Cu}$ dimers but as isolated Cu atoms interconnected via a single $\mu-2$ halide ligand with a $\mathrm{Cu} 1-\mathrm{Cu} 2$ distance of $3.681 \AA$, far above the sum of the van der Waals radii of two Cu atoms. The same structural arrangement was obtained in our group upon reaction of 1,3-dithiolane with CuBr in a $1: 1$ ratio leading to a 1 D CP crystallizing, as $\mathbf{C P 4}$, in the $\mathrm{P}_{1} / \mathrm{c}$ space group. ${ }^{20}$ In CP4, the 2D-dimensionality is ensured through the use of the tetrathioether $\mathbf{L} 1$ ligand. To our knowledge, these two CPs constitute the only examples encountered in thioetherassembled $\mathrm{Cu}(\mathrm{I})$ CPs.
Since both $\mathbf{L} 1$ and the products of the reaction between $\mathbf{L} \mathbf{1}$ and CuBr are poorly soluble in acetonitrile, we tried to grow crystals by slow diffusion of an acetonitrile solution of CuBr into a dichloromethane solution of $\mathbf{L} \mathbf{1}$ in a 1:1 ratio. Well-shaped colourless crystals were obtained under these conditions. Surprisingly, a single-crystal diffraction analysis revealed the formation of a 1D material CP5 having a composition $(\mathrm{CuBr})_{3}(\mathbf{L 1})(\mathrm{MeCN})$], i.e. a 3:1 metal-to-ligand ratio (Fig 6). We therefore repeated the reaction of $\mathbf{L} \mathbf{1}$ with CuBr in acetonitrile using a $1: 3$ ratio (Scheme 2). Figure 7 shows the excellent concordance
between the experimental PXRD pattern recorded at room temperature for the obtained white precipitate and the calculated one issued from single crystal X-ray data recorded at 100 K . This confirms (i) the formation of the same product (CP5) and (ii) the absence of any phase transition in this 193 K range. Furthermore, elemental analyses also confirmed this 3:1 CuBr-to-L1 composition. The IR spectrum of CP5 also presents two weak peaks at 2309 and $2265 \mathrm{~cm}^{-1}$ characteristic of the $v(\mathrm{C} \equiv \mathrm{N})$ vibration of coordinated acetonitrile (Figure S20). ${ }^{30}$ As for $\mathbf{C P 4}$, the Cu atoms are interconnected through μ_{2}-bromide ligands, but CP5 contains (i) six crystallographically independent CuBr units, (ii) two differently ligating $\mathbf{L} 1$ and (iii) two metal-bound acetonitrile molecules. Five of the copper(I) centers present $\mathrm{CuBr} 2 \mathrm{~S} 2(\mathrm{Cu} 3, \mathrm{Cu} 5$ and Cu 6$)$ or $\mathrm{CuBr} 2 \mathrm{NS}(\mathrm{Cu} 1$ and Cu 4$)$ classical tetrahedral coordination geometry. Surprisingly, Cu 2 adopts a triangular CuBr 2 S geometry with a sum of bond angles around $\mathrm{Cu} 2(\mathrm{I})$ center ($\angle \mathrm{Br} 3-\mathrm{Cu} 2-\mathrm{S} 3, \angle \mathrm{~S} 3-\mathrm{Cu} 2-\mathrm{Br} 2$ and $\angle \mathrm{Br} 3-\mathrm{Cu} 2-\mathrm{Br} 2$) equal to 359.97° and $\mathrm{Cu} 2-\mathrm{S} 3, \mathrm{Cu} 2-\mathrm{Br} 3$ and $\mathrm{Cu} 2-\mathrm{Br} 2$ bond lengths equal to $2.2173(11)$, 2.3649 (7) and 2.3694(7) \AA, respectively. The very loose $\mathrm{Cu} 2 \cdots \mathrm{~S} 6$ contact of $3.045 \AA$ cannot be considered as bonding.

Whereas a triangular geometry around a $\mathrm{Cu}(\mathrm{I})$ center has been encountered with thiolate and thion ligands, ${ }^{31,32}$ to our knowledge, just only one other thioether example has been reported in the literature. In 2001, Schröder et al reacted CuCl with the tetradendate ligand 1,4,7,10-tetrathiacyclododecane ([12]aneS4) yielding the mononuclear complex $[\mathrm{CuCl}([12] \mathrm{aneS} 4)]$, for which the copper(I) centre is disordered over two positions in an approximate $7: 1$ ratio. ${ }^{9}$ In the minor component, the Cu atom adopts a distorted trigonal planar coordination geometry $(\Sigma$ (angles $\left.)=359.5^{\circ}\right)$ with two coordination to sulphur atoms $[\mathrm{Cu}-\mathrm{S} 2.279(8), 2.320(8) \AA$] and one to a chloride ligand $[\mathrm{Cu}-\mathrm{Cl} 2.266(7) \AA]$. Noteworthy in the unprecedented architecture of CP5 is also the dissymmetric μ_{4}-bonding mode of S1 atom with bridges as 4-electron donor both the Cu 1 and Cu 6 atoms [Cu1-S1 2.2730(11), Cu6-S1 2.7692(11) Å]. CP5 extends to a 2D supramolecular layered framework through intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions. (Fig. S5 and Table S8).

Scheme 2. Synthesis of CP4 and CP5.

Figure 5. View down the c axis on a layer of the 2D network of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{2}\left(\mu_{4}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P 4})$. The H atoms are omitted for clarity. Selected bond lengths $[\AA]$ at $100 \mathrm{~K}: \mathrm{Cu} 1-\mathrm{S} 12.2857(7), \mathrm{Cu} 1-\mathrm{S}^{2} 2.3220(7)$, $\mathrm{Cu} 2-$ S2 2.2743(7), Cu2-S4 ${ }^{3}$ 2.3046(7), Cu1-Br1 2.4525(5), Cu1-Br2 2.4887(5), Cu2 ${ }^{1}-\mathrm{Br} 12.5229(5), \mathrm{Cu} 2-\mathrm{Br} 2$ 2.5022(5); Symmetry transformations used to generate equivalent atoms: ${ }^{1} 1+x, 1 / 2-y, 1 / 2+z ;{ }^{2} 1-x, 1-y, 1-z ;{ }^{3} 1-$ $x,-1 / 2+y, 1 / 2-z ;{ }^{4} 1-x,-1 / 2+y, 1 / 2-z$.

Figure. 6. View of a segment of the 1D ribbon of $\left.\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{3}(\mathrm{MeCN})\left(\mu_{4}-\mathbf{L} 1\right)_{0.5}\right)\left(\mu_{5}-\mathbf{L 1}\right)_{0.5}\right]_{n}(\mathbf{C P 5})$ running along the b axis.The H atoms are omitted for clarity. Selected bond lengths $[\AA]$ at $100 \mathrm{~K}: \mathrm{Cu} 1-\mathrm{Br} 1$ 2.5911(7), Br1-Cu6 2.3911(7), Br2-Cu2 2.3694(7), Br2-Cu4 ${ }^{1}$ 2.5665(7), Br3-Cu2 2.3649(7), Br3-Cu3 2.5187(7), Br4-Cu3 2.4179(7), Br4-Cu4 2.4928(7), Br5-Cu1² 2.4852(7), Br5-Cu5 2.4270(6), Br6-Cu5 2.5198(6), Br6-Cu6 2.3610(7), Cu1-S1 2.2730(11), Cu1-N1 1.969(4), Cu2-S3 2.2173(11), Cu3-S4

Figure 7. Comparison of the experimental PXRD pattern of CP5 with the simulated one.

Reaction of $\mathbf{L 1}$ with CuCl

The coordination aptitude of $\mathbf{L} \mathbf{1}$ towards CuCl was also compared to that of $\mathbf{L 2}$. For memory, we have shown that, when reacting $\mathbf{L} 2$ with CuCl in a 1:1 ratio, the 1D CP $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L} 2\right)_{2}\right]_{n}$ was obtained, in which the SBUs are constituted of dinuclear $\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}$ rhomboids. ${ }^{22}$

Fast and almost quantitative precipitation of a colourless product occurred also upon mixing a MeCN solution of $\mathbf{L 1}$ with two equivalents of CuCl (Scheme 3). Since attempts to grow X-ray suitable crystals from hot MeCN failed due to its poor solubility, a sample was dissolved in hot benzyl cyanide.

Scheme 3. Synthesis of CP6.

Now, small needle-shaped single crystals could be grown, crystallizing in the monoclinic space group $C 2 / m$. In line with the elemental analysis, an X-ray diffraction analysis confirmed a composition of two CuCl units per $\mathbf{L} \mathbf{1}$ molecule. The crystal structure of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P 6})$ shown in Figures 8 and S 6 reveals formation of a twodimensional network, in which centrosymmetric $\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}$ SBUs are interconnected through bridging $\mathbf{L} 1$ molecules, in which all $4 S$-donors are involved in the bonding, reminiscent to the architecture of $\left.\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P} 2)$. Like in the latter, all 4 atoms of the $\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{X}\right)_{2} \mathrm{Cu}\right\}$ units lie in the same plane. However, whereas in $\mathbf{C P 2}$ the $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts are unusually short, those of CP6 are now extremely elongated and lie now at the far side (2.6131 (9) vs. $3.147 \AA$). Among the rare examples of 2D networks incorporating $\left\{\mathrm{S}_{2} \mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{CuS}_{2}\right\}$ rhomboids are $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left\{\mu-\mathrm{BzS}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{SBz}\right\}_{2}\right]_{n}$ $\left(d \mathrm{Cu} \cdots \mathrm{Cu} \quad 2.9570(14) \AA\right.$) and $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}_{2} \mathrm{Cu}\right\}\left\{\mu-\mathrm{BzS}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{SBz}\right\}_{2}\right]_{n} \quad(d \mathrm{Cu} \cdots \mathrm{Cu}\right.$ $2.6939(4) \AA$). ${ }^{28}$ The comparison of these three CuCl -based 2 D compounds demonstrates that also in $\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}$ rhomboids an extreme flexibility of the $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts may occur ranging from bonding to clearly non-bonding. Note that as mentioned above, in the reaction of CuCl with 2-methyldithiane $\mathbf{L 2}$, a 1 D ribbon $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L 2}\right)_{2}\right]_{n}$ was generated, featuring somewhat shorter $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts with respect to those of CP6 (3.0517(8) vs. $3.147 \AA$). The $\mathrm{Cu}-\mathrm{S}$ bond length of $\mathbf{C P 6}$ matches with that of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\right.\right.\right.$ $\left.\left.\mathrm{Cl})_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L} 2\right)_{2}\right]_{n}(2.2924(8)$ vs. $2.3060(4) \AA) .{ }^{22}$ The experimental and simulated PXRD patterns of CP6 are depicted in the Supporting Information as Fig. S15.

Figure 8. View down the a axis on a segment of the 2D layer of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L 1}\right)\right]_{n}(\mathbf{C P 6})$. The H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Cu}-\mathrm{S} 2.2924(8), \mathrm{Cu} \cdots \mathrm{Cu} \mathrm{\#}$ 3.147, $\mathrm{Cu}-\mathrm{Cl}$ 2.2961(11), $\mathrm{Cu}-\mathrm{Cl} \# 2.4549(12)$; S-Cu-S\# 109.01(4), $\mathrm{S}-\mathrm{Cu}-\mathrm{Cl}$ 118.74(2), $\mathrm{S}-\mathrm{Cu}-\mathrm{Cl} \#$ 105.28(3), $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl} \#$ 97.110(14), $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu} \mathrm{\#}$ 82.89(4). Symmetry transformations used to generate equivalent atoms: ${ }^{1} 1-x, 2-y, 2-z ;{ }^{2}+x, 2-y,+z ;{ }^{3} 1-x, 1-y, 1-z$.

Reaction of $\mathbf{L 1}$ and $\mathbf{L 2}$ with HgI_{2}

Another soft metal ion having a high affinity to organosulfur ligands is the closed-shell d ${ }^{10}$ $\mathrm{Hg}(\mathrm{II})$ ion. Selected examples of molecular complexes and CPs ligated with dialkylsulfides and acyclic dithioether are $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{3} \cdot \mathrm{HgCl}_{2},{ }^{33} \quad\left[\mathrm{HgCl}_{2}\left(\mathrm{CH}_{3} \mathrm{SPh}\right)\right]_{n}{ }^{34}$ $\left[\left(\mathrm{EtS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SEt}\right) \mathrm{HgBr}(\mu-\mathrm{Br}) \mathrm{Hg}(\mathrm{Br})(\mu-\mathrm{Br})_{2} \mathrm{Hg}(\mathrm{Br})(\mu-\right.$
$\left.\mathrm{Br}) \mathrm{BrHg}\left(\mathrm{EtS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SEt}\right)\right] \cdot 2 \mathrm{HgBr}_{2}{ }^{35}$
$\left[\left\{\mathrm{EtS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SEt}^{2} \mathrm{Hg}_{2} \mathrm{Br}_{4}\right]_{n},{ }^{36}\right.$
$\left[\left\{\mathrm{BzS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SBz}^{2}\right\} \mathrm{Hg}_{2} \mathrm{Br}_{4}\right]_{n},{ }^{37}\left[\left\{\mathrm{BzS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SBz}\right\} \mathrm{HgBr}_{2}\right]_{n},{ }^{38}\left[\left\{\mathrm{PhS}^{(}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SPh}_{3}\right\} \mathrm{Hg}_{2} \mathrm{Br}_{4}\right],{ }^{39}$ and $\mathrm{HgX}_{2} \mathrm{RSCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SR}^{40}$ Our group has, in the past, investigated the coordination of the dithioether 1,4-bis(phenylthio)butane with HgCl_{2} and HgBr_{2} producing the isostructural 2D CPs $\left[\left\{\mathrm{PhS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SPh}\right\} \mathrm{Hg}_{2} \mathrm{X}_{4}\right]_{n}$ and that of $\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{SiPh}_{2}$ leading to the discrete molecular complex $\left[\mathrm{HgBr}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{SiPh}_{2}\right\}\right] .{ }^{41,42}$

We were intrigued whether $\mathbf{L} 1$ could be used as assembling ligand to construct original coordination network as observed with CuX salts. This is a priori not a evident task, since
several papers report on the use of $\mathrm{Hg}(\mathrm{II})$ salts as Lewis acids to cleave cyclic thioacetals such as dithiolanes and dithianes, converting them to aldehydes or ketones. ${ }^{43-45}$ For example, a protocol allowing an efficient and fast deprotection of cyclic thioacetals by $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ even in the solid state has been described. ${ }^{46}$

On the other hand, an IR spectroscopic investigation dating from the sixties indicated formations of tetrahedral adducts $\mathrm{HgX}_{2} \mathrm{~S}_{2}$ through equatorial donation of a sulphur lonepair of 1,3-dithiane. According to this study, the mercury-sulphur bond varies in strength in the order $\mathrm{Cl}>\mathrm{Br}>\mathrm{I} .{ }^{47} \mathrm{An}$ adduct formation between $\mathrm{Hg}(\mathrm{OAc})_{2}$ and 1,3-dithiane in solution was also evidenced by ${ }^{199} \mathrm{Hg}$ NMR spectroscopy. ${ }^{48}$ An ESI-mass spectroscopy investigation indicated formation of a stable associate between HgCl_{2} and 1,1'-bis(1,3-dithiane-2-yl)ferrocene. ${ }^{49}$ Even the possibility to use 1,3-dithiane as assembling ligand for the construction of a CP has been demonstrated in the seventies by the crystallographic characterization of 1D-polymeric 1,3-dithiane-dimercury(I) dinitrate. ${ }^{50,51}$
We first treated $\mathbf{L} \mathbf{1}$ with two equivalents of HgI_{2} in refluxing toluene. However, even after a reaction time of several hours, unreacted red $\alpha-\mathrm{HgI}_{2}$ co-crystalized along with the paleyellow product $\left[\left(\mathrm{HgI}_{2}\right)\left(\mu_{2}-\mathbf{L} 1\right)\right]_{n}(\mathbf{C P} 7)$. To circumvent this co-crystallization, addition of a further equivalent of $\mathbf{L} \mathbf{1}$ was required to complete the reaction, allowing to isolate now pure CP7 in over 85\% yield (Scheme 4).

D1 $\left(\mathrm{Hgl}_{2}\right)(\kappa-\mathrm{L} 2)$

Scheme 4. Synthesis of CP7 and D1.

A crystal structure determination (Fig. 9) of this air-stable material confirmed the 1:1 metal-to-ligand composition. This material forms a meander-like 1D ribbon, in which HgI_{2} units are exclusively ligated through the S1 and S3 atoms of the centrosymmetric L1 molecules. The S 2 and S 4 atoms are not involved in any $\mathrm{Hg}-\mathrm{S}$ bonding. The mean $\mathrm{Hg}-\mathrm{S}$ bond length of 2.6574(8) A matches well with those reported for 1D CP $\left[\operatorname{HgI}_{2}\left\{\mu_{2}-1,4-\right.\right.$ bis(methylsulfanyl)methyl)benzene $\}]_{n}(2.6431$ (13) and $2.6619(13) \AA) .{ }^{40}$ Far longer $\mathrm{Hg}-\mathrm{S}$ bond lengths are found for the dinuclear complex $\quad\left[\left(\operatorname{HgI}_{2}\right)_{2}\left(\mu_{2}-(1,2,4,5-\right.\right.$ tetrakis(cyclohexylsulfanyl)methyl)benzene] (2.749(3) and 2.787(3) Å) and 1D-polymeric $\left[\operatorname{HgI}_{2}(\mu-1,4,8,11 \text {-tetrathiacyclotetradecane })\right]_{n}(2.752$ (3) $\AA) .{ }^{52,}{ }^{53}$ The two $\mathrm{Hg}-\mathrm{I}$ bond lengths are slighly different, their mean distance of $2.7077(2) \AA$ is similar to that of $\left[\operatorname{HgI}_{2}\left(\mu_{2}-1,4-\operatorname{bis}((\text { methylsulfanyl }) \text { methyl }) \text { benzene }\right)\right]_{n}(2.7241(4) \AA)$. For the latter two compounds, the mean $\mathrm{Hg}-\mathrm{I}$ bond lengths are shorter and lie between 2.661(2) and 2.658(1) \AA. The coordination sphere around the mercury atom is somewhat distorted from regular tetrahedral; the bond angles range $102.866-121.843^{\circ}$. The $\mathrm{I} 1-\mathrm{Hg}-\mathrm{I} 2$ angle of 121.843° is more acute than for the other three compounds, which are 124.98(2), 145.87(3), and $136.31(6)^{\circ}$, respectively. The experimental and simulated PXRD patterns of CP7 are depicted in the Supporting Information as Fig. S16.

Figure 9. View of a segment of the 1D chain of $\left[\left(\mathrm{HgI}_{2}\right)\left(\mu_{2}-\mathbf{L 1}\right)\right]_{n}(\mathbf{C P} 7)$. The H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Hg}-\mathrm{S} 12.6712(8), \mathrm{Hg}-\mathrm{S} 32.6436(7), \mathrm{Hg}-\mathrm{I} 12.6950(2)$, Hg-I2 2.7203(2); S1-Hg-S3 110.53(2), S1-Hg-I1 105.027(17), S1-Hg-I2 102.866(17), S3-Hg-I1 110.603(17), $\mathrm{S} 3-\mathrm{Hg}-\mathrm{I} 2$ 105.53(2), $\mathrm{I} 1-\mathrm{Hg}-\mathrm{I} 2$ 121.843(8), Symmetry transformations used to generate equivalent atoms: ${ }^{1} 2-x,-y, 2-z ;{ }^{2} 2-x, 1-y, 1-z$.

A survey of the CSD database (version 5.41 - March 2020 update) reveals that despite an indexation of over 135 entries for HgX_{2} • thioether compounds, most of these examples are dominated by HgCl_{2} and HgBr_{2} adducts. The few examples of HgI_{2} adducts are essentially thiamacrocyclic complexes such as 1D $\left[\operatorname{HgI}_{2}(\mu-1,4,8,11-\right.$ tetrathiacyclotetradecane) $]_{n}$ or the molecular complex $\left[\mathrm{HgI}_{2}\right.$ (2,5-dioxa-8,11-dithia-1,6(1,2)-dibenzenacyclododecaphane-S, $\left.\left.S^{\prime}\right)\right] .{ }^{52,53}$ Among the few acyclic HgI_{2} adducts are the above mentioned $\mathrm{CP} \quad\left[\operatorname{HgI}_{2}\left\{\mu_{2}-1,4 \text {-bis(methylsulfanyl)methyl)benzene) }\right\}\right]_{n}$ and dinuclear $\quad\left[\left(\mathrm{HgI}_{2}\right)_{2}\left(\mu_{2}-\left(1,2,4,5\right.\right.\right.$-tetrakis(cyclohexylsulfanyl)methyl)benzene]. ${ }^{40,} 53$ This paucity of structurally characterized HgI_{2} adducts and the fact that HgI_{2} does not form a 2:1 material with $\mathbf{L} 1$, intrigued us to conduct the analogous reaction with 2-methyl-1,3dithiane $\mathbf{L} 2$. Although sterically less crowed than $\mathbf{L} 1$, we failed to convert entirely HgI_{2} to a thioether complex even in hot toluene, using a 1:1 L2-to-Hg ratio. The co-crystallization of HgI_{2} could only be suppressed by adding a slight excess of $\mathbf{L} \mathbf{2}$ to a toluene suspension of HgI_{2} (Scheme 4). After this modification, the thioether adduct D1 was straightforwardly obtained upon heating in toluene during 2 h . After allowing to reach ambient temperature, a product of composition $\left[\left(\mathrm{HgI}_{2}\right)(\mathbf{L 2})\right]$ crystallized in form of large yellow blocks. Surprisingly, instead of an anticipated polymeric network, an X-ray diffraction study revealed formation of a discreet dinuclear complex $\left[\left\{\mathrm{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{HgI}\right\}\left(\kappa^{1}-\mathbf{L 2}\right)_{2}\right] \mathbf{D 1}$ (Fig. 10). In this molecular compound, which, from a topological point of view, is considered formally a 0D, each $\mathrm{Hg}(\mathrm{II})$ atom bears one terminal I2 ligand, the second I1 ligand is $\mu_{2^{-}}$ bridging assuring the connectivity with the neighboured Hg atoms. The intermetallic separation of $4.099 \AA$ is far too loose to be considered as bonding. The distorted tetrahedral coordination around each mercury atom is completed by a dative bond with the S1 atom of the $\mathbf{L} 2$ ligand, where the S 2 atom does not participate in bonding. To the best of our knowledge, there is just one other crystallographically molecular complex featuring a $\mathrm{S}(\mathrm{I}) \mathrm{Hg}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Hg}(\mathrm{I}) \mathrm{S}$ scaffold, namely $\left[\left(\mathrm{NO}_{2} \mathrm{~S}_{2}\right) \mathrm{S}(\mathrm{I}) \mathrm{Hg}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Hg}(\mathrm{I})\left(\mathrm{NO}_{2} \mathrm{~S}_{2}\right)\right]$ ligated by the 18-membered thiaoxamacrocycle bis(16-(4-(4-nitrophenylazo)phenyl)-2,5-dioxa-13,19-dithia-16-azatricyclo(19.4.0.06,11)pentacosa-1(21),6,8,10,22,24-hexaene) (CSD refcode PEGXU). ${ }^{54,55}$ The metric parameters of the latter complex are quite similar with those of D1. In both compounds, the three Hg -I bond distances are quite different, the shortest being
the terminal one (2.6920 (6) vs. 2.6610 (3) \AA), the bond lengths of the dissymmetrically bridging μ_{2}-iodo ligand are $2.7080(6)$ vs. $2.7252(3)$ and $3.1541(7)$ vs. $3.2078(3) \AA$, respectively. Also, the $\mathrm{Hg}-\mathrm{S}$ bond lengths of the two compounds match well (2.5983(18) vs. $2.5962(9) \AA$).

Figure 10. View of dinuclear complex $\left[\left\{\operatorname{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{HgI}\right\}\left(\kappa^{1}-\mathbf{L} 2\right)_{2}\right]$ (D1). The H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Hg}-\mathrm{S} 12.5962(9), \mathrm{Hg}-\mathrm{I} 12.7252(3), \mathrm{Hg}-\mathrm{I} 2$ 2.6610(3), $\mathrm{Hg}-\mathrm{I} 1 \# 3.2078(3) ; \mathrm{S} 1-\mathrm{Hg}-\mathrm{I} 1114.35(2), \mathrm{S} 1-\mathrm{Hg}-\mathrm{I} 2116.58(2), \mathrm{S} 1-\mathrm{Hg}-\mathrm{I} 1 \# 91.07(2), \mathrm{I} 1-\mathrm{Hg}-\mathrm{I} 2127.203(11)$, I1-Hg-I1\# 92.996(10). Symmetry transformation used to generate equivalent atoms: ${ }^{1} 1-x, 1-y, 1-z$.

Reactions of $\mathbf{L 1}$ and $\mathbf{L} \mathbf{2}$ with HgBr_{2}

To investigate the effect of the nature of the halide on the architecture, $\mathbf{L} \mathbf{1}$ was also mixed with one equivalent of HgBr_{2} and heated in hot toluene for 3 h . After allowing to reach ambient temperature, colourless needle-shaped crystals were formed and isolated in 68% yield (Scheme 5). Elemental analysis confirmed a 1:1 composition $\left[\left(\mathrm{HgBr}_{2}\right)(\mathbf{L} 1)\right]$ as for CP7.

1D CP9 $\left[\left\{\mathrm{BrHg}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{HgBr}\right\}\left(\mu_{2}-\mathrm{L} 1\right)\right]_{n}$

Scheme 5. Synthesis of CP8, CP9, M1 and CP10.

However, crystallographic analysis indicated that instead of the triclinic space group $P-1$ encountered for CP7 this material had crystalized in the orthorhombic space group Pna2 ${ }_{1}$ (Table S5). Indeed, an X-ray diffraction study revealed that in the 1D polymeric ribbon of $\left[\left(\mathrm{HgBr}_{2}\right)\left(\mu_{2}-\mathrm{L} 1\right)\right]_{n}(\mathbf{C P 8})$ shown in Figure 11, the meander-like conformation of CP7 is no longer present and a description as linear is more appropriate. Each tetrahedrally coordinated Hg center is ligated by two terminal bromide ligands and the S 1 and S 4 donor sites of L1. The mean $\mathrm{Hg}-\mathrm{S}$ bond length of $\mathbf{C P 8}$ is slightly shorter than that of its iodoanalogue CP7 (2.6362(16) vs. of $2.6574(16) \AA$). A somewhat reminiscent single-chain structure has been reported for $\left[\left\{\mathrm{BzS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SBz}\right\} \mathrm{HgBr}_{2}\right]_{n}$, in which adjacent HgBr_{2} units $\left(\mathrm{Hg}-\mathrm{Br} 2.5823(8)\right.$ and $2.5165(8) \AA$) are linked by the bridging dithioether ligand. ${ }^{38}$ The packing of the parallel running ribbons of CP8 is shown in the ESI as Figure S7 and the experimental and simulated PXRD patterns of CP8 are depicted in the Supporting Information as Fig. S17.

Figure 11. View of a segment of the 1 D chain of $\left[\left(\mathrm{HgBr}_{2}\right)\left(\mu_{2}-\mathbf{L 1}\right)\right]_{n}(\mathbf{C P 8})$. The H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Hg}-\mathrm{S} 12.6098(16), \mathrm{Hg}-\mathrm{S} 42.6625(16), \mathrm{Hg}-\mathrm{Br} 1$ 2.5841(11), $\mathrm{Hg}-\mathrm{Br} 2$ 2.5810(11); S1-Hg-S4 116.69(4), S1-Hg-Br1 103.77(4), S1-Hg-Br2 108.63(4), S4-$\mathrm{Hg}-\mathrm{Br} 1$ 108.42(4), $\mathrm{S} 4-\mathrm{Hg}-\mathrm{Br} 2103.80(4), \mathrm{Br} 1-\mathrm{Hg}-\mathrm{Br} 2115.716(18)$, Symmetry transformations used to generate equivalent atoms: ${ }^{1}-1 / 2+x, 1 / 2-y,+z ;{ }^{2} 1 / 2+x, 1 / 2-y,+z$.

The same simple tetrahedral $\mathrm{HgBr}_{2} \mathrm{~S}_{2}$ motif was obtained when reacting HgBr_{2} with an excess of $\mathbf{L} 2$ in hot toluene. Upon cooling, fine colourless needles of the mononuclear complex $\left[\operatorname{HgBr}_{2}\left(\kappa^{1}-\mathbf{L} 2\right)_{2}\right]$ (M1) crystallizing in the orthorhombic space groups $P 2_{12} 2_{1}$ (Table S7) were formed in 86% yield (Scheme 5). The molecular structure of M1 is shown in Figure 12 and consists of a bent HgBr_{2} unit coordinated by two κ^{1}-bound 2methyldithiane ligands. The $\mathrm{Hg}-\mathrm{S}$ bond length is slightly shorter than the mean distance found in CP8 (2.6188(17) vs. $2.6362(16) \AA)$. In contrast to $\left[\mathrm{HgBr}_{2}\left\{\left(\mathrm{PhSCH}_{2}\right)_{2} \mathrm{SiPh}_{2}\right\}\right],{ }^{41}$ in which the HgBr_{2} angle is close to linearity, the angle $\mathrm{Br}-\mathrm{Hg}-\mathrm{Br}$ of $\mathbf{M 1}$ is strongly bent (160.39(4) vs. $115.96\left(3^{\circ}\right)$. The only other crystallographically characterized molecular HgBr_{2} complex ligated by a non-macrocyclic thioether ligand is $\left[\mathrm{HgBr}_{2}\right.$ (N-Benzoyl-1,3thiazolidine) ${ }_{2}$] (CSD refcode DICMEI) which features a more distorted tetrahedral geometry than M1 with $\mathrm{Br}-\mathrm{Hg}-\mathrm{Br}$ and $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ angles of $124.4(9)$ and $83.9(2)^{\circ}$, respectively. ${ }^{56}$ With the objective to prepare a dinuclear compound $\left[\left\{\operatorname{BrIHg}\left(\mu_{2}-\right.\right.\right.$ $\left.\left.\mathrm{Br})_{2} \mathrm{HgBr}\right\}\left(\kappa^{1}-\mathbf{L} 2\right)_{2}\right]$ comparable to $\mathbf{D} 1$, M1 was reacted with an second equivalent of HgBr_{2} in hot toluene according to Scheme 5. To our surprise, a single-crystal diffraction study revealed formation of a colourless 1D polymeric material $\left[\operatorname{HgBr}_{2}\left(\mu_{2}-\mathbf{L 2}\right)\right]_{n}(\mathbf{C P 1 0})$. The crystal structure of CP10 is shown in Figures 13 and S9 and presents a highly symmetric 1D chain with crystallography identical S atoms. The most relevant bond
distances and angles are given in the caption of Figure 13 and deserve no special comment. Noteworthy is the occurrence of some weak intermolecular $\mathrm{H} \cdots \mathrm{Br}$ bonding between the parallel running 1D chains of CP10 generating a 3D supramolecular network (Fig. S9 and Table S9).

Figure 12. View of the molecular structure of $\left[\left(\mathrm{HgBr}_{2}\right)\left(\mathrm{K}^{1}-\mathbf{L 2}\right)\right]$ (M1). The H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Hg}-\mathrm{S} 12.6188(7), \mathrm{Hg}-\mathrm{Br} 2.5913(7) ; \mathrm{S} 1-\mathrm{Hg}-\mathrm{S} 1^{1}$ 118.90(7), $\mathrm{S} 1-\mathrm{Hg}-\mathrm{Br}$ 109.06(4), $\mathrm{Br}-\mathrm{Hg}-\mathrm{Br}^{1}$ 115.96(3), Symmetry transformation used to generate equivalent atoms: ${ }^{11-x, ~} 1-y,+z$.

Figure 13. View of a segment of the 1D chain of $\left[\left(\mathrm{HgBr}_{2}\right)\left(\mu_{2}-\mathbf{L 2}\right)\right]_{n}(\mathbf{C P 1 0})$ running along the a axis. The H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Hg}-\mathrm{S} 2.6486(10), \mathrm{Hg}-\mathrm{Br}$
 Symmetry transformation used to generate equivalent atoms: ${ }^{1} 1-x, 1-y,+z ;{ }^{2} 1 / 2-x,+y,+z$.

We next treated $\mathbf{L 1}$ with two equivalents of HgBr_{2} in refluxing toluene. In this case, isolation of the pure reaction product was not hampered by co-crystallization of unreacted HgBr_{2}. Elemental analysis of the needle-shaped colourless material, which has been isolated in 76% yield, supported a $2: 1 \mathrm{HgBr}_{2}$-to- $\mathbf{L 1}$ ratio HgBr_{2} (Scheme 5). An X-ray diffraction study of the product $\left[\left\{\operatorname{BrHg}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{HgBr}\right\}\left(\mu_{2}-\mathbf{L 1}\right)\right](\mathbf{C P 9})$, crystallizing in the monoclinic space group $C 2 / c$ corroborates this composition. The crystal structure shown
in Fig. 14 reveals the formation of 1D ribbons, in which dinuclear $\mathrm{BrHg}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{HgBr}$ units are interconnected through bridging centrosymmetric $\mathbf{L 1}$ molecules. In contrast to the meander-type architecture of CP7, that of CP9 can be described as stretched linear. The alignment of the parallel running ribbons in the packing is shown in Fig. S8. Within the dinuclear $\mathrm{Hg}_{2} \mathrm{Br}_{4} \mathrm{SBUs}$, the two crystallographically identical Hg atoms are solely connected through two bridging bromo ligands, the loose separation of $4.091 \AA$ excludes any intermetallic interaction. Overall, the motif is quite reminiscent to that of D1. Among the 30 entries for $\mathrm{HgBr}_{2} \bullet$ thioether adducts, there are two examples featuring a similar unit, namely 1D CP $\left[\mathrm{Hg}_{2} \mathrm{Br}_{4}\left\{\mathrm{BzS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SBz}\right\}\right]_{n}(d \mathrm{Hg} \cdots \mathrm{Hg} 3.884 \AA$ A $)$ and the molecular complex $\left[\mathrm{Hg}_{2} \mathrm{Br}_{4}\right.$ (phenothiazine- S$\left.)\right]\left(\mathrm{dHg} \cdots \mathrm{Hg} 4.001 \AA\right.$).37,57

Each Hg atom is tetrahedrally coordinated by one terminal Br 2 atom, two μ_{2}-type Br 1 atoms and a datively bound S 1 atom. The mean $\mathrm{Hg}-\mathrm{S}$ bond length is somewhat shorter than that of CP8 (2.5456(8) vs. $2.5825(11) \AA$). There is furthermore a very loose contact of $3.149 \AA$ 號 between the S 2 atom and the Hg center, represented by the dashed lines in Fig. 14. Taking in account this incipient pentacoordination, the geometry may be alternatively considered as square pyramidal with Br 2 occupying the apical position.

Figure 14. View of a segment of the 1D chain of $\left[\left\{\operatorname{BrHg}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{HgBr}\right\}\left(\mu_{2}-\mathbf{L 1}\right)\right]_{n}(\mathbf{C P 9})$. The H atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Hg}-\mathrm{S} 12.5456(8), \mathrm{Hg}-\mathrm{Br} 12.5519(3)$, $\mathrm{Hg}-\mathrm{Br} 1 \#$ 3.0634(4), $\mathrm{Hg}-\mathrm{Br} 2$ 2.5383(4); $\mathrm{S} 1-\mathrm{Hg}-\mathrm{Br} 1$ 136.08(2), $\mathrm{S} 1-\mathrm{Hg}-\mathrm{Br} 1 \#$ 78.929(19), $\mathrm{S} 1-\mathrm{Hg}-\mathrm{Br} 2$ 111.05(2), $\mathrm{Br} 1-\mathrm{Hg}-\mathrm{Br} 2$ 112.750(12), $\mathrm{Br} 1 \#-\mathrm{Hg}-\mathrm{Br} 2$ 114.645(11), $\mathrm{Br} 1-\mathrm{Hg}-\mathrm{Br} 1 \#$ 85.973(102). Symmetry transformations used to generate equivalent atoms: ${ }^{1} 1-x,+y, 1 / 2-z ;{ }^{2}-x, 1-y, 1-z$.

Reaction of $\boldsymbol{L 1}$ with HgCl_{2}

A 1D polymer featuring an architecture very similar to that of CP8 was formed upon coordination of $\mathbf{L} \mathbf{1}$ on HgCl_{2} in hot toluene (Scheme 6). Unfortunately, the poor
crystallographic quality of the colourless needles of the crystal structure shown in Fig. 15 does not allow a detailed discussion of the metric parameters. However, and in line with the elemental analysis, the data sets confirm without ambiguity the formation of a ribbon with composition $\left[\left(\mathrm{HgCl}_{2}\right)\left(\mu_{2}-\mathbf{L 1}\right)\right]_{n},(\mathbf{C P 1 1})$ in which tetrahedral HgCl_{2} units are linked through bridging L1 ligands. The PXRD pattern also confirms the purity of the sample (Fig. S18).

Scheme 6. Synthesis of CP11.

Figure 15. View of a segment of the 1D chain of $\left[\left(\mathrm{HgCl}_{2}\right)\left(\mu_{2}-\mathbf{L 1}\right)\right]_{n}(\mathbf{C P 1 1})$. The H atoms are omitted for clarity.

Reaction of CP1 with HgI_{2}

The fact that the network of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L} 1\right)_{2}\right]_{n}(\mathbf{C P} 1)$ incorporates two noncoordinated sulphur atoms per L1 ligand, potentially available as donor sites for complexation of further metal centres, intrigued us to probe the construction of heterometallic networks. With this objective in mind, we prepared first CP1 in situ using hot acetonitrile as solvent (Scheme 7). After allowing to reach ambient temperature, one equivalent of HgI_{2} was added to precipitated CP1. After stirring for 4 h , an important part
of the suspended CP1 had been dissolved as well as red HgI 2 . The mixture was then heated to $80^{\circ} \mathrm{C}$ for one hour giving a yellowish clear solution. After allowing to reach ambient temperature, the growth of yellow crystals commenced. After partial evaporation of the solvent, the crystals were collected and analysed by X-ray diffraction.

Scheme 7. Synthesis of the heterometallic 1D polymer CP12.

Figure 16 shows that the initial 2D network of CP1 has been broken and instead a heterometallic 1D ribbon has been formed. The chain is constructed of tetranuclear $\left[\mathrm{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{HgI}\left(\mu_{2}-\mathrm{I}\right\} \mathrm{Cu}\right]$ blocks consisting of dimerized HgI_{2} units interconnected by two $\mu_{2}-\mathrm{I}$ atoms. The tetrahedral coordination sphere around each Hg atom is completed by one terminal iodo ligand. These centrosymmetric $\mathrm{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{HgI}$ block share furthermore a second bridging $\mu_{2}-\mathrm{I}$ ligand with a $\mathrm{Cu}(\mathrm{I})$ atom, which bears two metal-bound MeCN ligands. The $\mathrm{Hg} \cdots \mathrm{Hg}$ and $\mathrm{Hg} \cdots \mathrm{Cu}$ separations of 3.394 and $3.991 \AA$ exclude any intermetallic interactions. ${ }^{58}$ These tetranuclear SBUs are linked through the S1 atoms of L1, generating thus a linear 1D ribbon. The $\mathrm{Cu}-\mathrm{S} 1$ distance of $2.3005(7) \AA$ is similar to the mean $\mathrm{Cu}-\mathrm{S}$ bond lengths of $2.3003 \AA$ encountered in CP1, all other metric parameters are presented in the caption of Figure 16. The parallel running arrangement of the ribbons of CP12 in the packing is shown in Figure S10 and the PXRD pattern in Figure S19.

Figure 16. View of a segment of the heteronuclear 1D chain of $\left[\left\{\operatorname{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \operatorname{HgI}\left(\mu_{2}-\mathrm{I}\right)_{2}\left\{\mathrm{Cu}(\mathrm{MeCN})_{2}\right\}_{2}\left(\mu_{2}-\right.\right.\right.$ $\mathbf{L 1})]_{n}(\mathbf{C P 1 2})$ running along the c axis. The H atoms are omitted for clarity. Selected bond lengths (\AA) and
angles $\left({ }^{\circ}\right)$ at $100 \mathrm{~K}: \mathrm{Hg}-\mathrm{I} 12.7283(3), \mathrm{Hg}-\mathrm{I} 22.6848(3), \mathrm{Hg}-\mathrm{I} 33.0222(3), \mathrm{Hg}-\mathrm{I} 3^{1} 2.8429(3), \mathrm{I} 1-\mathrm{Cu} 2.6731(4)$, $\mathrm{Cu}-\mathrm{S} 12.3005(7), \mathrm{Cu}-\mathrm{N} 11.984(2), \mathrm{Cu}-\mathrm{N} 21.964(2) ; \mathrm{I} 1-\mathrm{Hg}-\mathrm{I} 3^{1} 110.012(8), \mathrm{I} 1-\mathrm{Hg}-\mathrm{I} 397.895(7), \mathrm{I} 2-\mathrm{Hg}-\mathrm{I} 1$ $124.575(8), \mathrm{I} 2-\mathrm{H} 1-\mathrm{I} 3^{1} 114.804(8), \mathrm{I}^{1}-\mathrm{Hg}-\mathrm{I} 395.813(8), \mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Hg} 95.251(9), \mathrm{Hg}^{1}-\mathrm{I} 3-\mathrm{Hg} 84.187(8), \mathrm{S} 1-$ $\mathrm{Cu}-\mathrm{I} 1$ 99.411(18), N1-Cu-I1 107.18(7), N1-Cu-S1 109.68(7), N2-Cu-I1 108.34(7), N2-Cu-S1 117.13(7), $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1113.70(9)$, Symmetry transformations used to generate equivalent atoms: ${ }^{1}-x, 1-y, 2-z ;{ }^{2} 1-x, 2-y, 1-$ z

The presence of two Cu -bound acetonitrile ligands indicated by elemental analysis is also confirmed by the IR spectrum of CP12, which exhibits two $v(\mathrm{CN})$ vibrations at 2296 and $2267 \mathrm{~cm}^{-1}$ (Figure S21). Metal-bound MeCN ligands are often coordinated in a quite labile manner on a given metal center. ${ }^{59,60}$ However, in the case of CP12, no degradation of the yellow crystals by dissociation of volatile MeCN was observed, even upon exposure to air for prolonged periods.

Although several other examples of mixed paramagnetic $\mathrm{Cu}(\mathrm{II}) / \mathrm{Hg}$ compounds featuring an $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{X}\right) \mathrm{Hg}\left(\mu_{2}-\mathrm{X}_{2} \mathrm{HgX}\left(\mu_{2}-\mathrm{X}\right) \mathrm{Cu}\right]\right.$ array like tetranuclear $\left[\mathrm{Cu}(\text { bipy })_{2} \mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]_{2}$ and 1 D polymeric $\left[\mathrm{Cu}_{2}(\text { bipy })_{4} \mathrm{Hg}_{2} \mathrm{Br}_{6}\right]\left[\mathrm{Hg}_{4} \mathrm{Br}_{10}\right]$ are literature-known, an architecture as encountered for CP12 is unprecedented. ${ }^{61,62}$ The most reminescent is that of [$(\mu-$ 7,10,21,24-tetraoxa-4,13,18,27-tetrathiatricyclo[14.12.1.12,15]triaconta-1(29),2(30),15-triene)-hexakis(μ-I)-bis(MeCN)-diiodo-tetra-copper(I)-di-mercury(II), in which a macrocyclic tetrathioether ligand is coodinated through two S-donor sites to a $\mathrm{CuI}(\mathrm{MeCN})$ fragment, which in turn is linked to mononuclear $\mathrm{Hg}(\mathrm{II})$ centres via shared μ-I bridges (refcode JIBLEO). ${ }^{63}$

Thermal properties

All compounds were found to be stable for several months under ambient atmosphere. Since the thermal stability is of crucial role for application in material sciences, that of the copper-based CP1-CP6 has been measured under air flow in the temperature range 20$850^{\circ} \mathrm{C}$. TGA traces are depicted in Figure 17 and the first derivative plots of the TGA traces are given in the Supporting Information (Figures S22-S27). Decomposition temperatures (corresponding to a 5\% loss of the total mass) are compared to those obtained with L2based CPs reported previously and are summarized in Table $1 .{ }^{22}$

All CPs obtained with L1, except CP5, present high thermal stability with $\mathrm{T}_{\text {dec }}$ ranging from $232^{\circ} \mathrm{C}$ to $272^{\circ} \mathrm{C}$. The thermal stability of $\mathbf{C P 5}$ is the lowest $\left(\mathrm{T}_{\text {dec }}=150^{\circ} \mathrm{C}\right)$ due to the loss of coordinated acetonitrile. After that initial degradation step, the decomposition profile of CP5 looks alike those obtained with others copper iodide-based CPs. The presence of $\mathrm{Cu}\left(\mu_{2}-\mathrm{I}_{2}\right)\left(\mu_{2}-\mathrm{I}_{4}\right) \mathrm{Cu}$ SBUs in CP3 led to the highest thermal stability. As previously observed, ${ }^{22,}{ }^{29}$ the decomposition profiles of CP1, CP2 and CP3 containing iodide present two well-defined decomposition steps while those of CP4 and CP5 containing bromide presents three main losses. The decomposition of CP6 is even more complicated with at least four decomposition steps. This complicated decomposition profile led to an important difference between the theoretical and experimental values based on the ligand degradation (57% and 40%, respectively). However, for the other CPs, there is a good matching between the values. Finally, expect for CP6, the final residues might be attributed to the formation of CuO as evidenced by comparison between theoretical and experimental values. Comparison of the thermal stabilities between the different CPs obtained from $\mathbf{L} 1$ and $\mathbf{L} 2$ shows that $\mathbf{L} 1$-based CPs present higher thermal stabilities. The higher stability found in the present paper for CPs obtained with $\mathbf{L} 1$ might be attributed either to the fact that $\mathbf{L} \mathbf{2}$ has a boiling point of $78^{\circ} \mathbf{C}$ while $\mathbf{L} \mathbf{1}$ is a solid with melting point of $132-135^{\circ} \mathrm{C}$ or to the higher dimensionality obtained with $\mathbf{L} 1$ (2D vs 1D) while having same SBUs (see for example comparison between the 2D CP2 and the 1D $\left.\mathrm{CP}\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L} 2\right)_{2}\right]_{n}\right)$.

Figure 17. TGA traces of CP1-CP6 under air flow (rate $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$)

Table 1. TGA data for CP1-CP6.

CP	$\mathrm{T}_{\mathrm{Dec}}$ $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Mass loss (\%wt)		Residual mass (\%wt)	
			Theo	Exp	Theo.	Exp
2D CP1 $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathrm{LL} 1\right)_{2}\right]_{\mathrm{n}}$	236	100-340	58^{a}	52	17^{c}	19
2D CP2 $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathbf{L} 1\right)\right]_{\mathrm{n}}$	235	100-345	41^{a}	39	$25^{\text {c }}$	28
$\begin{aligned} & \text { 2D CP3 }\left[\{ \mathrm { Cu } (\mu _ { 4 } - \mathrm { I }) (\mu _ { 2 } - \mathrm { I }) \mathrm { Cu } \} _ { 2 } \left(\mu_{4}-\right.\right. \\ & \text { L1) }]_{n} \end{aligned}$	272	100-340	26	28	31	28
1D $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L 2}\right)_{2}\right]_{\mathrm{n}}{ }^{\text {d }}$	$160^{\text {d }}$					
2D CP4 $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{2}\left(\mu_{4}-\mathrm{L} 1\right)\right]_{n}$	241	100-350	46^{a}	48	29^{c}	34
1D $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L 2}\right)_{2}\right]_{n}{ }^{d}$	$187^{\text {d }}$					
1D CP5 $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{3}(\mathrm{MeCN})\left(\mu_{4}{ }^{-}\right.\right.$	150			5.6	$32^{\text {c }}$	31
L1) $\left.0_{0.5}\left(\mu_{5}-\mathbf{L} 1\right)_{0.5}\right]_{n}$		150-300	36^{a}	40		
2D CP6 $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\mathrm{L} 1\right)\right]_{n}$	232	100-350	57^{a}	40	34^{c}	44
1D $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L 2}\right)_{2}\right]_{\mathrm{n}}{ }^{d}$	$173{ }^{\text {d }}$					
${ }^{a}$ values determined based on ligand loss ${ }^{b}$ value determined based on $\mathrm{CH}_{3} \mathrm{CN}$ loss ${ }^{c}$ values determined based on the formation of CuO ${ }^{d}$ data from ref [21]						

Concluding Remarks and Perspectives

This investigation has shown that commercially available and inexpensive 2,2'-ethylenebis(1,3-dithiane) has, apart from its application as substrate in organic chemistry, also a promising potential as ligand in coordination chemistry. It may act, in function of the reaction conditions, both as tetradentate μ_{4} - or bidendate μ_{2}-type ligand, in which S donor atoms behave as a 2-electron donor. However, the observation of a bridging S atom in CP5 acting as a 4-electron donor demonstrates that, in contrast to tetradentate organophosphorous ligands, $\mathbf{L} \mathbf{1}$ is even able to extend its coordination to a μ_{5}-bonding mode. In the case of the complexation with $\mathrm{Cu}(\mathrm{I})$ salts, in all cases formation of stable coordination polymers is observed, but a rational control of the network architecture is a difficult task. ${ }^{7,64}$ As already noticed in previous papers and by other research groups working on $\mathrm{Cu}(\mathrm{I}) \cdot$ thioether compounds, the outcome depends on too many factors like nature of the halide, metal-to-ligand ratio, reaction temperature, choice of the solvent, order of the addition of the reactants etc. But this unpredictability also opens the possibility to isolate and characterize hitherto unknown network architectures, as it is the case in the present study. Both CP1 and CP2 incorporate the very common rhomboid-shaped $\mathrm{Cu}\left(\mu_{2-}\right.$ I) ${ }_{2} \mathrm{Cu}$ motif as connecting nodes, but with very diverging $\mathrm{Cu} \cdots \mathrm{Cu}$ separations ranging from 2.6131 (9) to $2.9436(5) \AA$ i̊ underlying the structural flexibility of this SBU. CP1 represents furthermore an unique case incorporating three crystallographically non-equivalent $\mathrm{Cu}\left(\mu_{2^{-}}\right.$ I) ${ }_{2} \mathrm{Cu}$ SBUs. The 2D CP3 obtained by increasing the CuI ratio features both μ_{4}-type and μ_{2}-type halide ligands.

The situation becomes even more curious in the case of CuBr. In both CP4 and CP5, no $\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}$ SBUs are present, instead $(-\mathrm{Cu}-\mathrm{Br}-\mathrm{Cu}-\mathrm{Br}-)_{n}$ chains are interconnected by μ_{4} - or μ_{5}-bridging $\mathbf{L 1}$ ligands. The bonding situation within the 1D ribbon of $\left[\left\{\mathrm{Cu}\left(\mu_{2^{-}}\right.\right.\right.$ $\left.\left.\mathrm{Br})\}_{3}(\mathrm{MeCN})\left(\mu_{4}-\mathbf{L} 1\right)_{0.5}\right)\left(\mu_{5}-\mathbf{L} 1\right)_{0.5}\right]_{n}(\mathbf{C P 5})$ gets even more exotic since this compound features also metal-coordinated MeCN molecules and, as highlight, presents an extremly scarce case of a low-coordinate trigonal Cu center. So the nuclearity differs much of the simple 1D architecture of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L} 2\right)_{2}\right]_{n}$ encountered with the structurally related 2-methyl-1,3-dithane $\mathbf{L 2}$ ligand. With $\mathbf{C u C l}$, a 2D network $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{4}-\right.\right.$ $\mathbf{L} 1)]_{n}(\mathbf{C P 6})$, at first glance, reminiscent to that of $\mathbf{C P} 2$ is formed, however the very loose
$\mathrm{Cu} \cdots \mathrm{Cu}$ contact of $3.147 \AA$ underpins the high structural flexibility of the $\mathrm{Cu}\left(\mu_{2}-\mathrm{X}\right)_{2} \mathrm{Cu}$ motifs. As expected from the use of this tetrathioether ligand $\mathbf{L 1}$, the dimensionality of the resulting CPs was increased from 1D to 2D compared to those obtained with L 2 . Unfortunately, probably due to the steric hindrance in L1, we failed to isolate MOF-like 3D networks incorporating strongly luminescent polynuclear $(\mathrm{CuI})_{n}(\mathrm{n}=4,6,8)$ cluster as obtained with $\mathbf{L 2}$ and other dithioether ligands. ${ }^{13,21,28,65,66}$
Although we did not investigate in depth the coordination chemistry of $\mathbf{L} 1$ and $\mathbf{L} 2$ towards HgX_{2} salts, we have evidenced that the composition of the resulting compounds can be influenced by the HgX_{2}-to-L ratio and that the dimensionality remains invariably 1D for L1. In contrast, reaction of $\mathbf{L} \mathbf{2}$ with HgI_{2} and HgBr_{2} may lead to formation of a discreet mono- or dinuclear complexes but may also give rise to a polymeric 1D chain. The fact that in sulphur-rich CP1 every second S atom is not engaged in dative M-S bonding has been successfully exploited to construct the heterometallic material $\left[\left\{\operatorname{IHg}\left(\mu_{2}-\mathrm{I}\right)_{2} \operatorname{HgI}\left(\mu_{2}-\right.\right.\right.$ $\left.\mathrm{I})_{2}\left\{\mathrm{Cu}(\mathrm{MeCN})_{2}\right\}_{2}\left(\mu_{2}-\mathbf{L 1}\right)\right]_{\mathrm{n}}(\mathbf{C P 1 2})$ by addition of HgI_{2}. Several other compounds such as CP7, CP8, D1 and M1 also bear such potential S-donor sites. This feature opens the possibility for forthcoming work to construct systematically heterometallic assemblies by coordination of other ML_{n} fragments or MX_{n} salt, which may in turn serve as promising precursors for heterometallic sulphide phases and related materials.

EXPERIMENTAL SECTION

Materials and Apparatus

The CuX and HgX_{2} salts, $\mathbf{L} 1$ and $\mathbf{L} 2$ were commercial obtained from Acros, Alfa Aesar and Aldrich. Infrared spectra were recorded with a $2 \mathrm{~cm}^{-1}$ resolution on a Bruker vertex 70 FTIR spectrometer using of a Platinum ATR accessory equipped with a diamond crystal. Thermogravimetric analysis (TGA) was carried out on a TA Instruments Q600 in an alumina crucible under an air flow with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ up to $850^{\circ} \mathrm{C}$.

Syntheses

CP1. To a solution a solution of $\mathrm{CuI}(191 \mathrm{mg}, 1.0 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$ was added $\mathbf{L} 1(271.5 \mathrm{mg}, 1.02 \mathrm{mmol})$ in two portions.). Precipitation of a white product occurred immediately. The mixture was stirred for 2 h at room temperature, and then heated to reflux
for 5 min to assure completion of the reaction. After reaching ambient temperature, the resulting microcrystalline precipitate was filtered off and air-dried. Yield (89\%). To obtained X-ray suitable single-crystals, a 100 mg amount was redissolved in boiling MeCN and then allowed to reach slowly ambient temperature. $\mathrm{mp}=272^{\circ} \mathrm{C}$ IR (ATR): 2931, 2900, 2826, 1427, 1410, 1307, 1272, 1252, 1237, 1177, 1134, 1108, 1028, 995, 906, 871, 829, $787,756,734,678,657,616,489,421 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{CuIS}_{4}$ (456.96): C, 26.28; H, 3.97; S, 28.07. Found: C, 26.46; H, 3.95; S, 27.93 \%.

CP2. L1 ($271.5 \mathrm{mg}, 1.02 \mathrm{mmol}$) was dissolved in a mixture of acetonitrile (30 mL) and dichloromethane (5 mL). To this solution was added a solution of CuI ($388 \mathrm{mg}, 2.03 \mathrm{mmol}$) in acetonitrile (20 mL). Precipitation of a white product occurred immediately. The mixture was stirred 2 h at room temperature. The resulting precipitate was filtered and washed with 20 mL of acetonitrile and then 20 mL of dichloromethane. Yield: 80\%. A small amount of the white powder was dissolved in hot acetonitrile. After two weeks, colourless crystals suitable for single X-ray diffraction were obtained.mp $=232^{\circ} \mathrm{C}$. IR (ATR): 2969, 2919, $1409,1277,1245,1186,1148,1106,1089,983,953,850,726,691,670,468 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cu}_{2} \mathrm{I}_{2} \mathrm{~S}_{4}$ (647.36): C, 18.55; H, 2.80; S, 19.81. Found: C, 18.91; H, 2.80; S, 19.58%.

CP3. L1 ($279.5 \mathrm{mg}, 1.05 \mathrm{mmol}$) was dissolved in a mixture of acetonitrile (10 mL) and dichloromethane (5 mL). To this solution was added a solution of $\mathrm{CuI}(900 \mathrm{mg}, 4.72 \mathrm{mmol})$ in acetonitrile (40 mL). Precipitation of a white product occurred immediately. The mixture was stirred 2 h at room temperature. The resulting precipitate was filtered and washed with 20 mL of acetonitrile and then 20 mL of dichloromethane. Yield: 88%. Crystals suitable for X-Ray diffraction were obtained by slow diffusion of a dichloromethane solution of L1 into an acetonitrile solution of CuI (ratio ligand/metal 1:4) at room temperature. $\mathrm{mp}=281^{\circ} \mathrm{C}$. IR (ATR): 2941, 2926, 2893, 2831, 1421, 1339, 1315, 1284, 1240, 1188, 1136, 1032, 1002, 906, 872, 832, 790, 676, 655, 624, $429 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cu}_{4} \mathrm{I}_{4} \mathrm{~S}_{4}$ (1028.31): C, 11.68; H, 1.76; S, 12.47. Found: C, 11.96; H, 1.76; S, 12.13\%.

CP4. To a solution of $\mathrm{CuBr}(287 \mathrm{mg}, 2.0 \mathrm{mmol})$ in acetonitrile (16 mL) was added $\mathbf{L} 1$ $(266.5 \mathrm{mg}, 1.0 \mathrm{mmol})$ in two portions.). Precipitation of a white product occurred
immediately. The mixture was stirred for 2 h at room temperature, and then heated to reflux for 5 min to assure completion of the reaction. After reaching ambient temperature, the resulting microcrystalline precipitate was filtered off and air-dried. Yield (92\%). To obtained X-ray suitable single-crystals, a 100 mg amount was redissolved in boiling EtCN and then allowed to reach slowly ambient temperature. $\mathrm{mp}=244^{\circ} \mathrm{C}$ IR (ATR): 2988, 2892, $1421,1342,1276,1242,1214,1189,1157,1125,1051,1011,991,925,902,863,833,773$, $743,676,649,601,506,486,463 ; 429 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cu}_{2} \mathrm{Br}_{2} \mathrm{~S}_{4}(553.41)$: C, 21.70; H, 3.28; S, 23.18. Found: C, 21.75; H, 3.25; S, 22.62\%.

CP5. L1 ($125 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved dichloromethane (5 mL). To this solution was added a solution of $\mathrm{CuBr}(208 \mathrm{mg}, 1.45 \mathrm{mmol})$ in acetonitrile $(25 \mathrm{~mL})$. Precipitation of a white product occurred immediately. The mixture was stirred 2 h at room temperature. The resulting precipitate was filtered and washed with 20 mL of acetonitrile and then 20 mL of dichloromethane. A small amount of the white powder was dissolved in hot acetonitrile. After two weeks, colourless crystals suitable for single X-ray diffraction were obtained. Yield: $75 \% . \mathrm{mp}=236^{\circ} \mathrm{C}$ IR (ATR): 2972, 2933, 2910, 2837, 2309, 2265, 1433, 1408, 1376, $1344,1274,1259,1244,1209,1187,1174,1162,1033,1010,923,897,869,856,832,775$, 668, 646, 602, 482, 464, $421 \mathrm{~cm}^{-1}$.Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{Br}_{6} \mathrm{Cu}_{6} \mathrm{~N}_{2} \mathrm{~S}_{8}$ (1475.77): C, 19.53; H, 2.87; N, 1.90, S, 17.38. Found: C, 19.74; H, 2.90; N, 1.94; S, 16.97\%

CP6. To a solution of $\mathrm{CuCl}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in acetonitrile (15 mL) was added solid $\mathbf{L} 1$ $(271.5 \mathrm{mg}, 1.02 \mathrm{mmol})$ in three portions. Precipitation of a white product occurred immediately. The mixture was stirred 2 h at room temperature. The resulting precipitate was filtered off, washed with 5 mL of acetonitrile and dried. Yield: 93%. A 100 mg amount of this material was dissolved in hot benzylcyanide. Upon cooling, colourless crystals suitable for X-ray diffraction were obtained. $\mathrm{mp}=215^{\circ} \mathrm{C}$. IR (ATR): 2941, 2906, 1447, 1421, 1311, 1267, 1229, 1181, 1160, 1106, 1027, 896, 874, 827, 798, 742, 687, 654, $438 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{ClCuS}_{2}$ (232.23): C, 25.86; H, 3.91; S, 27.61. Found: C, 26.28; H, 4.20; S, 26.69.

CP7. To a suspension of $\mathrm{HgI}_{2}(227 \mathrm{mg}, 0.50 \mathrm{mmol})$ in toluene (10 mL) was added solid $\mathbf{L} 1$ $(271.5 \mathrm{mg}, 1.02 \mathrm{mmol})$ in two portions. After stirring for 30 min , the mixture was heated to $110^{\circ} \mathrm{C}$ to give a clear solution. After 2 h , the heating was stopped, and pale-yellowish
crystals started to grow upon cooling. After 2d, the supernatant toluene solution was decanted, and the stable crystals air-dried. Partial evaporation of the toluene solution afforded a further crop of CP7. Yield: $85 \% . \mathrm{mp}=148^{\circ} \mathrm{C}$. IR (ATR): 2979, 2900, 1408, 1304, 1242, 1169, 1124, 1061, 897, 865, 784, 730, 653, $482 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{HgI}_{2} \mathrm{~S}_{4}$ (720.87): C, 16.66; H, 2.51; S, 17.79. Found: C, 16.75; H, 2.49; S, 17.67 \%.

D1. To a suspension of $\mathrm{HgI}_{2}(227 \mathrm{mg}, 0.50 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added $\mathbf{L} 2(74$ $\mathrm{mg}, 0.55 \mathrm{mmol})$ via syringe $(66 \mu \mathrm{~L})$. After stirring for 30 min , the mixture was heated to $110^{\circ} \mathrm{C}$ to give a clear solution. After 2 h , the heating was stopped, and large yellow crystals were grown upon cooling. After 2d, the supernatant toluene solution was decanted, and the stable product air-dried. Partial evaporation of the toluene solution afforded a further crop of crystalline D1. Yield: $92 \% . \mathrm{mp}=113{ }^{\circ} \mathrm{C}$. IR (ATR): 2925, 2895, 2824, 1438, 1416, 1374, 1341, 1274, 1236, 1190, 1119, 1076, 1053, 993, 973, 896, 859, 818, 713, 669, 645, 622, 479, $436 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Hg}_{2} \mathrm{I}_{4} \mathrm{~S}_{4}$ (1177.28): C, 10.20 ; H, 1.71; S, 10.89. Found: C, 10.39; H, 1.72; S, 10.97 \%.

CP8. To a suspension of $\mathrm{HgBr}_{2}(360 \mathrm{mg}, 1.0 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added solid $\mathbf{L} 1$ $(271.5 \mathrm{mg}, 1.02 \mathrm{mmol})$. After stirring for 30 min , the mixture was heated to $110^{\circ} \mathrm{C}$ to give a clear solution. After 2h, the heating was stopped, and colourless crystals commenced to grown upon cooling. After 2 days, the supernatant toluene solution was decanted, and the stable crystals air-dried. Partial evaporation of the toluene solution afforded a further small crop of CP8. Yield: $68 \% . \mathrm{mp}=170^{\circ} \mathrm{C}$. IR (ATR): 2954, 2926, 2901, 2819, 1430, 1419, $1403,1308,1271,1237,1165,1130,1109,1023,904,870,828,795,753,727,678,654$, 634, 489, $417 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{HgS}_{4}$ (626.89): C, 19.16; H, 2.89; S, 20.46. Found: C, 20.50; H, 3.08; S, 21.66 \%.

CP9. This colourless compound was prepared in a similar manner by heating a mixture of $\mathrm{HgBr}_{2}(360 \mathrm{mg}, 1.0 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$ with $\mathbf{L} 1(133.0 \mathrm{mg}, 0.5 \mathrm{mmol})$. Yield: 76%. $\mathrm{mp}=177^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 2965,2898,2824,1451,1414,1323,1260,1240,1177,1109$, 1071, 1050, 1041, 861, 830, 798, 722, 639, $436 \mathrm{~cm}^{-1}$ Anal. Calc. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{HgS}_{2}$ (493.65): C, 12.16; H, 1.84; S, 12.99. Found: C, 12.38; H, 1.84; S, 12.91%.

M1. To a suspension of $\mathrm{HgBr}_{2}(360 \mathrm{mg}, 1.0 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$ was added $\mathbf{L 2}$ (295 $\mathrm{mg}, 2.2 \mathrm{mmol}$) via syringe. After stirring for 30 min , the mixture was heated to $110^{\circ} \mathrm{C}$ to
give a clear solution. After 2h, the heating was stopped, and fine colourless crystal needles were grown upon cooling. After 1d, the supernatant toluene solution was decanted, and the stable product air-dried. Partial evaporation of the toluene solution afforded a further crop of crystalline M1. Yield: $86 \% . \mathrm{mp}=105^{\circ} \mathrm{C}$. IR (ATR): 2965, 2950, 2909, 1442, 1433, $1422,1399,1379,1345,1270,1257,1231,1171,1115,1075,1051,996,973,900,863,813$ cm^{-1}.

CP10. To a suspension of $\mathbf{M 1}(126 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene (8 mL) was added HgBr_{2} (72 $\mathrm{mg}, 0.2 \mathrm{mmol})$. After stirring for 30 min , the mixture was heated to $110^{\circ} \mathrm{C}$ to give a clear solution. After 1h, the heating was stopped, and large transparent crystals were grown upon cooling. After 1d, the supernatant toluene solution was decanted, and the stable product airdried. Yield: $86 \% . \mathrm{mp}=112{ }^{\circ} \mathrm{C}$. IR (ATR): 2967, 2934, 2910, 1449, 1424, 1398, 1337, 1249, 1231, 1165, 1116, 1077, 1057, 999, 968, 901, 864, $812 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{HgBr}_{2} \mathrm{~S}_{2}$ (494.66): C, 12.14; H, 2.04; S, 12.96. Found: C, 12.47; H, 2.07; S, 13.46%. CP11. This compound was prepared in a similar manner as described for CP8 by heating a 1:1 mixture of $\mathbf{L 1}$ and HgCl_{2} in toluene. Yield: $73 \% . \mathrm{mp}=160^{\circ} \mathrm{C}$. IR (ATR): 2964, 2902, $2859,1453,1415,1325,1264,1242,1178,1115,1033,1003,899,862,833,803,728,674$, 642, 564, $504 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{HgS}_{4}$ (538.01): C, 22.32; H, 3.37; S, 23.84. Found: C, 21.62; H, 3.24; S, 22.77 \%.

CP12. To a solution a solution of $\mathrm{CuI}(191 \mathrm{mg}, 1.0 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$ was added $\mathbf{L 1}(271.5 \mathrm{mg}, 1.0 \mathrm{mmol})$ in two portions. After precipitation of a in situ generated CP1, the slurry was stirred for 1 h at room temperature, and then heated to $80 \mathrm{C}^{\circ}$ for 15 min to assure completion of the reaction. After cooling ambient temperature, red HgI_{2} ($454 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added in two portions. Dissolution of HgI_{2} occurred rapidly and an important part of CP1 went in solution. After stirring for 4 h , the mixture was heated for 10 min to give a clear yellowish solution. Upon cooling, yellow crystals formed progressively. The solvent volume was reduced to 15 ml by partial evaporation from the opened Schlenk flask. Yield: 67\%. A further crop of CP12, contaminated by small amounts of CP7, was obtained by storing the solution in a refrigerator. $\mathrm{mp}=110^{\circ} \mathrm{C}$. IR (ATR): 2979, 2955, 2940, 2907, 2852, 2821, 2295, 2267, 1446, 1413, 1357, 1313, 1274, 1256, 1239, 1177, 1139, 1023, 903, 863,

831, $795,744,678,658,494,421 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{CuHgI}_{3} \mathrm{~N}_{2} \mathrm{~S}_{4}$ (860.21): C, 12.56; H, 1.75; N, 3.25; S, 7.45. Found: C, 12.84; H, 1.77; N, 3.19; S, 7.74%.

X-ray Crystallography

X ray powder patterns were obtained at 295 K on a D8 Advance Bruker diffractometer using Ni-filtered K- α radiation. The crystal structures of the compounds L1, CP1, CP2, CP3, CP4, CP5, CP6, D1, CP7, CP8, M1, CP9, CP11 and CP12 were determined using the Bruker D8 Venture four-circle diffractometer equipped with a PHOTON II CPAD detector by Bruker $A X S G m b H$. The X-ray radiation was generated by the $I \mu S$ microfocus source Mo ($\lambda=0.71073$ \AA) from Incoatec $G m b H$ equipped with HELIOS mirror optics and a single-hole collimator by Bruker AXS GmbH. The crystals were covered with an inert oil (perfluoropolyalkyl ether) and mounted on the MicroMount, MicroGripper or MicroLoop from MiTeGen. The APEX 3 Suite (v.2019.1-0) software integrated with SAINT (integration) and SADABS (adsorption correction) programs by Bruker AXS GmbH were used for data collection. The processing and finalization of the crystal structure were performed using the Olex2 program. ${ }^{67}$ The crystal structures were solved by the ShelXT structure solution program using the Intrinsic Phasing option, which were further refined by the ShelXL refinement package using Least Squares minimization. ${ }^{68,}{ }^{69}$ The non-hydrogen atoms were anisotropically refined. The C-bound H atoms were placed in geometrically calculated positions, and a fixed isotropic displacement parameter was assigned to each atom according to the riding-model: $\mathrm{C}-\mathrm{H}=0.98-1.00 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}\left(\mathrm{CH}_{3}\right)$ and $1.2 U_{\mathrm{eq}}(\mathrm{CH})$ for other hydrogen atoms. The crystallographic data and structural refinement are listed in ESI in Tables S1-S7. The crystallographic data for the structures L1, CP1, CP2, CP3, CP4, CP5, CP6, D1, CP7, CP8, M1 CP9, CP10 and CP12 have been published as supplementary publication number 2060086(L1), 2060098 (CP1), 2060088 (CP2), 2105375 (CP3), 2060084 (CP4), 2060105 (CP5), 2060085 (CP6), 2060101 (CP7), 2060104 (D1), 2060108 (CP8), 2060103 (CP9), 2060110 (M1), 2060111 (CP10), 2105376 (CP12) the Cambridge Crystallographic Data Centre. A copy of these data can be obtained for free by with applying to CCDC, 12 Union Road, Cambridge CB2 IEZ, UK, fax: 144-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to the CNRS and the Ministère de la Recherche et Technologie for financial support. We warmly thank Ms. V. Moutarlier for her help with the powder X-ray measurements. C. Strohmann, L. Brieger and L. Knauer thank the Deutsche Forschungsgemeinschaft $D F G$ for financial support and the Fonds der Chemischen Industrie ($F C I$) for scholarships awarded to L. Knauer and L. Brieger.

Footnote

Electronic supplementary information (ESI) available: summary of X-ray data collection and refinement for all structures studied, structure views of CP1-CP6, CP8-CP10, powder X-Ray Patterns of CP1-CP4, CP6-CP8, CP11-12, ATR-IR spectra of CP5, CP12, TGA traces of CP1-CP6.

References

1. A. Schlachter and P. D. Harvey, J. Mater. Chem. C, 2021, 9, 6648-6685.
2. J. Conesa-Egea, F. Zamora and P. Amo-Ochoa, Coord. Chem. Rev., 2019, 381, 6578.
3. X. Guo, C. Huang, H. Yang, Z. Shao, K. Gao, N. Qin, G. Li, J. Wu and H. Hou, Dalton Trans., 2018, 47, 16895-16901.
4. T. H. Kim, H. Yang, G. Park, K. Y. Lee and J. Kim, Chemistry - An Asian Journal, 2010, 5, 252-255.
5. S.-Q. Bai, I. H. K. Wong, N. Zhang, K. Lin Ke, M. Lin, D. J. Young and T. S. A. Hor, Dalton Trans., 2018, 47, 16292-16298.
6. Y. Liu, H. Peng, P. Wu, H. Liu and J. Zhang, Polymer, 2019, 179, 121616.
7. A. Schlachter, K. Tanner and P. D. Harvey, Coord. Chem. Rev., 2021, 448, 214176.
8. H. W. Yim, L. M. Tran, E. E. Pullen, D. Rabinovich, L. M. Liable-Sands, T. E. Concolino and A. L. Rheingold, Inorg. Chem., 1999, 38, 6234-6239.
9. N. R. Brooks, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, D. M. Proserpio, C. Wilson and M. Schröder, J. Chem. Soc., Dalton Trans., 2001, 456465.
10. J. Y. Lee, S. Y. Lee, W. Sim, K.-M. Park, J. Kim and S. S. Lee, J. Am. Chem. Soc., 2008, 130, 6902-6903.
11. Y. Bi, W. Liao, X. Wang, R. Deng and H. Zhang, Eur. J. Inorg. Chem., 2009, 2009, 4989-4994.
12. Y.-C. Yang, S.-T. Lin and W.-S. Chen, J. Chem. Res., 2008, 2008, 280-284.
13. A. Raghuvanshi, C. Strohmann, J.-B. Tissot, S. Clément, A. Mehdi, S. Richeter, L. Viau and M. Knorr, Chem. Eur. J., 2017, 23, 16479-16483.
14. H. N. Peindy, F. Guyon, M. Knorr, A. B. Smith, J. A. Farouq, S. A. Islas, D. Rabinovich, J. A. Golen and C. Strohmann, Inorg. Chem. Commun., 2005, 8, 479482.
15. H. Chiang, C. J. Moon, E. Kwon, H. Park, H. Im, M. Y. Choi, T. H. Kim and J. Kim, Bull. Korean Chem. Soc., 2018, 39, 1139-1143.
16. K. M. Henline, C. Wang, R. D. Pike, J. C. Ahern, B. Sousa, H. H. Patterson, A. T. Kerr and C. L. Cahill, Cryst. Growth Des., 2014, 14, 1449-1458.
17. L. Brammer, C. S. Rodger, A. J. Blake, N. R. Brooks, N. R. Champness, J. W. Cunningham, P. Hubberstey, S. J. Teat, C. Wilson and M. Schroeder, J. Chem. Soc., Dalton Trans., 2002, DOI: 10.1039/b205278b, 4134-4142.
18. J. M. Knaust and S. W. Keller, CrystEngComm, 2003, 5, 459-465.
19. M. Knorr, F. Guyon, A. Khatyr, M. Allain, S. M. Aly, A. Lapprand, D. Fortin and P. D. Harvey, J. Inorg. Organomet. Polym., 2010, 20, 534-543.
20. A. Raghuvanshi, N. J. Dargallay, M. Knorr, L. Viau, L. Knauer and C. Strohmann, J. Inorg. Organomet. Polym., 2017, 27, 2000-3000.
21. A. Schlachter, L. Viau, D. Fortin, L. Knauer, C. Strohmann, M. Knorr and P. D. Harvey, Inorg. Chem., 2018, 57, 13564-13576.
22. A. Raghuvanshi, M. Knorr, L. Knauer, C. Strohmann, S. Boullanger, V. Moutarlier and L. Viau, Inorg. Chem., 2019, 58, 5753-5775.
23. L. Knauer, M. Knorr, L. Viau and C. Strohmann, Acta Crystallogr. E, 2020, 76, 3841.
24. D. Seebach, N. R. Jones and E. J. Corey, J. Org. Chem., 1968, 33, 300-305.
25. R. A. Ellison and W. D. Woessner, J. Chem. Soc., Chem. Commun., 1972, DOI: 10.1039/C39720000529, 529-530.
26. H. T. Kalff and C. Romers, Acta Crystallogr. Sect. A, 1966, 20, 490-496.
27. A. Bonnot, M. Knorr, C. Strohmann, C. Golz, D. Fortin and P. Harvey, J. Inorg. Organomet. Polym., 2015, 25, 480-494.
28. A. Schlachter, A. Lapprand, D. Fortin, C. Strohmann, P. D. Harvey and M. Knorr, Inorg. Chem., 2020, 59, 3686-3708.
29. A. Bonnot, M. Knorr, F. Guyon, M. M. Kubicki, Y. Rousselin, C. Strohmann, D. Fortin and P. D. Harvey, Cryst. Growth Des., 2016, 16, 774-788.
30. T. H. Kim, H. Yang, G. Park, K. Y. Lee and J. Kim, Chem. - Asian J., 2010, 5, 252255.
31. O. Veselska, D. Podbevšek, G. Ledoux, A. Fateeva and A. Demessence, Chem. Соттип., 2017, 53, 12225-12228.
32. J. Troyano, Ó. Castillo, P. Amo-Ochoa, J. I. Martínez, F. Zamora and S. Delgado, CrystEngComm, 2019, 21, 3232-3239.
33. M. Sakakibara, Y. Yonemura, Z. Tanaka, S. Matsumoto, K. Fukuyama, H. Matsuura and H. Murata, J. Mol. Struct., 1980, 69, 53-58.
34. L. Vigo, P. Salin, R. Oilunkaniemi and R. S. Laitinen, Acta Crystallogr. E, 2008, E64, m809
35. G. Singh, S. Bali, A. K. Singh, J. E. Drake, C. L. B. Macdonald, M. B. Hursthouse and M. E. Little, Inorg. Chim. Acta, 2005, 358, 912-918.
36. Y. C. Cui, G. B. Che, X. F. Lin and C. B. Liu, Acta Crystallogr. E, 2006, E62, m1595-m1596.
37. G. B. Che, C. B. Liu, Y. C. Cui and C. B. Li, Acta Crystallogr. E, 2005, E61, m2704-m2705.
38. Q. Yu, Y. Tao and J.-R. Li, Acta Crystallographica Section E, 2006, 62, m613m614.
39. J. B. Gong, L. N. Zhou and W. Chen, Acta Crystallogr. E, 2006, E62, m440-m441.
40. M. E. Carnes, N. R. Lindquist, L. N. Zakharov and D. W. Johnson, Cryst. Growth Des., 2012, 12, 1579-1585.
41. M. Knorr, H. N. Peindy, F. Guyon, H. Sachdev and C. Strohmann, Z. Anorg. Allg. Chem., 2004, 630, 1955-1961.
42. H. N. Peindy, F. Guyon, M. Knorr and C. Strohmann, Z. Anorg. Allg. Chem., 2005, 631, 2397-2400.
43. V. Bertini, F. Lucchesini, M. Pocci and S. Alfei, Tetrahedron, 2005, 61, 9519-9526.
44. X. Zhang, Y. Xu, P. Guo and X. Qian, New J. Chem., 2012, 36, 1621-1625.
45. S. Yang, W. Yang, Q. Guo, T. Zhang, K. Wu and Y. Hu, Tetrahedron, 2014, 70, 8914-8918.
46. M. H. Habibi, S. Tangestaninejad, M. Montazerozohori and I. MohamadpoorBaltork, Molecules, 2003, 8, 663-669.
47. J. A. W. Dalziel, M. J. Hitch and S. D. Ross, Spectrochim. Acta, Part A, 1969, 25, 1055-1060.
48. R. Fraginals, N. Barba-Behrens and R. Contreras, Spectrochim. Acta, Part A, 1989, 45A, 581-584.
49. C. G. Hartinger, A. A. Nazarov, V. Chevchenko, V. B. Arion, M. Galanski and B. K. Keppler, Dalton Trans., 2003, 3098-3102.
50. K. Brodersen, G. Liehr and W. Rölz, Z. Anorg. Allg. Chem., 1977, 428, 166-172.
51. K. Brodersen, J. Hoffmann and R. Erdmann, Z. Anorg. Allg. Chem., 1981, 482, 217-225.
52. N. Galesic, M. Herceg and D. Sevdic, Acta Crystallogr. Sect. C, 1986, 42, 565-568.
53. J. Y. Lee, S. Lee, M. Jo, H. Lee, K. M. Park and S. S. Lee, Bull. Korean Chem. Soc., 2009, 30, 961-964.
54. S. J. Lee, J. H. Jung, J. Seo, I. Yoon, K.-M. Park, L. F. Lindoy and S. S. Lee, Org. Lett., 2006, 8, 1641-1643.
55. H. Müller, A. Kelling, U. Schilde and H.-J. Hold, Z. Naturforsch., B: Chem. Sci., 2009, 64, 1003-1015.
56. S. Chandrasekhar, D. Chopra, K. Gopalaiah and T. N. Guru Row, J. Mol. Struct., 2007, 837, 118-131.
57. X. Zhang, W. Yu, Y. Xie, Q. Zhao and Y. Tian, Inorg. Chem. Commun., 2003, 6, 1338-1340.
58. U. Bodensieck, P. Braunstein, M. Knorr, M. Strampfer, M. Bénard and C. Strohmann, Angew. Chem. Int. Ed., 1997, 36, 2758-2761.
59. G. Kang, Y. Jeon, K. Y. Lee, J. Kim and T. H. Kim, Cryst. Growth Des., 2015, 15, 5183-5187.
60. A. Schlachter, K. Tanner, R. Scheel, P.-L. Karsenti, C. Strohmann, M. Knorr and P. D. Harvey, Inorg. Chem., 2021, DOI: 10.1021/acs.inorgchem.1c01856, 1352813538.
61. D. B. Leznoff, N. D. Draper and R. J. Batchelor, Polyhedron, 2003, 22, 1735-1743.
62. J.-L. Song, J.-G. Mao, H.-Y. Zeng and Z.-C. Dong, Eur. J. Inorg. Chem., 2004, 2004, 538-543.
63. S. Kim, A. D. Siewe, E. Lee, H. Ju, I.-H. Park, J. H. Jung, Y. Habata and S. S. Lee, Cryst. Growth Des., 2018, 18, 2424-2431.
64. P. D. Harvey and M. Knorr, Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1174-1197.
65. J. Y. Lee, S. Y. Lee, W. Sim, K.-M. Park, J. Kim and S. S. Lee, J. Am. Chem. Soc., 2008, 130, 6902-6903.
66. M. Knorr, F. Guyon, A. Khatyr, C. Daeschlein, C. Strohmann, S. M. Aly, A. S. Abd-El-Aziz, D. Fortin and P. D. Harvey, Dalton Trans., 2009, 948-955.
67. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
68. G. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3-8.
69. G. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3-8.
