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Abstract

Since current computer infrastructures are increasingly vulnerable to malicious activi-
ties, intrusion detection is necessary but unfortunately not sufficient. We need to design effec-
tive response techniques to circumvent intrusions when they are detected. Our approach is
based on a library that implements different types of counter-measures. The idea is to design
a decision support tool to help the administrator to choose, in this library, the appropriate
counter-measure when a given intrusion occurs. For this purpose, we formally define the
notion of anti-correlation which is used to determine the counter-measures that are effective
to stop the intrusion. Finally, we present a platform of intrusion detection that implements the
response mechanisms presented in this paper.

Keywords: Computer security, Intruder detector, Information protection, Correlation, Modeling, Logic model.

L’ANTI-CORRÉLATION COMME CRITÈRE DE SÉLECTION DE CONTRE-
MESURES DANS LE CONTEXTE DE LA DÉTECTION D'INTRUSION

Résumé

Étant donné que les systèmes informatiques sont de plus en plus vulnérables aux activités
malveillantes, l’utilisation de la détection d’intrusion est nécessaire mais ne suffit pas. Nous
devons élaborer des méthodes efficaces de réaction aux intrusions afin d’arrêter les intru-
sions détectées. Notre approche est basée sur une bibliothèque de différents types de contre-
mesures. L’objectif est d’aider l’administrateur à choisir dans cette bibliothèque la
contre-mesure la mieux adaptée quand une intrusion est détectée. Pour ce faire nous définis-
sons formellement la notion d’anti-corrélation qui est utilisée pour sélectionner les contre-
mesures permettant d’arrêter l’intrusion. Nous finissons par la présentation d’une
plateforme de détection d’intrusion mettant en œuvre les mécanismes présentés dans cet
article.

Mots clés :Sécurité informatique, Détecteur intrus, Protection information, Corrélation, Modélisation, Modèle
logique.
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I. INTRODUCTION

Current systems that compose distributed computer infrastructures are increasingly vul-
nerable to intrusions and malicious activities. Several approaches have been suggested to
detect such intrusions [1, 12, 14]. However, it is generally considered that current intrusion
detection systems produce very large volume of alerts, including true alerts but also many
false positives (see [4, 10] for instance). This is why recent research work attempts to unders-
tand and model intrusion strategies to provide a more global and precise diagnostic of the
intrusion [6, 11]. These approaches are interesting and represent a step in the right direction
but detecting intrusion is not sufficient. It is also necessary to develop automated defenses
capable of appropriate responses to counter intrusions when they occur.

Several response strategies are possible including launching counter measures against the
intruder to prevent his or her malicious activity to proceed or act on the target system to stop
the intrusion and recover in a safe state. Direct responses against the intruder is a complex
problem that includes several technical difficulties (in particular, it is necessary to precisely
identify the origin of the intrusion) and legal and ethic complications (directly acting on the
intruder is generally viewed as illegal activities). In this paper, we shall not consider this type
of response and actually focus on responses that consist in acting on the target system.

When an intrusion occurs, the appropriate response on the target system generally
depends on the type of intrusion being performed. For instance, the response will not be the
same in the case of a denial of service (DOS) attack or a user to root (U2R) attack. Thus, our
approach is based on a library of responses that contains different types of possible counter-
measures which may be launched to stop intrusions. The problem addressed in this paper is
to choose the appropriate counter-measure when a given intrusion occurs. This may represent
a complex task for the administrator to make such a choice and some support might be useful
to help the administrator. It is also necessary to fix the parameters of the response. For ins-
tance when the response consists in closing a given connection, the IP addresses of the
source and target must be appropriately fixed before launching the response.

In this paper, we suggest an approach to define decision mechanisms to help the administra-
tor to choose, in the response library, the counter-measure candidates when an intrusion occurs
and to present them to the administrator with the appropriate parameters to circumvent the intru-
sion. Once the administrator selects a counter-measure, this counter-measure along with the
appropriate parameters is automatically executed to stop the intrusion in the target system.

Our approach is based on a logical formalization of both attacks and counter-measures.
This formalism is used to derive, from the attack description (especially the effects of an
attack on the target system), one or several counter-measures that may circumvent the attack.
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For this purpose, we define the notion of anti-correlation. This notion is used to determine
the counter-measures that will have a negative effect on the attack and therefore will enable
the administrator to stop this attack.

The remainder of this paper is organized as follows. Section II presents the notion of res-
ponse and suggests several types of response. In Section III, we present our formalism to
model attacks and counter-measures. Our formalism is based on LAMBDA , a language sug-
gested in [7] to model attacks. In this section, we also suggest using LAMBDA to model coun-
ter-measures. Section IV recalls the definition of correlation [6] and introduces the notion of
anti-correlation. In Section V, we show how to use anti-correlation to determine relevant
counter-measures (1) to act on the objective of an intrusion or (2) to cut an ongoing attack
scenario by acting on a given step of this scenario. We also present how our approach pro-
vides means to parameterize the selected counter-measures. Section VI gives an example to
illustrate the approach and presents an intrusion detection platform that includes the response
mechanisms suggested in this paper. Finally, Section VII concludes the paper and suggests
several possible extensions to our approach.

This paper is an extended version of the previous work presented at SAR 04 [5]. In parti-
cular, both the intrusion detection framework and the examples given in Section VI have
been revised and enhanced.

II. RESPONSE MECHANISM AND COUNTER-MEASURES

Even though some improvements were made recently, current Intrusion Detection Sys-
tems (IDS) propose few response mechanisms in addition to alerts and reports. There is only a
small variety of response techniques and the decision criteria that are used to activate the
response remain often simplistic. Moreover, in a context of exploitation, security administra-
tors generally balk at using the most interesting responses like automatic reconfiguration of
firewalls or routers. This is due to lack of confidence in the capabilities of the IDS to take the
right decision. Administrators also fear of not controlling the consequences of the automation
of counter-measures.

Lastly, the objective of most responses consists in stopping an ongoing attack. More ela-
borate responses that are effective to automatically correct the detected vulnerabilities,
remain marginal.

In [9], the following taxonomy of counter-measures was suggested:
– Information: Specific action that raises an alert for the security administrator. This

action can be launched after detecting an intrusion of sufficient severity.
– Deterrence: Action performed against the intruder so that he or she will be willing to

stop his or her malicious activity. For instance, a message sent to the intruder to notify
that his or her malicious action were detected is the simplest (but not always effective)
form of deterrence.

– Correction: Action to modify the system state to correct an identified vulnerability or a
system misconfiguration with respect to the security policy. For instance, installing a
patch is a form of correction.

– Compensation: Action performed to block the attack but without correction. The sys-
tem is still vulnerable but the response prevents the intruder from performing his or her
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We accept this taxonomy but we make a difference between actions that change the state
of the system to be protected and other actions that do not cause such a change. In the
remainder of this paper, we shall actually consider actions that change the system state, that
is correction and compensation. Since information and deterrence have respectively an effect
on the security administrator or the intruder, they are not included in our analysis.

To avoid confusion, we make a distinction between the notions of response and
counter-measure. In the following, we call counter-measure any action used as a compensa-
tion or a correction. Therefore, a counter-measure changes the system state so that the intru-
sion is stopped. We define response as the decision mechanism used to choose the adequate
counter-measure when an intrusion is detected.

Our approach of response mechanism is integrated in the recognition process of the intru-
der’s intentions presented in [3]. When an intrusion scenario is identified, we can anticipate
on the objective that the intruder attempts to achieve and on the future attack that he or she
will perform to achieve it. Thus, a response is an action that modifies the system state to pre-
vent the intruder to achieve his or her goal. As explained in the following section, a goal can
be an intrusion objective or a future attack.

III. MODELLING INTRUSION AND COUNTER-MEASURE

In this section, we present our formalism, based on LAMBDA [7], to model both intrusions
and counter-measures.

III.1. Modelling attack and intrusion objective in LAMBDA

LAMBDA is the acronym for LAnguage to Model a dataBase for Detection of Attacks. It is
used to provide a logical description of an attack. This description is generic, in the sense that
it does not include elements specific to a particular intrusion detection process.

A LAMBDA description of an attack is composed of several attributes:
– pre-condition defines the state of the system required for the success of the attack.
– post-conditiondefines the state of the system after the success of the attack.
– detection is a description of the expected alert corresponding to the detection of the

attack.
– verification specifies the conditions to verify the success of the attack1. We define an

intrusion objective as a specific system state [3]. This state is characteristic of a violation of

intrusion. For instance, it is possible to stop a vulnerable service, or close the connec-
tion between the intruder and the target (using a TCP-Reset), or reconfigure a firewall to
block the attack source.

1. The alerts launched by IDS generally provide evidence of the occurrence of some malicious events but are not suf-
ficient to conclude that these events will actually cause some damage to the target system. This depends on the sys-
tem state when the malicious events occur. This is why a LAMBDA description also includes a verification attribute
that provides conditions to be checked to conclude that the attack is a success.



the security policy. A LAMBDA description of an intrusion objective is composed by only one
attribute: state defines the state of the system that corresponds to a security policy violation.

III.2. How to use LAMBDA

LAMBDA is used to describe possible violations of security policy (intrusion objective) and
possible actions (attack) an intruder can perform on a system to achieve an intrusion objec-
tive. This database of LAMBDA descriptions is used to recognize an intrusion process and to
predict the intention of the intruder.

Let us present an example of intrusion modelled with LAMBDA . First, an intruder scans
port 139. If it is open, he concludes that the Operating System is Windows and uses the Net-
Bios service. The intruder can then execute a Winnuke attack on this target system that will
cause a denial of service. Figures 1 and 2 respectively give the description in LAMBDA of the
Port-Scan and Winnuke attacks performed by an agent on a given host.

FIG 1. –  Port-Scan Attack performed by an agent A on a given host H.

Attaque Port-Scan réalisée par un attaquant A sur une machine H.

FIG 2. –  Winnuke Attack performed by an agent A on a given host H.

Attaque Winnuke réalisée par un attaquant A sur une machine H.



There is a violation of security policy when a web server goes down. This is represented
by the intrusion objective presented in Figure 3.

As we can see in these examples, each LAMBDA description uses several variables (corres-
ponding to terms starting with an upper case letter). When an alert can be associated with a
LAMBDA description through the detection attribute, we can unify variables with values. 
We call attack occurrence a LAMBDA description where variables have been unified with
values.

III.3. Using LAMBDA to model counter-measure

We suggest adopting the same formalism to model counter-measures. Thus, a
counter-measure has similar attributes to an attack. The main difference is that the detection
attribute associated with an attack is replaced by the attribute action. This leads to the follo-
wing model for counter-measures:

– pre-condition defines the system state required for the success of the counter-measure.
– post-condition defines the system state after applying the counter-measure.
– action defines the actions necessary to perform the counter-measure.
– verification specifies the conditions to verify the success of the counter-measure.

Figure 4 provides an example of a counter-measure specified in this model. It consists in
closing all connections between a given source Sand a given target T.

FIG 3. –  Intrusion objective: Denial of service on a web server.

Objectif d’intrusion: déni de service sur un serveur de la toile.

FIG 4. –  Counter-measure: Closing a TCP connection.

Contre-mesure: fermeture d’une connexion TCP.



IV. CORRELATION AND ANTI-CORRELATION

Our response mechanism is based on recognizing the intruder’s intentions. Using
LAMBDA , [6] shows how to correlate detected attacks to identify a scenario. Section IV.1
recalls the definition for the correlation principle. It is then possible to extrapolate this scena-
rio to predict future attacks that the intruder will probably perform and the objective that he
attempts to achieve. When several possible scenarios are extrapolated, [2] suggests an
approach to define an order of preference between these scenarios to select the most likely
ones.

To design the response process, we suggest a second notion, called anti-correlation that is
formally defined in Section IV.3 and then used in Section V to select the counter-measure
candidates in the response process.

IV.1. Correlation

Our approach of correlation is based on the unification principle [15] on predicates2. Let
a and b be two LAMBDA descriptions of attacks. posta is the set of literals of post-condition3 of
a and preb is the set of literals of pre-condition of b.

Direct correlation: a and b are directly correlated if the following condition is satisfied:
∃ Ea and Eb such that
– (Ea ∈ posta ∧ Eb ∈ preb) or (not(Ea) ∈ posta ∧ not(Eb) ∈ preb)
– and Ea and Eb are unifiable through a most global unifier θ.

This definition of direct correlation represents the idea of positive influence between two
attacks. We say that attack a has a positive influence over attack b if a is directly correlated to
b. In such a case, the effects of a, namely the set of predicates in posta, allows to satisfy a
subset of the pre-requisites of preb. The notion of attack correlation allows us to find correla-
ted attacks that are part of the same scenario.

As for the attacks and objectives, the approach is to use this formalism to specify a library
of possible counter-measures that apply to the system to block an intrusion. We shall now
define a response mechanism to select the adequate counter-measures for a detected scenario.
This mechanism is based on a principle called anti-correlation which is close to the correla-
tion principle suggested in [6]. These two principles are formally presented in the following
section.

2. As used in PROLOG.
3. Post-conditionis represented in its conjunctive form.



[6] also defines the notion of Knowledge gathering correlation,a variation of the above
definition of correlation that is useful to integrate, in the detection process, preliminary steps
the intruder performs to collect data on the target system.

Knowledge gathering correlation: a and b are knowledge gathering correlated if the
following condition is satisfied:

∃ Ea and Eb such that
– (knows (Agent, Ea) ∈ posta ∧ Eb ∈ preb) or (knows (Agent, not (Ea) ∈

posta ∧ not(Eb) ∈ preb)
and Ea and Eb are unifiable through a most global unifier θ.

This definition generally applies to the first steps of an intrusion. We say “generally”
because an intruder may have no knowledge about the target machine. An intruder may
directly try to exploit a vulnerability on a machine without trying to know if this security
hole is present on the machine, but we argue that most of the time, the intruder will try to
gather some information about the target. Hence the gathered knowledge may influence the
attacker on the next attacks he will execute.

As an example, there is a knowledge gathering correlation between the Port-Scan attack
(see Figure 1) and the Winnuke attack (see Figure 2) through the predicate open and the uni-
fier that matches variable H in both attack definitions and variable P in the Port-Scan attack
to constant 139. This means that an intruder who knows that port 139 is open on a given
host, can then perform a Winnuke attack on this host.

We now define the notion of correlation unifier that allows us to apply on-line correlation.

Correlation unifier: denoted Ξab, is the set of all possible unifiers4 to correlate posta and
preb.

Since two attacks a and b are correlated as soon as they have one predicate in common in
posta, and preb, we may have several unifiers for two attacks. The set of correlation unifiers
allows us to know which attack can be correlated with a given attack under some unification
condition between their variables. Applying on-line correlation consists in exploring the set
of correlation unifiers each time a new alert is received, given that the alert corresponds to an
instance of an attack model.

We can apply the notion of direct correlation between two attacks to an intrusion objec-
tive and an attack. This allows us to detect that some attack may allow to reach or help to
reach an intrusion objective. In this case, we simply have to substitute the term pre-condition
by state in the definition of direct correlation.

IV.2. How to use correlation

Once attacks and intrusion objectives are specified in LAMBDA , we can generate all corre-
lation unifiers between each pair of attacks (respectively between an attack and an intrusion
objective). When two attack occurrences are detected, if some unifier in the unifier set is

4. Unifiers of direct or knowledge gathering correlation.



identified, we can then say that these attack occurrences are correlated in the same intrusion
scenario.

Using this approach, it is possible to build a correlation graph. Figure 5 presents such a
correlation graph where nodes are LAMBDA descriptions and edges are correlation unifiers.

When the first steps of a given intrusion scenario are identified, we can, with the same
mechanisms, predict possible continuations of this scenario. We can generate hypothesis
about future attacks and the intrusion objectives the intruder attempts to achieve. We shall
call virtual attack an attack predicted by this process of intention recognition. A virtual attack
becomes effective once its occurrence is detected.

Thus, it is sometimes possible to anticipate on the actions performed by the intruder
and develop a specific counter-measure in response. This means that our approach may
be used to launch a counter-measure not only after a given intrusion objective is achie-
ved by the intruder but also when the beginning of a given scenario is detected. In this
latter case, the counter-measure will be used to prevent continuations of this starting 
scenario.

We shall now see how to define and use the anti-correlation principle to elaborate the
counter-measure.

IV.3. Anti-correlation

Let a and b be respectively LAMBDA descriptions of a counter-measure and an attack.
posta is the set of literals of post-condition of a and preb is the set of literals of pre-condition
of b.

FIG 5. –  Correlation graph example.

Exemple de graphe de corrélation.



Anti-correlation: a and b are anti-correlated if the following condition is satisfied:
∃ Ea and Eb such that
– (Ea ∈ posta ∧ not(Eb) ∈ preb) or (not(Ea) ∈ posta ∧ Eb ∈ preb)
– and Ea and Eb are nnifiable through a most global unifier θ.

This definition formalizes the notion of negative impact of a counter-measure over an
intrusion scenario. A counter-measure is an action which prevents the execution of an
attack. Since our model of an attack includes the necessary conditions the system’s state
must meet in order to execute the attack, we can prevent the execution of an attack by
making one of those conditions false. So a counter-measure c for an attack ais a LAMBDA

model of which the post-condition contains a predicate that contradicts one predicate of
prea. We say that c is anti-correlated with a. It is sufficient for a counter-measure to anti-cor-
relate an attack through only one predicate, but a counter-mesure can anti-correlate an
attack through several predicates.

Anti-correlation unifier: denoted Ψab, is the set of all unifiers θ possible to anti-corre-
late posta and preb.

As for a correlation unifier, an anti-correlation unifier defines which attacks can be
anti-correlated to a counter-measure. It tells how the variables must be unified in the predi-
cates which are involved in the anti-correlation link.

Using the same approach, it is possible to define anti-correlation between a counter-mea-
sure and an intrusion objective. We have simply to replace pre-condition by state in the pre-
vious definition.

In the following section we show how to use the anti-correlation notion to design a res-
ponse mechanism to an intrusion scenario. In particular, Figures 6 and 7 provide examples of
anti-correlation and how to use it in a response mechanism.

V. USING ANTI-CORRELATION FOR RESPONSE

When a scenario is identified, the correlation process provides a graph of attack occur-
rences, virtual attacks and intrusion objective. A counter-measure will apply to invalidate
future attacks or invalidate an intrusion objective. Thus, we have two response mechanisms,
one that applies against virtual attacks and the other on an intrusion objective.

V.1. Response to an intrusion objective

In this case, response aims at updating the system state to invalidate the intrusion objec-
tive in an intrusion scenario. 



In Figure 6, we assume that two occurrences of attack are detected: an occurrence of a
with argument X = x and an occurrence of b with argument Y = y. The correlation process
diagnoses that these two attacks are correlated with a given intrusion objective o and this
objective is achieved. The response process finds two counter-measure candidates: (1) coun-
ter-measure r0 with parameter X″ = X′, provided by Ψro,o

, to invalidate condition p (and thus
objective o) and (2) counter-measure r1 with parameter Y″ = Y′, provided by Ψr1,o

, that inva-
lidates condition q (and thus also objective o). Combining Ξa, o with Ψro,o we can derive that
counter-measure r0 may apply with parameter X″ = X′ = X = x and similarly counter-measure
r1 may apply with parameter Y″ = y′. Thus this provides means to derive which parameters
must be selected when applying the counter-measure. In our approach, these two
counter-measures are suggested to the administrator who can select one of them (or both).
The verification field of the selected counter-measure is then evaluated to check if the coun-
ter-measure was executed successfully. If this is the case, we can reevaluate the state condi-
tion of the intrusion objective to false.

Let o be an intrusion objective. To invalidate this intrusion objective, we must find a
LAMBDA definition r of a counter-measure such that Ψ r0 

≠ θ . Then, it is possible to paramete-
rize this counter-measure candidate with the unifier of correlation Ψ r0

.

FIG 6. –  Correlation graph with direct response on objective.

Graphe de corrélation avec réponse directe sur un objectif.



V.2. Response to an ongoing scenario

It is possible that a counter-measure may not apply directly to an intrusion objective if
one of these conditions holds:

– There is not any counter-measure in the response library which may apply to invalidate
the intrusion objective.

– The counter-measure does not apply to the system state because the pre-condition of
this counter-measure is evaluated to false.

– All counter-measure candidates were launched without success.

In these cases, a possible solution is to modify the system state to invalidate one attack in
a sequence of virtual attacks. When the correlation engine receives a new alert, it tries to find
a path of correlated virtual attacks leading to one (or more) intrusion objective(s). The path of
virtual attacks and the intrusion objective found represents a possible evolution of the
ongoing scenario. Let a1...an be a sequence of virtual attacks and o an intrusion objective
such that for every i∈ [1, n – 1], ai is correlated with ai + 1 and an is correlated with o. The
affirmation stating that for every i ∈ [1, n – 1], ai is correlated with ai + 1 and an is correlated
with o is not necessarily true for the entire set of virtual attack generated. But we can always
find a subset of virtual attack satisfying this condition in the set of generated virtual attacks,
given that the set of generated virtual attacks leads to an intrusion objective.

To block this sequence of attacks, we must find a validLAMBDA counter-measure r such
that r is anti-correlated with one of the attacks ak (k ∈ [1, n]).

For instance, let us assume, in Figure 7, that we detect an occurrence of a. The recogni-
zing intention process identifies that the intruder may perform b after a to achieve the objec-

FIG 7. – Correlation graph with response on a sequence of virtual attacks.

Graphe de corrélation avec réponse sur une séquence d’attaques virtuelles.



tive o. In this case, the response process can find a counter-measure r to invalidate the pre-
condition of b. This will prevent performance of attack b and invalidate this scenario.

VI. EXAMPLES AND EXPERIMENTATION

This section presents the Prevention Cells framework [8], a cooperative intrusion detec-
tion platform that implements the response mechanism suggested in this paper. This frame-
work is a research prototype implemented in C and C++, and has been tested on different
versions of Linux 2.4.x series and on the versions 2.9.x and 3.x of GNU’s gcc compiler. The
global architecture of this platform is shown in Figure 8.

The platform works as follows. First, the event watcher component (ewatcher-ids) col-
lects the set of events raised by different host and network based sensors and translates them
into IDMEF (Intrusion Detection Message Exchange Format). These alerts, together with the
IDMEF alerts collected by other third party IDS included in our platform (such as snort and
prelude) are sent to an alert database (managed by PostgresSQL). An enhanced C++ version

FIG 8. –  Cooperative intrusion detection platform.

Plateforme de détection d’intrusion coopérative.



of CRIM [6] analyzes these IDMEF alerts using the approach presented in Section IV.1. To
generate the corresponding counter-measures,CRIM uses the approach based on anti-correla-
tion defined in Section V. These counter-measures are transmitted to the countermeasure
manager component (cm-manager) as IDMEF assessment alerts. Finally, the counter-measure
manager provides the administrator with a set of actions. The administrator in charge can
then select one or several actions that automatically will be executed at the corresponding
response unit.

The response units associated with the counter-measure manager, as well as the sensors
associated to the ewatcher-ids component, are implemented in C and executed as linux
2.4 modules. To illustrate the use of two of these response units let us consider two attack
scenarios: an illegal remote command based on the Mitnick attack and a distributed denial of
service attack.

VI.1. Mitnick attack

This attack tries to exploit the trust relationship between two computers to achieve an
illegal remote access using the coordination of three techniques. First, a SYN flooding DoS
attack to keep the trusted system from being able to transmit. Second, a TCPsequence predic-
tion against the target system to obtain its following TCP sequence numbers. And third, an

FIG 9. –  Correlation graph for the Mitnick attack scenario.

Graphe de corrélation pour le scénario d’attaque Mitnick.



unauthorized remote shell by spoofing the IP address of the trusted system (while it is in a
mute state) and using the sequence number that the target system is expecting. The correla-
tion graph for this attack is presented in Figure 9.

The LAMBDA models for each attack that composes the whole scenario, together with the
intrusion objective, are shown in Figure 10. In the first step,A (the agent that performs the
whole attack) floods a given host H1. In the second step,A sends a TCP sequence prediction
attack against host H2 to obtain its following TCP sequence numbers. Then, by using these
TCP sequence numbers,A starts a spoofed remote shell session to the host H2 as it would
come from host H1. Since H1 is in a mute state,H2 will not receive the RST packet to close
this connection. If the third and fourth step are successful,A will establish an illegal remote
shell session to system H2.

FIG 10. – Modelling the Mitnick attack scenario.

Modélisation du scénario d’attaque Mitnick.



When alerts corresponding to different steps of this scenario are raised,CRIM applies the
correlation mechanism recalled in this paper to recognize the global scenario. For example, if
an alert corresponding to the attack syn_flood(A, H1) and the attack tcp_sequence_predic-
tion(A, H2) are raised, the correlation mechanism of CRIM will generate the virtual alerts cor-
responding to the attack IP_spoofing(A, H1, H2), the attack spoofed_remote_shell(A, H1, H2)
and the objective illegal_remote_shell(A, H2). CRIM recognizes then the whole scenario since
the post-condition deny_of_service (H1) of the attack syn_flood(A, H1) is correlated with the
pre-condition deny_of_service (H1) of the attack IP_spoofing(A, H1, H2).

Likewise, the pre-condition spoofed_connection(A, H1, H2) of the attack spoof
ed_remote_shell(A, H1, H2) is correlated with the post-condition spoofed-connection(A, H1,
H2) of IP_spoofing(A, H1, H2), the pre-condition knows(A, tcp_sequence(H2)) of
IPspoofing(A, H1, H2) is correlated with the post-condition knows(A,tcp_sequence(H2)) of
tcp_sequence_prediction(A, H2), and the intrusion objective state remote_shell (A, H2) is then
correlated with the post-condition remote_shell (A, H2) of the attack spoofed_
remote_shell(A, H1, H2).

Once this diagnosis is obtained, the response module is used to select some counter-mea-
sures in the counter-measure library. Faced to this intrusion scenario, the response module
can select two possible counter-measures. The LAMBDA models for these two counter-mea-
sures are also shown in Figure 10. On one hand, a counter-measure can apply directly on the
intrusion objective. This counter-measure, called kill_remote_shell,kills the remote shell pro-
cess. On the other hand, we can react before the intrusion objective is achieved. The coun-
ter-measure, called block_spoofed_connection,blocks the spoofed connection between the
host and the intruder. The counter-measure block-spoofed-connection is chosen since its
post-condition not (spoofed_connection (A, H1, H2)) is anti-correlated with the pre-condition
spoof ed_connection(A, H1, H2) from spoofed_remote_shell (A, H1, H2). Likewise, the coun-
ter-measure kill_remote_shellis chosen since its predicate not(remote_shell(A, H2)) is then
anti-correlated with the predicate remote_shell(A, H2) of the intrusion objective
illegal_remote_shell(A, H2).

These two counter-measures are transmitted to the counter-measure manager as IDMEF

assessment alerts, which provides the administrator with the actions showed in Figure 10.
Thus, the administrator can select one of them, or both. For example, if the administrator
chooses the first action,block_IP_datagrams(A, H1, H2, t), the counter-measure manager will
send this information to the response unit pfilter_ru. The implementation of this response
unit is based on the netfilter subsystem, a framework for packet manipulation that enables
packet filtering, network address translation and other packet mangling on Linux 2.4.x and
upper series. When the response unit pfilter_ru receives the information sent by the counter-
measure manager, it produces the corresponding packet filtering on netfilter to block the
spoofed IP datagrams during the timeout t.

On the other hand, if the administrator chooses the second action,kill_
_process(remote_shell(A,H2)), the counter-measure manager will send this information to
the response unit kill_ru. The implementation of this response unit is based on the intercep-
tion of the kill system call to provide a safe mechanism to invoke the original kill system call
using the Netlink Sockets API. It allows us to find and to terminate the execution of the pro-
cesses reported by the counter-measure manager (in that case, the execution of the
remote-shell process to the host H2).

After the execution of the chosen action, the counter-measure manager receives the ack-
nowledgment from the corresponding response unit. Then, it will send an IDMEF alert to CRIM



to tell that the given counter-measure has been launched. Finally,CRIM can apply the verifi-
cation field of the counter-measure to check if the counter-measure has been effective.

VI.2. Distributed Denial of Service

In this section, we present how to use the alert correlation discussed in section IV.1 to
detect an ongoing DDoS attack scenario and how to stop it using anti-correlation (section
IV.3). Denial of Service (DoS) attacks, based on flooding, consist in putting out of service
some physical or logical resource in a computer system. The attacker sends huge amounts of
legitimate traffic in order to decrease, or stop a specific service on the victim machine. The
excessive consumption of the victim’s resources deprives legitimate clients from the offered
victims’ service for many minutes or hours as long as the attack is active.

Distributed Denial of Service attacks, based on flooding, use the architecture shown in
Figure 11 where the attacker recruits many agents known as zombies to flood the designed
victim(s). The different hosts which are between the attacker and the zombies are called mas-
ters (or handlers). These hosts are servers, which are recruited by the attacker(s), offering
many commands facilities to launch the desired flooding attacks.

The LAMBDA model corresponding to the global scenario is shown in Figure 12. We men-
tion that we do not take into account the early steps of the DDoS tools that consist in scan-
ning and compromising the different hosts that will later play the role of masters and slaves.
These intrusions may be detected with some IDSs and then some corresponding scenarios

FIG 11. – DDoS Attack Architecture.

Architecture d’une attaque DDoS.



may be constructed which will be detected with the correlation method discussed above.
However, if the attacker has a legitimate physical or remote access to the different machines
then these first steps cannot be detected.

The scenario shown in Figure 12 corresponds to the different steps followed by an attac-
ker, after compromising the different useful hosts, to launch a distributed denial of service
against victims. In reality, it corresponds to the scenario of activating well known DDoS tools
such as Trinoo, Stacheldraht,TFN, Mstream, Shaft, etc. Once activated on the compromised
hosts, these DDoS tools perform classical DoS attacks such as syn-flooding or 
smurfing.

The LAMBDA models for each elementary attack corresponding to the scenario is shown in
Figure 13.

The first step consists in opening a connection between the attacker with the master. The
pre-condition of the first attack of the scenario mentions that the H host is a master host com-
promised by the attacker A. Its post-condition specifies that the attacker has opened a
connection with the master.

When the attacker launches (automatically or not) the daemon(s) on the different com-
promised slaves hosts, these slaves hosts will send a message called “show alive message” to
the masters that control them in order to inform their readiness to flood a victim. This action
may be performed in parallel with the first step.

In the third step, the attacker sends a dos command to the master to start a DDoS attack
using the detected slave computer(s). Thereafter, the master sends a DoS command to the
slave in order to flood the desired victim(s).

FIG 12. – DDoS Attack correlation graph.

Graphe de corrélation d’une Attaque DDoS.



Once the CRIM engine has recognized the global scenario using the approach explained in
the previous sections, one appropriate counter-measure should be launched. It consists in
killing the slave daemon process. In addition to this, the administrator where the daemon is
located is warned about the host where the daemon is installed. He should find the vulner-
ability that permitted the installation of the daemon on that host and disinfect and patch the
system. Without doing this, other daemons may be launched automatically from the same
host. This is what is called counter counter-measure.

We mention that the main goal in using correlation technique to recognize the first steps
of an ongoing DDoS scenario is to react against it before the objective is reached i.e. before
the flooding is started where in this case it is difficult and too late to react.

FIG 13. – Modelling a DDoS scenario.

Modélisation d’un scénario DDoS.



VII. CONCLUSIONS

In this paper, we have presented a global approach to select and apply response mecha-
nisms when an intrusion occurs. This approach is based on a logical representation in
LAMBDA of both intrusions and counter-measures. This is used to build libraries of intrusions
and counter-measures.

The library of counter-measure is organized into a taxonomy that takes its inspiration
from [9]. The notion of anti-correlation is then used to select relevant responses to a given
intrusion in order to help the administrator to decide which appropriate counter-measures
may be launched. This mechanism is integrated on an experimental platform of intrusion
detection that collects and analyzes alerts generated by various intrusion detection systems.
This platform is a research prototype implemented in C and C++.

The response units of our platform are implemented as Linux 2.4 modules and can interact
with the other components via the Netlink Sockets API available for GNU/Linux systems.

Up to now, we only use this approach to provide a support to the administrator who takes
the final decision to choose and launch a given response. This is a prudent strategy but it
introduces an overhead that is sometimes incompatible with real time response. This is why
we are currently analyzing situations where it would be possible to automatically decide to
launch the response.

Notice that a possible response consists in reconfiguring the security policy to prevent a
new occurrence of a given intrusion. However, as suggested in [13], dynamic changes of the
security policy may cause failure of some software components. This is why [13] suggests the
notion of security agility, a strategy to provide software components with adaptability to secu-
rity policy changes. Security agility might be nicely included into the intrusion detection and
response framework suggested in this paper. This represents a possible extension of our work.

When using anti-correlation, several responses may be selected. In this case, it would be
interesting to rank these different responses and a possible ranking criteria would be to eva-
luate the effectiveness of the responses to stop the attack. For this purpose, we plan to extend
the response formalism with temporal logic to include the fact that a given response will stop
an intrusion until another additional event occurs. More difficult is performing an action that
will cause this additional event, more effective is the response. This also represents further
work that remains to be done.
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