
HAL Id: hal-03646966
https://hal.science/hal-03646966v1

Submitted on 20 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theory-inspired Parameter Control Benchmarks for
Dynamic Algorithm Configuration

André Biedenkapp, Nguyen Dang, Martin Krejca, Frank Hutter, Carola Doerr

To cite this version:
André Biedenkapp, Nguyen Dang, Martin Krejca, Frank Hutter, Carola Doerr. Theory-inspired
Parameter Control Benchmarks for Dynamic Algorithm Configuration. GECCO ’22: Genetic
and Evolutionary Computation Conference, Jul 2022, Boston, United States. pp.766–775,
�10.1145/3512290.3528846�. �hal-03646966�

https://hal.science/hal-03646966v1
https://hal.archives-ouvertes.fr

Theory-inspired Parameter Control Benchmarks
for Dynamic Algorithm Configuration

André Biedenkapp
University of Freiburg
Freiburg, Germany

Nguyen Dang
University of St Andrews

St Andrews, United Kingdom

Martin S. Krejca
Sorbonne Université, CNRS, LIP6

Paris, France

Frank Hutter
University of Freiburg, Germany

Bosch Center for Artificial Intelligence

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT

It has long been observed that the performance of evolutionary al-
gorithms and other randomized search heuristics can benefit from a
non-static choice of the parameters that steer their optimization be-
havior. Mechanisms that identify suitable configurations on the fly
(“parameter control”) or via a dedicated training process (“dynamic
algorithm configuration”) are thus an important component of mod-
ern evolutionary computation frameworks. Several approaches to
address the dynamic parameter setting problem exist, but we barely
understand which ones to prefer for which applications. As in classi-
cal benchmarking, problem collections with a known ground truth
can offer very meaningful insights in this context. Unfortunately,
settings with well-understood control policies are very rare.

One of the few exceptions for which we know which parameter
settingsminimize the expected runtime is the LeadingOnes problem.
We extend this benchmark by analyzing optimal control policies
that can select the parameters only from a given portfolio of possible
values. This also allows us to compute optimal parameter portfolios
of a given size. We demonstrate the usefulness of our benchmarks
by analyzing the behavior of the DDQN reinforcement learning
approach for dynamic algorithm configuration.

CCS CONCEPTS

• Computing methodologies→ Randomized search.
ACM Reference Format:

André Biedenkapp, NguyenDang,Martin S. Krejca, FrankHutter, and Carola
Doerr. 2022. Theory-inspired Parameter Control Benchmarks for Dynamic
Algorithm Configuration. In Genetic and Evolutionary Computation Confer-
ence (GECCO ’22), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3512290.3528846

1 INTRODUCTION

It is well known that the performance of evolutionary algorithms
and other black-box optimization heuristics can benefit quite sig-
nificantly from a non-static choice of the (hyper-)parameters that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528846

determine their search behavior [4, 10, 18, 32, 37, 42, 47, 49]. Not
only does a dynamic choice of the parameters allow tailoring the
search behavior to the problem instance at hand, but it can also be
used to leverage complementarity between different search strate-
gies during the different stages of the optimization process, e.g., by
moving from a global to a local generation of solution candidates.

Mechanisms to identify suitable dynamic parameter values are
intensively studied since decades, see [2, 19, 38] for surveys. Most
works focus on generally applicable mechanisms to control the
parameters on-the-fly, e.g., using self-adaptation [3], success-based
parameter update strategies such as the one-fifth success rule [52],
co-variance matrix adaptation [32], or reinforcement learning [15]
(RL). However, for many practical applications of black-box opti-
mization techniqueswe also have the possibility to learn a parameter
control policy via a dedicated training process, either because we
anyway need to solve several instances of the same problem or
because we can generate instances that are similar to the ones that
we expect to see in the future application. Our hope is then to
derive structural insight into the algorithms’ behavior that can be
leveraged to choose their parameters in a more informed manner,
just as we are used to do it for classic parameter tuning [8, 34, 58].

The study of parameter control schemes with dedicated offline
training is recently enjoying growing attention in the broader AI
community, where optimization heuristics are considered an inter-
esting application of AutoML techniques [36]. Examples include
the training of a controller for the mutation strategy employed
by differential evolution optimizing the CEC2015 problem collec-
tion [57] and learning to control the mutation step-size parameter
of CMA-ES on the BBOB benchmarks [56]. The problem of training
parameter control policies for strong performance on a distribution
of instances was coined dynamic algorithm configuration (DAC)
in [6], where it is formulated as a contextual Markov Decision Pro-
cess (see Section 4.1 for details). To investigate the functioning and
the performance of different DAC approaches, a dedicated library
of benchmark problems, DACBench, was suggested in [27].

With its rich history of parameter control studies, evolutionary
computation has numerous exciting benchmark problems to offer
for DAC, e.g., all the problems where dynamic parameter settings
have been shown to outperform static ones. One such problem that
is particularly well understood is the dynamic fitness-dependent
selection of the mutation rates of greedy evolutionary algorithms
maximizing the LeadingOnes problem (see Section 2). In particular,
we know exactly how the expected runtime of these algorithms
depends on the mutation rates used during the run, and this is not

https://doi.org/10.1145/3512290.3528846
https://doi.org/10.1145/3512290.3528846

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

only in asymptotic terms, but also for concrete problem dimen-
sions 𝑛 [9, 17, 25, 60]. This feature has promoted LeadingOnes as
an important benchmark for parameter control studies, both for
empirical [21, 25] and for rigorously proven [20, 23, 46] results.

Our in-depth knowledge for LeadingOnesmakes the problem an
ideal candidate for the in-depth empirical study of the pros and cons
of DAC methods: not only does the setting offer relatively fast eval-
uation times, but we also benefit from a ground truth against which
we can compare the policies that are learned during the offline train-
ing phase. Existing DAC benchmarks that give access to ground
truth either abstract away the actual optimization process and re-
place it with a simple surrogate or they replace problem instances
with unrealistic, artificial proxies. Further, many traditional deep
RL benchmarks have deterministic environments, which makes
them less representative for the configuration of metaheuristics.
LeadingOnes can therefore fill an important gap.

Our Contributions. We demonstrate in this work how the mu-
tation control problem for LeadingOnes can be used to investigate
existing DAC approaches and their capabilities. We evaluate a com-
monly used RL approach using neural networks (dubbed DDQN)
and investigate how it scales with different problem dimensions.

Each problem dimension of LeadingOnes provides us with a
different problem instance on which we can compare the results
of the DAC process to the ground truth, i.e., the optimal strategy.1
To enrich the problem collection further, we also compute optimal
control policies for settings in which the algorithms are only al-
lowed to select their parameter values from a given portfolio K of
possible values (Table 2). These results generalize previous works of
Lissovoi et al. [46], who analyzed optimal policies for the portfolios
that are composed of the integers 𝑖 ∈ [1, 𝑘] ∩ N for 𝑘 ∈ Θ(1).

We observe for smaller settings, in terms of problem size 𝑛 and
portfolio size 𝑘 , that the employed DAC method is capable of learn-
ing optimal policies quickly (Section 4.3). However, increasing ei-
ther 𝑛 or 𝑘 can drastically increase the learning difficulty, resulting
in potentially sub-optimal policies or even no successful learning
within the given budget and hyperparameters setting (Figure 8).

Of independent interest for the runtime analysis community
are the optimal parameter portfolios (Table 1) that we compute
for a number of different combinations of problem dimension 𝑛,
and portfolio size 𝑘 . While these optimal portfolios have a large
intersection with the initial_segment portfolio investigated by
Lissovoi et al. [46], the optimal performance achieved with this
portfolio is worse than the performance achieved with the portfolio
of exponentially growing values {2𝑖 | 𝑖 ∈ [0, 𝑘 − 1] ∩ N}.

Outline. In Section 2, we introduce our benchmark, consisting
of the LeadingOnes problem as well as the (1+1) RLS algorithm. In
Section 3, we explain how to derive optimal policies for a given port-
folio. Further, we analyze these policies with respect to increasing
portfolio and dimension size. In Section 4, we analyze empirically
how well optimal policies can be learned when using the DDQN
reinforcement learning approach. Like in Section 3, we consider
different portfolios as well as increasing portfolio and dimension
sizes. Last, we conclude our work in Section 5.

1All optimality claims made here and in the remainder of the paper are always with
respect to expected runtime. This is also our primary performance measure, i.e., when
we speak of the performance of an algorithms, we refer to the expected number of
fitness evaluations made before an optimal solution is evaluated for the first time.

Algorithm 1: The (1+ 1) RLSwith state space S, portfolio
K ⊆ [0..𝑛], and parameter selection policy 𝜋 : S → K ,
maximizing a function 𝑓 : {0, 1}𝑛 → R. See also Section 2.
1 𝑥 ← a sample from {0, 1}𝑛 chosen uniformly at random;
2 for 𝑡 ∈ N do

3 𝑠 ← current state of the algorithm;
4 𝑟 ← 𝜋 (𝑠);
5 𝑦 ← flip𝑟 (𝑥);
6 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦;

Code and Data. Our code and results are on GitHub [7].

2 PARAMETRIZED RLS FOR LEADINGONES

We consider the optimization of the LeadingOnes problem via vari-
ants of randomized local search, which we present in the following.
We note that we use, for all 𝑎, 𝑏 ∈ N, the notation [𝑎..𝑏] B [𝑎, 𝑏]∩N.

Parameterized Randomized Local Search. We analyze a pa-
rameterized version of the classic randomized local search (RLS)
algorithm. While RLS searches only in the direct neighborhood of
a current-best solution, its parameterized cousin, the (1 + 1) RLS
(Algorithm 1), can sample solution candidates at larger distances.

The (1 + 1) RLS maintains a single bit string (the current solu-
tion), denoted by 𝑥 in Algorithm 1, initially drawn uniformly at
random from {0, 1}𝑛 . Iteratively, the (1 + 1) RLS generates a new
sample 𝑦 (the offspring) from the current solution 𝑥 , and it replaces
𝑥 with 𝑦 if the the objective value 𝑓 (𝑦) (its fitness) is at least as
large as 𝑓 (𝑥). The offspring𝑦 is generated by the operator flip𝑟 (the
mutation), which, given a parameter 𝑟 ∈ [0..𝑛], inverts exactly 𝑟

pairwise different bits in 𝑦, chosen uniformly at random from all
possible 𝑟 -subsets of the index set [1..𝑛]. We call the parameter 𝑟
of the mutation the search radius. In each iteration, the (1 + 1) RLS
chooses the search radius to apply based on a function 𝜋 that we
call a (parameter selection) policy, given some state of the algorithm.
The policy 𝜋 only returns search radii from a certain setK ⊆ [0..𝑛],
which we call the portfolio of the algorithm. Note that the portfo-
lio K and the policy 𝜋 are part of the input of the (1 + 1) RLS.

Although information-rich states can prove useful [12], we only
have theoretical guarantees for fitness-dependent policies, which use
exclusively the fitness of the current solution. Doerr and Lengler [24]
discuss why it is hard to derive more general bounds. Thus, we
assume in this article that the policies are fitness-dependent.

Our key performance criterion is the number of iterations until
the (1 + 1) RLS finds a global optimum of its fitness function for
the first time, i.e., the smallest 𝑡 ∈ N such that 𝑥 is optimal at
the beginning of that iteration. We refer to this number as the
algorithm’s runtime, noting that it is a random variable.

LeadingOnes. The LeadingOnes problem is defined over bit
strings of length𝑛 ∈ N. It asks to maximize the number of leading 1s
of a bit string; the all-1s string is the unique global maximum.
Formally, LeadingOnes : {0, 1}𝑛 → [0..𝑛], 𝑥 ↦→ ∑

𝑖∈[𝑛]
∏

𝑗 ∈[𝑖] 𝑥 𝑗 .
LeadingOnes is a special case of maximizing the longest prefix

of agreement with a hidden target bit string 𝑧 ∈ {0, 1}𝑛 , evaluated
with respect to a hidden permutation 𝜎 that shuffles the bit posi-
tions, formally defined as LeadingOnes𝑧,𝜎 : {0, 1}𝑛 → [0..𝑛], 𝑥 ↦→

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

max{𝑖 ∈ [0..𝑛] | ∀𝑗 ∈ [𝑖] : 𝑥𝜎 (𝑗) = 𝑧𝜎 (𝑗) }. Since the (1 + 1) RLS is
unbiased in the sense of Lehre and Witt [45], its performance is
identical on each of these problem instances and we thus restrict our
attention to the classic LeadingOnes instance mentioned above.

Although LeadingOnes𝑧,𝜎 can be solved using Θ(𝑛 log log𝑛)
queries in expectation [1], this runtime cannot be achieved with
unary unbiased algorithms such as the (1 + 1) RLS. Their runtime
grows at least quadratically in the dimension [45]. The same bound
of Ω(𝑛2) also applies to all (1+1) elitist algorithms [24], of which the
(1 + 1) RLS is a representative as well. The expected runtime of the
classic RLS with constant search radius 1 is 𝑛2/2 [17, Theorem 5].

3 OPTIMAL POLICIES AND PORTFOLIOS FOR

LEADINGONES

The exact runtime distribution for LeadingOnes is well understood
for the (1 + 1) RLS [17, Sec. 2.3]. Its expected runtime is, besides its
initialization, entirely determined by how quickly it improves the
fitness of its current solution. More formally, the most important
values are the𝑛 different probabilities (𝑝𝑖)𝑖∈[0..𝑛−1] , where, for each
𝑖 ∈ [0..𝑛−1], the value 𝑝𝑖 denotes the probability that the (1+1) RLS
finds a strict improvement if the current solution has fitness 𝑖 .
Choosing for each 𝑖 the search radius so that 𝑝𝑖 is maximized results
in an (1 + 1) RLS instance with optimal runtime on LeadingOnes.

In more detail, for each 𝑖 ∈ [0..𝑛 − 1] and each 𝑟 ∈ [0..𝑛], let
𝑞(𝑟, 𝑖) denote the probability that the (1 + 1) RLS finds a strict
improvement if the current solution has fitness 𝑖 and flips exactly 𝑟
bits during mutation. For LeadingOnes, it holds for all 𝑖 ∈ [0..𝑛−1]
and all 𝑟 ∈ [0..𝑛] that [17, Sec. 2.3]

𝑞(𝑟, 𝑖) = 𝑟

𝑛
·
∏

𝑗 ∈[1..𝑟−1]
𝑛 − 𝑖 − 𝑗

𝑛 − 𝑗
. (1)

An important property of 𝑞 that allows determining optimal
policies for various portfolios of the (1 + 1) RLS is that, for all
𝑖 ∈ [0..𝑛 − 1] and 𝑟 ∈ [0..𝑛 − 1], it holds that [17, Sec. 2.3]

𝑞(𝑟, 𝑖) ≤ 𝑞(𝑟 + 1, 𝑖) if and only if 𝑖 ≤ (𝑛 − 𝑟)/(𝑟 + 1). (2)

In Section 3.1, we discuss what an optimal policy looks like for
the well understood case when permitting all possible search radii
from 0 to 𝑛. We refer to this setting as the full portfolio. Afterward,
we explain in Section 3.2 how to calculate optimal policies when
the portfolio does not contain all search radii, that is, when it is
restricted. Last, in Section 3.3, we compare optimal policies of differ-
ent portfolios, including the optimal one, which, given a portfolio
size and a problem dimension, minimizes the expected runtime.

Generalizations. Our analyses are easily extended to the (1 +
𝜆) RLS, the variant of the (1 + 1) RLS generating 𝜆 ∈ N≥1 offspring
in each iteration. For it, equation (1) looks slightly different, as it
includes 𝜆, but all other arguments work out in the same way.

3.1 Full Portfolio

In the setting ofK = [0..𝑛], an optimal policy 𝜋opt satisfies [17, 25]

𝜋opt : 𝑖 ↦→ ⌊𝑛/(𝑖 + 1)⌋ (3)

as a direct consequence of property (2), as it can be proven that this
policy chooses for each fitness 𝑖 the radius 𝑟 that maximizes 𝑞(𝑟, 𝑖).

Note that policy (3) is monotonically decreasing. That is, the
higher the fitness of the current individual, the fewer bits are flipped.

This entails that not all search radii are used. For example, for a
fitness of 0, it is optimal to flip all 𝑛 bits. For a fitness of 1, it is
optimal to flip exactly ⌊𝑛/2⌋ bits. Thus, 𝜋opt skips over all search
radii in the range [⌊𝑛/2⌋ + 1..𝑛− 1]. We further note that using 𝜋opt
results in an expected runtime of about 0.39𝑛2 on LeadingOnes and
that using only the search radius 1 results in an expected runtime
of 0.5𝑛2 [17, Sec. 2.3]. Thus, the expected runtime of any portfolio
with search radius 1, using an optimal policy, falls into this range.

3.2 Restricted Portfolio Sizes

For K ⊊ [0..𝑛], the optimal policy 𝜋
(K)
opt strongly depends on the

search radii inK . Thus, in general, the policy cannot follow an easy
formula as given by 𝜋opt in policy (3) but needs to be adjusted to the
specific values available in K . Further, if 1 ∉ K , then the expected
runtime of an algorithm usingK can be infinite (in particular when
the probability of creating a solution with fitness 𝑛 − 1 is non-zero,
as such a solution can only be improved with search radius 1). Thus,
we assume in the following always that 1 ∈ K .

3.2.1 Determining an optimal policy. Let 𝑖 ∈ [0..𝑛 − 1] denote the
fitness of the current individual, and assume that 𝜋opt (𝑖) ∉ K . Due
to property (2), 𝑞 is unimodal in its first component. Thus, the best
possible search radius in K is one of the at most two values closest
to 𝜋opt (𝑖), i.e., 𝜋 (K)opt (𝑖) is either 𝑟

sup
𝑖
B max{𝑟 ∈ K | 𝑟 < 𝜋opt (𝑖)}

or 𝑟 inf
𝑖
B min{𝑟 ∈ K | 𝑟 > 𝜋opt (𝑖)}. Thus, it holds that

𝜋
(K)
opt (𝑖) = argmax

𝑟 ∈{𝑟 sup
𝑖

,𝑟 inf
𝑖
} 𝑞(𝑟, 𝑖). (4)

Note that this implies that 𝜋 (K)opt is monotonically decreasing, as, for
all 𝑖, 𝑗 ∈ [0..𝑛 − 1], 𝑖 < 𝑗 , it holds that 𝑟 sup

𝑖
≥ 𝑟

sup
𝑗

and 𝑟 inf
𝑖
≥ 𝑟 inf

𝑗
.

LetD denote the vector of the elements ofK in decreasing order.
Themonotonicity of equation (4) allows simplifying the calculations
for 𝜋 (K)opt by only determining the fitness values for which the the
probability of improvement 𝑞 for two consecutive elements in D
changes. That is, we only need to determine for all 𝑖 ∈ [1..|K | − 1]
the largest 𝑗 ∈ [0..𝑛] such that 𝑞(D𝑖 , 𝑗) ≥ 𝑞(D𝑖+1, 𝑗). We call each
of these |K | − 1 points 𝑗 a breaking point. We note that breaking
points do not need to be unique. Algorithm 2 provides a pseudo code
for how to determine the breaking points for a given portfolio K .
Note that lines 4 to 6 can be improved by applying a binary search
that returns the smallest index at which the condition from line 5
holds. This is avoided here in favor of simplicity.

Given the breaking points (𝑏𝑖)𝑖∈[1.. |K |−1] of a portfolio K and
defining 𝑏0 = −1 and 𝑏 |K | = 𝑛−1, the optimal policy 𝜋 (K)opt is easily
calculated by noting that, for all 𝑖 ∈ [0..|K |] and all 𝑗 ∈ [𝑏𝑖+1..𝑏𝑖+1],
the 𝑖-th largest value in K is the optimal search radius when the
current individual has fitness 𝑗 .

3.3 Comparing Optimal Policies

We compare different portfolios of the same size 𝑘 , and we compare
their resulting optimal policies calculated as stated at the end of
Section 3.2.1. To this end, we consider the following four portfolios.
For 𝑛 ∈ N≥2 and 𝑘 ∈ [2..𝑛], we define
• powers_of_2 to be {2𝑖 | 2𝑖 ≤ 𝑛 ∧ 𝑖 ∈ [0..𝑘 − 1]},
• initial_segment to be [1..𝑘],

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

Algorithm 2: The algorithm to compute, for a given port-
folio K with 1 ∈ K , the breaking points (𝑏𝑖)𝑖∈[1.. |K |−1] of
the optimal policy 𝜋

(K)
opt , as discussed in Section 3.2. The

function 𝑞 is defined in equation (1).
1 D ← K in descending order;
2 𝑐 ← 0;
3 for 𝑖 ∈ [1..|K | − 1] do
4 for 𝑗 ∈ [1..𝑛] do
5 if 𝑞(D𝑖 , 𝑗) < 𝑞(D𝑖+1, 𝑗) then break the loop over 𝑗 ;
6 𝑐 ← 𝑗 ;
7 𝑏𝑖 ← 𝑐;

Table 1: The optimal portfolios for various sizes 𝑘 , for prob-

lem sizes 𝑛 ∈ {50, 100}, and their expected runtimes (by 𝑛2).
For 𝑘 = 8,𝑛 = 100, computation timed out. See also Section 3.3.

Optimal portfolio/Expected runtime by 𝑛2
𝑘 𝑛 = 50 𝑛 = 100
2 1, 4 0.409832 1, 4 0.409897
3 1, 2, 6 0.39568 1, 2, 6 0.395987
4 1, 2, 4, 11 0.3911372 1, 2, 4, 11 0.391403
5 1, 2, 3, 6, 17 0.3895904 1, 2, 3, 6, 16 0.389892
6 1, 2, 3, 5, 9, 21 0.3888308 1, 2, 3, 5, 9, 23 0.389109
7 1, 2, 3, 4, 6, 12, 29 0.388452 1, 2, 3, 4, 6, 11, 27 0.3887584
8 1, 2, 3, 4, 6, 9, 19, 50 0.3882052 – –

• evenly_spread to be {𝑖 · ⌊𝑛/𝑘⌋ + 1 | 𝑖 ∈ [0..𝑘 − 1]}, and
• optimal, which we determine by a brute-force approach
over all 𝑘-subsets of 𝑛 that contain the search radius 1. The
portfolio with the lowest expected runtime among all of
these subsets is considered optimal.

Note that powers_of_2 is only defined for values 𝑘 of at most
⌊log2 𝑛⌋. For any larger value of 𝑘 , it is not defined. Last, note that
although there is only one optimal portfolio, all policies discussed
in this section are optimal with respect to their specified portfolio.

The portfolio optimal. Table 1 shows optimal portfolios for𝑛 ∈
{50, 100} and for 𝑘 ∈ [2..8]. For these cases, the portfolio consists
of the interval [1..⌈𝑘/2⌉] and of some larger values that seem to
grow exponentially. That is, optimal is a mixture of initial-
_segment and a variant of powers_of_2. Interestingly, for 𝑘 = 8,
the portfolio contains the search radius 50 = 𝑛, which is only
relevant if the current individual has a fitness of 0. Due to the
uniform initialization, we see this value with 50 %, and we transition
to a different state with probability 1 by flipping all bits, so that
the difference between the optimal expected runtime that can be
achieved with a portfolio of size 𝑘 = 8 over that for 𝑘 = 7 is
at most 0.5. Further, optimal is identical for 𝑛 ∈ {50, 100} for
𝑘 ∈ {2, 3, 4}. For larger 𝑘 , some larger search radii change slightly.
This suggests that the generals range of optimal search radii to use
is only slightly affected by the problem size.

Optimal policies. Table 2 shows optimal policies (depicted as
their relative breaking points) for different portfolio sizes 𝑘 and
problem dimensions 𝑛. For powers_of_2 and initial_segment,

Table 2: The breaking points (Algorithm 2) of different port-

folios (Section 3.3) of size 𝑘 ∈ {3, 4} for 𝑛 ∈ {50, 100}. Each
breaking point is divided by𝑛. Recall that the breaking points

refer to the portfolio sorted in descending order.

𝑘 Portfolio 𝑛 = 50 𝑛 = 100
3 optimal 0.22, 0.48 0.23, 0.49

powers_of_2 0.26, 0.48 0.28, 0.49
initial_segment 0.3, 0.48 0.32, 0.49
evenly_spread 0, 0.12 0, 0.08

4 optimal 0.1, 0.26, 0.48 0.12, 0.28, 0.49
powers_of_2 0.14, 0.26, 0.48 0.15, 0.28, 0.49
initial_segment 0.22, 0.3, 0.48 0.24, 0.32, 0.49
evenly_spread 0, 0.02, 0.16 0, 0.01, 0.1

when increasing 𝑘 , the portfolio is extended by adding larger search
radii. This is reflected in their respective (optimal) portfolio, as the
breaking points are also extended. In contrast, for evenly_spread,
a portfolio of one size is not an extension of one of a smaller size.
This is reflected in the breaking points, which are not extended
for increasing 𝑘 . For all cases of 𝑛 and 𝑘 depicted, powers_of_2
and initial_segment share at least half of their breaking points
with optimal. This follows also from the results of Table 1, which
shows that the high overlap of optimal with initial_segment
continues, whereas the onewith powers_of_2 is not that prominent
for larger 𝑘 . Since all portfolios except for evenly_spread contain
at least the search radii 1 and 2, the optimal policies also utilize the
full range of these radii, following policy (3). For evenly_spread,
mostly the search radius 1 is important.

Figure 1 investigates the case of 𝑘 = 3 for 𝑛 = 50 more closely.
We computed for all

(50
2
)
portfolios of size 3 that contain the search

radius 1 the expected runtime of an optimal policy. The figure
depicts cumulative data of these computations. Interestingly, the
curve follows an almost linear trend, except for the last 5%, where
the increase in the expected runtime is diminishing. This suggests
that choosing portfolios uniformly at random has a fair chance of
resulting in a good expected runtime of its optimal policy.

In Figure 2, we take a closer look at the impact of the portfolio
size 𝑘 on the expected runtime. It compares the expected runtimes
of all four different portfolios when using an optimal policy. Interest-
ingly, although initial_segment shares a large part of its search
radii with optimal (Table 1), the expected runtime of powers_of_2
is better than that of initial_segment. This suggests that having
some larger search radii is more beneficial than covering only small
search radii. However, the comparably bad expected runtime of
evenly_spread shows that having more than a single small search
radius (e.g., 1 and 2) drastically improves the expected runtime.

4 ALGORITHM CONFIGURATIONWITH

REINFORCEMENT LEARNING

Parameter control with a dedicated offline training phase has long
been studied [see e.g., 10, 39, 40, 57, 63]. Recently it gained attention
in the broader AI community where dynamic algorithm configura-
tion (DAC) [6] was proposed as a generalization over algorithm con-
figuration [35] and algorithm selection [53]. In DAC, reinforcement

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

0.4 0.42 0.44 0.46 0.48

0

0.2

0.4

0.6

0.8

1

Powers of 2 (0.398219)
Initial segment (0.40422)

Evenly spread
(0.449672)

E[Topt]/n
2

re
la
ti
ve

n
o.

of
p
or
tf
ol
io
s
w
it
h
an

op
ti
m
al

p
ol
ic
y
w
it
h
ex
p
ec
te
d
ru
n
ti
m
e
≤

E
[T

o
p
t]

Figure 1: The cumulative fraction of howmany out of all port-
folios have at most the expected (relative) runtimes stated by

the 𝑥-axis, for 𝑛 = 50. All portfolios have cardinality exactly 3
and contain the search radius 1. Their expected runtime is de-

termined by applying an optimal policy. See also Section 3.3.

2 3 4 5 6 7 8 10 15 20

0.4

0.42

0.44

0.46

k

E
[T

o
p
t]
/n

2

Powers of 2
Initial segment
Evenly spread
Optimal portfolio

Figure 2: The expected runtimes for the optimal policies of

the stated portfolios for 𝑛 = 50. The runtime is divided by 𝑛2.
See also Section 3.3. Note that powers_of_2 is not defined for

𝑘 > 6. Further, we only computed optimal up to 𝑘 = 8.

learning (RL) is predominantly used to learn dynamic configuration
policies. In the DAC setting, our proposed benchmark is of particu-
lar interest as it readily allows us to investigate important questions
such as: i) Can DAC learn optimal policies? ii) How does the choice
of elements of the portfolio K influence the learning procedure?
iii) How does the size of K influence the learning procedure? iv)
How does the problem size influence the learning procedure?

We recap the most important definitions for DAC in Section 4.1.
The experimental setup of our work is summarized in Section 4.2.
Results for small portfolios |K | ∈ {3, 4, 5} and for fixed dimension
𝑛 = 50 are presented in Section 4.3 and results for broader ranges
of portfolio sizes and dimensions are discussed in Section 4.4.

4.1 The DAC Framework

The process of dynamically adapting hyperparameters is modeled
as a contextual Markov Decision Process (cMDP) [31]. An MDP
M is a tuple (S,A,T ,R) with state space S, action spaceA, tran-
sition function T : S × A × S → [0, 1], and reward function
R : S × A → R. The transition function describes the dynam-
ics of the process and gives the probability of reaching a state 𝑠 ′

when playing action 𝑎 in state 𝑠 . Similarly, the reward function de-
scribes the reward obtained by playing action 𝑎 in 𝑠 . Depending on
the system an MDP describes, the reward function can be stochas-
tic. A cMDP extends this formalism through the use of so-called
context information 𝑖 ∼ I. The context influences the behavior of
the reward and transition functions but leaves the state and action
spaces unchanged. Thus a cMDPM = {M𝑖 }𝑖∼I is a collection
of MDPs with shared state and action spaces, but with individual
transition and reward functions. In DAC, the state space describes
the internal behavior of an algorithm𝐴 (e.g., internal statistics of𝐴)
when running it on an instance 𝑖 (i.e., the context) and the action
space is given by the possible values of parameters of𝐴. In practice,
the transition and reward functions are unknown and not trivial
to approximate or learn. Still, there exist solution approaches for
MDPs that do not need direct access to these.

Reinforcement learning (RL) [61] has been demonstrated to be
able to learn dynamic configuration policies directly from data [see
e.g., 5, 6, 15, 16, 43, 44, 51, 54, 57]. In an offline learning phase, an
RL agent interacts with its environment (i.e., the algorithm that is
being configured) to learn which actions lead to the highest reward
over multiple episodes (trajectory until a goal state or a maximal
step-limit is reached). In a trial-and-error fashion, an RL agent
iteratively observes the current state 𝑠𝑡 of the environment at time
𝑡 . Based on this observation it selects an action 𝑎𝑡 which advances
the environment to the next state 𝑠𝑡+1 and produces a reward signal
𝑟𝑡+1. This information is sufficient to learn the value of each state
and how to select the next action to maximize the expected reward.

In the commonly used Q-learning approach [64] the goal is to
learn the Q-function Q : S × A → R that maps a state–action
pair to the cumulative future reward that is received after playing
an action 𝑎 in state 𝑠 . The Q-function can be learned in a typical
error correction fashion. Given a state 𝑠𝑡 and action 𝑎𝑡 , the Q-value
Q(𝑠𝑡 , 𝑎𝑡) can be updated using temporal differences (TD) as

Q(𝑠𝑡 , 𝑎𝑡) ← Q(𝑠𝑡 , 𝑎𝑡) + 𝛼
((TD-target︷ ︸︸ ︷

𝑟𝑡 + 𝛾 maxQ(𝑠𝑡+1, ·)
)
− Q(𝑠𝑡 , 𝑎𝑡)︸ ︷︷ ︸

TD-delta

)
,

where 𝛼 is the learning rate and 𝛾 is the discounting factor. The
TD-target is the reward 𝑟𝑡 incurred by playing 𝑎𝑡 in 𝑠𝑡 together
with the discounted maximal future reward. The discounting factor
determines how important future rewards are when updating the
Q-function. The TD-delta then describes how correct or wrong the
prediction was and is used to update the Q-function accordingly.
The learning rate determines the strength with which the TD-delta
updates the original prediction. A reward-maximizing policy can
then be defined by only using the learned Q-function as 𝜋 (𝑠) =
argmax𝑎∈A Q(𝑠, ·). For better exploration while learning, typically
𝜖-greedy exploration is used, where 𝜖 gives the probability that an
action 𝑎𝑡 is replaced with a randomly sampled one.

Mnih et al. [48] proposed to model the Q-function as a neural
network (referred to as deep Q-network) and showed that this al-
lowed to learn Q-functions even for high-dimensional states such
as frames of video games. van Hasselt et al. [62] showed that using
a single network when selecting the maximizing action in the TD-
target and in the prediction of the value often leads to instabilities

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

due to overestimation during training. To mitigate this, they pro-
posed to use a second copy of the weights of the neural network.
One set is used to select the maximizing action and the other is used
to predict the value. The second set of weights is kept frozen for
short periods at a time and then copied over from the first set for
increased stability of predictions. This extension is dubbed double
deep Q-network (DDQN) and generally results in overall faster
learning due to less overestimation. DDQN has been used as solu-
tion approach to DAC problems in DE [57] and AI planning [59].

4.2 Experimental Setup

Following Biedenkapp et al. [6], in our experiments we use a small
DDQN with two hidden layers and 50 units each to learn the Q-
function. The action space A is the portfolio K . We define 𝑠𝑡 =

𝑓 (𝑥𝑡) and 𝑟𝑡 = 𝑓 (𝑥𝑡) − 𝑓 (𝑥𝑡−1) − 1, where 𝑥𝑡 is the solution found
by the (1 + 1) RLS at time step 𝑡 . During the training of DDQN, we
impose a cutoff time of 0.8𝑛2 steps per episode to avoid wasting
too much time sampling with bad policies. Recall that the expected
run time of the simple setting with a constant policy 𝜋 : 𝑠 ↦→ 1 is
0.5𝑛2 [17]. The episode-cutoff time for our RL training is chosen
such that policies slightly worse than this trivial constant policy
can still be explored during the learning phase. All DDQN agents
are trained with a batch size of 2048, an 𝜖-greedy value of 0.2,
and a discount factor 𝛾 of 0.9998. The batch size determines how
many samples are used to compute the gradients when updating
the neural network. A larger batch size results in a more accurate
estimation of the gradient but takes longer to compute.

It is known that hyperparameters play a crucial role in deep RL
algorithms [33]. Tuning them is expensive and not trivial and many
purpose-built methods exist depending on the target application
[50]. It is, however, not well understood how the hyperparameters
influence the learning behavior of agents, especially outside of the
domain of video game playing. We built our choice of hyperparam-
eters on prior literature using RL for dynamic tuning and adjusted
batch size and 𝛾 based on results of a small prestudy (see [7]).

4.3 Results for 𝑛 = 50
In the first set of experiments, we consider a fixed problem size
of 𝑛 = 50 as well as the three portfolio settings initial_segment,
powers_of_2, and evenly_spread from Section 3.3. For each set-
ting, three portfolio sizes 𝑘 ∈ {3, 4, 5} are considered. The aim
is to study the impact of portfolio settings and portfolio sizes on
DDQN’s learning behaviors. For each pair of portfolio settings and
sizes, a DDQN agent is trained with a budget of 1 million time steps
and a walltime limit of 24 hours on an 8-core Intel Xeon E5-4650L
computer (2.6GHz). The best policy is chosen at the end of the
training phase and is then evaluated and compared against the
optimal policy of the same portfolio K via 2000 runs (per policy).

As shown in Figure 3, the performance of the DDQN policies
is highly comparable to the optimal ones. DDQN is able to reach
the performance of the optimal policy within 100 000 time steps in
all cases. The learned policies are also quite similar to the optimal
ones, with some slight discrepancy, as illustrated in Figure 4, where
DDQN learned policies for two example settings (evenly_spread
with 𝑘 = 3, and powers_of_2 with 𝑘 = 5).

Figure 3: Performance of DDQN and optimal policies on three

portfolio settings and three portfolio sizes (𝑛 = 50).

Figure 4: Two example DDQN best learned policies vs. the

optimal policy for the same portfolio, and the optimal policy

with unrestricted portfolio.

We now have a closer look at the training progress of each RL
agent to see how different portfolio settings and portfolio sizes
impact the learning behavior of DDQN. To this end, we evaluate
the learned policy during each DDQN training at every 2000 time
steps via 50 runs and compare it with the optimal policy. Figure 5
shows two example training progress plots of evenly_spread and
initial_segment. Although DDQN frequently reaches the opti-
mal area in both settings, there is a clear distinction between them:
for evenly_spread, DDQN’s performance constantly jumps up
and down with very high variance, while for initial_segment,
the performance progress is much smoother. To quantify these
properties of the training progress, we define two metrics for each
DDQN training run: (i) hitting ratio – the frequency of evaluations
in which the expected optimal performance is reached within 0.25 %
of its standard deviation; and (ii) ruggedness – the standard devia-
tion of performance difference between every pair of consecutively
evaluated policies. As shown in Figure 6, the RL agent gets the high-
est hitting ratios with evenly_spread, followed by powers_of_2
and initial_segment. This can be explained due to the actions
for evenly_spread being very different from each other, some of
which often perform very badly in general. Such differences can
result in strong signals received by the agent during the training
for distinguishing between good and bad policies, which can then
help speed up the learning but also causes the landscapes to be less
smooth (i.e., high ruggedness) due to the large variance of perfor-
mance between different policies. Similarly, initial_segment has
the smallest difference between actions, and the RL agent has the
lowest hitting ratios but smoother learning progress.

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

Figure 5: DDQN progress on evenly_spread and initial-
_segment. At the green dots, the learned policies reach 0.25 %
standard deviation of the optimal policy’s performance.

Figure 6: Hitting ratios and ruggedness of DDQN training

progress for three portfolio settings (𝑛 = 50).

4.4 Analyzing the Impact of Portfolio Size and

Problem Dimension

Figure 6 indicates a strong relation between portfolio sizes and
the learning ability of DDQN agents: the larger 𝑘 is, the smaller
the hitting ratios. In the second set of experiments, we investigate
further the impact of portfolio sizes and problem sizes on DDQN’s
learning behaviors.We train DDQN agents on evenly_spreadwith
a wider set of portfolio sizes 𝑘 ∈ {3, 4, 5, 6, 7, 8, 10, 15, 20} and with
two problem sizes𝑛 ∈ {50, 100}. For𝑛 = 100, we expect it to bemore
difficult for the RL agent to learn due to the larger episode lengths,
thus, the training budget is increased to 1.4 million time steps. As
shown in Figure 7, DDQN hitting ratios decrease drastically as 𝑘
increases. For 𝑛 = 100 and 𝑘 ≥ 7, the hitting ratios are very close to
zero. In fact, the performance of the learned policies for 𝑛 = 100 and
𝑘 ∈ {15, 20} is no longer competitive to the optimal ones, as shown
in Figure 8. Looking into the detailed progress of each RL run, we
find that for 𝑘 = 7, the agent barely hits the optimal policies (only 2
times over 750 evaluations), and for 𝑘 = 15, it has zero hitting rate.

The results so far indicate that we reach the learning limit of
DDQNwith the given setting. To confirm this hypothesis, we repeat

Figure 7: Hitting ratios of DDQN on evenly_spread, with 𝑛 ∈
{50, 100} and 𝑘 ∈ {3, 4, 5, 6, 7, 8, 10, 15, 20}.

Figure 8: Performance of DDQN on evenly_spread setting,

with 𝑘 ∈ {3, 4, 5, 6, 7, 8, 10, 15, 20} and 𝑛 ∈ {50, 100}. DDQN runs

failing to learn are marked with a straight line.

the DDQN training two more times for each 𝑘 ≥ 7 and 𝑛 = 100.
As shown in Figure 8, for 𝑛 = 100 and all 𝑘 ≥ 10, there is at least
one of three DDQN training runs where the agent does not learn
anything, i.e., there is no progress in the entire training process.

Last, we investigate further the impact of problem dimension on
the learning limit of DDQN. We train 3 DDQN agents for each pair
of 𝑛 ∈ {150, 200} and 𝑘 ∈ {3, 4, 5}, with a budget of 1.4million steps
and a walltime limit of 48 hours. Within the time limit, each DDQN
agent can only reach 400 000 and 250 000 time steps for 𝑛 = 150 and
𝑛 = 200, respectively, since the length of each evaluation episode
increases quadratically with 𝑛. Fig. 9 shows the number of times
each agent reaches the performance of the optimal policies during
the entire training. These results indicate that 𝑛 = 200 and 𝑘 = 5 is
the final limit of our DDQN agent with the chosen hyperparameters,
as neither of the three runs can get close to the optimal policy.

5 CONCLUSION AND OUTLOOK

We suggested the optimization of the LeadingOnes problem via the
(1 + 1) RLS with fitness-dependent control policies as a benchmark

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

Figure 9: #times DDQN reaches performance of the optimal

policy on evenly_spread, with 𝑛 ∈ {150, 200} and 𝑘 ∈ {3, 4, 5}.
Linestyles indicate individual runs with different seeds.

problem in the context of dynamic algorithm configuration (DAC).
This problem setting is theoretically very well understood, to the
point that we could easily extend in this work the base case with
full parameter portfolio [1..𝑛] to settings in which the search radii
have to be chosen from a restricted portfolio K ⊊ [1..𝑛]. That is,
we can compute optimal control policies for any given combination
of problem dimension 𝑛 and parameter portfolio K . This allows us
to create numerous problem instances of different size, which can
be leveraged to gain structural insight into the behavior of DAC
techniques. Empirically, we showed that DDQN efficiently learns
optimal policies for the smaller LeadingOnes instances. We also
explored the settings at which DDQN with the chosen parameters
and budget reaches its limits, in the sense that the learned policy is
not close to optimal or even fails to learn entirely.

One way to overcome the limits of DDQN for larger problem and
portfolio sizes could be to use AutoRL [50] to optimize its hyper-
parameters, such as the batch size, discounting factor, exploration
strategy, choice of algorithm, or network architecture. Although
it is known that RL agents are very brittle with respect to their
hyperparameters, their influence on the learning algorithm is not
well understood. Our benchmark enables studying the effect of
hyperparameters in a principled manner, which potentially allows
us to make RL agents more robust and easier to use for dynamic
algorithm configuration. A favorable aspect is that the evaluation
times of the LeadingOnes benchmarks are very small, making a
systematic investigation on the learning ability of RL agents com-
putationally affordable. In fact, we can reduce the evaluation times
further if we replace the actual training process by a simulation that
draws the rewards from the well understood reward distribution.

Since we understand the distribution of the reward function
perfectly well, no matter the problem dimension, the state, nor the
played action (essentially captured by equation (1)), we believe that
it is feasible to extend recent theoretical investigations of static
algorithm configuration [30] to the more general DAC setting.

Regarding the DAC setting, we did not exploit the full power
of DAC, as we trained and tested on the same problem instances
and did not aim to derive policies that can be transferred to in-
stances that are not part of the training set, as is classically done in

algorithm configuration. Given the promising results of the DDQN
agents, a reasonable next step is to investigate the generalization
ability of this approach with respect to problem dimension or with
respect to the portfolio. Once established, the next step are then to
aim for generalizability across different problems, e.g., via a con-
figurable benchmark generator that provides a good fit between
problem representation and characteristics. TheW-model [65] could
be a reasonable playground for first steps in this direction. We note
that generalization is an understudied topic in deep RL [41], where
DAC and our proposed benchmark can help to advance the field.

Another idea we are keen on exploring is to incorporate other
state information into the policy of the (1 + 1) RLS than just the fit-
ness. For example, for LeadingOnes, Buzdalov and Buzdalova [12]
show that adding information about the number of correct bits in
the tail allows more efficient control policies. When considering a
good configuration of DDQN, this approach could also be applied
in order to derive approximately optimal policies for scenarios of
state information for which no theoretical guarantees are known.

We emphasize that we investigated the new benchmarks for DAC
only, but they are equally interesting for the parameter control set-
ting. Techniques that model parameter control as a multi-armed
bandit problem [e.g. 15, 21, 29] can be straightforwardly applied to
our benchmarks, as they typically require finite parameter portfo-
lios. We also do not see greater obstacles to adjust other strategies,
such as self-adaptive or self-adjusting parameter control mecha-
nisms [26], although the parameter encoding and update strategies
may need to be redesigned to account for the restricted portfolio.

We hope that our work initiates a fruitful exchange of bench-
marks between parameter control and dynamic algorithm configu-
ration. With the growing literature on parameter control [38] and
its theoretical analysis [19], we wish to provide other use-cases
with a known ground truth. However, settings for which we have
such detailed knowledge as for LeadingOnes are very rare. Even
for OneMax, the “drosophila of evolutionary computation” [28],
the optimal mutation rates of the (1 + 1) RLS and the (1 + 1) evo-
lutionary algorithm are known only in approximate terms [22] or
for specific problem dimensions [11, 13, 14]. We believe that an
active exchange of theoretically and automatically found policies
will benefit both sides: empirical results provide guidance or inspi-
ration for theoretical analyses, and theoretical results can be used
as benchmarks with ground truth, as demonstrated in this work.

ACKNOWLEDGMENTS

André Biedenkapp and Frank Hutter acknowledge funding by the
Robert Bosch GmbH. Nguyen Dang is a Leverhulme Early Ca-
reer Fellow. This project has received funding from the European
Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement No. 945298-ParisRegion-
FP. It is also supported by the Paris Île-de-France region, via the
DIM RFSI AlgoSelect project and is partially supported by TAI-
LOR, a project funded by EU Horizon 2020 research and innovation
programme under GA No. 952215. The authors acknowledge the
HPCaVe computing platform of Sorbonne Université for providing
computational resources to this research project. The collabora-
tion leading to this work was initiated at the 2020 Lorentz Center
workshop “Benchmarked: Optimization Meets Machine Learning”.

Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration GECCO ’22, July 9–13, 2022, Boston, MA, USA

REFERENCES

[1] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr,
Kasper Green Larsen, and Kurt Mehlhorn. 2019. The query complexity
of a permutation-based variant of Mastermind. Discrete Applied Mathematics 260
(2019), 28–50. https://doi.org/10.1016/j.dam.2019.01.007

[2] Aldeida Aleti and Irene Moser. 2016. A Systematic Literature Review of Adaptive
Parameter Control Methods for Evolutionary Algorithms. Comput. Surveys 49
(2016), 56:1–56:35.

[3] Thomas Bäck. 1998. AnOverview of Parameter ControlMethods by Self-Adaption
in Evolutionary Algorithms. Fundam. Informaticae 35, 1-4 (1998), 51–66. https:
//doi.org/10.3233/FI-1998-35123404

[4] Roberto Battiti, Mauro Brunato, and Franco Mascia. 2008. Reactive search and
intelligent optimization. Vol. 45. Springer Science & Business Media.

[5] Roberto Battiti and Paolo Campigotto. 2012. An Investigation of Reinforcement
Learning for Reactive Search Optimization. In Autonomous Search, Y. Hamadi,
E. Monfroy, and F. Saubion (Eds.). Springer, 131–160.

[6] André Biedenkapp, H. Furkan Bozkurt, Theresa Eimer, Frank Hutter, and Marius
Lindauer. 2020. Dynamic Algorithm Configuration: Foundation of a New Meta-
Algorithmic Framework. In Proc. of European Conference on Artificial Intelligence
(ECAI’20) (Frontiers in Artificial Intelligence and Applications, Vol. 325). IOS Press,
427–434. https://doi.org/10.3233/FAIA200122

[7] André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola
Doerr. 2022. Code and data repository of this paper. https://github.com/ndangtt/
LeadingOnesDAC.

[8] Mauro Birattari. 2009. Tuning Metaheuristics - A Machine Learning Perspective.
Studies in Computational Intelligence, Vol. 197. Springer. https://doi.org/10.
1007/978-3-642-00483-4

[9] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed
and Adaptive Mutation Rates for the LeadingOnes Problem. In Proc. of Parallel
Problem Solving from Nature (PPSN’10) (LNCS, Vol. 6238). Springer, 1–10.

[10] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: a survey of the state
of the art. J. Oper. Res. Soc. 64, 12 (2013), 1695–1724. https://doi.org/10.1057/jors.
2013.71

[11] Nathan Buskulic and Carola Doerr. 2021. Maximizing Drift Is Not Optimal for
Solving OneMax. Evol. Comput. 29, 4 (2021), 521–541. https://doi.org/10.1162/
evco_a_00290

[12] Maxim Buzdalov and Arina Buzdalova. 2015. Can OneMax help optimizing
LeadingOnes using the EA+RL method?. In Proc. of Congress on Evolutionary Com-
putation (CEC’15). IEEE, 1762–1768. https://doi.org/10.1109/CEC.2015.7257100

[13] Maxim Buzdalov and Carola Doerr. 2020. Optimal Mutation Rates for the (1 +𝜆)
EA on OneMax. In Proc. of Parallel Problem Solving from Nature (PPSN’20) (LNCS,
Vol. 12270). Springer, 574–587. https://doi.org/10.1007/978-3-030-58115-2_40

[14] Maxim Buzdalov and Carola Doerr. 2021. Optimal static mutation strength
distributions for the (1 + 𝜆) evolutionary algorithm on OneMax. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’21). ACM, 660–668.
https://doi.org/10.1145/3449639.3459389

[15] Luís Da Costa, Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. 2008. Adap-
tive operator selection with dynamic multi-armed bandits. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO’08). ACM, 913–920.

[16] Christian Daniel, Jonathan Taylor, and Sebastian Nowozin. 2016. Learning Step
Size Controllers for Robust Neural Network Training, See [55].

[17] Benjamin Doerr. 2019. Analyzing randomized search heuristics via stochastic
domination. Theoretical Computer Science 773 (2019), 115–137. https://doi.org/
10.1016/j.tcs.2018.09.024

[18] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting
Parameter Choices for the (1+(𝜆,𝜆)) Genetic Algorithm. Algorithmica 80 (2018),
1658–1709. https://doi.org/10.1007/s00453-017-0354-9

[19] Benjamin Doerr and Carola Doerr. 2020. Theory of Parameter Control Mecha-
nisms for Discrete Black-Box Optimization: Provable Performance Gains Through
Dynamic Parameter Choices. In Theory of Evolutionary Computation: Recent De-
velopments in Discrete Optimization. Springer, 271–321.

[20] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2021. Self-Adjusting
Mutation Rates with Provably Optimal Success Rules. Algorithmica 83, 10
(2021), 3108–3147. https://doi.org/10.1007/s00453-021-00854-3 Available at
https://arxiv.org/abs/1902.02588.

[21] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. k-Bit Mutation with Self-
Adjusting k Outperforms Standard Bit Mutation. In Proc. of Parallel Problem
Solving from Nature (PPSN’16) (LNCS, Vol. 9921). Springer, 824–834. https://doi.
org/10.1007/978-3-319-45823-6_77

[22] Benjamin Doerr, Carola Doerr, and Jing Yang. 2020. Optimal parameter choices
via precise black-box analysis. Theoretical Computer Science 801 (2020), 1–34.
https://doi.org/10.1016/j.tcs.2019.06.014

[23] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker.
2018. On the runtime analysis of selection hyper-heuristics with adaptive learning
periods. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18).
ACM, 1015–1022. https://doi.org/10.1145/3205455.3205611

[24] Carola Doerr and Johannes Lengler. 2018. The (1+1) Elitist Black-Box Complexity
of LeadingOnes. Algorithmica 80, 5 (2018), 1579–1603. https://doi.org/10.1007/
s00453-017-0304-6 Also available at https://arxiv.org/abs/1604.02355.

[25] Carola Doerr and Markus Wagner. 2018. Simple on-the-fly parameter selection
mechanisms for two classical discrete black-box optimization benchmark prob-
lems. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18).
ACM, 943–950. https://doi.org/10.1145/3205455.3205560

[26] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. 1999.
Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary
Computation 3 (1999), 124–141.

[27] Theresa Eimer, André Biedenkapp, Maximilian Reimer, Steven Adriaensen, Frank
Hutter, and Marius Lindauer. 2021. DACBench: A Benchmark Library for Dy-
namic Algorithm Configuration. In Proc. of International Joint Conference on
Artificial Intelligence (IJCAI’21). ijcai.org, 1668–1674. https://doi.org/10.24963/
ijcai.2021/230

[28] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, andMichèle Sebag. 2008. Extreme
Value Based Adaptive Operator Selection. In Proc. of Parallel Problem Solving
from Nature (PPSN’08) (LNCS, Vol. 5199). Springer, 175–184.

[29] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag. 2010. Analyz-
ing bandit-based adaptive operator selection mechanisms. Annals of Mathematics
and Artificial Intelligence 60 (2010), 25–64. https://doi.org/10.1007/s10472-010-
9213-y

[30] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. 2022. On the impact of the
performance metric on efficient algorithm configuration. Artif. Intell. 303 (2022),
103629. https://doi.org/10.1016/j.artint.2021.103629

[31] Assaf Hallak, Dotan Di Castro, and Shie Mannor. 2015. Contextual Markov
Decision Processes. CoRR abs/1502.02259 (2015). http://arxiv.org/abs/1502.02259

[32] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159–195. https://doi.org/10.1162/106365601750190398

[33] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep reinforcement learning that matters. In Proceedings
of the Thirty-Second Conference on Artificial Intelligence (AAAI’18), Sheila A.
McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3207–3214.

[34] Holger H. Hoos. 2012. Automated Algorithm Configuration and Parameter
Tuning. In Autonomous Search, Youssef Hamadi, Éric Monfroy, and Frédéric
Saubion (Eds.). Springer, 37–71. https://doi.org/10.1007/978-3-642-21434-9_3

[35] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009.
ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artifi-
cial Intelligence Research 36 (2009), 267–306.

[36] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer. https://doi.org/10.
1007/978-3-030-05318-5

[37] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Population Based Training
of Neural Networks. arXiv:1711.09846 [cs.LG] (2017).

[38] Giorgos Karafotias, Mark Hoogendoorn, and A.E. Eiben. 2015. Parameter Con-
trol in Evolutionary Algorithms: Trends and Challenges. IEEE Transactions on
Evolutionary Computation 19 (2015), 167–187.

[39] Giorgos Karafotias, Selmar K. Smit, and A. E. Eiben. 2012. A Generic Approach to
Parameter Control. In Proc. of Applications of Evolutionary Computation (EvoAp-
plications’12) (LNCS, Vol. 7248). Springer, 366–375. https://doi.org/10.1007/978-3-
642-29178-4_37

[40] Eric Kee, Sarah Airey, and Walling Cyre. 2001. An Adaptive Genetic Algorithm.
In Proc. of Genetic and Evolutionary Computation Conference (GECCO’01). Morgan
Kaufmann, 391–397. https://doi.org/10.5555/2955239.2955303

[41] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. 2021. A
Survey of Generalisation in Deep Reinforcement Learning. arXiv:2111.09794
[cs.LG] (2021).

[42] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. 1983. Optimization by
Simulated Annealing. Science 220 (1983), 671–680.

[43] Michail G. Lagoudakis and Michael L. Littman. 2000. Algorithm Selection using
Reinforcement Learning. In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML’00), Pat Langley (Ed.). Morgan Kaufmann Publishers,
511–518.

[44] Michail G. Lagoudakis and Michael L. Littman. 2001. Learning to Select Branch-
ing Rules in the DPLL Procedure for Satisfiability. Electronic Notes in Discrete
Mathematics 9 (2001), 344–359.

[45] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Varia-
tion. Algorithmica 64 (2012), 623–642.

[46] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. Simple
Hyper-Heuristics Control the Neighbourhood Size of Randomised Local Search
Optimally for LeadingOnes. Evol. Comput. 28, 3 (2020), 437–461. https://doi.org/
10.1162/evco_a_00258

[47] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent
with Warm Restarts. In Proceedings of the International Conference on Learning
Representations (ICLR’17). Published online: iclr.cc.

https://doi.org/10.1016/j.dam.2019.01.007
https://doi.org/10.3233/FI-1998-35123404
https://doi.org/10.3233/FI-1998-35123404
https://doi.org/10.3233/FAIA200122
https://github.com/ndangtt/LeadingOnesDAC
https://github.com/ndangtt/LeadingOnesDAC
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1162/evco_a_00290
https://doi.org/10.1162/evco_a_00290
https://doi.org/10.1109/CEC.2015.7257100
https://doi.org/10.1007/978-3-030-58115-2_40
https://doi.org/10.1145/3449639.3459389
https://doi.org/10.1016/j.tcs.2018.09.024
https://doi.org/10.1016/j.tcs.2018.09.024
https://doi.org/10.1007/s00453-017-0354-9
https://doi.org/10.1007/s00453-021-00854-3
https://arxiv.org/abs/1902.02588
https://doi.org/10.1007/978-3-319-45823-6_77
https://doi.org/10.1007/978-3-319-45823-6_77
https://doi.org/10.1016/j.tcs.2019.06.014
https://doi.org/10.1145/3205455.3205611
https://doi.org/10.1007/s00453-017-0304-6
https://doi.org/10.1007/s00453-017-0304-6
https://arxiv.org/abs/1604.02355
https://doi.org/10.1145/3205455.3205560
https://doi.org/10.24963/ijcai.2021/230
https://doi.org/10.24963/ijcai.2021/230
https://doi.org/10.1007/s10472-010-9213-y
https://doi.org/10.1007/s10472-010-9213-y
https://doi.org/10.1016/j.artint.2021.103629
http://arxiv.org/abs/1502.02259
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/978-3-642-21434-9_3
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-642-29178-4_37
https://doi.org/10.1007/978-3-642-29178-4_37
https://doi.org/10.5555/2955239.2955303
https://doi.org/10.1162/evco_a_00258
https://doi.org/10.1162/evco_a_00258
iclr.cc

GECCO ’22, July 9–13, 2022, Boston, MA, USA André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, and Carola Doerr

[48] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[49] Jack Parker-Holder, Vu Nguyen, and Stephen J. Roberts. 2020. Provably Efficient
Online Hyperparameter Optimization with Population-Based Bandits. In Pro-
ceedings of the 33rd International Conference on Advances in Neural Information
Processing Systems (NeurIPS’20), Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Curran Associates.

[50] Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie
Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra
Faust, Frank Hutter, and Marius Lindauer. 2022. Automated Reinforcement
Learning (AutoRL): A Survey and Open Problems. CoRR abs/2201.03916 (2022).
arXiv:2201.03916 https://arxiv.org/abs/2201.03916

[51] James E. Pettinger and Richard M. Everson. 2002. Controlling Genetic Algorithms
with Reinforcement Learning. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’02), W. Langdon, E. Cantu-Paz, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and N. Jonoska (Eds.). Morgan
Kaufmann Publishers, 692.

[52] Ingo Rechenberg. 1973. Evolutionsstrategie. Friedrich Fromman Verlag (Günther
Holzboog KG), Stuttgart.

[53] John R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers 15
(1976), 65–118.

[54] Yoshitaka Sakurai, Kouhei Takada, Takashi Kawabe, and Setsuo Tsuruta. 2010. A
Method to Control Parameters of Evolutionary Algorithms by Using Reinforce-
ment Learning. In Proceedings of Sixth International Conference on Signal-Image
Technology and Internet-Based Systems (SITIS), K. Yétongnon, A. Dipanda, and
R. Chbeir (Eds.). IEEE Computer Society, 74–79.

[55] D. Schuurmans and M. Wellman (Eds.). 2016. Proceedings of the Thirtieth National
Conference on Artificial Intelligence (AAAI’16). AAAI Press.

[56] Gresa Shala, André Biedenkapp, Noor Awad, Steven Adriaensen, Marius Lindauer,
and Frank Hutter. 2020. Learning Step-Size Adaptation in CMA-ES. In Proceedings
of the Sixteenth International Conference on Parallel Problem Solving from Nature
(PPSN’20) (Lecture Notes in Computer Science). Springer, 691–706.

[57] Mudita Sharma, Alexandros Komninos, Manuel López-Ibáñez, and Dimitar Kaza-
kov. 2019. Deep Reinforcement Learning-Based Parameter Control in Differ-
ential Evolution. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’19). ACM, 709–717. https://doi.org/10.1145/3321707.3321813

[58] Selmar K. Smit and A. E. Eiben. 2009. Comparing parameter tuning methods
for evolutionary algorithms. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’09). IEEE, 399–406. https://doi.org/10.1109/CEC.2009.4982974

[59] David Speck, André Biedenkapp, Frank Hutter, Robert Mattmüller, and Marius
Lindauer. 2021. Learning Heuristic Selection with Dynamic Algorithm Configu-
ration. In Proceedings of the 31st International Conference on Automated Planning
and Scheduling (ICAPS’21), H. H. Zhuo, Q. Yang, M. Do, R. Goldman, S. Biundo,
and M. Katz (Eds.). AAAI, 597–605.

[60] Dirk Sudholt. 2013. A New Method for Lower Bounds on the Running Time
of Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 17
(2013), 418–435.

[61] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an intro-
duction. MIT Press. https://www.worldcat.org/oclc/37293240

[62] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning, See [55], 2094–2100.

[63] Diederick Vermetten, Sander van Rijn, Thomas Bäck, and Carola Doerr. 2019.
Online selection of CMA-ES variants. In Proc. of Genetic and Evolutionary Compu-
tation Conference (GECCO’19). ACM, 951–959. https://doi.org/10.1145/3321707.
3321803

[64] Christopher. J. C. H. Watkins. 1989. Learning from Delayed Rewards. Ph. D.
Dissertation. King’s College, Cambridge, United Kingdom.

[65] Thomas Weise, Yan Chen, Xinlu Li, and Zhize Wu. 2020. Selecting a diverse set
of benchmark instances from a tunable model problem for black-box discrete
optimization algorithms. Applied Soft Computing 92 (2020), 106269. https:
//doi.org/10.1016/j.asoc.2020.106269

https://arxiv.org/abs/2201.03916
https://arxiv.org/abs/2201.03916
https://doi.org/10.1145/3321707.3321813
https://doi.org/10.1109/CEC.2009.4982974
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1145/3321707.3321803
https://doi.org/10.1145/3321707.3321803
https://doi.org/10.1016/j.asoc.2020.106269
https://doi.org/10.1016/j.asoc.2020.106269

	Abstract
	1 Introduction
	2 Parametrized RLS for LeadingOnes
	3 Optimal Policies and Portfolios for LeadingOnes
	3.1 Full Portfolio
	3.2 Restricted Portfolio Sizes
	3.3 Comparing Optimal Policies

	4 Algorithm Configuration with Reinforcement Learning
	4.1 The DAC Framework
	4.2 Experimental Setup
	4.3 Results for n=50
	4.4 Analyzing the Impact of Portfolio Size and Problem Dimension

	5 Conclusion and Outlook
	Acknowledgments
	References

