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Abstract. Bootstrap percolation is a classical model for the spread of informa-
tion in a network. In the round-based version, nodes of an undirected graph
become active once at least r neighbors were active in the previous round.
We propose the perturbed percolation process: a superposition of two percola-
tion processes on the same node set. One process acts on a local graph with
activation threshold 1, the other acts on a global graph with threshold r –
representing local and global edges, respectively. We consider grid-like local
graphs and expanders as global graphs on n nodes.

For the extreme case r = 1, all nodes are active after O(log n) rounds, while
the process spreads only polynomially fast for the other extreme case r ≥ n.
For a range of suitable values of r, we prove that the process exhibits both
phases of the above extremes: It starts with a polynomial growth and eventu-
ally transitions from at most cn to n active nodes, for some constant c ∈ (0, 1),
in O(log n) rounds. We observe this behavior also empirically, considering ad-
ditional global-graph models.

Keywords: Bootstrap percolation · Random graphs · Expanders · Rumor
spreading.
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1 Introduction

Information spreads very fast in networks (see, e.g., [23]). Several practical and theoretical
studies concern n agents (nodes) interacting within a network and exchanging information
via incident edges. These works have demonstrated that if each agent, once informed, in-
forms all its agents in the neighborhood, the entire network is typically informed in a time
that is at most logarithmic in the number of agents. This behavior even holds if each agent
chooses only one random neighbor at each iteration (and a slightly faster dissemination is
possible if an agent does not choose the same agent twice in a row [22]). A similar behavior
occurs in the bootstrap percolation model [17], in which agents are informed once the num-
ber of informed neighbors reaches a certain threshold. This model has been extensively
analyzed on a range of graph models, including hypercubes [9], grids [10], Erdős–Rényi
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graphs [31], preferential attachment graphs [4], random regular graphs [11], random geo-
metric graphs [14], hyperbolic random graphs [15], inhomogeneous random graphs [1, 5],
geometric inhomogeneous random graphs [32], Kleinberg’s small world model [24, 27], as
well as superpositions of Erdős–Rényi graphs and other graphs [37].

In the bootstrap percolation model, the process usually either reaches almost all agents
quickly or terminates without having reached most of the agents [9, 31]. This speed is often
attributed to the logarithmic diameter of the network, as well as to the existence of high-
degree nodes, which are both prevalent in many real-world graphs as well as in their
mathematical models. However, these models assume that information spreads the same
way among all edges. If this is not the case, e.g., because agents need to be convinced of
some information by more than one agent, the resulting behavior can be fundamentally
different [12, 16, 26, 28, 35].

Typically, the edges of a graph describe the closeness of agents, i.e., two agents con-
nected via an edge are close, while non-edges represent separation. This is particularly
true for graph models that utilize an underlying geometry for determining the edge set.
However, another perspective, found in epidemics, is that every pair of agents has an
activation probability defined, e.g., by splitting the agents into groups [30]. In bootstrap
percolation, one can set different activation thresholds based on the groups [13]. Further,
one can model the closeness via different graphs on the same agents, namely via local and
global edges, which are assigned different activation probabilities [7, 8]. The underlying
graphs represent different interactions, e.g., contacts within and across households [6].

We aim at understanding the effect of edge types on the speed of information dissem-
ination. To this end, we analyze graphs that have two types of edges: one representing
short edges, and another one representing long edges. The graph induced by the short
edges (the local graph) models the local neighborhood of agents. These model whether
two agents are close, e.g., people an agent is exposed to more often, such as colleagues,
relatives or neighbours. The graph induced by the long edges (global graph) models non-
local (global) contacts. This represents people who the agent has not that much contact
with, e.g., people who live further away or celebrities from social media who the agent
may never meet personally but is influenced by.

We employ the classic bootstrap percolation model as a foundation for the spread of
information in networks as described above. In this model, each agent either has a certain
piece of information (it is active) or it has not (inactive). Given a parameter r ∈ N+ (the
activation threshold) and a set of initially active nodes, iteratively, at each round t ∈ N+, a
node becomes (and remains) active if it has at least r neighbors that were active in round
t− 1.

Model We propose the perturbed percolation model, which is the superposition of two
bootstrap percolation processes on the same node set but with two different edge sets.
One process acts on the local graph with an activation threshold of 1. The other process
acts on the global graph with an activation threshold of r. This is similar to the above-
mentioned models where nodes have local and global contacts with varying activation
probabilities [8]. Note that a perturbed percolation process always percolates completely
if the local graph is connected. However, the overall speed is majorly influenced by the
global graph via r.

Theoretically and empirically, we analyze how quickly nodes become active in this
model. We are interested in the two following activation rates: a polynomial rate, i.e., the
number of active nodes in round t is a polynomial in t, and a rapid rate, i.e., the number
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of inactive nodes reduces from at least (1 − c)n, for some constant c ∈ (0, 1), to none in
O(log n) rounds.

Results For our theoretical results, we analyze the activation rate of the perturbed per-
colation model on local graphs that we refer to as polynomial-neighborhood graphs (PNGs)
with n nodes, characterized by having a polynomially expanding neighborhood w.r.t. the
hop distance, including grid graphs, cycles, and, asymptotically almost surely (a.a.s.), ran-
dom geometric graphs with expected polylogarithmic node degree. We prove the following
landscape of perturbed percolation w.r.t. the activation threshold r, using PNGs as local
and expanders as global graph:

– For the extreme case r ≥ n, the process has a polynomial rate (Theorem 1).

– For the other extreme case r = 1, the process has a rapid rate (Corollary 1), i.e.,
adding global edges changes the rate immediately from polynomial to rapid.

– Our main result is that the process with suitable values of r between the extreme
cases above, including r = 2, has a polynomial-to-rapid rate (Corollary 2), i.e.,
the process has a polynomial rate for a polynomial number of rounds (w.r.t. n) and
then ends with a rapid rate. This result highlights that while the edges from the global
graph speed up the overall process, it takes some (long) time for the process to actually
switch to a rapid rate.

We complement our theoretical results by empirical analyses (Figures 1 and 2). Next
to Erdős–Rényi graphs as global graphs, we also include Barabási–Albert and hyperbolic
random graphs, which are not covered by our theoretical analysis. For all cases, we observe
a clear distinction between the polynomial and the rapid rate.

Framework (Informal Description) Our main result follows from our more general
result (Theorem 3) based on proving the following three independent properties, assuming
a graph with n nodes:

1. Any bootstrap percolation process on the local graph, for any initial active set of size 1,
has polynomial rate.

2. For the perturbed percolation process, a.a.s. for an initial number of rounds polynomial
in n, no inactive node has at least r global edges to active nodes.

3. Asymptotically a.s., any bootstrap percolation process on the global graph, for any
initial active set of linear size, percolates completely in a number of rounds logarithmic
in n.

Combining all three properties shows a polynomial-to-rapid rate. We note that Property 3
considers the classic bootstrap percolation setting but requires to first fix the random
graph and then the initial set (even adversarially). Typically, this order is reversed. Thus,
we believe our results proving this property (Theorems 6 and 8) to be of independent
interest. In addition, in Theorem 8 we provide an improved bound of r ·n/ lnn for the size
of the initial set in Property 3 for the special case of Erdős–Rényi graphs.

Outline In Section 2, we introduce our notation as well as our model and the graph
classes we consider. Sections 3 and 4 contain our theoretical results. The former considers
the extreme cases of the activation threshold r, the latter suitable intermediate values.
Our main result of these sections is Corollary 2. In Section 5, we discuss our empirical
results, and we provide an outlook in Section 6.
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2 Preliminaries

Let N denote the set of natural numbers, including 0. For m,n ∈ N, let [m..n] := [m,n]∩N,
and let [m] := [1..m]. We consider undirected, finite graphs. Given such a graph G, let
V (G) denote its set of nodes and E(G) its set of edges. We denote the minimum and
maximum node degree of G by dmin(G) and dmax(G), respectively, dropping G if it is clear
from context.

We use big-O notation only in combination with a graph G. The asymptotics of the
notation are then with respect to |V (G)| (which we usually call n). Additionally, the
notation Õ allows for factors polylogarithmic in |V (G)|. In the same context, a constant
is a value Θ(1), that is, a value bounded independently of |V (G)|.

An event A occurs asymptotically almost surely (a.a.s.) if and only if Pr[A] = 1−o(1).

2.1 Percolation Processes

We introduce the perturbed percolation process, which is a superposition of two classical
bootstrap percolation processes, using different edges and thresholds.

Bootstrap Percolation Let G be a graph with n nodes, r ∈ N>0, and I ⊆ V (G).
The bootstrap percolation process P on G with threshold r and initial active set I is a
deterministic discrete-time process on V (G) in which each node is either active or inactive.
In each round, each node adjacent to at least r active nodes becomes active. Let (At)t∈N
denote the sequence of sets of active nodes over time. Note that A0 = I and that, for
all t ∈ N with t ≥ n − 1, At+1 = At. We say that P percolates completely if and only if
|An−1| = n.

Let t1, t2 ∈ N, and let T = min{t ∈ N | At = An−1}. We say that P has a polynomial
activation rate for [t1..t2] if and only if there is a constant c > 0 such that for all t ∈ [t1..t2]
it holds that |At| = Õ(tc + 1). Further, P has a rapid activation rate for [t1..t2] if and only
if t2 = t1 +O(log n), there is a constant c ∈ (0, 1) such that |At1 | ≤ cn, and |At2 | = n. We
say P has a polynomial (resp. rapid) activation rate if and only if it has a polynomial (resp.
rapid) activation rate for [0..T ]. Last, we say that P has a polynomial-to-rapid activation
rate if it has both a polynomial activation rate and rapid activation rate. Note that this
is equivalent to the existence of t1, t2 ∈ N and a constant c > 0 such that t1 ∈ Ω(nc) and
that P has a polynomial activation rate for [0..t1] and a rapid activation rate for [t2..T ].

Perturbed Percolation Let G = (V,E) be a graph decomposable into a local graph
Gℓ = (V,Eℓ) and a global graph Gg = (V,Eg) (each possibly random), i.e., E = Eℓ ∪ Eg.
Further, let r ∈ N>0 and I ⊆ V . The perturbed percolation process P on G with threshold r
and initial active set I is the union of the bootstrap percolation process on Gℓ with
threshold 1 and the one on Gg with threshold r, both with initial active set I. That is, in
each round, each node with an active neighbor in Gℓ or at least r active neighbors in Gg

becomes active. The notion of polynomial/rapid activation rate from bootstrap percolation
naturally extends to P .

We introduce randomization into the connections via a random permutation of the
nodes. To this end, we assume w.l.o.g. that there exists a bijective labeling ℓ : V (G) →
[1..n]. Let σ be a permutation over [1..n], chosen uniformly at random, independently of
any other potential random choices, and let G′

g be identical to Gg. Then Eg =
{
{σ(ℓ(u)),

σ(ℓ(v))} ∈ V (G)2 | {u, v} ∈ E(G′
g)
}

. Technically, Gg is random (due to σ), and G′
g

represents a (possibly deterministic) isomorphic representation of Gg. However, throughout
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the paper, we refer to both graphs as the global graph. When talking about the graph itself,
we refer to G′

g, which can be deterministic. In contrast, if we refer to its edges, we refer
to the set E(Gg), which is random. Without randomization, there always exist perturbed
percolation processes with (solely) rapid activation rates, due to possible dependencies
between Gℓ and Gg. In particular, there are graphs Gℓ and Gg in the graph classes below
such that the perturbed percolation process ends within O(log n) rounds. Randomization
eliminates such cases. In case that Gℓ and Gg are independent, randomization does not
change anything. In particular, it is not required for our results concerning random graphs.

Throughout the paper, we assume the following order of events: 1. Fix Gℓ and Gg in
some order. 2. Randomize Gg as described above. 3. Fix an initial active set of nodes.
Note that this implies that the initial active set can be chosen adversarially w.r.t. the
realizations of the resulting graph of the perturbed percolation process.

2.2 Graph Classes

As local graphs, we consider graphs with polynomially expanding neighborhoods. As global
graphs, we consider expanders, especially random regular graphs and Erdős–Rényi graphs.

Polynomial-Neighborhood Graphs For a connected graph G = (V,E), let dG : V 2 →
N denote the distance between all pairs of nodes in G. That is, for all u, v ∈ V , the
value dG(u, v) is the length of a shortest path from u to v. Further, for all u ∈ V and all
h ∈ [0..|V | − 1], let Bh(u) = {v ∈ V | dG(u, v) ≤ h} denote the ball of distance at most h
around u.

Let c > 0 be a constant. We say that G is a polynomial-neighborhood graph (PNG) of
growth c if and only if for all u ∈ V and all h ∈ [0..|V |−1] it holds that |Bh(u)| = Õ(hc+1).

Examples of PNGs include grid graphs (with and without looping boundaries), cycles,
and, a.a.s., random geometric graphs with expected node degree polylogarithmic in n.

Expanders We call a graph an expander if and only if its spectral expansion λ is
bounded away from 1 from above and below (see Section 4.2 for more details). We note
that expanders can be deterministic or random. It is well-known that both Erdős–Rényi
Graphs [19] and random d-regular graphs are expanders [25] (see Theorems 4 and 5).

Random Regular Graphs Let n ∈ N>0, let d ∈ [3..n− 1], and let Gn,d denote the class
of all (deterministic) d-regular graphs with n nodes. Each uniform sample G from Gn,d is
a random d-regular graph with n nodes, denoted as Gn,d.

Erdős–Rényi Graphs Let n ∈ N>0 and p ∈ [0, 1]. A graph G is an Erdős–Rényi graph
with n nodes and edge probability p, denoted as Gn,p, if and only if |V (G)| = n and each
e ∈ V 2 ∖ {(v, v) | v ∈ V } is in E(G) with probability p, independent of all other choices.

3 Extreme Thresholds

We consider perturbed percolation on PNGs with n nodes as local graphs for the extreme
cases of r ≥ n and r = 1, where r is the threshold of the global graph.
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Case r ≥ n This case is equivalent to bootstrap percolation on PNGs with a threshold
of 1. We show that regardless of the (bootstrap) threshold, the rate of the process on PNGs
is polynomial if the initially active set is constant. We note that the perturbed percolation
process percolates completely if and only if the local graph is connected.

Theorem 1. Let c > 0 be a constant, and let G be a PNG of growth c. Further, let
I ⊆ V (G) such that |I| = Θ(1), and let r′ ∈ [n − 1]. Then the bootstrap percolation
process on G with threshold r′ and initial active set I has a polynomial activation rate.

Proof. Let t ∈ N, and recall that At is the set of active nodes at the end of round t. From
each u ∈ I, the bootstrap percolation process reaches at most Bt(u), that is, it holds that
|At| ≤

∑
u∈I |Bt(u)|. Since G is a PNG of growth c and since |I| = Θ(1), it follows that

|At| = Õ
(
|I| · (tc + 1)

)
= Õ(tc + 1), which concludes the proof.

Case r = 1 It follows from the literature that the rate is rapid from the start (Corollary 1)
if the global graph is an Erdős–Rényi graph, as the diameter of the graph is logarithmic.

Theorem 2 ([34, Theorem 4]). Let n ∈ N>0, ε > 0 be a constant, and let G be a
graph with n nodes that is decomposable into a connected local graph and into a Gn,ε/n as
a global graph. Then a.a.s., G has a diameter of O(log n).

For d-regular expanders, it is well-known that the diameter is O(log n) [29, page 455].
The following statement immediately follows (as it only requires that the diameter is

O(log n)), noting that the diameter of a Gn,p does not increase when p increases.

Corollary 1. Let G = (V,E) be a graph with n ∈ N>0 nodes that is decomposable into a
connected local graph and into a global graph Gg. Further, let c ∈ (0, 1) be a constant, and
let I ⊆ V (G) such that I ̸= ∅ and |I| ≤ cn.

1. Let Gg be Gn,p with p ∈ [Ω(1/n), 1]. Then a.a.s., the perturbed percolation process on G
with threshold 1 and initial active set I has a rapid activation rate.

2. For d ∈ [3..n − 1], let Gg be a d-regular expander with n nodes. Then a.a.s., the
perturbed percolation process on G with threshold 1 and initial active set I has a rapid
activation rate.

4 Polynomial-to-Rapid Activation Rate

We prove the emergence of a polynomial-to-rapid activation rate for suitable values of r
between the extreme cases considered above. Our main result is the following.

Corollary 2. Let G be a graph with n ∈ N≥3 nodes that is decomposable into a PNG as
local graph and into a graph with spectral expansion λ ∈ R>0 and dmax = O(dmin) as global
graph. Let d = 2|E(G)|/n, and let r ∈ [2..(1 − λ)d2min/(4d)]. Then a.a.s., there exists a
V ′ ⊆ V (G) with |V ′| = n− n3/4 such that for all v ∈ V ′, the perturbed percolation process
on G with threshold r and initial active set {v} has a polynomial-to-rapid rate.

We prove this result by applying a general framework for proving that a perturbed
percolation process P has a transition from polynomial to rapid rate on a graph G = (V,E)
with |V | = n. To this end, let Gℓ denote the local graph that P acts on, and let Gg denote
the global graph. Further, let Pℓ and Pg denote the bootstrap percolation processes on Gℓ

and Gg, respectively. Last, let (At)t∈[0..n−1] denote the set of active nodes of Pℓ after each
round, and for all v ∈ V and U ⊆ V , let Γg(v, U) = {u ∈ U | {u, v} ∈ E(Gg)}.
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Framework The framework comprises the following three independent properties:

1. For all v ∈ V (G), the process Pℓ with initial active set {v} has a polynomial activation
rate and percolates completely.

2. There are constants c1, c2 ∈ (0, 1) and a set |V ′| ≥ n− n1−c1 such that for all v ∈ V ′,
having initial active set {v} implies that for all u ∈ V , |Γg(u,Anc2 )| < r.

3. There exists a constant c3 > 1 such that for all I ⊆ V with |I| ≥ n/c3, the process Pg

with initial active set I has a rapid activation rate.

Properties 1 and 3 consider exclusively Pℓ and Pg, respectively, whereas Property 2 con-
nects Pℓ with the global graph. Our framework yields the following general theorem.

Theorem 3 (Polynomial-to-rapid rate). Let n ∈ N≥3, let r ∈ [2..n − 1], and let G
be a graph with n nodes, decomposable into a local graph and into a global graph. Assume
that P is a perturbed percolation process on G with threshold r and some initial active set
such that Properties 1 to 3 are all satisfied. Then P has a polynomial-to-rapid rate.

Proof. By Property 2, there exists a c2 > 0 such that during the initial nc2 rounds of P ,
all activations are exclusively due to the local graph. By Property 1, it follows that P has
a polynomial activation rate for [0..nc2 ].

Now consider the first round t∗ such that the number of active nodes is at least n/c3,
where c3 is from Property 3. Note that such a t∗ exists, as the number of active nodes
strictly increases each round until complete percolation, since the process on the local
graph percolates completely. Further note that, due to Property 3, the number of active
nodes in round t∗ − 1 is less than n/c3. By Property 3, for any set of active nodes in
round t∗, the process P percolates completely in O(log n) rounds. Thus, the process P has
a rapid activation rate, starting from round t∗ − 1, which concludes the proof.

In the following, we prove the properties of our framework separately. As Theorem 1
already proves Property 1, we are left to consider Properties 2 and 3.

4.1 Polynomial Rate

We show that Property 2 is satisfied for PNGs as local graph and for global graphs with
a bounded maximum degree, which includes expanders and, a.a.s., Erdős–Rényi graphs.

Lemma 1. Let n ∈ N≥3, r ∈ [2..n − 1], and c1, c2 ∈ R>0 with c2 < 1/3 be constants.
Further, let G be a graph with n nodes, decomposable into a PNG with growth c1 as local
graph and into a global graph Gg with dmax(Gg) ≤ nc2. Then with probability at least
1 − n−1/12, there exists a V ′ ⊆ V (G) with |V ′| = n − n3/4 such that for all v ∈ V ′,
the perturbed percolation process on G with threshold r and initial active set {v} has a
polynomial activation rate for [0..n(1/3−c2)/c1 ].

Proof. By monotonicity, it suffices to consider the case r = 2. Pick any node v ∈ V as the
initially active node. Let Bv be all nodes that get activated in the local graph Gℓ after
O(n(1/3−c2)/c1) rounds. Hence, |Bv| = O(n1/3−c2). Note that within the graph Gg, due to
the random labeling of the nodes, we can regard the subset Bv in Gg as a random set
of size |Bv|. In particular, the events of any two nodes x, y being in Bv are negatively
correlated. Now let Zv ⊆ V be the set of nodes in V (Gg) that have at least 2 neighbors in
Bv. Then,

E[|Zv|] ≤ n ·
(
dmax(Gg)

2

)
·
(
|Bv|
n

)2

≤ n2c2 · n2/3−2c2

n
= n−1/3.
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Hence by Markov’s inequality, the probability of any activation occurring via global edges
is Pr[|Zv| ≥ 1] ≤ n−1/3.

Now define Y := {v ∈ V | |Zv| ≥ 1}. Then E[|Y |] ≤ n2/3, and by another application
of Markov’s inequality, Pr[|Y | ≥ n3/4] ≤ n−1/12.

4.2 Rapid Rate on the Global Graph

We show that expander graphs satisfy Property 3 (Theorem 6). For the special case of
Erdős–Rényi graphs, we prove an even stronger bound, showing complete percolation in
O
(
log(n)/ log logn

)
rounds (Theorem 8). We note that due to our assumption that the

random graphs are revealed before the initial active set is chosen, our theorems show that
a.a.s. the global graphs have immediately a rapid activation rate for arbitrary sufficiently
large initial active sets. This includes cases where the initial set is chosen adversarially
w.r.t. the global graph. In contrast, classic results typically fix the global graph after or
independent of the initial set [11, 31], thus not allowing for adversarially chosen initial sets.

Expanders For any graph G, for all v ∈ V (G), let deg(v) be the degree of v, let d =
2|E(G)|/n denote the average degree, and, for all S ⊆ V (G), let vol(S) :=

∑
u∈S deg(u).

We define the normalized Laplacian matrix of G by

Lu,v =


1 if u = v,

− 1√
deg(u)·deg(v)

if {v, w} ∈ E(G),

0 otherwise.

We denote by 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 the n eigenvalues of L. Further, λ :=
maxi≥2 |1 − λi| denotes the spectral expansion. A graph is called an expander if λ ≤ 1 − c
for some constant c > 0 (in other words, all eigenvalues are sufficiently far away from 0
and 2).

The following result shows that Erdős–Rényi graphs are expanders.

Theorem 4 ([19, Theorem 1.2]). Let G = Gn,p be an Erdős–Rényi graph with expected
degree p(n−1) ≥ c1 · ln(n) for a sufficiently large constant c1 > 0. Then a.a.s., the spectral
expansion of L satisfies λ(G) = O((p(n− 1))−1/2).

A similar result was shown by Friedman [25] for random regular graphs (for simplicity,
we only state a slightly weaker version of his main result, which suffices for our purposes).

Theorem 5 ([25, Theorem A]). Let G be a G(n, 2d) random 2d-regular graph. Then
for all d = O(1), a.a.s., the spectral expansion of L satisfies λ(G) = O(d−1/2).

Our main result of this section is the rapid activation rate of expanders.

Theorem 6. Let n ∈ N≥3, and let G = (V,E) with |V | = n, with spectral expansion
λ > 0, and with dmax = O(dmin). Further, let d = 2|E(G)|/n, let r ∈ [2..(1−λ)d2min/(4d)],
and let I ⊆ V with |I| ≥ 4 r−1

(1−λ)·d2min/d
·n. Then the bootstrap percolation process on G with

threshold r and initial active set I percolates completely after O( logn1−λ ) rounds.

In case of Erdős–Rényi graphs with p = Ω(log n/n) or random 2d-regular graphs, 1 − λ
is bounded below by a positive constant, and thus the process percolates rapidly. We
remark that the result and proof of Theorem 6 share some ideas with the work by [20],
who investigate the size of smallest contagious sets in various classes of expander graphs.
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However, one key difference is that Theorem 6 provides a guarantee so that all sets of a
certain size percolate, and it additionally establishes a bound on the number of steps until
complete percolation.

We use the following version of the expander mixing-lemma to show Theorem 6.

Lemma 2 (Non-regular-expander mixing-lemma). For all S ⊆ V of a graph with
spectral expansion λ, denoting with e(S, V \ S) the number of edges between S and V \ S,
we have ∣∣∣∣e(S, V \ S) − vol(S) · vol(V \ S)

vol(G)

∣∣∣∣ ≤ λ · vol(S) · vol(V \ S)

vol(G)
.

Proof (Proof of Theorem 6). We establish the result in two stages, depending on whether
|S| is greater or smaller than n/2. In the first stage, we show that whenever the set of
active nodes S with |S| = ε · n satisfies 4 r−1

(1−λ)·d2min/d
≤ ε ≤ 1/2, then the number of active

nodes increases by a factor of 1 + Ω(1 − λ). Applying Lemma 2 with S yields

e(S, V \ S) ≥ (1 − λ) · vol(S) · vol(V \ S)

vol(G)
≥ (1 − λ) · d

2
minεn(1 − ε)

d
.

Now define N := {v ∈ V \ S | degS(v) ≥ r} ⊆ V \S, which are the nodes that get activated
by S in the next round. By decomposing e(S, V \ S) = e(S,N) + e(S, (V \ S) \N),

e(S, V \ S) ≤ |N | · dmax + (|V \ S| − |N |) · (r − 1),

and rearranging gives

|N | ≥ e(S, V \ S) − (n− |S|) · (r − 1)

dmax
≥

(1 − λ) · d2min
d ε(1 − ε)n− n · (r − 1)

dmax
. (1)

Hence, if 1/2 ≥ ε ≥ 4 r−1
(1−λ)·d2min/d

, we conclude that

|N | ≥

(
1−λ
2

d2min
d ε− 1−λ

4
d2min
d ε

)
· n

dmax
≥

1−λ
4

d2min
d ε

dmax
· n =

1 − λ

4
· d2min

dmax · d
· |S|.

Recall that we assumed dmax = O(dmin). Thus in the next step, we can replace S by S ∪ I
and obtain an at least exponential growth (with factor Θ(1 − λ)) in the number of active
nodes until |S| > n/2.

Consider now the second stage, where we assume |S| > n/2 (thus ε > 1/2). As before,
we infer in the same way e(S, V \ S) ≥ (1 − λ) · d2minεn(1 − ε)/d. Recalling that N =
{v ∈ V \ S | degS(v) ≥ r}, we obtain the following refined version of (1), using that ε ≥
1/2,

|N | ≥
(1 − λ)

d2min
d ε(1 − ε)n− (|V \ S| − |N |) · (r − 1)

dmax

≥
1−λ
2

d2min
d (1 − ε)n− (1 − ε) · n · (r − 1)

dmax
.

Hence, if r − 1 ≤ (1−λ)d2min
4d , we conclude that

|N | ≥
1−λ
4

d2min
d (1 − ε)n

dmax
=

1 − λ

4
· d2min

dmax · d
· |V \ S|.

Thus, if |S| > n/2, the set of inactive nodes decreases exponentially in each round.
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Erdős–Rényi Graphs We first prove an upper bound for the time until complete perco-
lation for bootstrap processes on Erdős–Rényi graphs, showing Property 3, which is better
than the one following from Theorem 6. Then, we show that there exists an initial active
set such that the time needed for complete percolation matches this bound. We make use
of the well-known Chernoff bounds.

Theorem 7 (Chernoff bounds [3, Theorems A.1.12 and A.1.13]). Let n ∈ N>0,
p ∈ [0, 1], and X ∼ Bin(n, p). Then

1. for all β > 1, it holds that Pr[X ≥ βnp] ≤ (eβ−1β−β)np, and
2. for all a ∈ (0, np], it holds that Pr[X < np− a] < exp

(
− a2/(2np)

)
.

The following bound shows a rapid activation rate for sufficiently large initial active
sets.

Theorem 8. Let n ∈ N≥3, p ≥ 20 ln(n)/n, r ∈ [2.. lnn]. Further, let I ⊆ V (Gn,p) with
|I| = r ·n/ lnn. Then a.a.s., the bootstrap percolation process on Gn,p with threshold r and
initial active set I percolates completely in at most (1 + o(1)) ln(n)/ ln lnn rounds.

Proof. We prove several claims about G = Gn,p, which ultimately show Theorem 8.

Claim (8.1). The minimum degree of a node of G is a.a.s. at least 13 lnn.

Proof. The degree of each node v is a binomial random variable with parameters n − 1
and p. By assumption (n−1)p ≥ (1−o(1))20 lnn and, by Theorem 7, Item 2, the probability
that it is smaller than 13 lnn is at most

e−(1+o(1))(49/40) lnn =
1

n49/40−o(1)
.

The assertion of the claim thus follows from the union bound.

Claim (8.2). Asymptotically almost surely, for every two disjoint sets C and B in G, with
|C| = n/2 and |B| = rn/ lnn, there is a node c in C that has at least r neighbors in B.

Proof. Fix two disjoint sets B and C as above. Clearly it suffices to prove the claim for
p = 20 ln(n)/n. For every node v ∈ C, the expected number of neighbors of v in B is
p|B| = 20r. By Theorem 7, Item 2, the probability it has less than r neighbors in B is at
most (with room to spare) e−192r2/(40r) < 1

100 . These events for distinct nodes v ∈ C are
pairwise independent, hence the probability that there is no node v ∈ C as above is at
most (1/100)n/2. As there are less than 4n pairs of sets B,C as above, the result follows
by the union bound, since 4n/100n/2 = o(1).

Claim (8.3). Asymptotically almost surely, for any two disjoint sets of nodes B and C,
where |B| ≥ n/2, n − |B| ≥ 12 lnn and |C| = (n − |B|)/2, there is a node in C that has
at least r neighbors in B.

Proof. As before, fix two disjoint sets B,C as above, and note that we may assume that
p = 20 ln(n)/n. For every fixed v ∈ C the expected number of neighbors of v in B is
p|B| ≥ 10 lnn. As r ≤ lnn, the probability that v has less than r neighbors in B is at
most e−81 ln(n)/20 < n−4, by Theorem 7, Item 2. Therefore the probability that this is the
case for every v ∈ C is smaller than (1/n4)|C|. The number of possible pairs of sets B and
C as above is smaller than n3|C| (as the number of choices for the complement of B is(

n
2|C|

)
≤ n2|C|), and the claim follows by the union bound.
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Claim (8.4). Asymptotically almost surely, for every y ≤ n
100 lnn , no set of y nodes of G

spans more than y lnn edges.

Proof. Fix a set Y of y nodes. The expected number of edges in it is
(
y
2

)
p ≤ y210 lnn

n . By
Theorem 7, Item 1, with

β =
y lnn

(y210 lnn)/n
=

n

10y
(> 10 lnn)

the probability that Y spans at least y lnn edges is at most

(eβ−1/ββ)(y
210 lnn)/n ≤ β−0.9β(y210 lnn)/n = (10y/n)0.9y lnn < e−2y lnn.

The number of sets of size y is
(
n
y

)
≤ ey lnn. We conclude by noting that the probability

that there is a set Y spanning y lnn edges for any y ≤ n
100 lnn is at most

n/(100 lnn)∑
y=1

ey lnn · e−2y lnn = o(1).

Claim (8.5). Asymptotically almost surely, for every set B of nodes of size n− x, where
12 lnn ≤ x ≤ n/1000, the number of nodes outside B that do not have at least lnn (≥ r)
neighbors in B is smaller than 10x/ lnn.

Proof. Fix a set B as above and a subset C of 10x/ lnn nodes in its complement. We
bound the probability that no node of C has at least lnn neighbors in B as follows. By
Section 4.2, a.a.s. each node in the graph has degree at least 13 lnn. Assume this is the
case. Then every node of C has at least 12 lnn neighbors in the complement B′ of B (as
it has at most lnn neighbors in B). By Section 4.2, a.a.s., the number of edges spanned
by the set C is at most |C| lnn. Thus the number of edges between C and B′ ∖ C has to
be at least 10|C| lnn = 100x. The expected number of edges is

|C|(|B′| − |C|)p ≤ 10x

lnn
x

20 lnn

n
=

200x2

n
.

Applying Theorem 7, Item 1, with

β =
100x

200x2/n
=

n

2x
≥ 500 (> e5)

we conclude that the probability of having that many edges is at most

(eβ−1β−β)200x
2/n ≤ β−0.8β200x2/n = (2x/n)80x.

The number of choices for the sets B′ and C is smaller than
(
n
x

)2 ≤ (en/x)2x. Thus, by
the union bound the probability that there are sets B,C violating the claim is at most∑

x≥12 lnn

(en/x)2x(2x/n)80x.

Since x ≤ n/1000, 2x/n ≤ 1/500 and hence (2x/n)80x ≤
(
x/(250n)

)40x
<

(
x/(250n)

)2x
showing that the sum above is at most

∑
x≥12 lnn(e/250)2x = o(1).
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We now prove that the number of rounds until complete percolation is a.a.s. (1 +
o(1)) ln(n)/ ln lnn. Assuming that all claims hold, starting with any set A of rn/ lnn
nodes, by Claim 8.2, in one round at least n/2 nodes become active. By Claim 8.3, in 9
additional rounds the number of inactive nodes drops to at most n/210 < n/1000. By
Claim 8.5, in each round from now on, the number of inactive nodes drops by a factor
of at least lnn/10, as long as this number is above 12 lnn. Once below 12 lnn, one final
step activates all remaining nodes, as the minimum degree is at least 13 lnn, by Claim 8.1.
This completes the proof.

Note that the bound in Theorem 8 is optimal for p = Θ(log(n)/n) in the sense that
there is an initial active set A such that the process takes, for some ε ∈ (0, 1], at least
(1 − ε) ln(n)/ ln lnn rounds. This is the case since a.a.s. dmax(G) = O(log n) (similar to
Section 4.2). Assuming this is the case, for every node v the number of nodes within

distance at most t is at most
(
O(log n)

)t
. For t = (1 − ε) ln(n)/ ln lnn, this number is

smaller than n/2. Hence there is a set A of n/2 > rn/ lnn nodes so that the distance
between A and v exceeds t. Thus, when starting with A of active nodes, t rounds do not
suffice to activate v.

The following remark implies this is the same number of rounds the perturbed perco-
lation with r = 1 for p = Θ(log(n)/n) takes when starting from an active set of constant
size.

Remark 1 ([18, Theorem 4]). Let n ∈ N>0 and p = Θ(log(n)/n). Then a.a.s., Gn,p has a
diameter of Θ(log(n)/ log log n).

5 Experimental Results

In this section, we provide empirical results on the polynomial-to-rapid activation rate
both on the graphs analyzed above, and on further global-graph models. Our findings are
consistent with our theoretical results as well as the expected behavior of the perturbed
percolation process on such graph models. The Python implementation uses the libraries
NetworKit [36] and igraph [21], collections of tools for generating and analyzing graphs.
In particular, they provide implementations for several random graph models. All experi-
ments were run on a machine with 4 Intel i7-7500U cores and 8 GB RAM. However, note
that we are not concerned with wall clock times, and all experiments were finished within
minutes.

5.1 Erdős–Rényi Graphs

Corollary 2 shows that a.a.s. there is a polynomial-to-rapid activation rate for a PNG local
graph combined with a Gn,p, for some parameter range. In Figure 1, we consider such
configurations satisfying these conditions, in particular, with a two-dimensional torus on
n = 106 nodes as local graph. All runs are on the same random Gn,p with p = 20 ln(n)/n,
as it is generated once for consistent comparison. One can see the linear increase of the
number of activations per round on the local graph. After 500 rounds, the number of new
active nodes per round starts decreasing, as the set of active nodes wraps around the torus.

With the introduction of the Gn,p with r = 1, the process completely percolates within
three rounds, reflecting the rapid percolation. However, as r is increased, the effect of the
global graph is withheld until some number of nodes are activated in the polynomial phase.
Only then does the change to a rapid rate arise, and the process quickly percolates within
few rounds, driven by the global edges. Even at r = 100, this effect is still observed.
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Fig. 1: The number of new active nodes in every round for different configurations. All
runs are on n = 106 nodes with one initially active node. In one run (“Local graph”), we
only consider the 2-dimensional torus on n nodes, while all other runs are on both the
torus and a Gn,p with p = 20 ln(n)/n and a threshold r on the Gn,p. Note that both axes
are logarithmic.

5.2 Other Global-Graph Models

While our results only apply to the Gn,p and expander graphs as global graph, we have
strong reason to believe the same behavior can be observed for other global-graph models.
We focus on two such models: (1) The Barabási–Albert (BA) model [2] uses a preferential-
attachment approach, where nodes are iteratively added and connect to a fixed number
of previous nodes proportional to their degree. (2) The hyperbolic random graph (HRG)
model [33] randomly places nodes in a hyperbolic disk according to some probability
distribution, and connects them if and only if they are close to each other. Both models
exhibit small diameter and a power-law degree distribution, which should be beneficial for
fast percolation. However, due to the underlying geometry, the HRG model has a large
clustering coefficient, i.e., the neighbors of a node are likely to be neighbors of each other.
We expect this feature to further accelerate the process, as this makes global edges more
likely to hit the same nodes.

The experiment setup is analogous to that described in Section 5.1, with the two-
dimensional torus on n nodes as local graph. For the BA model, the number of attachments
is chosen such that the expected average degree is 20 lnn. For the HRG model, we configure
an expected power-law exponent of 3, and an expected average degree of 20 lnn. We
consider the threshold model, i.e., a temperature of T = 0.

Our results of one run are depicted in Figure 2. Again, the process for r = 1 reflects
the rapid percolation, and for increasing r, the effect of the global edges is delayed until a
threshold is reached. However, this threshold is reached earlier than in the Gn,p version.
For example, for r = 100, the Gn,p has no activation by global edges until round 328, while
with the BA model, this first happens in round 57. This can be explained by high-degree
nodes in the BA model being more probable to reach the threshold r quickly.

For the HRG model, this effect is even stronger, with the first activation through global
edges occurring in round 10 for r = 100. Even though both the BA and the HRG graph
share the average degree and power-law exponent, the HRG graph has more high-degree
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Fig. 2: The number of new active nodes in every round for different configurations. All
runs are on n = 106 nodes with one initially active node. In one run (“Local graph”), we
only consider the 2-dimensional torus on n nodes, while all other runs are on both the
torus and a Barabási–Albert random graph (left), or hyperbolic random graph (right).
Note that both axes are logarithmic.

nodes, in particular, those close to the center of the disk. Such nodes turn active very early,
and then (through their high degree and high clustering) quickly activate the remaining
nodes.

6 Outlook

With Lemma 1 and Theorems 6 and 8, we have shown bounds on the length of the initial
(polynomial) and final (rapid) phase. It would be interesting to further analyze and tighten
this gap. Our experiments (see Figure 1) suggest that the transition is rather sharp once the
first global activation occurs. Additionally, our experiments suggest that this behavior is
very similar for other global-graph models, although we believe that the polynomial phase
might be much shorter in the presence of a heavy-tailed degree distribution. Rigorously
proving activation rates on such graph models would increase our understanding even
further.
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