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Abstract

This paper presents a unified framework for exponential stability analysis of linear stationary systems with irrational transfer
functions in the space of an arbitrary number of unknown parameters. Systems described by irrational transfer functions may
be of infinite dimension, typically having an infinite number of poles and/or zeros, rendering their stability analysis more
challenging as compared to their finite-dimensional counterparts. The analysis covers distributed parameter systems, time
delayed systems of both retarded and neutral type, or even fractional systems. First, it is proven that, under mild hypotheses,
new poles may appear to the right of a vertical axis of abscissa � (when � = 0: imaginary axis) through a continuous variation
of parameters only if existing poles to the left of � cross the vertical axis. Hence, by determining parametric values for which
the crossing occurs, known as stability crossing sets (SCS), the entire parametric space is separated into regions within which
the number of right-half poles (including multiplicities) is invariant. Based on the aforementioned result, a robust estimation
algorithm is formulated as an interval constraint satisfaction problem and solved using guaranteed methods, for determining
the SCS. The developed algorithm is applied for assessing stability of (i) a controlled parabolic 1D partial di↵erential equation,
namely the heat equation, in finite and semi-infinite media, (ii) time-delay rational systems with distributed and retarded type
delays, (iii) fractional systems, providing stability results even for incommensurate di↵erentiation orders.
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1 Introduction

Many engineering systems exhibit dynamical behaviors
that can be captured by partial di↵erential equations
(PDE), or delayed ordinary (and partial) di↵erential
equations. These distributed parameter systems (DPS)
yield irrational transfer functions that are usually infi-
nite dimensional, with an infinite number of poles and/or
zeros. A wide variety of transfer functions of DPS, solu-
tions of PDE, is exhibited in (Curtain & Morris, 2009).

This paper presents stability analysis of irrational trans-
fer functions in the parametric space. Similar methods
have been investigated for stability analysis of time-
delay-systems (TDS) in (Gryazina, 2004; Neimark, 1998;
Lee & Hsu, 1969; El’sgol’ts & Norkin, 1973). They split
the parametric space into multiple regions, with the
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number of unstable poles being invariant inside each
region. An alternative approach consists of finding the
stability crossing sets (SCS), i.e. a set of surfaces for
which there is at least a pole crossing the imaginary axis.
Such approaches have been successfully demonstrated
for retarded systems with two and three independent de-
lays (Hale & Huang, 1993; Gu, Niculescu & Chen, 2005;
Sipahi & Delice, 2009; Gu & Naghnaeian, 2011), provid-
ing insightful graphical representation of stability equiv-
alence regions. To the best of authors’ knowledge, such
methods have never been extended to other types of ir-
rational transfer functions.

A new method, based on the application of Rouché’s
theorem from complex analysis (see e.g. (Lang, 1999)),
in the frequency domain, has recently been proposed for
stability analysis of fractional order systems (FoS) in
(Rapaić & Malti, 2019) and a large class of retarded and
distributed TDS in (Turkulov, Rapaić & Malti, 2022).
Given a parametrized FoS and/or TDS and an arbitrary
parametric point, the proposed method identifies the
surrounding region in the parametric space for which the
number of unstable poles remains invariant.
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Nyquist stability criterion is another important tool that
has been continuously used for stability analysis of irra-
tional transfer functions of (i) DPS in (Chait, MacCluer
& Radcli↵e, 1989; Logemann, 1991), (ii) time-delay FoS
in (Zhang, Liu & Xue, 2020), and (iii) incommensurate
FoS in (Ivanova, Moreau & Malti, 2016). Some other
well-known finite-dimensional results, such as circle cri-
terion and small gain theorem, have been generalized to
a large class of DPS in (Logemann, 1991).

Another class of methods is based on the state-
space representation and some special forms of Lya-
punov–Krasovskii functionals. It is used to derive sim-
ple finite dimensional conditions in terms of LMI’s for
assessing stability of distributed parameter systems
with time delays in (Fridman & Orlov, 2009), and of
uncertain fractional order systems of neutral type with
distributed delays in (Aghayan, Alfi & Machado, 2021).
Additionally, direct Lyapunov method is used in (Katz
& Fridman, 2020) for guaranteeing stability of a finite
dimensional observer based control of a 1-D parabolic
PDE (linear heat equation). Similarly, Prieur & Trélat
(2019) synthesize stabilizing boundary control subject
to a constant delay for a reaction-di↵usion partial di↵er-
ential equation by stabilizing unstable poles of infinite
dimensional systems.

Several methods are developed for analyzing stability of
more specific DPS such as clamped-free damped string
(Lhachemi, Saussié, Zhu & Shorten, 2020), telegrapher’s
equation (Sano, 2018), heat equation (Li, Zhou & Gao,
2018; Li & Gao, 2021), wave equation (Gao, Ma & Sun,
2019; Ha-Duong & Joly, 1994).

A unified framework is proposed in this paper for expo-
nential stability analysis of linear stationary systems in
the frequency domain explicitly presented in a transfer
function form. The proposed method is based on com-
puting the SCS and applies to a wide range of trans-
fer functions (Curtain & Morris, 2009) that are (i) solu-
tions of some partial di↵erential equations, with or with-
out delays, under some boundary conditions, which may
include terms like e

�
p
s, cosh(

p
s), or sinh(

p
s), of the

Laplace variable s, (ii) TDS with retarded, incommen-
surate or distributed delays, (iii) FoS, with or without
time-delays, which may have incommensurate di↵eren-
tiation orders and which stability analysis is more chal-
lenging than the commensurate ones.

The paper is organized as follows. Notation and hypothe-
ses are presented in the next section followed by the
problem formulation. Then, theoretical results regard-
ing pole continuity are presented in section 2, followed
by a robust estimation algorithm of the SCS, based on
interval arithmetics, in section 3. Applications to DPS,
TDS, and FoS are presented in sections 4, 5, and 6 re-
spectively, before concluding.

1.1 Notation

The paper utilizes standard mathematical notations.
The set of non-negative and non-positive real numbers
are respectively denoted by R+ and R�. C is the field

of complex numbers, C+
� and C+

� are respectively the
sets of all complex numbers with real part bigger than

�, and bigger or equal to �. Consequently, C+
0 and C+

0
denote respectively the open and the closed right-half
complex planes.

Stability. Consider several subalgebras of transfer func-
tions, as discussed in (Curtain & Zwart, 1995; Parting-
ton & Bonnet, 2004). A transfer function G is said to be
stable in the H1 sense if it is holomorphic and bounded
in C+

0 . Next, consider the class Â� as the class of all
transfer functions that are holomorphic in Re(s) > ��

and continuous on the boundary Re(s) = ��, with fi-
nite and unique limit when s ! �� ± j1. For � > 0,
Â� is referred to as the subalgebra of �-exponentially
stable transfer functions. On the other hand, a transfer
function belonging to Â� for some negative �, but not
for any � � 0, is referred to as exponentially unstable.
Note that for �2 > �1 > 0, Â�2 ⇢ Â�1 ⇢ Â0 ⇢ H1.

Characteristic function and stability crossing sets.When
dealing with linear time-invariant (LTI) rational sys-
tems, the concept of a characteristic polynomial is well
defined as transfer function denominator. It allows as-
sessing system stability by studying the root locus of the
characteristic polynomial, since they are the only singu-
larities of the transfer function.

When dealing with LTI, irrational systems denoted
G(s,✓), where s 2 C is the Laplace variable, and
✓ = (✓1, · · · , ✓n) 2 T ⇢ Rn is the parametric vector, the
concept of characteristic function (instead of polyno-
mial) f(s,✓) requires some clarifications. In the present
work, the characteristic function is understood as any
function f(s,✓) such that for every ✓ 2 T

(1) f has no finite poles of any multiplicity,
(2) f has branch points and/or essential singularities

everywhere G has branch points and/or essential
singularities 1 ,

(3) all finite zeros of f match poles ofG in both location
and multiplicity.

The selection of the characteristic function is not unique.
Several di↵erent characteristic functions may be con-
structed from a single transfer function, according to the
points above. For example, a characteristic function of

1 The distinction between di↵erent types of singularities is
made on the basis of the shape of the Laurent series, as
studied in complex analysis (see e.g. (Lang, 1999))

2



a given transfer function G(s,✓) could be derived as

f(s,✓) =
Q(s,✓)

G(s,✓)
, (1)

with Q being an analytic function in C having zeros,
with matching multiplicities, at the same locations as
the zeros of G. Without loss of generality, transfer func-
tions with poles-zeros cancellations are not handled in
this paper. If such cases occur, they should be treated
separately.

Additionally, let ⌦f,� denote the stability crossing set
(SCS) of f , i.e. a set of surfaces for which there is at least
a zero of f crossing the axis Re(s) = �

⌦f,� = {✓ 2 T | (9! 2 R) f(� + j!,✓) = 0} . (2)

LetNUf,�(✓) denote the number of zeros of a character-
istic function f(s,✓) with real part bigger or equal to �,
where each zero is counted as many times as its multi-
plicity. Although multiple characteristic functions may
be defined for an irrational transfer function, the stabil-
ity crossing sets are well-defined and independent of the
selection of f .

1.2 Problem formulation

Consider an LTI system with transfer function G(s,✓)
and characteristic equation f(s,✓), ✓ 2 T ⇢ Rn (with
T being the parametric space). Choose � 2 R such that
G(s,✓) has finite and unique limit for s ! � ± j1,
all singularities of f have real parts smaller or equal
to �, with ⌅ denoting the set of imaginary parts of all
singularities of f on the axis Re(s) = �. The problem
under consideration is partitioning the parametric space
into non-overlapping sub-regions Tk (k 2 1, . . . ,K) such
that for all k

i) f(s,✓) has no zero on the axis Re(s) = �, for all
✓ 2 Tk, and

ii) NUf,�(✓1) = NUf,�(✓2) for all ✓1,✓2 2 Tk.

Formally, the following hypotheses are postulated:

(H1) For every ✓ 2 T , s 7! f(s,✓) is analytic inC+
�

2 , ex-
cept possibly in a finite set of points on the bound-
ary, � + j! for ! 2 ⌅ = {!1, . . .!N}. For every

(s,✓) 2

⇣
C+

� \ (� + j⌅)
⌘
⇥ T , (s,✓) 7! f(s,✓) is

continuous.

2 A function is analytic in a closed set if and only if it is
analytic in every point of that set. For sets having nonempty

boundary (like C+
� ) this actually means that the function is

also analytic in some (possibly small) neighborhood of that
boundary. In other words, a function analytic in a closed set
is also analytic in some open superset that encloses that set.

Re(s) = � Im(s)

Re(s)

M

R

✏1

✏

✏2

✏3

� + j!2

� + j!3

� + j!1

Fig. 1. Illustration of the notation involved in the hypotheses
(H1)-(H3) and in the proof of Theorem 2.

(H2) For all � + j!k, !k 2 ⌅, there exists ✏k > 0 such
that f(s,✓) 6= 0 for all s satisfying Re(s) � � and
|s� � � j!|  ✏k, and all ✓ 2 T .

(H3) There existsM > 0 such that f(s,✓) 6= 0 for all ✓ 2

T and all s such that Re(s) � � and |s� �| � M .

Hypothesis (H1) serves two purposes. Firstly, it ensures
that the transfer function is parameterized in a contin-
uous fashion with respect to s and ✓, except possibly at
a finite number of points on Re(s) = �. Those singu-
lar points, illustrated by red dots in Fig.1, are gathered
within the set j⌅. Secondly, (H1) determines the type of
guaranteed stability one is able to seek for. If (H1) is sat-
isfied for some � < 0, then it is possible to investigate for
exponential stability, by localizing zeros of the charac-
teristic function. If it is satisfied for some � > 0, but not
for any smaller �, then the system under consideration
is exponentially unstable, regardless of the position of
the zeros of f . However, if (H1) is satisfied for � � 0, but
not for any smaller �, then neither exponential stability
nor exponential instability can be claimed solely based
on the position of roots of the characteristic equation. In
this case, stability should be investigated by additional
considerations, e.g. H1-stability can be claimed by es-

tablishing that the transfer function is bounded on C+
0

(Partington & Bonnet, 2004).

The introduced hypotheses also limit the extent of the
parametric space T . Hypothesis (H2) is a safeguard from
cases in which zeros of the characteristic function in C+

�
either originate from or terminate at the singularities lo-
cated on the imaginary axis. A simple example would be
a systemwith characteristic function f(s,K) = K+s

� 3
2 ,
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Fig. 2. Root locus of closed loop system with loop transfer
function L(s,K) = K 1�s

1+s .

having a zero with positive real part originating from the
branch point at the origin when K < 0. This however is
not permitted by (H2) which hence restricts the study
of f(s,K) to K > 0. Hypothesis (H3) guards against
cases in which zeros emerge from infinity in C+

� . It, for
example, prevents negative values of delays (non-causal
leads), and also safeguards against cases in which sys-
tem structure abruptly changes for certain parametric
values. An interesting practical example is the case of
loop transfer function with relative degree zero, such as
e.g. L(s,K) = K

1�s
s+1 , which closed-loop characteristic

polynomial is f(s,K) = (s+1)�K(s�1). In this partic-
ular case, a single branch of the root locus originates at
s = �1 for K = 0. By increasing K the root slides along
the negative real axis, and reaches asymptotically �1

when K ! 1�, as illustrated in Fig.2 . The value K = 1
is singular, since the order of the system changes, and
for this particular value of K the characteristic polyno-
mial has no zero. However when K > 1, a root pops up
from +1, and decreases asymptotically to s = 1 as K
grows. Consequently, the characteristic function of this
system does not fulfill hypothesis (H3) when K 2 R.
However, it is worth mentioning that (H3) allows inves-
tigating separately the stability for 0  K < 1.

Within the present work and under hypothesis (H1)-
(H3), we start by proving that the only way for the num-
ber of zeros of a characteristic function to change in C+

� ,
when the parameters vary continuously, is by crossing
the vertical axis Re(s) = �. This theoretical result, re-
lated to root continuity, is studied in section 2. Then, the
problem of finding the SCS is formulated as a constraint
satisfaction problem in section 3 and a robust estima-
tion algorithm, based on interval arithmetics, is detailed
to solve it. Unlike many previously published results,
mainly focused on time-delay systems (TDS) (Hale &
Huang, 1993; Gu et al., 2005; Sipahi & Delice, 2009; Gu
&Naghnaeian, 2011), a unified framework is proposed in
the present paper that applies to a large variety of irra-
tional systems, regardless of the number of investigated
parameters. The only practical limitation is related to
the exponential complexity of the proposed algorithm.

2 Root Continuity

The following claims will ensure continuity of all right-
half zeros of the characteristic function. Start by recall-
ing the root continuity result from (Dieudonné, 1960,
Theorem 9.17.4).

Theorem 1 Let D be an open set inC, T a metric space,
f a continuous, complex valued function in C ⇥ T such
that for each ✓ 2 T s 7! f(s, ✓) is analytic in D. Let
D1 be an open subset of D whose closure D1 is compact
and contained in D, and let ✓0 be such that no zero of
f(s,✓0) is on the boundary of D1. Then, there exists a
neigborhood W of ✓0 such that for every ✓ 2 W

(1) there are no zeros of f(s,✓) on the boundary of D1,
and

(2) the sum of the orders of zeros of f(s,✓) belonging to
D1 is independent of ✓.

Dieudonné’s Theorem, formulated on a compact set, was
previously used, in (Cooke & Grossman, 1982; Gu et al.,
2005), for stability analysis of TDS, by investigating the
SCS. Unlike TDS, irrational transfer functions may have
branch points and essential singularities on the imagi-
nary axis (see e.g. sections 4 and 6) and more generally
on the axis Re(s) = �. Hence, an extension of theorem
1 is required taking into account the non-compact set

C+
� \ (� + j⌅) that has a finite number of singularities

on the boundary Re(s) = �. In fact, hypotheses (H1)–
(H3) are introduced precisely to enable this extension,
formulated in the following.

Theorem 2 Under hypotheses (H1)-(H3), given any
connected subset S of T , if f(� + j!,✓) 6= 0 for all
! 2 R \ ⌅ and all ✓ 2 S, then for any ✓1,✓2 2 S the

number of zeros of f in C+
� , counting multiplicities, is

the same: NUf (✓1) = NUf (✓2).

PROOF. According to (H1), there exists an open set

D containing C+
� \ (� + j⌅) such that f is continuous

on D ⇥ T . Let M satisfy (H3), and select an arbitrary
R � max{M, |!1|, . . . , |!N | }, with !k 2 ⌅. Consider
✏k, introduced in (H2), and define 0 < ✏  mink ✏k. In-
troduce set D1 as the closed set bounded by the axis
Re(s) = � excluding � + j[!k � ✏,!k + ✏], “small” semi-
circles �+j!+✏

j' and the “big” semi-circle �+Re
j' (with

' 2 [�⇡
2 ,

⇡
2 ]). Let D1 be the interior of D1. Due to hy-

potheses (H2), (H3), and the condition f(� + j!,✓) 6= 0
assumed in the statement of the Theorem, there can be
no zeros of f on the boundary ofD1 for all ✓ 2 S. There-
fore,D1 satisfies all the assumptions of Theorem 1. Con-
sequently, for all ✓0 2 S there exists a neighborhood
W (✓0) ⇢ S such that the number of zeros of f insideD1,
including multiplicities, is independent of ✓ 2 W (✓0).
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Notice further that this implies that the number of ze-

ros (including multiplicities) of f is constant within C+
� ,

since due to (H2) there can be no right-half singularities
within the “small” semicircles of D1, and due to (H3)
there can be no roots in C+

� with modulus greater than
M < R. Consequently, for every ✓0 2 S there exists a
neighborhood W (✓0) such that the number of zeros in

C+
� is independent of ✓ 2 W (✓0). In the remainder, it

is proven by contradiction that the number of zeros of f
with real part bigger or equal to �, including multiplic-
ities, does not change within the entire set S. Assume
that the number of roots, counting multiplicities, is not
the same for every ✓ 2 S. Then, there exists at least two
parametric points ✓1, ✓2 2 S such that the number of
zeros at ✓1 is di↵erent from the one at ✓2. Since S is con-
nected by assumption, there exists a simple path P ⇢ S

connecting ✓1 and ✓2, and at least one point ✓0 2 P such
that the number of zeros, counting multiplicities, is not
constant in any neighborhood of ✓0, which contradicts
the existence of W (✓0) and completes the proof. ⇤

Definition 3 Given a parametric space T , and an LTI
system with characteristic function f(s,✓) with stability
crossing set⌦f,� , defined in (2), any two points ✓1 and ✓2
from T are said to belong to the same parametric region
if there exists a continuous path within T connecting ✓1
with ✓2 which does not intersect ⌦f,� .

Notice that “belong to the same parametric region” is
an equivalence relation. Therefore, the stability crossing
set splits the parametric space T into multiple disjoint
regions Tk, k = 1, . . . ,K  1 such that

T = ⌦f,� [

[

k=1,...K

Tk .

An immediate consequence of Theorem 2 is that given
any parametric region Tk of T , and any pair of points

✓1,✓2 2 Tk, the number of zeros in C+
� , counting mul-

tiplicities, is the same for f(s,✓1) and f(s,✓2). Thus,
under hypotheses (H1)-(H3), zeros of the characteristic
function cannot suddenly appear or change multiplicity

in C+
� . The only way for the number of zeros to change is

by crossing the axis Re(s) = � when system parameters
vary continuously. Hence, the determination of the SCS,
⌦f,� defined in (2), allows characterizing all the regions
in the parametric space inside which the characteristic
function has the same number of zeros.

The required theoretical results for root continuity being
established, the problem of finding the SCS is formulated
and solved in the next section.

3 Robust estimation algorithm of the SCS

Since the parameters gathered in ✓ vary continuously,
the problem of determining stability regions can be re-

sumed to the problem of finding the SCS, defined in (2),
for which the zeros of f(s,✓) cross the imaginary axis.
This problem is formulated as a Constraint Satisfaction
Problem (CSP):

CSP :

⇢
f(� + j!,✓) = 0
(!,✓) 2 {R+

\ ⌅}⇥ T
(3)

The searching space is restricted to {R+
\ ⌅}, because

all real-valued impulse-response systems have complex
conjugate poles. The solution set of all the feasible pa-
rameters of the CSP (3) is rewritten as

S =
n
(!,✓) 2

�
R+

\ ⌅
 
⇥ T

��� f(� + j!,✓) = 0
o
. (4)

A guaranteed and robust solution of this CSP can be
obtained, in the searching domain, using interval arith-
metics introduced by (Moore, 1966). The reader is also
referred to (Jaulin, Kie↵er, Didrit &Walter, 2001) for an
introduction to interval arithmetics. The characteriza-
tion of the whole solution set S in (4) can be formulated
as a set inversion problem

S = f
�1(0) \

�
R+

\ ⌅
 
⇥ T (5)

and solved by guaranteed methods based on contraction
and bisection.

3.1 Contractors

Let [x] = [x, x] design an interval which is a closed,
bounded, and connected set of real numbers. The CSP

(3) can be solved by a contractor C, which is an operator
which permits to reduce the domain [⇣] = ([!], [✓]) with-
out any bisection. Hence, contracting the box [⇣] means
replacing it by a smaller box [⇣]⇤ such that the solution
set S remains unchanged, i.e. S ⇢ [⇣]⇤ ⇢ [⇣]. There exists
di↵erent types of contractors depending on whether the
system to be solved is linear or not (Jaulin et al., 2001).

3.2 Set Inversion Via Interval Analysis (SIVIA)

The SIVIA algorithm (Jaulin & Walter, 1993) has been
proposed to solve constraint propagation problems us-
ing bisection. It has been used in di↵erent contexts such
as: state and parameter estimation of non linear systems
(Raissi, Ramdani & Candau, 2004), robust estimation
of frequency domain models (Khemane, Malti, Raissi &
Moreau, 2012), parameter estimation in a glucose model
(Herrero, Delaunay, Jaulin, Georgiou, Oliver & Touma-
zou, 2016), or even to compute invariant sets of closed-
loop control systems (Romig, Jaulin & Rauh, 2019).

Applying the SIVIA algorithm to (3) allows obtaining

5



1: procedure SIVIA(in: [t], [⇣], ⌘, S ; out: S)
2: option: call contractor (in: [⇣] ; out [⇣])
3: if [t]([⇣]) = [0] then return;
4: end if

5: if w([⇣])  ⌘ then

6: S := S [ [⇣];
7: return;
8: else

9: bisect [⇣] into [⇣1] and [⇣2];
10: S = SIVIA ([t] , [⇣1], ⌘, S)
11: S = SIVIA ([t] , [⇣2], ⌘, S)
12: return;
13: end if

14: end procedure

Algorithm 1. SIVIA algorithm with only an outer enclosure

an outer enclosure S of the solution set S, if it exists 3
as defined in (4), such that S ✓ S. SIVIA is a recursive
algorithm based on partitioning of the parameter set
into three regions: feasible, indeterminate and unfeasi-
ble. However, only indeterminate and unfeasible regions3

can be obtained for the CSP (3). Hence the presentation
of the SIVIA algorithm is restrained to these two cases.
It uses an inclusion test [t] : {R+

\ ⌅}⇥T ! N which is
a function allowing to prove if a box [⇣] is unfeasible or
undetermined. If unfeasible, the box is simply ignored. If
undetermined, it is bisected and tested again unless its
width w([⇣]) is less than a precision parameter ⌘ tuned
by the user and which ensures that the algorithm ter-
minates after a finite number of iterations. The outer
enclosure S is then computed as a union of all undeter-
mined boxes as indicated in line 6 of Algorithm 1. Line 2
allows calling optionally a contractor at each execution
of the SIVIA algorithm.

In this paper, the SIVIA algorithm guarantees that all
the outer enclosures of the SCS are obtained in the de-
sired searching box which should be chosen carefully to-
gether with the precision factor ⌘ due to the exponen-
tial complexity of the algorithm. Hence, the more prior
knowledge is introduced regarding the position of the
SCS, the better. When no prior knowledge is available,
the SIVIA algorithm may be initialized with a large
searching box and a big precision factor ⌘ in such a
way to obtain a rough estimation of the SCS. Then, the
searching box can be narrowed and the precision factor
enhanced to get more precise outer enclosures.

The SIVIA algorithm is implemented using INTLAB
toolbox (Rump, 1999) in di↵erent contexts: a controlled
heat equation in section 4, rational TDSs in section 5,
and FoS is section 6.

3 The original SIVIA algorithm allows computing addition-
ally an inner enclosures: S ✓ S ✓ S. However, the CSP for-
mulated in (3), can only yield an outer enclosure S.

x0 = 0.15

0

ϕ(t, 0)

L = 0.20m or L = ∞

x

Fig. 3. Thin rod of length L.

4 Application to stability analysis of a dis-

tributed parameter system

Consider a one-dimensional heat di↵usion in a thin rod 4

of length 0 < L  1. The rod is thermally isolated, ex-
cept at its boundary cross-sections as in Fig.3. At the
initial end x = 0, the rod is subject to an adjustable
thermal flux, '(t, 0) = ��

@✓
@x (t, 0), where � is the ther-

mal conductivity. Two cases are treated: either the rod
is of finite length or infinite. When the rod length is fi-
nite, the opposite end is kept at ambient temperature
✓(t, L) = 0. The corresponding model describing spatio-
temporal distribution of the temperature along the rod
is given by the well-known heat equation,

@
2
✓(t, x)

@x2
= �

�1 @✓(t, x)

@t
, (6)

where � is the thermal di↵usivity of the medium. The
temperature of the rod is measured at a cross-section
x = x0 = 0.15m, with 0  x0  L. This temperature is
then controlled remotely (see Fig.4) using a proportional
controller with a gain K. Additionally, time required to
transmit data from the controller to the actuator, and
from the sensor to the controller is denoted by ⌧

2 , so that
the total loop delay is ⌧ � 0. Hence, the e↵ective transfer
function of the proportional delayed controller is

P (s) = Ke
�⌧s (7)

The objective of this example is to find the whole set of
stabilizing controllers (7) in theK versus ⌧ plane in both
cases: finite and semi-infinite rods. A similar problem is
treated in (Morărescu & Niculescu, 2007), with the same
delayed proportional controller P (s), however applied to
a rational system.

4.1 Semi-infinite spatial domain (L = 1)

In the semi-infinite domain, the transfer function be-
tween the input flux �(s, 0) = L {'(t, 0)} and the tem-
perature ⇥(s, x) = L {✓(t, x)} at a cross-section x is

4 For numerical application, the rod is considered of alu-
minium type with a thermal di↵usivity � = 98.8⇥10�6 m2/s
and a conductivity � = 237 Wm�1K�1 (see e.g. (Baehr &
K., 2011)).
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� K e
�s ⌧

2 G(s)

e
�s ⌧

2

'

Fig. 4. A feedback control loop, where G(s) is the transfer
function between the heat flux and the temperature at x0,
for either a semi-infinite or a finite rod, P (s) is a proportional
delayed controller as in (7).

(Curtain & Morris, 2009)

G(s) =
⇥(s, x)

�(s, 0)
=

e
�x

p
s
�

�
p

s
�

, (8)

with the closed-loop transfer function Ke�s⌧e
�x
p

s
�

f(s,K,⌧) and
the closed-loop characteristic function

f(s,K, ⌧) = �

r
s

�
+Ke

�s⌧
e
�x

p
s
� . (9)

Due to the presence of
p
s a branch-cut is necessary.

It is chosen along the negative real axis including the
branch point 0 and 1. Hence, the characteristic func-
tion f(s,K, ⌧) is holomorphic in the complement of the
branch-cut line of the complex plane and the arguments
of s are restrained to

| arg(s)| < ⇡ (10)

Due to the presence of a branch point at the origin, the
proposed algorithm is applied with � = 0.

In the special case when ⌧ = 0, all the roots of f(s,K, 0)
can be determined analytically and their locus plotted
versus K. The solutions of f(s,K, 0) = 0 are given by
all the determinations, n = 0,±1,±2, . . ., of Lambert’s
Wn function, see e.g. (Corless, Gonnet, Hare, Je↵rey &
Knuth, 1996), s = �

x2W
2
n

�
�

Kx
�

�
, provided (10) is ful-

filled. The root locus of f(s,K, 0) is plotted versus gain
K, in Fig.5, for the principal determination of the Lam-
bert function W0 (as the upper imaginary part) and for
the determination W�1 (as the lower imaginary part).
The other determinations of Wn, n = 1,±2,±3, . . . are
not represented as they are well beyond the scale of Fig.5
towards �1. They may yield other poles crossing the
imaginary axis for values of K that are much greater
than the ones represented in Fig.5, which shows that two
poles pop up from the branch-cut when K ⇡ 3 ⇥ 103.
They cross the imaginary axis towards instability when
K ⇡ 56 ⇥ 103. The objective of the paper is to deter-
mine for what parametric values (here K and in a more
general caseK and ⌧) the poles cross the imaginary axis.

-0.015 -0.01 -0.005 0 0.005 0.01

Real(s)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Im
a

g
(s

)

 3 103

8 103

8 103

14 103  
  

   

 14 103

      

 25 103

 25 103 
    

      

 44 103

 44 103 
    

      

 79 103

 79 103 
    

      

 105 

  105 
    

 56 103  
  

 

 56 103 

Fig. 5. Root locus of f(s,K, 0) in (9) for di↵erent values of
K, illustrating that poles pop up from the plane-cut. When
the poles cross the imaginary axis (red squares), the system
becomes unstable. Numbers on the curves correspond to val-
ues of K. The plane-cut is represented in blue along R�.

4.2 Finite spatial domain (L < 1)

In this case, the following transfer function is obtained
for the heat di↵usion process under consideration (Cur-
tain & Morris, 2009)

G(s) =
⇥(s, x)

�(0, s)
=

sinh((L� x)
p

s
� )

�
p

s
� cosh(L

p
s
� )

, (11)

with the closed loop characteristic function

f(s,K, ⌧) = �

r
s

�
cosh

✓
L

r
s

�

◆
+

Ke
�s⌧ sinh

✓
(L� x)

r
s

�

◆
. (12)

As in the previous example, the proposed algorithm is
applied with � = 0, due to the presence of a branch point
at the origin.

4.3 Robust estimation algorithm of the SCS

Both characteristic functions (9) and (12) comply with
the hypotheses (H1)-(H3). They have a branch point at
s = 0, which is excluded from the searching box (⌅ =
{0}), initialized at

[⇣] = ([!], [K], [⌧ ]) =
�
[10�3

, 0.1], [0, 7 · 104], [0, 100]
�

(13)
Although theoretically the searching interval of ! isR+

\

{0}, the thermal system under consideration is slow. Ad-
ditionally, one can see from Fig.5 that the root locus of
(9) for ⌧ = 0 crosses the imaginary axis for an ! in the
interval (0.04, 0.05). Consequently, the first poles cross-
ing the imaginary axis towards instability, in both cases

7



Fig. 6. Outer enclosures of the SCS in the finite and semi-in-
finite aluminium rods. The number of unstable poles is in-
dicated inside each region (by the corresponding color). The
red square corresponds to the SCS of f(s,K, 0) in (9) as pre-
dicted in the root locus of Fig.5 (red square).

(9) for any ⌧ and (12), are expected to be within the fre-
quency interval [10�3

, 0.1] rad/sec. In case the obtained
outer enclosure of [!] touches either the lower bound
10�3 or the upper bound 0.1, the searching interval is
enlarged and the SIVIA algorithm run again. The toler-
ance is set to an arbitrarily small value as the width of
each element w([⇣]) divided by 28

⌘ = w([⇣])/28 (14)

⌘ = (0.39 · 10�3
, 273.4, 0.39) (15)

The obtained outer enclosures of the stability crossing
sets are plotted in the K versus ⌧ plane in Fig.6 in red
for the semi-infinite rod and in blue for the finite rod.
The position of the poles crossing the imaginary axis is
plotted, with the same colors, in Fig.7. Since both trans-
fer functions (8) and (11) are bounded on the imaginary
axis, the systems under consideration are H1-stable in
the parametric regions for which there are no roots in

C+
0 (the lower left parts of Fig. 6). Hence, the red line

(similarly the blue) in Fig.6 splits the plane into two re-
gions: a guaranteed stability region (the lower left con-
taining K = 0 and ⌧ = 0) and a guaranteed instability
region as the upper right one. In between, the outer en-
closures of the SCS are plotted. Their width can be re-
duced by reducing the precision factor ⌘ in (14) at the
price of a higher computational burden. In the case of
the semi-infinite rod, for ⌧ = 0, the results of Figs.6 and
7 (red squares) are confirmed by the intersection of the
root-locus with the imaginary axis, in Fig.5.

To the best of authors’ knowledge, in both cases finite
with ⌧ 6= 0 and semi-infinite aluminium rods, there is
no analytical method allowing to compute the roots of
the characteristic function f in (9) or (12). The only

Fig. 7. Outer enclosures of the frequencies crossing the imag-
inary axis in the finite and semi-infinite aluminium rods. The
red squares correspond to the pole crossing of f(s,K, 0) in
(9) as predicted in the root locus of Fig.5 (red square).

alternative method for evaluating exponential stability
of the control loop is based on a graphical representation
that uses Cauchy’s principle argument.

5 Application to stability analysis of time delay

systems

5.1 Distributed delay system

Consider in this section a distributed delay system taken
from (Turkulov et al., 2022, example 9) modeled by

ẋ(t) = �

Z 0

�⌧
e
K↵

x(t+ ↵)d↵. (16)

Its characteristic function, computed by straightforward
integration of the Laplace transform of (16),

f(s,K, ⌧) = s
2 + sK + 1� e

�⌧(s+K)
, (17)

complies with the hypotheses (H1)-(H3), with no singu-

larities in C+
� . Hence the boundary of instability region

is investigated by choosing � = 0 and � = �0.02 . The
searching box is initialized at

[⇣] = ([!], [K], [⌧ ]) = ([0, 1.5], [0, 0.3], [0, 20]) , (18)

and the tolerance factor set as in (14). The obtained
outer enclosures of the SCS are plotted in the K ver-
sus ⌧ plane in Fig.8, which confirms and extends the
results of (Turkulov et al., 2022, example 8) obtained
using Rouché’s theorem. The exterior of the blue curve
corresponds to systems of class A0.02. The outer enclo-
sures of [!], for which the poles cross respectively the
imaginary axis Re(s) = 0 and the axis Re(s) = �0.02
are [0.31, 1.42] and [0.31, 1.56].
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Fig. 8. Outer enclosures of the SCS of f(s,K, ⌧) in (17) in
red for � = 0 and in blue for � = �0.02 (only the external
part is sketched in the latter case); the number of unstable
poles is indicated inside each region. Outside the blue region,
the system is guaranteed to belong to A0.02.

5.2 Time delay system of retarded-type

Consider a TDS system of retarded type, taken from
(Turkulov et al., 2022, example 10), with a characteristic
function given by

f(s, ⌧1, ⌧2) = s
2 + 2se�s⌧1 + e

�s⌧2 . (19)

Its stability is investigated with respect to ⌧1 and ⌧2 by
setting the initial searching box to

[⇣] = ([!], [⌧1], [⌧2]) = ([0.45, 2.5], [0, 1.8], [0, 3]) . (20)

The obtained outer enclosures of the SCS are plotted
in the ⌧1 versus ⌧2 plane in Fig.9. The number of un-
stable poles, computed at any point inside the di↵erent
regions, is indicated by a number. Fig.9 confirms again
and extends the results of (Turkulov et al., 2022, exam-
ple 10) obtained using Rouché’s theorem. The interior
of the blue contour indicates the region of the paramet-
ric space corresponding to systems of class A0.02. The
obtained outer enclosure of [!] for which the poles cross
the imaginary axis is [0.48, 2.42].

6 Application to stability analysis of a fractional

system

Consider in this section a fractional system, taken from
(Rapaić & Malti, 2019, example 3), with a characteristic
function given by

f(s,↵1,↵2) = s
↵2 + 2s↵1 + 1 (21)

and (↵1,↵2) 2 {R+
\ {0}}2. When ↵1 and/or ↵2 are

non integers, the characteristic function f(s,↵1,↵2) is

Fig. 9. Outer enclosures of the the SCS of f(s, ⌧1, ⌧2) in (19)
in red for � = 0 and in blue for � = �0.02 (only the internal
part is sketched in the latter case); the number of unstable
poles is indicated inside each region. Inside the blue region,
the system is guaranteed to belong to A0.02.

holomorphic in the complement of the branch-cut line
of the complex plane. The branch-cut is chosen to be
along the negative real axis including the branch point
at 0 and 1, and the restriction (10) applies to s.

The proposed algorithm is applied for determining the
SCS of f(s,↵1,↵2) with � = 0. The characteristic func-
tion (21) complies with the hypotheses (H1)-(H3). The
branch point at s = 0 is excluded from the searching box
(⌅ = {0}), initialized at:

[⇣] = ([!], [↵1], [↵2]) = ([0.1, 4], [0.1, 15], [0.1, 20]) (22)

with a tolerance set arbitrarily to a small value as in (14).
The obtained outer enclosures S of the SCS, is plotted
in Fig.10 which confirms the results of (Rapaić & Malti,
2019, example 3). The outer enclosure of [!] for which the
poles cross the imaginary axis is [0.56, 1.79]. Hence, all
fractional systems, incommensurate and commensurate,
that have di↵erentiation orders in the lower-left region of
Fig.10, have no unstable poles. Considering additionally
that G(s) = f

�1(s,↵1,↵2) is bounded on C+
0 , one may

also conclude that the parametric region withNUf,0 = 0
is the region of H1-stability.

7 Conclusions

A unified framework has been presented in this paper for
exponential stability analysis of irrational transfer func-
tions in the frequency domain. First, it has been proven
that the only way for the number of zeros of a charac-
teristic function to change in the right of a vertical axis
of abscissa �, when its parameters vary continuously, is
by crossing that vertical axis. Based on this theoretical
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Fig. 10. Outer enclosures of the SCS of f(s,↵1,↵2) in (21).
The number of unstable poles is indicated inside each region.

result, the problem of finding the set of parameters for
which poles cross the vertical axis has been formulated as
a constraint satisfaction problem. This original formula-
tion is universal as it applies to a wide class of irrational
transfer functions. It has been solved using the robust
SIVIA algorithm, based on interval arithmetics, that
uses contraction and bissection. It has been successfully
applied for determining the SCS of (i) a controlled heat
partial di↵erential equation, in finite and semi-infinite
media, (ii) time-delay systems with distributed and re-
tarded type delays, (iii) fractional systems, providing
stability results even for incommensurate di↵erentiation
orders. The proposed algorithm may be used for any
number of transfer function parameters. The only lim-
itation is related to the time-complexity of the SIVIA
algorithm which is known to be exponential in terms of
the number of parameters. Hence, the more prior knowl-
edge can be introduced for initializing the searching box,
the better. The examples presented in the paper have
been intentionally limited to two parameters for graph-
ical representation purposes.
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