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Abstract

This paper presents a unified framework for exponential stability analysis of linear stationary systems with irrational
transfer functions in the space of an arbitrary number of unknown parameters. Systems described by irrational transfer
functions may be of infinite dimension, typically having an infinite number of poles and/or zeros, rendering their stability
analysis more challenging as compared to their finite-dimensional counterparts. The analysis covers a wide class of
distributed parameter systems, time delayed systems, or even fractional systems. First, it is proven that, under mild
hypotheses, new poles may appear to the right of a vertical axis of abscissa γ (imaginary axis, when γ = 0) through a
continuous variation of parameters only if existing poles to the left of γ cross the vertical axis. Hence, by determining
parametric values for which the crossing occurs, known as stability crossing sets (SCS), the entire parametric space is
separated into regions within which the number of right-half poles (including multiplicities) is invariant. Based on the
aforementioned result, a constraint satisfaction problem is formulated and a robust estimation algorithm, from interval
arithmetics that uses contraction and bisection, is used to solve it. Applications are provided for determining the SCS
of (i) a controlled parabolic 1D partial differential equation, namely the heat equation, in finite and semi-infinite media,
(ii) time-delay rational systems with distributed and retarded type delays, (iii) fractional systems, providing stability
results even for incommensurate differentiation orders.

Keywords: Stability; Distributed parameter system; Irrational transfer function; Time-delay system; Interval
arithmetics.

1. Introduction

Many engineering systems exhibit dynamical behav-
iors that can be captured by partial differential equa-
tions (PDE), or delayed ordinary and/or PDE. These dis-
tributed parameter systems (DPS) yield irrational transfer
functions that may involve some functions of the Laplace
variable like, exp, sinh, cosh, etc. A wide variety of transfer
functions of DPS, solutions of PDE, is exhibited in (Duffy,
2004; Curtain and Morris, 2009). Such transfer functions
are usually infinite dimensional, with an infinite number
of poles and/or zeros.

1.1. Context

Stability of irrational systems is a rich field of study in
Automatic Control. It would be pretentious to claim an
exhaustive bibliographical review covering all its facets.
For time domain approaches, interested readers are re-
ferred to some recent papers (Mondié et al., 2022; Prieur
and Trélat, 2019; Katz and Fridman, 2020; Aghayan et al.,
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2021; Katz and Fridman, 2021), and the cited refer-
ences therein. Several methods are developed for analyz-
ing stability of some specific DPS such as clamped-free
damped string (Lhachemi et al., 2020), telegrapher’s equa-
tion (Sano, 2018), heat equation (Li and Gao, 2021), wave
equation (Gao et al., 2019). As compared to the mentioned
references, this paper analysis stability of more gen-
eral irrational systems on the basis of a frequency
domain approach. Hence, a state of the art of frequency
domain approaches is presented below.

Nyquist stability criterion is an important tool that has
been continuously used for stability analysis of irrational
transfer functions of DPS in (Chait et al., 1989; Logemann,
1991), time-delay FoS in (Zhang et al., 2020), and incom-
mensurate FoS in (Ivanova et al., 2016). Some other well-
known finite-dimensional results, such as circle criterion
and small gain theorem, have been generalized to a large
class of DPS in (Logemann, 1991).

Another approach is based on root continuity when pa-
rameters vary continuously. It has been widely investi-
gated for stability analysis of time-delay-systems (TDS)
in (Gryazina, 2004; Neimark, 1998; Lee and Hsu, 1969;
El’sgol’ts and Norkin, 1973), and is based on the split-
ting of the parametric space into multiple regions, with
the number of unstable poles being invariant inside each
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region. Related methods applicable to TDS, have been
considered in Walton and Marshall (1987); Marshall et al.
(1992), on the basis of the following parametrization of the
characteristic function:

F (s, τ) = A(s) + C(s)e−τs (1)

where A(s) and C(s) ̸= 0 are polynomials of the Laplace
variable s. Conditions are determined on the delay that
destabilizes the system. Multiple generalizations of the the
method were proposed:

• by the authors themselves, including multiple com-
mensurate delays in (Walton and Marshall, 1987)

F (s, τ) = A(s) +

N∑
n=1

Cn(s)e
−nτs (2)

• by Bonnet and Partington (2007) to fractional TDS
of neutral type with a fixed commensurate differentia-
tion order α > 0 where A(s) and C(s) in (1) (or Cn(s)
in (2)) are extended to pseudo-polynomials (polyno-
mials of sα-variable).

• by Abusaksaka and Partington (2014) to systems in-
volving terms like e−τsα (sometimes referred to as
fractional delays) with arbitrary, but fixed α, A(s)
and C(s) being polynomials of sα:

F (s, τ) = A(s) + C(s)e−τsα (3)

The Walton-Marshall method is restrictive in multiple
point of views: (i) only commensurate delays are consid-
ered: all delays are multiples of a constant, (ii) the exten-
sion to FoS considers all differentiation orders to be com-
mensurate (iii) in the latter extension, the authors con-
sider systems with e−sατ , where α is the fixed commen-
surate order of A(s) and C(s) pseudo-polynomials. The
method developed in this paper allows handling
systems with much more complex structures, and
much more complex parametrizations. The struc-
ture may include systems described by transfer functions
which are arbitrary irrational functions of the Laplace vari-
able s, with terms like e−

√
s, cosh(

√
s), or sinh(

√
s), sα

and many others. The parametrization may be diverse as
stability can be investigated for arbitrary combinations of
parameters including (but not limited to) transfer func-
tion coefficients, incommensurate delays, incommensurate
differentiation orders.

A novel method, based on the application of Rouché’s
theorem, has recently been developed for stability analy-
sis of (i) a wide class of systems including a class of DPS
in (Turkulov et al., 2023a), (ii) TDS in (Turkulov et al.,
2023b) and (iii) fractional order systems (FoS) in (Rapaić
and Malti, 2019). Given a parametrized transfer function
and an arbitrary parametric point, the proposed method
is capable of identifying the surrounding points/regions

in the parametric space for which the number of unsta-
ble poles remains invariant. Iterating the method, allows
reaching the boundary of the stability domain, however
with an important time complexity when the whole sta-
bility/instability region is explored. Instead, the method
developed in this paper searches straightforwardly
for the domain boundaries known as the Stability
Crossing Sets (SCS), i.e. a set of surfaces for which there
is at least a pole crossing the imaginary axis. This is
done in a unified framework of linear irrational systems
that includes classes of DPS, TDS, and FoS. Such ap-
proaches have been successfully demonstrated in the par-
ticular case of TDS of retarded type with two and three
independent delays (Hale and Huang, 1993; Gu et al., 2005;
Morărescu et al., 2007; Sipahi and Delice, 2009; Gu and
Naghnaeian, 2011), providing insightful graphical repre-
sentation of stability equivalence regions. To the best
of authors’ knowledge, such approaches have not
been extended in the general framework of irra-
tional transfer functions including DSP and FoS.

1.2. Contributions of the paper

A unified framework is proposed in this paper for expo-
nential stability analysis of linear stationary systems in the
frequency domain explicitly presented in a transfer func-
tion form. The proposed method is based on computing
the SCS and applies to a wide range of irrational transfer
functions (Duffy, 2004; Curtain and Morris, 2009).

The contributions of the paper can be summarized as
follows:

• Clear hypotheses are set up under which root conti-
nuity is proven, for a wide class of transfer functions
parameterized in a generic way.

• The problem of finding all characteristic-function-
roots on the imaginary axis (and more generally on
the axis of abscissa γ ∈ R) is formulated as a con-
straint satisfaction problem (CSP).

• A robust algorithm from interval arithmetics, based
on contraction and bisection (Jaulin et al., 2001;
Jaulin, 2022), which avoids all sources of errors due to
floating point arithmetics and due to discretization, is
used to solve this problem. As a consequence, a gap is
bridged between algorithms from numerical analysis
based on interval arithmetics and the stability analy-
sis in automatic control.

• A comprehensive illustration of the method is pro-
vided on

(i) a DPS, namely controlled heat equations in finite
and semi-infinite media,

(ii) a retarded and a distributed TDS, providing
stability results even for incommensurate delays
(not multiples of a constant),
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(iii) a FoS providing stability results even for incom-
mensurate differentiation orders which stability
analysis is known to be more challenging than
the commensurate ones.

To the best of authors’ knowledge, no algorithm of sim-
ilar universality has ever been reported previously in the
literature for finding the SCS for such a wide class of linear
irrational systems.

1.3. Notation

The set of non-negative and non-positive real numbers
are respectively denoted by R+ and R−. C is the field

of complex numbers, C+
γ and C+

γ are respectively the sets
of all complex numbers with real part bigger than γ, and

bigger or equal to γ. Consequently, C+
0 and C+

0 denote
respectively the open and the closed right-half complex
plane. Re(.) and Im(.) are respectively real and imaginary
parts of a complex number, L {.} is the Laplace transform
and × the cartesian product. The closure of a set is defined
as its smallest closed superset.

Stability. Consider several subalgebras of transfer func-
tions, as discussed in (Curtain and Zwart, 1995; Parting-
ton and Bonnet, 2004). A transfer function G is said to be
stable in the H∞ sense if it is holomorphic and bounded in
C+

0 . Next, consider the class Aγ as the class of all transfer
functions that are holomorphic in Re(s) > −γ and contin-
uous on the boundary Re(s) = −γ, with finite and unique
limit when s → −γ ± j∞. For γ > 0, Aγ is referred to
as the subalgebra of γ-exponentially stable transfer func-
tions. On the other hand, a transfer function belonging to
Aγ for some negative γ, but not for any γ ≥ 0, is referred
to as exponentially unstable. Note that for γ2 > γ1 > 0,
Aγ2

⊂ Aγ1
⊂ A0 ⊂ H∞.

Characteristic function and stability crossing sets.
When dealing with linear time-invariant (LTI) rational
systems, the concept of a characteristic polynomial is well
defined as transfer function denominator. It allows assess-
ing system stability by studying root locii of the charac-
teristic polynomial which are the only singularities of the
transfer function.

When dealing with LTI, irrational systems denoted
G(s,θ), where s ∈ C is the Laplace variable, and θ =
(θ1, · · · , θn) ∈ T ⊂ Rn is the parametric vector, the
concept of characteristic function (instead of polynomial)
f(s,θ) requires some clarifications. In the present work,
the characteristic function is understood as any function
f(s,θ) such that for every θ ∈ T

1. f has no finite poles of any multiplicity,

2. f has branch points and/or essential singularities ev-
erywhere G has branch points and/or essential singu-
larities1,

1The distinction between different types of singularities is made
on the basis of the shape of the Laurent series, as studied in complex
analysis (see e.g. (Lang, 1999)).

3. all finite zeros of f match poles of G in both location
and multiplicity.

The selection of the characteristic function is not unique.
Several different characteristic functions may be con-
structed from a single transfer function, according to the
points above. For example, a characteristic function of a
given transfer function G(s,θ) could be derived as

f(s,θ) =
Q(s,θ)

G(s,θ)
, (4)

with Q being an analytic function in C having zeros, with
matching multiplicities, at the same locations as the zeros
of G. Without loss of generality, transfer functions with
poles-zeros cancellations are not handled in this paper and
should be treated separately.

Additionally, let Ωf,γ denote the stability crossing set
(SCS) of f , i.e. a set of surfaces for which there is at least
a zero of f crossing the axis Re(s) = γ

Ωf,γ = {θ ∈ T | (∃ω ∈ R) f(γ + jω,θ) = 0} . (5)

Let NUf,γ(θ) denote the number of zeros of a character-
istic function f(s,θ) with real part bigger or equal to γ,
where each zero is counted as many times as its multi-
plicity. Although multiple characteristic functions may
be defined for an irrational transfer function, the stabil-
ity crossing sets are well-defined and independent of the
selection of f .

1.4. Problem formulation and hypotheses

Consider an LTI system with transfer function G(s,θ)
and characteristic equation f(s,θ), θ ∈ T ⊂ Rn (with
T being the parametric space). Choose γ ∈ R such that
G(s,θ) has finite and unique limit for s → γ ± j∞, all
singularities of f have real parts smaller or equal to γ, with
Ξ denoting the set of imaginary parts of all singularities of
f on the axis Re(s) = γ. The problem under consideration
is partitioning the parametric space into non-overlapping
sub-regions Tk (k ∈ 1, . . . ,K) such that for all k

i) f(s,θ) has no zero on the axis Re(s) = γ, for all
θ ∈ Tk, and

ii) NUf,γ(θ1) = NUf,γ(θ2) for all θ1,θ2 ∈ Tk.

Formally, the following hypotheses are postulated:

(H1) For every θ ∈ T , s 7→ f(s,θ) is analytic in C+
γ
2,

except possibly in a finite set of points on the bound-
ary, γ + jω for ω ∈ Ξ = {ω1, . . . ωN}. For every

(s,θ) ∈
(
C+

γ \ (γ + jΞ)
)
× T , (s,θ) 7→ f(s,θ) is con-

tinuous.

2A function is analytic in a closed set if and only if it is analytic
in every point of that set. For sets having nonempty boundary (like

C+
γ ) this actually means that the function is also analytic in some

(possibly small) neighborhood of that boundary. In other words, a
function analytic in a closed set is also analytic in some open superset
that encloses that set.
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Re(s) = γ Im(s)

Re(s)

M

R

ϵ1

ϵ

ϵ2

ϵ3

γ + jω2

γ + jω3

γ + jω1

Figure 1: Illustration of the notation involved in the hypotheses
(H1)-(H3) and in the proof of Theorem 2.

(H2) For all γ + jωk, ωk ∈ Ξ, there exists ϵk > 0 such
that f(s,θ) ̸= 0 for all s satisfying Re(s) ≥ γ and
|s− γ − jω| ≤ ϵk, and all θ ∈ T .

(H3) There existsM > 0 such that f(s,θ) ̸= 0 for all θ ∈ T
and all s such that Re(s) ≥ γ and |s− γ| ≥ M .

Hypothesis (H1) serves two purposes. Firstly, it ensures
that the transfer function is parameterized in a continuous
fashion with respect to s and θ, except possibly at a finite
number of points on Re(s) = γ. Those singular points,
illustrated by red dots in Fig.1, are gathered within the
set γ + jΞ. Secondly, (H1) determines the type of guaran-
teed stability one is able to seek for. If (H1) is satisfied
for some γ < 0, then it is possible to investigate for ex-
ponential stability, by localizing zeros of the characteristic
function. If it is satisfied for some γ > 0, but not for any
smaller γ, then the system under consideration is expo-
nentially unstable, regardless of the position of the zeros
of f . However, if (H1) is satisfied for γ ≥ 0, but not for
any smaller γ, then neither exponential stability nor ex-
ponential instability can be claimed solely based on the
position of roots of the characteristic equation. In this
case, stability should be investigated by additional consid-
erations, e.g. H∞-stability can be claimed by establishing

that the transfer function is bounded on C+

0 (Partington
and Bonnet, 2004).

The introduced hypotheses also limit the extent of the
parametric space T . Hypothesis (H2) is a safeguard from
cases in which zeros of the characteristic function in C+

γ

either originate from or terminate at the singularities lo-
cated on the imaginary axis. A simple example would be
a system with characteristic function f(s,K) = K + s−

3
2 ,

having a zero with positive real part originating from the

-5 -4 -3 -2 -1 0 1 2 3

Re(s)

-0.5

0

0.5

1

Im
(s

)

Figure 2: Root locus of closed-loop system with loop transfer func-
tion G(s,K) = K 1−s

1+s
.

branch point at the origin when K < 0. This however
is not permitted by (H2) which hence restricts the study
of f(s,K) to K > 0. Hypothesis (H3) guards against
cases in which zeros emerge from infinity in C+

γ . It, for
example, prevents negative values of delays (non-causal
leads), and also safeguards against cases in which sys-
tem structure abruptly changes for certain parametric val-
ues. An interesting practical example is the case of loop
transfer function with relative degree zero, such as e.g.
G(s,K) = K 1−s

s+1 , which closed-loop characteristic polyno-
mial is f(s,K) = (s + 1) − K(s − 1). In this particular
case, a single branch of the root locus originates at s = −1
for K = 0. By increasing K the root slides along the
negative real axis, and reaches asymptotically −∞ when
K → 1−, as illustrated in Fig.2 . The value K = 1 is sin-
gular, since the order of the system changes, and for this
particular value of K the characteristic polynomial has no
zero. However when K > 1, a root pops up from +∞,
and decreases asymptotically to s = 1 as K grows. Conse-
quently, the characteristic function of this system does not
fulfill hypothesis (H3) when K ∈ R. However, it is worth
mentioning that (H3) allows investigating separately the
stability for 0 ≤ K < 1. It is also important to stress
that the hypothesis (H3) excludes a certain class of TDS
of neutral type, as in (Cooke and Grossman, 1982; Baretta
and Kuand, 2002; Bonnet and Partington, 2007; Nguyen
et al., 2019).

1.5. Some examples of system classes satisfying the hy-
potheses

All in all, hypotheses (H1)-(H3) are the only conditions
a transfer function must fulfill for the results of this paper
to hold. These hypotheses are satisfied by wide classes of
systems.

Some examples of such classes include (i) finite dimen-
sional LTI systems, i.e. systems with rational transfer
functions (ii) TDS of retarded type with no constraint
on the delays, including those considered by Walton and
Marshall (1987) (see the example in section 5.2), (iii) frac-
tional incommensurate systems with no exponential term
(see the example in section 6), (iv) fractional TDS of re-
tarded type, similar to the ones considered in Bonnet and
Partington (2007) however by releasing commensura-
bility constraints on the time delays and/or on the
fractional derivatives, (v) systems with fractional de-
lays like in (Abusaksaka and Partington, 2014) but again
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without commensurability constraints (see the exam-
ple in section 4.1), (vi) systems that are described by PDE
(Duffy, 2004; Curtain and Morris, 2009), (see the exam-
ple in subsection 4.1 and 4.2), (vii) systems that are solu-
tions of fractional PDE (Cvetićanin et al., 2017). Transfer
functions described in (vi) and (vii) typically involve hy-
perbolic functions of powers of rational and quasi-rational
functions of the Laplace variable.

1.6. Paper layout

Within the present work and under hypothesis (H1)-
(H3), we start by proving that the only way for the num-
ber of zeros of a characteristic function to change in C+

γ ,
when the parameters vary continuously, is by crossing the
vertical axis Re(s) = γ. This theoretical result, related to
root continuity, is studied in section 2.

Then, in section 3 the problem of finding the SCS is
formulated as a constraint satisfaction problem based on
interval arithmetics, and solved using a robust algorithm
based on contraction and bissection. Applications to DPS,
TDS, and FoS are presented in sections 4, 5, and 6 respec-
tively, before concluding.

Unlike many previously published results, mainly fo-
cused on time-delay systems (TDS) (Hale and Huang,
1993; Gu et al., 2005; Sipahi and Delice, 2009; Gu and
Naghnaeian, 2011), a unified framework is proposed in the
present paper that applies to a wide range of irrational sys-
tems, regardless of the number of investigated parameters.
The only practical limitation is related to the exponential
complexity of the proposed algorithm.

2. Root Continuity

The following claims will ensure continuity of all right-
half zeros of the characteristic function. Start by recalling
the root continuity result from (Dieudonné, 1960, Theorem
9.17.4).

Theorem 1. Let D be an open set in C, T a metric space,
f a continuous, complex valued function in C × T such
that for each θ ∈ T s 7→ f(s, θ) is analytic in D. Let D1

be an open subset of D whose closure D1 is compact and
contained in D, and let θ0 be such that no zero of f(s,θ0)
is on the boundary of D1. Then, there exists a neigborhood
W of θ0 such that for every θ ∈ W

1. there are no zeros of f(s,θ) on the boundary of D1,

2. the sum of the orders of zeros of f(s,θ) belonging to
D1 is independent of θ.

Dieudonné’s Theorem 1 can be used to justify stability
investigation by evaluating the SCS. To do so, it is neces-
sary to prove analyticity of the characteristic function in
a compact (closed and bounded) set of possible locations
of its zeros in the right half complex plane. In this case,
Theorem 1 guarantees that the only manner for the zeros
to appear in the right-half complex plane, is by crossing

the imaginary axis. Related conditions have been estab-
lished for a wide class of TDS in the literature (Cooke
and Grossman, 1982; Gu et al., 2005; Bonnet and Parting-
ton, 2007). However, in a more general class of irrational
transfer functions, Theorem 1 cannot be applied straight-

forwardly, because it is not trivial to find a set D1 ⊂ C+
γ

which is simultaneously relevant for stability analysis and
posses all the required properties.

The following claim extends Theorem 1 in an original
way to support stability analysis of a more general class
of systems described by irrational transfer functions which
contain arbitrary irrational functions of the Laplace vari-
able s, like e−

√
s, cosh(

√
s), or sinh(

√
s). The claim en-

sures that zeros of the characteristic function cannot orig-
inate from infinity at the right of the axis Re(s) = γ, nor
from the singular points lying on the stability boundary.
Hence, the identification of the the SCS is sufficient to
reason about stability of such systems.

Theorem 2. Under hypotheses (H1)-(H3), given any con-
nected subset S of T , if f(γ + jω,θ) ̸= 0 for all ω ∈ R \ Ξ
and all θ ∈ S, then for any θ1,θ2 ∈ S the number of

zeros of f in C+
γ , counting multiplicities, is the same:

NUf (θ1) = NUf (θ2).

Proof 1. According to (H1), there exists an open set

D containing C+
γ \ (γ + jΞ) such that f is continuous

on D × T . Let M satisfy (H3), and select an arbitrary
R ≥ max{M, |ω1|, . . . , |ωN | }, with ωk ∈ Ξ. Consider ϵk,
introduced in (H2), and define 0 < ϵ ≤ mink ϵk. Introduce
set D1 as the closed set bounded by the axis Re(s) = γ ex-
cluding γ+j[ωk−ϵ, ωk+ϵ], “small” semi-circles γ+jω+ϵjφ

and the “big” semi-circle γ+Rejφ (with φ ∈ [−π
2 ,

π
2 ]). Let

D1 be the interior of D1. Due to hypotheses (H2), (H3),
and the condition f(γ + jω,θ) ̸= 0 assumed in the state-
ment of the Theorem, there can be no zeros of f on the
boundary of D1 for all θ ∈ S. Therefore, D1 satisfies
all the assumptions of Theorem 1. Consequently, for all
θ0 ∈ S there exists a neighborhood W (θ0) ⊂ S such that
the number of zeros of f inside D1, including multiplici-
ties, is independent of θ ∈ W (θ0). Notice further that this
implies that the number of zeros (including multiplicities)

of f is constant within C+
γ , since due to (H2) there can be

no right-half singularities within the “small” semicircles of
D1, and due to (H3) there can be no roots in C+

γ with mod-
ulus greater than M < R. Consequently, for every θ0 ∈ S
there exists a neighborhood W (θ0) such that the number of

zeros in C+
γ is independent of θ ∈ W (θ0). In the remain-

der, it is proven by contradiction that the number of zeros
of f with real part bigger or equal to γ, including multi-
plicities, does not change within the entire set S. Assume
that the number of roots, counting multiplicities, is not
the same for every θ ∈ S. Then, there exists at least two
parametric points θ1, θ2 ∈ S such that the number of zeros
at θ1 is different from the one at θ2. Since S is connected
by assumption, there exists a simple path P ⊂ S connect-
ing θ1 and θ2, and at least one point θ0 ∈ P such that the
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number of zeros, counting multiplicities, is not constant in
any neighborhood of θ0, which contradicts the existence of
W (θ0) and completes the proof. □

Definition 1. Given a parametric space T , and an LTI
system with characteristic function f(s,θ) with stability
crossing set Ωf,γ , defined in (5), any two points θ1 and θ2
from T are said to belong to the same parametric region
if there exists a continuous path within T connecting θ1
with θ2 which does not intersect Ωf,γ .

Notice that “belong to the same parametric region” is
an equivalence relation. Therefore, the stability crossing
set splits the parametric space T into multiple disjoint re-
gions Tk, k = 1, . . . ,K ≤ ∞. An immediate consequence
of Theorem 2 is that given any parametric region Tk of T ,
and any pair of points θ1,θ2 ∈ Tk, the number of zeros

in C+
γ , counting multiplicities, is the same for f(s,θ1) and

f(s,θ2). Thus, under hypotheses (H1)-(H3), zeros of the
characteristic function cannot suddenly appear or change

multiplicity in C+
γ . The only way for the number of zeros

to change is by crossing the axis Re(s) = γ when system
parameters vary continuously. Hence, the determination
of the SCS, Ωf,γ defined in (5), allows characterizing all
the regions in the parametric space inside which the char-
acteristic function has the same number of zeros.

The required theoretical results for root continuity being
established, the problem of finding the SCS is formulated
and solved in the next section.

3. Robust estimation algorithm of the SCS

Since the parameters gathered in θ vary continuously,
the problem of determining stability regions can be re-
sumed to the problem of finding the SCS, defined in (5),
for which the zeros of f(s,θ) cross the imaginary axis.
This problem is formulated as a Constraint Satisfaction
Problem (CSP):

CSP :

{
f(γ + jω,θ) = 0

(ω,θ) ∈ {R+ \ Ξ} × T .
(6)

The searching space of ω is restricted to {R+ \ Ξ}, be-
cause all real-valued impulse-response systems have com-
plex conjugate poles. The solution set of all the feasible
parameters of the CSP (6) is rewritten as

S =
{
(ω,θ) ∈

{
R+ \ Ξ

}
× T

∣∣∣ f(γ + jω,θ) = 0
}
. (7)

A guaranteed and robust solution of this CSP can be ob-
tained, in the searching domain, using interval arithmetics
introduced by (Moore, 1966). The reader is also referred
to (Jaulin et al., 2001) for an introduction to interval arith-
metics. The characterization of the whole solution set S
in (7) can be formulated as a set inversion problem

S = f−1(0) ∩
{
R+ \ Ξ

}
× T (8)

and solved by guaranteed methods based on contraction
and bisection.

3.1. Contractors

Let [x] = [x, x] design an interval which is a closed,
bounded, and connected set of real numbers. The CSP (6)
can be solved by a contractor C, which is an operator which
permits to reduce the domain [ζ] = ([ω], [θ]) without any
bisection. Hence, contracting the box [ζ] means replacing
it by a smaller box [ζ]∗ such that the solution set S remains
unchanged, i.e. S ⊂ [ζ]∗ ⊂ [ζ]. Among the different types
of contractors, (Jaulin et al., 2001), the one used in the
paper is based on the centered inclusion functions (Jaulin
et al., 2001, section 2.4.3, p.33).

3.2. Set Inversion Via Interval Analysis (SIVIA)

The SIVIA algorithm (Jaulin and Walter, 1993) has
been proposed to solve constraint propagation problems
using bisection. It has been used in different contexts such
as: state and parameter estimation of non linear systems
(Raissi et al., 2004), robust estimation of frequency domain
models (Khemane et al., 2012), parameter estimation in a
glucose model (Herrero et al., 2016), or even to compute
invariant sets of closed-loop control systems (Romig et al.,
2019).

Algorithm 1 SIVIA algorithm with only an outer enclo-
sure

1: procedure SIVIA(in: [t], [ζ], η, S ; out: S)
2: contractor (in: [ζ] ; out [ζ])
3: if [t]([ζ]) = [0] then return;
4: end if
5: if w([ζ]) ≤ η then
6: S := S ∪ [ζ];
7: return;
8: else
9: bisect [ζ] into [ζ1] and [ζ2];

10: S = SIVIA ([t] , [ζ1], η, S)
11: S = SIVIA ([t] , [ζ2], η, S)
12: return;
13: end if
14: end procedure

Applying the SIVIA algorithm to (6) allows obtaining
an outer enclosure S of the solution set S, if it exists3

as defined in (7), such that S ⊆ S. SIVIA is a recur-
sive algorithm based on partitioning of the parameter set
into three regions: feasible, indeterminate and unfeasible.
However, only indeterminate and unfeasible regions3 can
be obtained for the CSP (6). Hence the presentation of
the SIVIA algorithm is restrained to these two cases. It
uses an inclusion test [t] : {R+ \ Ξ} × T → N which is
a function allowing to prove if a box [ζ] is unfeasible or

3The original SIVIA algorithm allows computing additionally an
inner enclosures: S ⊆ S ⊆ S. However, the CSP formulated in (6),
can only yield an outer enclosure S.
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x0 = 0.15

0ϕ(t, 0)

L = 0.20m or L = ∞

x

Figure 3: Thin rod of length L.

undetermined. If unfeasible, the box is simply ignored.
If undetermined, it is bisected and tested again unless its
width w([ζ]) is less than a precision parameter η tuned by
the user and which ensures that the algorithm terminates
after a finite number of iterations. The outer enclosure
S is then computed as a union of all undetermined boxes
as indicated in line 6 of Algorithm 1. Line 2 calls the
contractor at each execution of SIVIA.

In this paper, the SIVIA algorithm guarantees that all
the outer enclosures of the SCS are obtained in the de-
sired searching box which should be chosen carefully to-
gether with the precision factor η due to the exponential
complexity of the algorithm. When no prior knowledge is
available, the SIVIA algorithm may be initialized with a
large searching box and a big precision factor η in such a
way to obtain a rough estimation of the SCS. Then, the
searching box can be narrowed and the precision factor
enhanced to get more precise outer enclosures.

The SIVIA algorithm and the contractor are imple-
mented using the Codac library in Python (Rohou et al.,
2022), in different contexts: a controlled heat equation in
section 4, rational TDSs in section 5, and FoS is section 6.

4. Application to stability analysis of a distributed
parameter system

Consider a one-dimensional heat diffusion in a thin rod4

of length 0 < L ≤ ∞. The rod is thermally isolated, except
at its boundary cross-sections as in Fig.3. At the initial
end x = 0, the rod is subject to an adjustable thermal flux,
φ(t, 0) = −λ ∂θ

∂x (t, 0), where λ is the thermal conductivity.
Two cases are treated: either the rod is of finite length or
infinite. When the rod length is finite, the opposite end is
kept at ambient temperature θ(t, L) = 0. The correspond-
ing model describing spatio-temporal distribution of the
temperature along the rod is given by the well-known heat
equation,

∂2θ(t, x)

∂x2
= σ−1 ∂θ(t, x)

∂t
, (9)

where σ is the thermal diffusivity of the medium.

4For numerical application, the rod is considered of aluminium
type with a thermal diffusivity σ = 98.8× 10−6 m2/s and a conduc-
tivity λ = 237 Wm−1K−1 (see e.g. (Baehr and K., 2011)).

− K e−s τ
2 G(s)

e−s τ
2

φ

Figure 4: A feedback control loop, where G(s) is the transfer function
between the heat flux and the temperature at x0, for either a semi-
infinite or a finite rod.

The temperature of the rod is measured at a cross-
section x = x0 = 0.15m, with 0 ≤ x0 ≤ L. This tem-
perature is then controlled remotely (see Fig.4) using a
proportional controller with a gain K. Additionally, time
required to transmit data from the controller to the actua-
tor, and from the sensor to the controller is denoted by τ

2 ,
so that the total loop delay is τ ≥ 0. Hence, the effective
transfer function of the proportional delayed controller is

Gk(s) = Ke−τs. (10)

The objective of this example is to find the whole set of
stabilizing controllers (10) in the K versus τ plane in both
cases: finite and semi-infinite rods. A similar problem is
treated in (Morărescu and Niculescu, 2007), with the same
delayed proportional controller Gk(s), however applied to
a rational system.

4.1. Semi-infinite spatial domain (L = ∞)

In the semi-infinite domain, the transfer function be-
tween the input flux Φ(s, 0) = L {φ(t, 0)} and the temper-
ature Θ(s, x) = L {θ(t, x)} at a cross-section x is (Curtain
and Morris, 2009)

G(s) =
Θ(s, x)

Φ(s, 0)
=

e−x
√

s
σ

λ
√

s
σ

, (11)

with the closed-loop transfer function Gcℓ(s) =

Ke−sτe
−x
√

s
σ

f(s,K,τ) and the closed-loop characteristic function

f(s,K, τ) = λ

√
s

σ
+Ke−sτe−x

√
s
σ . (12)

Due to the presence of
√
s a branch-cut is necessary.

It is chosen along the negative real axis including the
branch point 0 and ∞. Hence, the characteristic func-
tion f(s,K, τ) is holomorphic in the complement of the
branch-cut line of the complex plane and the arguments
of s are restrained to

| arg(s)| < π (13)

In the special case when τ = 0, all the roots of f(s,K, 0)
can be determined analytically and their locus plotted ver-
sus K. The solutions of f(s,K, 0) = 0 are given by all the
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Figure 5: Root locus of f(s,K, 0) in (12) for different values of K,
illustrating that poles pop up from the plane-cut. When the poles
cross the imaginary axis (red squares), the system becomes unstable.
Numbers on the curves correspond to values of K. The plane-cut is
represented in blue along R−.

determinations, n = 0,±1,±2, . . ., of Lambert’s Wn func-
tion, see e.g. (Corless et al., 1996), s = σ

x2W
2
n

(
−Kx

λ

)
, pro-

vided (13) is fulfilled. The root locus of f(s,K, 0) is plotted
versus gain K, in Fig.5, for the principal determination of
the Lambert function W0 (as the upper imaginary part)
and for the determination W−1 (as the lower imaginary
part). The other determinations of Wn, n = 1,±2,±3, . . .
are not represented as they are well beyond the scale of
Fig.5 towards −∞. They may yield other poles crossing
the imaginary axis for much greater values of K than the
ones represented in Fig.5, which shows that two poles pop
up from the branch-cut when K ≈ 3 × 103. They cross
the imaginary axis towards instability when K ≈ 56×103.
The objective of the paper is to determine for what para-
metric values (here K and in a more general case K and τ)
the poles cross the imaginary axis. No analytical solution
is known for τ ̸= 0 (and obviously K ̸= 0).

4.2. Finite spatial domain (L < ∞)

In this case, the following transfer function is obtained
for the heat diffusion process under consideration (Curtain
and Morris, 2009)

G(s) =
Θ(s, x)

Φ(0, s)
=

sinh((L− x)
√

s
σ )

λ
√

s
σ cosh(L

√
s
σ )

, (14)

with the closed-loop characteristic function

f(s,K, τ) = λ

√
s

σ
cosh

(
L

√
s

σ

)
+

Ke−sτ sinh

(
(L− x)

√
s

σ

)
. (15)

As in the previous example, the proposed algorithm is ap-
plied with γ = 0, due to the presence of a branch point at
the origin.

Figure 6: Left: Outer enclosures of the SCS in the finite and semi-
infinite aluminium rods in the K versus τ plane. The number of
unstable poles is indicated inside each region (by the corresponding
color). Right: Outer enclosure of the crossing frequencies, along
the positive imaginary axis. The red square (right and left plots)
corresponds to the SCS of f(s,K, 0) in (12) as predicted in the root
locus of Fig.5.

4.3. Robust estimation algorithm of the SCS

Both characteristic functions (12) and (15) comply
with the hypotheses (H1)-(H3). They have a branch
point at s = 0, which is excluded from the search-
ing box (Ξ = {0}), initialized at [ζ] = ([ω], [K], [τ ]) =(
[10−3, 0.1], [0, 7× 104], [0, 100]

)
. Although theoretically

the searching interval of ω is R+ \ {0}, the thermal sys-
tem under consideration is slow. Additionally, one can see
from Fig.5 that the root locus of (12) for τ = 0 crosses
the imaginary axis for an ω in the interval (0.04, 0.05).
Consequently, the first poles crossing the imaginary axis
towards instability, in both cases (12) for any τ and (15),
are expected to be within the frequency interval [10−3, 0.1]
rad/sec. In case the obtained outer enclosure of [ω] touches
either the lower bound 10−3 or the upper bound 0.1, the
searching interval is enlarged and the SIVIA algorithm run
again. The tolerance is set to an arbitrarily small value as
the width of each element w([ζ]) divided by 29

η = w([ζ])/29 (16)

η = (0.193 · 10−3, 136.7, 0.195) (17)

The obtained outer enclosures of the stability crossing
sets are plotted in the K versus τ plane and the crossing
frequencies along the imaginary axis in Fig.6, in red for
the semi-infinite rod and in blue for the finite rod. Since
both transfer functions (11) and (14) are bounded on the
imaginary axis, the systems under consideration are H∞-
stable in the parametric regions for which there are no

roots in C+
0 (the lower left parts of Fig. 6, left). Hence,

the red line (similarly the blue) in Fig.6, left, splits the
plane into two regions: a guaranteed stability region (the
lower left containing K = 0 and τ = 0) and a guaranteed
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Figure 7: Left: Outer enclosures of the SCS of f(s,K, τ) in (19).
When γ = −0.02, only the external part is sketched delimiting sys-
tems guaranteed to belong to A0.02; the number of unstable poles
is indicated inside each red region. Right: Outer enclosure of the
crossing frequencies of the axis σ = −0.02 in blue and of the imagi-
nary axis in red.

instability region as the upper right one. In between, the
outer enclosures of the SCS are plotted. Their width can
be reduced by reducing the precision factor η in (16) at
the price of a higher computational burden. In the case of
the semi-infinite rod, for τ = 0, the results of Figs.6 (red
squares) are further confirmed by the intersection of the
root-locus with the imaginary axis, in Fig.5.

To the best of authors’ knowledge, in both cases finite
with τ ̸= 0 and semi-infinite aluminium rods, there is no
analytical method allowing to compute the roots of the
characteristic function f in (12) or (15). The only alter-
native method for evaluating exponential stability of the
control loop is based on a graphical representation that
uses Cauchy’s principle argument.

5. Application to stability analysis of time delay
systems

5.1. Distributed delay system

Consider in this section a distributed delay system taken
from (Turkulov et al., 2023b, example 9) modeled by

ẋ(t) = −
∫ 0

−τ

eKαx(t+ α)dα. (18)

Its characteristic function, computed by straightforward
integration of the Laplace transform of (18),

f(s,K, τ) = s2 + sK + 1− e−τ(s+K), (19)

complies with the hypotheses (H1)-(H3), with no singu-

larities in C+
γ . Hence the boundary of instability re-

gion is investigated by choosing γ = 0 and γ = −0.02 .
The searching box is initialized at [ζ] = ([ω], [K], [τ ]) =

Figure 8: Left: Outer enclosures of the the SCS of f(s, τ1, τ2) in
(20). When γ = −0.02, only the internal part is sketched delimit-
ing systems guaranteed to belong to A0.02; the number of unstable
poles is indicated in each red region. Right: Outer enclosure of the
crossing frequencies along the axis Re(s) = −0.02 in blue and along
the imaginary axis in red.

([0.01, 2], [0, 0.4], [0, 20]), and the tolerance factor set as in
(16). The obtained outer enclosures of the SCS are plotted
in the K versus τ plane in Fig.7, together with the outer
enclosures of [ω] along the axes σ = 0 and σ = −0.02
which confirms and extends the results of (Turkulov et al.,
2023b, example 8) obtained using Rouché’s theorem. The
exterior of the blue curve corresponds to exponentially sta-
ble systems of class A0.02.

5.2. Time delay system of retarded-type

Consider a TDS system of retarded type, taken from
(Turkulov et al., 2023b, example 10), with a characteristic
function given by

f(s, τ1, τ2) = s2 + 2se−τ1s + e−τ2s. (20)

Its stability is investigated with respect to τ1 and τ2 by
setting the initial searching box to [ζ] = ([ω], [τ1], [τ2]) =
([0.1, 4], [0, 2], [0, 4]) . The obtained outer enclosures of the
SCS are plotted in the τ1 versus τ2 plane in Fig.8, together
with the outer enclosures of [ω] along the imaginary axis.
The number of unstable poles, computed at any point in-
side the different regions, is indicated by a number. Fig.8
confirms and extends again the results of (Turkulov et al.,
2023b, example 10) obtained using Rouché’s theorem. The
interior of the blue contour indicates the region of the para-
metric space corresponding to exponentially stable sys-
tems of class A0.02.

6. Application to stability analysis of a fractional
system

Consider in this section a fractional system, taken from
(Rapaić and Malti, 2019, example 3), with a characteristic
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Figure 9: Left: Outer enclosures of the SCS of f(s, α1, α2) in (21).
The number of unstable poles is indicated inside each region. Right:
Outer enclosure of the crossing frequencies, along the positive imag-
inary axis.

function given by

f(s, α1, α2) = sα2 + 2sα1 + 1 (21)

and (α1, α2) ∈ {R+ \ {0}}2. The proposed algorithm
is applied for determining the SCS of f(s, α1, α2) with
γ = 0. The characteristic function (21) complies with
the hypotheses (H1)-(H3). The branch point at s = 0 is
excluded from the searching box (Ξ = {0}), initialized at:
[ζ] = ([ω], [α1], [α2]) = ([0.1, 6], [0.01, 15], [0.01, 20]) with
a tolerance set arbitrarily to a small value as in (16).
The obtained outer enclosures S of the SCS, is plotted
in Fig.9, together with the outer enclosures of [ω] along
the axes σ = 0 and σ = −0.02, which confirms the re-
sults of (Rapaić and Malti, 2019, example 3). Hence, all
fractional systems, incommensurate and commensurate,
that have differentiation orders in the lower-left region of
Fig.9, have no unstable poles. Considering additionally
that G(s) = f−1(s, α1, α2) is bounded on C+

0 , one may
also conclude that the parametric region with NUf,0 = 0
is the region of H∞-stability.

7. Conclusions

A unified framework has been presented in this paper for
exponential stability analysis of irrational transfer func-
tions in the frequency domain. First, it has been proven
that the only way for the number of zeros of a character-
istic function to change in the right of a vertical axis of
abscissa γ, when its parameters vary continuously, is by
crossing that vertical axis. Based on this theoretical re-
sult, the problem of finding the set of parameters for which
poles cross the vertical axis has been formulated as a con-
straint satisfaction problem. This original formulation is
universal as it applies to a wide class of irrational transfer

functions. It has been solved using the robust SIVIA algo-
rithm, based on interval arithmetics, that uses contraction
and bissection. It has been successfully applied for deter-
mining the SCS of (i) a controlled heat partial differential
equation, in finite and semi-infinite media, (ii) time-delay
systems with distributed and retarded type delays, (iii)
fractional systems, providing stability results even for in-
commensurate differentiation orders. The proposed algo-
rithm may be used for any number of transfer function
parameters. The only limitation is related to the time-
complexity of the SIVIA algorithm which is known to be
exponential in terms of the number of parameters. Hence,
any prior knowledge, used to reduce the size of the initial
search box, increases procedure efficiency. The examples
presented in the paper have been intentionally limited to
two parameters for graphical representation purposes.
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