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Abstract

This paper presents a unified framework for robust stability analysis of linear stationary systems with irrational transfer
functions in the space of an arbitrary number of unknown parameters. Systems of this kind are encountered when analyzing
distributed parameter systems, time delayed systems of both retarded and neutral type, or even fractional systems. Systems
described by irrational transfer functions are of infinite dimension, typically having an infinite number of poles and/or zeros,
rendering their stability analysis more challenging as compared to their finite-dimensional counterparts. First, it is proven
that, under mild hypotheses, new poles with positive real parts may appear through a continuous variation of parameters
only if existing stable poles cross the imaginary axis. Hence, by determining parametric values for which the crossing occurs,
known as stability crossing sets (SCS), the entire parametric space is separated into regions within which the number of
right-half poles (including their multiplicity) is invariant. Based on the aforementioned result, a robust estimation algorithm,
formulated as an interval constraint satisfaction problem, is solved using guaranteed methods, for determining the SCS. The
developed algorithm is applied for assessing stability of (i) a controlled parabolic 1D partial differential equation, namely the
heat equation, in finite and semi-infinite media, (ii) time-delay rational systems with distributed and retarded type delays,
(iii) fractional systems, providing stability results even for incommensurate differentiation orders.

Key words: Stability; Time-delay systems; Distributed parameter systems; Interval arithmetics; Guaranteed stability.

1 Introduction

Many engineering systems exhibit dynamical behaviors
that can be captured by partial differential equations
(PDE), or delayed ordinary (and partial) differential
equations. These distributed parameter systems (DPS)
yield irrational transfer functions that are usually infi-
nite dimensional, with an infinite number of poles and/or
zeros. A wide variety of transfer functions of DPS, solu-
tions of PDE, is exhibited in Curtain & Morris (2009).

This paper presents stability analysis of irrational trans-
fer functions in the parametric space. Similar methods
have been investigated for stability analysis of time-
delay-systems (TDS) in Gryazina (2004); Neimark
(1998); Lee & Hsu (1969); El’sgol’ts & Norkin (1973).
They split the parametric space into multiple regions,
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(Rachid Malti), rapaja@uns.ac.rs (Milan R. Rapaic),
vukan turkulov@uns.ac.rs (Vukan Turkulov).

with the number of unstable poles being invariant inside
each region. An alternative approach consists of finding
the stability crossing sets (SCS), i.e. a set of surfaces
for which there is at least a pole crossing the imaginary
axis. Such approaches have been successfully demon-
strated for retarded systems with two and three inde-
pendent delays Hale & Huang (1993); Gu, Niculescu &
Chen (2005); Sipahi & Olgac (2005); Gu & Naghnaeian
(2011), providing insightful graphical representation of
stability equivalence regions. To the best of authors’
knowledge, such methods have never been extended to
other types of irrational transfer functions.

A new method, based on the application of Rouché’s
theorem in the frequency domain, has recently been pro-
posed for stability analysis of fractional systems in Ra-
paić & Malti (2019) and a large class of retarded and
distributed TDS in Turkulov, Rapaić & Malti (2022).
Given a parametrized fractional and/or TDS and an ar-
bitrary parametric point, the proposed method identi-
fies the surrounding region in the parametric space for
which the number of unstable poles remains invariant.
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Another important tool has been continuously used
for stability analysis of irrational transfer functions:
the Nyquist stability criterion. It has been used for
analyzing stability of (i) DPS in Chait, MacCluer &
Radcliffe (1989); Logemann (1991), (ii) time-delay
(retarded-type) fractional transfer functions in Zhang,
Liu & Xue (2020), and (iii) incommensurate fractional
transfer functions in Ivanova, Moreau & Malti (2016).
Some other well-known finite-dimensional results, such
as circle criterion and small gain theorem, have been
generalized to a large class of DPS in Logemann (1991).

Another category of methods is based on the state-
space representation and some special forms of Lya-
punov–Krasovskii functionals. It is used to derive simple
finite dimensional conditions in terms of LMI’s for as-
sessing stability of distributed parameter systems with
time delays in Fridman & Orlov (2009), and of uncertain
fractional order systems of neutral type with distributed
delays in Aghayan, Alfi & Machado (2021). Addition-
ally, direct Lyapunov method is used in Katz & Frid-
man (2020) for stability of a finite dimensional observer
based control of a 1-D parabolic PDE (linear heat equa-
tion). Moreover, in Katz & Fridman (2021), robustness
of such finite-dimensional controllers is studied with re-
spect to input and output delays. Furthermore, Prieur
& Trélat (2019) synthesize stabilizing boundary control
subject to a constant delay for a reaction-diffusion par-
tial differential equation by stabilizing unstable poles of
the infinite dimensional system.

Several methods are developed for analyzing stability of
important specific DPS such as clamped-free damped
string Lhachemi, Saussié, Zhu & Shorten (2020), teleg-
rapher’s equation Sano (2018), heat equation Li, Zhou
& Gao (2018); Li & Gao (2021), wave equation Gao, Ma
& Sun (2019); Ha-Duong & Joly (1994).

A unified framework is proposed in this paper for sta-
bility analysis of linear irrational and/or DPS in the
frequency domain. The proposed method is based on
computing the SCS of a wide range of systems that in-
clude (i) solutions of some partial differential equations,
with or without delays, under some boundary condi-
tions, which transfer functions may include terms like
e−

√
s, cosh(

√
s), or sinh(

√
s), of the Laplace variable s,

(ii) TDS with retarded, incommensurate or distributed
delays, (iii) fractional systems, with or without time-
delays, which may have incommensurate differentiation
orders and which stability analysis is more challenging
than the commensurate ones.

The paper is organized as follows. Notation and hypothe-
ses are presented in section 1.2 followed by the prob-
lem formulation. Then, theoretical results regarding pole
continuity are presented in section 2, followed by a ro-
bust estimation algorithm of the SCS, based on interval
arithmetics, in section 3. Applications to DPS, TDS and

fractional systems are presented in sections 4, 5, and 6
respectively, before concluding.

1.1 Notation

The paper utilizes standard mathematical notations.
The set of non-negative and non-positive real numbers
are respectively denoted by R+ and R−. C is the field
of complex numbers, C+ the open right-half complex
plane {s ∈ C : Re(s) > 0}, and C+ the closed right-half
complex plane {s ∈ C : Re(s) ≥ 0}.

When dealing with linear time-invariant (LTI) rational
systems, the concept of a characteristic function (poly-
nomial) is well defined as transfer function denominator.
It allows assessing system stability by examining the ze-
ros of the characteristic function.

However, when dealing with LTI, irrational, possibly in-
finite dimensional, systems denotedG(s,θ), where s ∈ C
is the Laplace variable, and θ = (θ1, · · · , θn) ∈ T ⊂ Rn,
is the parametric vector, the concept of characteristic
function f(s,θ) requires some clarifications:

(1) f has no finite poles of any multiplicity,
(2) f has branching points and/or essential singulari-

ties everywhere G has branching points and/or es-
sential singularities,

(3) all finite zeros of f match poles ofG in both location
and multiplicity.

The selection of the characteristic function is not unique.
Several different characteristic functions may be con-
structed from a single transfer function, according to the
points above. For example, a characteristic function of
a given transfer function G(s,θ) could be derived as

f(s,θ) =
Q(s,θ)

G(s,θ)
, (1)

with Q being an arbitrary analytic function in C having
zeros at the same locations with matching multiplicities
as G.

Additionally, let Ωf denote the stability crossing set
(SCS) of f , i.e. a set of surfaces for which there is at
least a zero of f crossing the imaginary axis

Ωf = {θ ∈ T | f(jω,θ) = 0 for some ω ∈ R} . (2)

LetNUf (θ) denote the number of zeros of a characteris-
tic function f(s,θ) with a non-negative real part, where
each zero is counted as many times as its multiplicity.
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1.2 Problem formulation

Consider an LTI system with characteristic equation
f(s,θ), θ ∈ T ⊂ Rn. The problem under consideration
can be formulated as partitioning the parametric space
into regions Tk (k ∈ 1, . . . ,K) such that for all k

i) f(s,θ) has no zero on the imaginary axis, for all
θ ∈ Tk, and

ii) NUf (θ1) = NUf (θ2) for all θ1,θ2 ∈ Tk.

The solution will be sought under the following hypothe-
ses on f and T :

(H1) For every θ ∈ T , s 7→ f(s,θ) is analytic in C+ 1 ,
except possibly in a finite set of points s = jω with
ω ∈ Ξ = {ω1, . . . , ωN}. For every s ∈ C+ \ jΞ,
θ 7→ f(s,θ) is continuous on T .

(H2) For all ωk ∈ Ξ, there exist ϵk > 0 such that
f(s,θ) ̸= 0 for all s satisfying Re(s) ≥ 0 and
|s− jω| ≤ ϵk, and all θ ∈ T .

(H3) There exists M > 0 such that f(s,θ) ̸= 0 for every
θ ∈ T and all s such that Re(s) ≥ 0 and |s| ≥ M .

According to (H1), f(s,θ) must be continuous with re-

spect to θ and analytic with respect to s ∈ C+, except
possibly at a finite number of points on the imaginary
axis. Those singular points are collected within a set jΞ
and illustrated by red dots in Fig.1. Hypotheses (H2)
and (H3) restrict admissible locations of the right-half
zeros. According to (H2), roots of f(s,θ) cannot stem
from any singular point belonging to the set jΞ for any
value of θ. According to (H3), roots of f(s,θ) cannot
have arbitrary large positive real parts.

Even though the introduced hypotheses limit the set of
admissible characteristic functions, they are not very re-
strictive. Hypothesis (H1), in particular, excludes sys-
tems having branching points and/or essential singular-
ities with positive real parts. Such systems are exponen-
tially unstable, so that investigation of the location of
their characteristic function roots loses all practical sig-
nificance. To clarify, consider a characteristic function
having such a singularity at s = 1. By construction, this
characteristic function has to be obtained from a transfer
function having a singularity at s = 1, implying that its
abscissa of convergence is at least equal to 1, and conse-
quently that its impulse response grows asymptotically
at least as fast as et. As an example, consider a transfer

1 A function is analytic in a closed set if and only if it is
analytic at every point of that set. For sets having nonempty
boundary (like C+) this actually means that the function is
also analytic in some (possibly small) neighborhood of that
boundary. In other words, a function analytic in a closed set
is also analytic in some open superset that encloses that set.

Im(s)

Re(s)

M

R

ϵ1

ϵ

ϵ2

ϵ3

jω2

jω3

jω1

Fig. 1. Illustration of the notation involved in the hypotheses
(H1)-(H3) and in the proof of Theorem 2.

function G(s) =
√
s−1
s+1 , which impulse response is

L−1{G(s)} =
et√
πt

−
√
2Erfi(

√
2t)e−t ,

where Erfi is the “imaginary error function” (Erfi(z) =
−jErf(jz), with Erf being the common “error function”).
A corresponding characteristic function could be con-
structed by choosing Q(s) = 1 in (1), f(s) = s+1√

s−1
.

Hence, if f is not analytic in C+ \ jΞ, as suggested in
(H1), the location of its zeros is not sufficient to assess
system stability.

The introduced hypotheses also limit the extent of the
parametric space T . Hypothesis (H2) is a safeguard from
cases in which right-half zeros of the characteristic func-
tion either originate from or terminate at the singular-
ities located on the imaginary axis. A simple example
would be a systemwith characteristic function f(s,K) =

K + s−
3
2 , having a zero with positive real part origi-

nating from the origin when K < 0. This however is
not permitted by (H2) which hence restricts the study
of f(s,K) to K > 0. Hypothesis (H3) guards against
cases in which zeros emerge from infinity in C+. It, for
example, prevents negative values of delays (non-causal
leads), and also safeguards against cases in which system
structure abruptly changes for certain parametric val-
ues. An interesting practical example is the case of loop
transfer function with relative degree zero, such as e.g.
L(s,K) = K 1−s

s+1 . Its closed-loop characteristic polyno-

mial is f(s,K) = (s + 1) + K(s − 1). In this particu-
lar case, a single branch of the root locus originates at
s = −1 for K = 0. By increasing K the root slides along
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Fig. 2. Root locus of closed loop system with loop transfer
function L(s,K) = K 1−s

1+s
.

the negative real axis, and reaches asymptotically −∞
when K → 1−, as illustrated in Fig.2 . The value K = 1
is singular, since the order of the system changes, and for
this particular value of K the characteristic polynomial
has no zero. However when K > 1, a root pops up from
+∞, and decreases asymptotically to s = 1 as K grows.
Consequently, the characteristic function of this system
does not fulfill hypothesis (H3) when K ∈ R. However,
it is worth mentioning that (H3) allows investigating
separately the stability for 1 < K ≤ Kmax < ∞.

Within the present work and under hypothesis (H1)-
(H3), we start by proving that the only way for the
number of zeros of a characteristic function to change,
when the parameters vary continuously, is by crossing
the imaginary axis. This theoretical result, related to
root continuity, is studied in section 2. Then, a new and
robust estimation algorithm, is detailed in section 3 for
computing the SCS for this large class of systems. Un-
like many previously published results, mainly focused
on time-delay systems (TDS) Gu et al. (2005); Sipahi
& Delice (2009); Morărescu, Niculescu & Gu (2007), a
unified approach is proposed in the present paper that
applies to a large variety of irrational systems, regard-
less of the number of investigated parameters. The only
practical limitation is related to the exponential com-
plexity of the proposed algorithm.

2 Root Continuity

The following claims will ensure continuity of all right-
half zeros of the characteristic function. Start by recall-
ing the root continuity result from (Dieudonné, 1960,
Theorem 9.17.4).

Theorem 1 Let D be an open set inC, T a metric space,
F a continuous, complex valued function in C× T such
that for each θ ∈ T s 7→ f(s, θ) is analytic in D. Let
D1 be an open subset of D whose closure D1 is compact
and contained in D, and let θ0 be such that no zero of
f(s,θ0) is on the boundary of D1. Then, there exists a
neigborhood W of θ0 such that for every θ ∈ W

(1) there are no zeros of f(s,θ) on the boundary of D1,
and

(2) the sum of the orders of zeros of f(s,θ) belonging to
D1 is independent of θ.

All the pre-requisites are met now, for the main result
of the paper to be stated and proven.

Theorem 2 Under hypotheses (H1)-(H3), given any
connected subset S of T , if f(jω,θ) ̸= 0 for all ω ∈ R \Ξ
and all θ ∈ S, then for any θ1,θ2 ∈ S the number of
zeros of f in C+, counting their multiplicities, is the
same: NUf (θ1) = NUf (θ2).

PROOF. According to (H1), there exists an open set

D containing C+ \ jΞ such that f is continuous on D ×
T . Let M satisfy (H3), and select an arbitrary R ≥
max{M, |ω1|, . . . , |ωN | }, with ωk ∈ Ξ. Consider ϵk, in-
troduced in (H2), and define 0 < ϵ ≤ mink ϵk. Introduce
set D1 as the closed set bounded by the imaginary axis
excluding j[ωk − ϵ, ωk + ϵ], “small” semi-circles jω + ϵjφ

and the “big” semi-circle Rejφ (with φ ∈ [−π
2 ,

π
2 ]). Let

D1 be the interior of D1. Due to hypotheses (H2), (H3),
and the condition f(jω,θ) ̸= 0 imposed in the theorem,
there can be no zeros of f on the boundary of D1 for
all θ ∈ S. Therefore, D1 satisfies all the assumptions
of Theorem 1. Consequently, for all θ0 ∈ S there ex-
ists a neighborhood W (θ0) ⊂ S such that the number
of zeros of f inside D1, including multiplicities, is inde-
pendent of θ ∈ W (θ0). Notice further that this implies
that the number of zeros (including multiplicities) of f

is constant within C+, since due to (H2) there can be no
right-half singularities within the “small” semicircles of
D1, and due to (H3) there can be no right-half roots with
modulus greater than M < R. Consequently, for every
θ0 ∈ S there exists a neighborhood W (θ0) such that

the number of zeros in C+ is independent of θ ∈ W (θ0).
In the remainder, it is proven by contradiction that the
number of right-half zeros of f , including multiplicities,
does not change within the entire set S. Assume that the
number of roots, counting multiplicities, is not the same
for every θ ∈ S. Then, there exists at least two paramet-
ric points θ1, θ2 ∈ S such that the number of zeros at
θ1 is different from the one at θ2. Since S is connected
by assumption, there exists a simple path P ⊂ S con-
necting θ1 and θ2, and at least one point θ0 ∈ P such
that the number of zeros, counting multiplicities, is not
constant in any neighborhood of θ0, which contradicts
the existence of W (θ0) and completes the proof. □

Definition 3 Given a parametric space T , and an LTI
system with characteristic function f(s,θ) with stability
crossing set Ωf , defined in (2), any two points θ1 and θ2
from T are said to belong to the same parametric region
if there exists a continuous path within T connecting θ1
with θ2 which does not intersect Ωf .

Notice that “belong to the same parametric region” is
an equivalence relation. Therefore, the stability crossing
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set splits the parametric space T into multiple disjoint
regions Tk, k = 1, . . . ,K ≤ ∞ such that

T = Ωf ∪
⋃

k=1,...K

Tk .

Corollary 4 Given any parametric region Tk of T , and
any pair of points θ1,θ2 ∈ Tk, the number of zeros in
C+, counting multiplicities, is the same for f(s,θ1) and
f(s,θ2).

PROOF. The corollary follows directly from Theorem
2, by noticing that Tk satisfies all conditions imposed on
S. □

Theorem 2 and corollary 4 suggest, under hypotheses
(H1)-(H3), that characteristic function zeros (system
poles) cannot suddenly appear or change multiplicity in
the right-half complex plane. The only way for the num-
ber of right-half zeros to change is by crossing the imag-
inary axis when system parameters change. Hence, the
determination of the SCS, defined in (2), allows char-
acterizing all the regions in the parametric space inside
which the characteristic function has the same number
of zeros.

Theorem 1 was previously used in Cooke & Grossman
(1982); Gu et al. (2005) for stability analysis of TDS, by
investigating the SCS. Theorem 2 extends these results
to arbitrary LTI systems, as long as their characteristic
functions satisfy hypotheses (H1)-(H3).

The required theoretical results for root continuity being
established, a new and robust estimation algorithm is
developed in the next section for determining the SCS.

3 Robust estimation algorithm of the SCS

Since the parameters gathered in θ vary continuously,
the problem of determining stability regions can be re-
formulated as finding the SCS, defined in (2), for which
the zeros of f(s,θ) cross the imaginary axis, i.e. for which

CSP :


Re{f(jω,θ)} = 0

Im{f(jω,θ)} = 0

(ω,θ) ∈ {R+ \ Ξ} × T
(3)

The searching space is restricted to the positive real axis,
because all real-valued impulse-response systems have
complex conjugate poles. If complex poles do not come
in conjugate pairs, then the searching domain is {R \ Ξ}.

Equation (3) is formulated as a constraint satisfaction
problem which solution set of all the feasible parameters

is rewritten as

S =
{
(ω,θ) ∈

{
R+ \ Ξ

}
× T

∣∣∣Re{f(jω,θ)} = 0

and Im{f(jω,θ)} = 0
}

(4)

A guaranteed and robust solution of this CSP can be
obtained, in the searching domain, using interval arith-
metics introduced in the next section.

3.1 Basic tools of interval arithmetics

Interval analysis was initially introduced by Moore
Moore (1966). An interval [a] = [a, a] is a closed,
bounded, and connected set of real numbers. The set
of all intervals is denoted by IR. Real operations are
extended to intervals as follows. Given [a] ∈ IR and
[b] ∈ IR:

[a] + [b] = [a+ b, a+ b], (5)

[a]− [b] = [a− b, a− b], (6)

[a]× [b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] (7)

[a]/[b] =

{
[a]×

[
1

b
, 1
b

]
, if 0 /∈ [b]

(−∞,∞), if 0 ∈ [b].
(8)

An interval vector (or a box) [a] of IRn is a cartesian
product of n intervals [ai] for i = 1, . . . , n.

Additionally, arithmetic operations on intervals often in-
troduce pessimism because the result of each operation
must be included in an interval. Considering g : Rn → C,
a function denoted [g], is an inclusion function of g, if
and only if:

∀[x] ∈ IR, g([x]) ⊆ [g]([x]) (9)

An inclusion function of g is obtained by replacing each
standard function of elementary functions by an inter-
val evaluation. In practice, the inclusion function is not
unique.

Complex interval analysis

In this paper, complex-valued characteristic functions
are considered. Evaluating such functions requires defin-
ing complex interval representations. Three kinds of
complex representations exist Candau, Raissi, Ram-
dani & Ibos (2006): rectangular, circular and sectorial.
Unfortunately, none of these representations is closed
with respect to the arithmetic operations {+,−,×, /}.
All along the paper, the rectangular representation is
used or equivalently real intervals applied on real and
imaginary parts of the characteristic function.
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3.2 Solving the CSP

The characterization of the whole solution set S in (4)
can be formulated as a set inversion problem

S = f−1(0) ∩
{
R+ \ Ξ

}
× T (10)

and solved by guaranteed methods based on contraction
and bisection.

3.2.1 Contractors

The CSP (3) can be solved by a contractor C, which is
an operator which permits to reduce the domain

[ζ] = ([ω], [θ]) (11)

without any bisection. Hence, contracting the box [ζ]
means replacing it by a smaller box [ζ]∗ such that the
solution set S remains unchanged, i.e. S ⊂ [ζ]∗ ⊂ [ζ]
Jaulin, Kieffer, Didrit & Walter (2001). There exists dif-
ferent types of contractors depending on whether the
system to be solved is linear or not.

The contractor presented in the sequel is based onWaltz
filtering algorithm Waltz (1975), extended in Davis
(1987); Cleary (1987) to deal with intervals. The main
idea is to split a principal constraint into elementary
ones. Each elementary constraint involves primitive op-
erators and functions. The next example illustrates how
a given constraint is used to contract a domain.

Example Consider{
f(a) = a3 − a2a1 = 0,

a1 ∈ [2, 10], a2 ∈ [1, 10], a3 ∈ [1, 5].
(12)

This problem can also be written as

a3 = a2a1.

Applying a forward constraint propagation allows to re-
move all values from [a3] that are inconsistant

[a3] = ([a1]× [a2]) ∩ [a3] = [2, 5].

The backward constraint propagation allows to remove
values from a1 and a2 that are inconsistant

[a1] = ([a3]/[a2]) ∩ [a1] = [2, 5],

[a2] = ([a3]/[a1]) ∩ [a2] = [1, 5/2].

As a result, following forward and backward propaga-
tion, the obtained contracted box that contains the so-

lution is [a] =
(
[2, 5], [1, 5/2], [2, 5]

)T
.

However, sometimes contractors are not capable of re-
ducing enough the parametric domain. Bisection of the
variable vector [a] is then necessary.

1: procedure SIVIA(in: [t], [ζ], η, S ; out: S)
2: option: call contractor (in: [ζ] ; out [ζ])
3: if [t]([ζ]) = [0] then return;
4: end if
5: if w([ζ]) ≤ η then
6: S := S ∪ [ζ];
7: return;
8: else
9: bisect [ζ] into [ζ1] and [ζ2];

10: S = SIVIA ([t] , [ζ1], η, S)
11: S = SIVIA ([t] , [ζ2], η, S)
12: return;
13: end if
14: end procedure

Algorithm 1. SIVIA algorithm with only an outer enclosure

3.3 Set Inversion Via Interval Analysis (SIVIA)

The SIVIA algorithm Jaulin & Walter (1993) has been
proposed to solve constraint propagation problems using
bisection. It has been used in different contexts such as:
state and parameter estimation for non linear systems
Raissi, Ramdani & Candau (2004), robust estimation
of frequency domain models Khemane, Malti, Raissi &
Moreau (2012), parameter estimation in a glucose model
Herrero, Delaunay, Jaulin, Georgiou, Oliver & Touma-
zou (2016), or even to compute invariant sets of closed-
loop control systems Romig, Jaulin & Rauh (2019).

Applying the SIVIA algorithm to (3) allows obtaining
an outer S enclosure of the solution set S, if it exists 2
as defined in (4), such that

S ⊆ S. (13)

SIVIA is a recursive algorithm based on partitioning of
the parameter set into three regions: feasible, indetermi-
nate and unfeasible. From (13), only indeterminate and
unfeasible regions (as indicated in the footnote 2) may
be obtained. Hence the presentation of the SIVIA algo-
rithm is restrained to these two cases. SIVIA uses an in-
clusion test [t] : {R+ \ Ξ} × T → N which is a function
allowing to prove if a box [ζ] is unfeasible or undeter-
mined. If unfeasible, the box is simply ignored. If unde-
termined, it is bisected and tested again unless its width
w([ζ]) is less than a precision parameter η tuned by the
user and which ensures that the algorithm terminates
after a finite number of iterations.

The outer enclosure S is then computed as a union of

2 The original SIVIA algorithm allows computing addition-
ally an inner enclosures: S ⊆ S ⊆ S. However, the CSP for-
mulated in (3), can only yield an outer enclosure S. Hence,
the presentation of the SIVIA algorithm is restrained to eval-
uating S.
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Fig. 3. Thin rod of length L.

all undetermined boxes as indicated in line 6 of Algo-
rithm 1. Line 2 allows calling optionally a contractor at
each execution of the SIVIA algorithm. The complexity
of the SIVIA algorithm is exponential with respect to
the number of parameters. The SIVIA algorithm is im-
plemented using INTLAB toolbox Rump (1999) in dif-
ferent contexts: a controlled heat equation in section 4,
rational TDSs in section 5, and fractional systems is sec-
tion 6.

4 Application to stability analysis of a dis-
tributed parameter system

Consider a one-dimensional heat diffusion in a thin rod 3

of length 0 < L ≤ ∞. The rod is thermally isolated,
except at its boundary cross-sections as in Fig.3.

At the initial end x = 0, the rod is subject to an ad-
justable thermal flux, φ(t, 0) = −λ ∂θ

∂x (t, 0), where λ is
the thermal conductivity. Two cases are treated: either
the rod is of finite length or infinite. When the rod length
is finite, the opposite end is kept at ambient temperature
θ(t, L) = 0. The corresponding model describing spatio-
temporal distribution of the temperature along the rod
is given by the well-known heat equation,

∂2θ(t, x)

∂x2
= σ−1 ∂θ(t, x)

∂t
, (14)

where σ is the thermal diffusivity of the medium.

The temperature of the rod is measured at a cross-
section x = x0 = 0.15m, with 0 ≤ x0 ≤ L. This temper-
ature is then controlled remotely (see Fig.4) using a pro-
portional controller with a gain K. Additionally, time
required to transmit data from the controller to the ac-
tuator, and from the sensor to the controller is denoted
by τ

2 , so that the total loop delay is τ ≥ 0. Hence, the
effective transfer function of the proportional delayed
controller is

P (s) = Ke−τs (15)

3 For numerical application, the rod is considered of alu-
minium type with a thermal diffusivity σ = 98.8×10−6 m2/s
and a conductivity λ = 237 Wm−1K−1 (see e.g. Baehr & K.
(2011)).

− K e−s τ
2 G(s)

e−s τ
2

φ

Fig. 4. A feedback control loop, where G(s) is the transfer
function between the heat flux and the temperature at x0,
for either a semi-infinite or a finite rod, P (s) is a proportional
delayed controller as in (15).

The objective of this example is to find the whole set
of stabilizing controllers (15) in the K versus τ plane in
both cases: finite and semi-infinite rods. A similar prob-
lem is treated in Morărescu & Niculescu (2007), with
the same delayed proportional controller P (s), however
applied to a rational system.

4.1 Semi-infinite spatial domain (L = ∞)

In the semi-infinite domain, the transfer function be-
tween the input flux and the temperature at the selected
cross-section is Curtain & Morris (2009)

G(s) =
Θ(s, x)

Φ(s, 0)
=

e−x
√

s
σ

λ
√

s
σ

, (16)

giving rise to the following closed-loop transfer function,

P (s)G(s)

1 + P (s)G(s)
=

Ke−sτe−x
√

s
σ

λ
√

s
σ +Ke−sτe−x

√
s
σ

, (17)

and the following closed-loop characteristic function

f(s,K, τ) = λ

√
s

σ
+Ke−sτe−x

√
s
σ . (18)

Due to the presence of
√
s, a branch-cut is necessary.

It is chosen along the negative real axis including the
branching point 0 and∞. Hence, the characteristic func-
tion f(s,K, τ) is holomorphic in the complement of the
branch-cut line of the complex plane and the arguments
of s are restrained to

| arg(s)| < π (19)

Root continuity of f(s,K, 0)

In the special case when τ = 0, all the roots of f(s,K, 0)
can be determined analytically and their locus plotted
versus K. The roots of f(s,K, 0) satisfy

x

√
s

σ
ex
√

s
σ = −Kx

λ
(20)
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Fig. 5. Root locus of f(s,K, 0) in (18) for different values of
K, illustrating that poles pop up from the plane-cut. When
the poles cross the imaginary axis (red squares), the system
becomes unstable. Numbers on the curves correspond to val-
ues of K. The plane-cut is represented in blue along R−.

provided (19) is fulfilled. The solutions of (20) are given
by all the determinations, n = 0,±1,±2, . . ., of Lam-
bert’s Wn function, see e.g. Corless, Gonnet, Hare, Jef-
frey & Knuth (1996),

x

√
s

σ
= Wn

(
−Kx

λ

)
, (21)

provided, (19) is fulfilled, i.e. provided

∣∣arg (√s
)∣∣ = ∣∣∣∣arg(Wn

(
−Kx

λ

))∣∣∣∣ < π

2
(22)

Hence, all the solutions

s =
σ

x2
W 2

n

(
−Kx

λ

)
, n = 0,±1,±2, . . . (23)

constrained by (22), are roots of the characteristic func-
tion f(s,K, 0). The root locus of f(s,K, 0) is plotted ver-
sus gain K, in Fig.5, for the principal determination of
the Lambert functionW0 (as upper imaginary part) and
for the determination W−1 (as lower imaginary part).
The other determinations of Wn, n = 1,±2,±3, . . . are
not represented as they are well beyond the scale of Fig.5
towards −∞. They may yield other poles crossing the
imaginary axis for values of K that are much greater
than the ones represented in Fig.5, which shows that
two poles stem from the branch-cut when K ≈ 3× 103.
They cross the imaginary axis towards instability when
K ≈ 56 × 103. The objective of the paper is to deter-
mine for what parametric values (here K and in a more
general caseK and τ) the poles cross the imaginary axis.

4.2 Finite spatial domain (L < ∞)

In this case, the following transfer function is obtain for
the heat diffusion process under consideration Curtain
& Morris (2009)

G(s) =
Θ(s, x)

Φ(0, s)
=

sinh((L− x)
√

s
σ )

λ
√

s
σ cosh(L

√
s
σ )

, (24)

giving rise to the following closed-loop transfer function

P (s)G(s)

1 + P (s)G(s)
=

Ke−sτ sinh
(
(L− x)

√
s
σ

)
λ
√

s
σ cosh

(
L
√

s
σ

)
+Ke−sτ sinh

(
(L− x)

√
s
σ

) . (25)

Its stability is assessed in the parametric spaceK versus
τ by applying the proposed algorithm to the following
characteristic function

f(s,K, τ) = λ

√
s

σ
cosh

(
L

√
s

σ

)
+

Ke−sτ sinh

(
(L− x)

√
s

σ

)
. (26)

4.3 Robust estimation algorithm of the SCS

Both characteristic functions (18) and (26) comply with
the hypotheses (H1)-(H3). They have a branching point
at s = 0 (hence Ξ = {0}), which is excluded from the
searching box, initialized at

[ζ] = ([ω], [K], [τ ]) =
(
[ε, 0.1], [0, 7 · 104], [0, 100]

)
(27)

with ε > 0. Although theoretically the searching interval
of ω is R+ \Ξ, the thermal system under consideration is
slow. Additionally, one can see from Fig.5 that the root
locus of (18) for τ = 0 crosses the imaginary axis for
an ω in the interval (0.04, 0.05). Consequently, the first
poles crossing the imaginary axis towards instability, in
both cases (18) for any τ and (26), are expected to be
within the frequency interval (0 0.1] rad/sec. In case
this initial interval is not wide enough, then the obtained
outer enclosures of the interval [ω] will touch the upper
bound 0.1. In this case, the searching interval is enlarged
and the SIVIA algorithm run again. The tolerance is set
to an arbitrarily small value as the width of each element
w([ζ]) divided by 28

η = w([ζ])/28 (28)

η = (0.39 · 10−3, 273.4, 0.39) (29)

The obtained outer enclosures of the stability crossing
sets is plotted in the K versus τ plane in Fig.6 in red
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Fig. 6. SCS in the finite and semi-infinite aluminium rods.
The number of unstable poles is indicated in each regions
(by the corresponding color). The red square corresponds to
the SCS of f(s,K, 0) in (18) as predicted in the root locus
of Fig.5 (red square).

Fig. 7. Poles crossing the imaginary axis in the finite and
semi-infinite aluminium rods. The red squares correspond to
the pole crossing of f(s,K, 0) in (18) as predicted in the root
locus of Fig.5 (red square).

for the semi-infinite rod and in blue for the finite rod.
The position of the poles crossing the imaginary axis is
plotted, with the same colors, in Fig.7.

The red line (similarly the blue) in Fig.6 splits the plane
into two regions: a guaranteed stability region (the lower
left containing K = 0 and τ = 0) and a guaranteed
instability region as the upper right one. In between, the
outer enclosures of the SCS are plotted. Their width can
be reduced by reducing the precision factor η in (28) at
the price of a higher computational burden. In the case
of the semi-infinite rod, for τ = 0, the results of Figs.6
and 7 (red squares) are confirmed by the intersection of
the root-locus with the imaginary axis, in Fig.5.

To the best of authors’ knowledge, in both cases finite
with τ ̸= 0 and semi-infinite aluminium rods, there is
no analytical method allowing to compute the roots of
the characteristic function f in (18) or (26). The only
alternative method for evaluating stability of the control
loop is based on a graphical representation that uses
Cauchy’s principle argument.

5 Application to stability analysis of time delay
systems

5.1 Distributed delay system

Consider in this section a distributed delay system taken
from (Turkulov et al., 2022, example 9) modeled by

ẋ(t) = −
∫ 0

−τ

eKαx(t+ α)dα. (30)

Its characteristic function, computed by straightforward
integration of the Laplace transform of (30),

f(s,K, τ) = s2 + sK + 1− e−τ(s+K), (31)

complies with the hypotheses (H1)-(H3), with no singu-

larities in C+. Hence the stability is investigated in

[ζ] = ([ω], [K], [τ ]) = ([0, 1.5], [0, 0.3], [0, 20]) , (32)

and the tolerance set as in (28).

The obtained outer enclosure of the SCS is plotted in
the K versus τ plane in Fig.8. The number of unsta-
ble poles, computed at any point inside the different re-
gions, is indicated by a number. Fig.8 confirms the re-
sults of (Turkulov et al., 2022, example 8) obtained using
Rouché’s theorem. The outer enclosure of [ω], for which
the poles cross the imaginary axis, is [0.31, 1.42].

5.2 Time delay system of retarded-type

Consider a TDS system of retarded type, taken from
(Turkulov et al., 2022, example 10), with a characteristic
function given by

f(s, τ1, τ2) = s2 + 2se−sτ1 + e−sτ2 . (33)

Its stability is investigated with respect to τ1 and τ2 by
setting the initial searching box to

[ζ] = ([ω], [τ1], [τ2]) = ([0.45, 2.5], [0, 1.8], [0, 3]) . (34)

The obtained outer enclosure of the SCS is plotted in
the τ1 versus τ2 plane in Fig.9. The number of unstable
poles, computed at any point inside the different regions,
is indicated by a number. Fig.9 confirms again the results
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Fig. 8. Stability crossing sets of f(s,K, τ) in (31) inK versus
τ plane and the number of unstable poles in each delimited
region. The number of unstable poles is indicated in each
region.

Fig. 9. Stability crossing sets of f(s, τ ) in (33) in τ2 versus
τ1 plane and the number of unstable poles in each delimited
region. The number of unstable poles is indicated in each
region.

of (Turkulov et al., 2022, example 10) obtained using
Rouché’s theorem. The obtained outer enclosure of the
interval of [ω] for which the poles cross the imaginary
axis is [0.48, 2.42].

6 Application to stability analysis of a fractional
system

Consider in this section a fractional system, taken from
(Rapaić & Malti, 2019, example 3), which characteristic
function is given by

f(s, α1, α2) = sα2 + 2sα1 + 1 (35)
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Fig. 10. Root locus of f(s, 1, α2) versus α2, illustrating that
poles are pop up from and vanish into the plane-cut. Num-
bers on the two outer most curves correspond to values of
α2. The plane-cut, along R−, is represented in blue. When
the roots cross the imaginary axis the first time (here for
α2 = 2.8), the corresponding system becomes unstable.

and (α1, α2) ∈ {R+ \ {0}}2.

When α1 and/or α2 are non integers, the characteristic
function f(s, α1, α2) is holomorphic in the complement
of the branch-cut line of the complex plane. The branch-
cut is chosen to be along the negative real axis including
the branching point 0 and ∞, and the restriction (19)
applies to s. However, when both α1 and α2 are integers,
no branch-cut is required and the zeros of f may be
located on the negative real axis.

6.1 Root continuity of f(s, 1, α2)

Stability can be analyzed by checking the position of the
zeros of the characteristic function f(s, 1, α2), that are in
the principal Riemann sheet, i.e. that satisfy (19). The
roots of

f(s, 1, α2) = sα2 + 2s1 + 1 (36)

are computed numerically for 0 < α2 < 20 with a step
of δ = 1

40 , by finding all the roots of the following poly-

nomial (with the change of variable p = sδ)

f
(
p

1
δ , 1, α2

)
= p

α2
δ + p

1
δ + 1 , (37)

that satisfy (19), applied to p, i.e.

| arg(p)| = | arg(sδ)| < δπ. (38)

The number of roots, plotted in Figs.10 and 11, depends
on the value of α2. When

• 0 < α2 < 1, f(s, 1, α2) has no root,
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Fig. 11. A zoom of Fig.10 around (Im(s),Re(s)) = (0,−0.5),
showing that new poles pop up from the plane-cut when
α2 = 3, 5, 7, . . . and vanish into the plane-cut when α2 gets
bigger than 4, 6, 8, . . .

• α2 = 1, a simple root appears at s = − 1
3 ,

• α2 gets slightly bigger than 1, the root at s = − 1
3

splits into two complex conjugate roots,
• α2 = 2, the two complex conjugate roots merge into

a real root of multiplicity 2 at s = −1,
• α2 gets bigger than 2, the double root splits into
two complex-conjugate ones which move along the
outer most curve of Fig.10,

• α2 ≈ 2.8, the roots cross the imaginary axis, and
the corresponding system becomes unstable,

• α2 = 3, the sequence of two complex conjugate
roots continues evolving in the right-half complex
plane and a new root is created at s ≈ −0.455 (see
Fig.11),

• α2 gets bigger than 3, the real root splits into two
complex-conjugate ones,

• α2 = 4 the two complex conjugate roots merge
again into a simple root at s ≈ −0.543 and a new
root is created at s = −1,

• α2 gets bigger that 4, the simple root at s ≈ −0.543
vanishes into the plane-cut and the one at s = −1
splits into two complex conjugate roots yielding the
sequence plotted as the second outer most curve in
Fig.10.

• α2 ≈ 6.7, two more complex conjugate roots cross
the imaginary axis.

• . . . and so on.

All in all, roots pop up from and vanish into the plane-
cut. The number of roots crossing the imaginary axis
affect system stability. Again, the objective of this ex-
ample is to determine for what parametric values (here
α1 and α2) the poles cross the imaginary axis.

Fig. 12. Stability crossing sets of f(s, α1, α2) in (33) in α2

versus α1 plane. The number of unstable poles is indicated
in each delimited region. Along the vertical axis α1 = 1, the
stability limit corresponds to α2 ≈ 2.8 as predicted in the
root locus of Fig.10.

6.2 Robust estimation algorithm of the SCS

In this subsection, the proposed algorithm is applied for
determining the SCS of f(s, α1, α2) in (35). The charac-
teristic function (35) complies with the hypotheses (H1)-
(H3). It has a branching point at s = 0 (hence Ξ = {0}),
which is excluded from the searching box. Two initializa-
tions are considered. The first one aims at establishing
the stability region in the parametric space

[ζ] = ([ω], [α1], [α2]) = ([ε, 4], [ε, 3], [ε, 4.5]) (39)

with ε > 0. The second one allows establishing wider
regions in the parametric space having the same number
of unstable poles

[ζ] = ([ω], [α1], [α2]) = ([ε, 4], [ε, 15], [ε, 20]) (40)

In both cases the tolerance is set to (28).

The obtained outer enclosures S of the SCS, are plotted
in Fig.12 for the first initialization (39) and in Fig.13 for
the second initialization (40). Fig.12 confirms the results
of (Rapaić & Malti, 2019, example 3), obtained using
Rouché’s theorem. The outer enclosures of the interval
[ω] for which the poles cross the imaginary axis are re-
spectively [0.56, 1.75] and [0.56, 1.79].

It can easily be verified, along the vertical axis α1 = 1,
that the stability limit corresponds to α2 ≈ 2.8 as pre-
dicted in the root locus of Fig.10, which also confirms the
validity of the results, when α1 = 1. Hence, all fractional
systems, incommensurate and commensurate, that have
differentiation orders in the lower-left region of Fig.12,
have no unstable pole.
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Fig. 13. Stability Crossing Sets (wider interval search as com-
pared to Fig.12). The number of unstable poles is indicated
in each region. Along the vertical axis α1 = 1, the next cross-
ing appears at α2 ≈ 6.7, as predicted in the root locus plot
in Fig.10.

7 Conclusions

A unified framework has been presented in this paper for
stability analysis of irrational transfer functions in the
frequency domain, under some mild hypotheses. First, it
has been proven that the only way for the number of ze-
ros of a characteristic function (transfer function poles)
in the right-half complex plane, to change, when its pa-
rameters vary continuously, is by crossing the imaginary
axis. Based on this theoretical result, the problem of find-
ing the set of parameters for which poles cross the imag-
inary axis (Stability Crossing Sets (SCS)), is formulated
as a constraint satisfaction problem. It is solved using the
robust SIVIA algorithm, based on interval arithmetics,
that uses contraction and bissection. The developed al-
gorithm has successfully been used for determining the
SCS of (i) a controlled parabolic 1D partial differential
equation, namely the heat equation, in finite and semi-
infinite media, (ii) time-delay rational systems with dis-
tributed and retarded type delays, (iii) fractional sys-
tems, providing stability results even for incommensu-
rate differentiation orders. The proposed algorithm may
be used for any number of transfer function parameters.
The only limitation is related to the time-complexity of
the SIVIA algorithm which is known to be exponential
in terms of the number of parameters. The examples pre-
sented in the paper have been intentionally limited to
two parameters for graphical representation purpose.
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Morărescu, C.-I., Niculescu, S.-I., & Gu, K. (2007). Sta-
bility crossing curves of shifted gamma-distributed de-
lay systems. SIAM Journal on Applied Dynamical
Systems, 6 (2), 475–493.

Neimark, Y. I. (1998). D-partition and robust stability.
Computational Mathematics and Modeling, 9 (2), 160–
166.
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