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A User Centric Blockage Model for Wireless Networks
François Baccelli†, Bin Liu†, Laurent Decreusefond, and Rongfang Song

Abstract—This paper proposes a cascade blockage model for
analyzing the vision that a user has of a wireless network. This
model, inspired by the classical multiplicative cascade models,
has a radial structure meant to analyze blockages seen by the
receiver at the origin in different angular sectors. The main
novelty is that it is based on the geometry of obstacles and
takes the joint blockage phenomenon into account. We show
on a couple of simple instances that the Laplace transforms
of total interference satisfies a functional equation that can
be solved efficiently by an iterative scheme. This is used to
analyze the coverage probability of the receiver and the effect
of blockage correlation and penetration loss in both dense
and sparse blockage environments. Furthermore, this model is
used to investigate the effect of blockage correlation on user
beamforming techniques. Another functional equation and its
associated iterative algorithm are proposed to derive the coverage
performance of the best beam selection in this context. In
addition, the conditional coverage probability is also derived to
evaluate the effect of beam switching. The results not only show
that beam selection is quite efficient for multi-beam terminals,
but also show how the correlation brought by blockages can be
leveraged to accelerate beam sweeping and pairing.

Index Terms—Stochastic geometry, multiplicative cascade,
blockage, beamforming, best beam selection, iterative algorithm,
coverage probability

I. INTRODUCTION

THE classical distance-based path-loss model with a sep-
arate shadowing term has been employed for decades in

wireless network modeling. However, this simple model falls
short in reflecting realistic blockage features where signals
from multiple nearby transmitters are blocked by common
obstacles, which leads to the correlated shadowing effect.
Despite significant research efforts in this direction in the
recent years, there is still a clear need for more accurate and
yet tractable blockage/shadowing models, particularly so in the
context of 5/6G beamforming.

A. Prior Work

There is a vast literature on shadowing and the need for
correlated shadowing. Reference [1] summarizes the state of
the art on correlated shadowing models based on parametric
path-loss functions of relative/absolute propagation distance
and incidence angle. Reference [2] discusses the approach
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based on correlated log-normal shadowing random variable.
All these prior models maintain the analytical tractability at
the cost of missing the geometric features of blockages.

Another and more natural way to model correlated shadow-
ing is based on stochastic geometry (SG) and more precisely
on the use of random shape theory to represent the location
and the shape of obstacles. Reference [3] surveys the state-
of-art on SG based blockage models. This is used for both
outdoor [4] and indoor [5] communications. These random
blockage models achieve a good trade-off between tractability
and accuracy, but fail in characterizing spatial correlation. In
[6], a blockage model called the Manhattan-type urban model,
leveraged Poisson line process to represent blockages. This
model was expanded to 3-D indoor wireless environments [7]
and outdoor planar networks [8]. These models allow one to
take the joint blockage effect into account but are limited to
cities/districts with a Manhattan-type structure.

Beamforming and directional transmission are central in 5G
and 6G cellular networks. This is particularly true for mmWave
frequencies where beamforming is used to compensate for the
more severe path loss. This spurs research efforts on beam
scanning, selection, pairing and switch performance evalua-
tion in different blockage structures. Unfortunately, the vast
majority of these works consider the independent blockage
model [9] [10] or free space [11] [12] [13] [14] for tractability.
They hence fall short in capturing the effect of correlated
blockages on beamforming techniques. There is hence also
a need for models allowing one to capture and analyze the
effect of blockage correlation on beamforming techniques.

B. Challenges and Contribution

The first part of this paper presents a correlated blockage
model based on a Multiplicative Cascade (MC) model. Such
cascades have been successfully used to describe nonlinear
phenomena of multiplicative nature in signal processing [16],
network traffic [17] etc. for many years. To the best of
our knowledge, this is the first attempt to model correlated
blockages in wireless networks using such tools. This cascade
blockage model is parametric and can be used to represent
several types of urban/suburb/rural scenarios, such as city
centers, residential districts, business centers, suburban areas,
etc. It is shown that instead of a representation in terms of
integral forms as in classical SG models, the Laplace transform
of interference can be obtained by iterative algorithms derived
from the cascade functional equation. This is then used to
derive the downlink coverage probability.

The second part of the paper is focused on the impact of
blockage correlation on beamforming. The cascade is again
used to establish a functional equation for the joint Laplace
transform of interference in all angular sectors. This again
leads to iterative algorithms which can are used to obtain the
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coverage performance of the best beam selection scheme. We
also analyze the conditional coverage probability in case of
a beam switch. We illustrate the practical use of this in the
context of beam scanning and pairing.

The main contributions of this paper can be summarized as
follows:

1) A basic cascade model and two extensions are proposed
to describe blockage environments. These models capture
blockage correlation effects. Compared with independent mod-
els used in prior work, our models are equally tractable and
more realistic. They also show that the independent blockage
models underestimate the overall system performance.

2) For omnidirectional User Equipment (UE), new func-
tional equations and iterative algorithms are proposed to derive
Laplace transforms of total interference.

3) A beamforming capable UE can sweep the beamforming
directions and choose the beam with the maximal Signal to
Interference Ratio (SIR) as its serving beam. The blockage
correlation complicates the computation of the best beam. We
propose another functional equation and its associated iterative
algorithm. This allows one to obtain the coverage probability
in this case.

4) We leverage the cascade model to derive the conditional
coverage probability after a beam switch. The analysis shows
how to scan beams from a reference beam in order to shorten
the beam scanning duration.

5) Simulation results validate the accuracy of analysis and
are used to gain further insights on the impact of blockage
correlation on coverage performance for both omnidirectional
and beamforming UEs.

C. Organization and Notation

The rest of paper is organized as follows. Section II intro-
duces the system model. In Section III, we propose the iterative
algorithm allowing one to evaluate coverage performance for
omnidirectional UEs. Two variants of the basic cascade model
of Section II allowing one to represent other blockage environ-
ments are discussed in Section IV. In Section V, we introduce
the problem of the best beam selection and beam switch in
correlated blockages. This is based on an analysis of the joint
distribution of interference in different angular sectors. An
algorithm to compute this joint distribution is also give. This is
the basis of the evaluation of coverage probability of the best
beam policy when users have beamforming functionalities.
Beam switching performance is further evaluated in Section
VI. Finally, we conclude the paper in Section VII. Table I
gathers the notation used throughout.

II. SYSTEM MODEL

In a cellular network, the transmission between BSs and
users are often blocked by obstacles like buildings, cars and
walls. In most cities, towns or districts, blockages have the
following basic physical features: Firstly, their locations are
often aligned along with certain geometric objects such as
avenues, streets, roads, and rivers thanks to urban planning.
Secondly, most blockages are not as regular as those in
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Fig. 1: An example of basic cascade blockage model. The ori-
gin represents typical user and the solid curves are blockages.

Manhattan-type cities. Thirdly, the nearer the blockage, the
larger the angle with which a given user sees it.

Consider BSs deployed uniformly on the plane and a
typical user located at the origin. Assume obstacles hindering
electromagnetic propagation to be also deployed in the plane.
These obstacles can have very different structures depending
on the environment (urban/suburb/rural areas). For example,
buildings are organized in dense and locally periodic structures
in urban areas, whereas they may have a sparse and random
structure in rural areas. These features are partially captured
by the following radial model.

A. The Basic Radial Blockage Model

A cascade is an iterative procedure that divides a given
set into smaller and smaller sets using some subdivision
rules [16] [17]. In the proposed model, the blockages are
created according to a cascade procedure operated on some
angular domain, e.g., [0, 2π] if the antenna of the receiver
is omnidirectional. In the proposed model, the blockages are
arranged as a collection of circle arcs. The circles containing
these arcs are all centered at the origin and are numbered
from 1 to ∞. The n-th circle has a radius Rn. We assume
0 < R1 < R2 < · · · to take the fact that there are nearby
and more distant obstacles into account. In the basic model
described here, at the first cascade iteration (stage number
n = 1), if some first stage blockages exist, they occupy half the
angular domain, e.g., [0, π] or [π, 2π] on the circle with radius
R1. At stage n = 2, each potential blockage interval of stage
n = 1 is divided into two equal length subintervals, and as for
stage 1, obstacles of stage 2 can be present and then occupy
some of these subintervals, i.e., [0, π/2], [π/2, π], [π, 3π/2],
and [3π/2, 2π]. This goes on with stage 3, and so on. An
instance of such a random collection of obstacles is depicted in
Fig.1. This leads to an organization of obstacles as an infinite
binary tree, with the obstacles of stage n being located on the
n-th circle. Except for the root, each node in this tree is either
unblocked (absence) or blocked (presence of an obstacle on
the arc in question).
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TABLE I: System Model Parameters

Notation Description
Φ, λ BSs PPP with intensity λ
R,Rn network parameter and radius of n-th stage
p, q blockage prob. and non-blockage prob.
N max. stage number

hx, h
i Rayleigh fading of BS x and i-th beam

K blockage penetration loss factor, K ≤ 1
In total interf. in n-th stage

In,sind total interf. of semi-indep. model in n-th stage
In,rep total interf. of repulsive model in n-th stage
I ln total interf. in n-th stage inside beam l

An(V ) local interf. in n-th stage with vol. V
An(s, V ) LT of local interf. in n-th stage with vol. V

k 2k is beam number or UE antenna number

Whether one of the subintervals of the n-th stage is
blocked or not depends on the scenario. A simple model
is that where each subinterval is declared blocked randomly
and independently with some given probability capturing the
angular density of obstacles. Another natural model is that
where obstacles are displayed in a periodic manner on each
circle. There is a rich variety of such models beyond this
first dichotomy (random versus periodic). One can vary the
sequence of radii. One can also consider other schemes than
this binary one.

In the sequel, by a box, we mean any annular region
delimited by two adjacent circles and two potential blockage
arcs on these circles. An instance of such a box is the annular
region ABCD in Fig.1.

Below we first focus on the basic model with this binary
subdivision for simplicity. In order to make the analysis easier,
we will also assume the Rn are chosen in such a way that the
area of each box is equal for each stage. This requires that

R2
n+1 = R2

n + 2nR2, n ≥ 1, (1)

with R1 = R, an arbitrarily chosen positive constant. Hence,
the radius of n-th stage is set to Rn = R

√
2n − 1. In

particular, we set R0 = 0.

B. Network Model

Consider the downlink of an interference-limited cellular
network. In this blockage environment, BSs are assumed to
be deployed as a homogeneous Poisson Point Process (PPP)
Φ with intensity λ in R2. Each BS is assumed to have unit
transmission power. The typical user is assumed to be located
at the origin. The idea being that the radial structure that it sees
is a snapshot of its current obstacle environment. Its terminal
is first assumed here to have an omnidirectional reception
antenna. The case of a terminal with several panels and beam-
forming functionalities will be discussed in the forthcoming
sections. Each link between a BS and the typical user suffers
from independent and identically distributed (i.i.d.) Rayleigh
fades hx, (x ∈ Φ), namely the signal power is multiplied by
a random variable with an Exp(1) distribution. The large
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Fig. 2: An illustration of interference relation between adjacent
stages.

scale path-loss is neglected throughout. This simplification is
justified by the fact that the loss caused by the blockages
dominates.

All blockages are assumed to have the same penetration
loss denoted by K, (K ∈ [0, 1)). Let us stress that there is
no problem extending the framework described below to the
case where this constant is replaced by an independent random
variable with support in [0, 1]. Under the above assumptions,
all boxes at all stages have the same volume V = πR2/2. In
the basic independent model, each subinterval is independently
blocked with probability p, (p ∈ (0, 1]) in case of a finite stage
blockage environment. In case of an infinite stage blockage
environment, we assume that p > 1

2 in order to guarantee
the finiteness (and integrability of the Light-Of-Sight (LOS)
region).

Since blockages are symmetric in law with respect to the
x axis, the analysis will focus on the blockages on the upper
half of the plane, as shown in Fig.2.

III. INTERFERENCE AND COVERAGE

A. Distribution of Total Interference

The total interference seen by the typical user is

J =
∑
x∈Φ

hxK
Nx , (2)

where Nx denotes the total number of blockages between the
origin and the BS at position x.

Let A(V ) be the interference created by (and in) a box of
volume V . The Laplace transform of A(V ) is

A(s, V ) :=E
[
e−sA(V )

]
=
∑∞

k=0
(λV )

k
e−λV F k(s)/k!

= exp(−λV (1− F (s))), (3)

where F (s) is the Laplace transform of Rayleigh fading with
parameter one, i.e., F (s) = 1/(1 + s).

Consider a box of the n-th stage, namely between circles
n− 1 and n, n ≥ 1, and with angular stretch [θ, θ + 2π

2n ]. Let
In be the total interference seen in this box and stemming
from the region R2 \ B(0, Rn−1) ∩ C(0, [θ, θ + 2π

2n ]), with
B(0, r) the ball of center 0 and radius r and C(0, [φ, ψ]) the
cone of apex 0 and angle [φ, ψ]. In other words, In consists
of the sum of two terms: (a) the interference coming incurred
in this box from the regions at distance more than Rn from
the origin and in the angular interval [θ, θ+ 2π

2n ]), and (b) the
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interference An(V ) created and incurred in this very box, as
shown in Fig.2. It should be clear that for all such boxes, In
has the same distributions as I1 (this follows from the fact
that each is built in the same stochastic way from a binary
tree and from the fact that all boxes have the same volume).
Hence, in particular,

I1 = (I2 + I
′

2)Kb1 +A1(V ), (4)

where the random variables (I2, I2, A1(V )) are independent
and I1, I2, and I ′2 have the same distribution. In addition,
b1 ∈ {0, 1} is a Bernoulli random variable which equals 1
with probability p and 0 with probability q = 1 − p, and is
independent of (I2, I

′
2, A1(V )). Hence, the Laplace transform

of I := I1 satisfies the functional equation

LI(s) = E[e−sI1 ]

= E[e−sI2K
b1−sI

′
2K

b1
]E[e−sA1(V )]

=
(
pE[e−KsI2−KsI

′
2 ] + qE[e−sI2−sI

′
2 ]
)
A(s, V )

=
(
pLI(Ks)2 + qLI(s)2

)
A(s, V ). (5)

The total interference received at the typical user is
LJ(s) = LI(s)2 due to the symmetric blockage and BS dis-
tributions in the northern and southern R2 half-planes, plus
independence.

Here is a natural iterative scheme for solving the last
functional equation: Q(0)(s) = A(s, V ) and for all n ≥ 0,

Q(n+1)(s) =
(
pQ(n)(Ks)2 + qQ(n)(s)2

)
A(s, V ). (6)

The distribution of I1 is that with Laplace transform Q(∞)(s).
It is easy to extend this approach to a finite domain (cascade)

case. Assume there are only N circles. Then the Laplace
transform M (N)(s) of IN is equal to A(s, V ) and more
generally, the Laplace transform Mn of In, 1 ≤ n < N is
obtained by

M (n)(s) =
(
pM (n+1)(Ks)2 + qM (n+1)(s)2

)
A(s, V ). (7)

Note again that there is no need to assume that p > 1/2 in
the finite service area case. This is only needed in the infinite
case to guarantee that the total LOS interference be finite.

Note that the complexity (number of operations) of this
algorithm is linear in N . For the infinite domain case, an
approximation of depth n has a complexity which is linear
in n.

Ler G and h respectively denote the antenna gain and the
Rayleigh fading of parameter 1 of the serving BS. Since we
assume unit transmission power, the probability of θ-coverage
(defined as the probability that the SIR exceeds θ) by this BS
is

Pcov(θ) = P{Gh
I
≥ θ} = E[e−θI/G] = LI

(
θ

G

)
. (8)

B. Simulation Results

We now assume that a virtual LOS serving BS of the typical
user is added to Φ, which only suffers from Rayleigh fading.
The knowledge of the distribution of interference allows one
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Fig. 3: Coverage performance comparisons in the basic model
(λ = 0.1/unit, max. stage no. N = 5.)

to get a simple formula for the probability of coverage for a
threshold θ, which is the probability that the SIR exceeds θ.

In Fig.3a, we compare the coverage probabilities of different
penetration losses under the virtual BS association in an
interference-limited network. Obviously, a higher penetration
loss reduces Non-LOS (NLOS) interference from boxes and
gives rise to a higher coverage probability. When K <
−40dB, the interference variations due to different blockage
penetration losses is negligible for θ < 25dB.

Fig.3b compares the coverage probabilities of sparse (p =
0.2), moderate (p = 0.5) and dense (p = 0.8) blockage
scenarios when the penetration loss K varies from -10dB to
-50dB. As expected, the coverage probability gaps between
different K cases are very small for sparse blockage scenarios,
but not negligible for dense ones. This is in line with the
intuition that fewer blockages lead to smaller variations. In
addition, the sparse blockage scenario has lower coverage
probabilities than the other scenarios, because fewer blockages
make sparse scenarios more vulnerable to LOS interference
and lead to lower SIR. Finally, the dense blockage scenario is
more sensitive to the threshold θ due to the higher SIR induced
by more blockages.
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IV. VARIANTS OF THE BASIC CASCADE MODEL

A. A Less Correlated Cascade Model

The basic cascade model can be adapted to represent a
less correlated blockage scenario. We construct a new cascade
model by independently setting each half of an interval of
the basic model to be a blockage or non-blockage state. This
variant corresponds to scenarios where blockage sizes are
smaller than those in the basic model and it hence exhibits
more randomness, since it has more blockage location freedom
in each stage. We denote the interference observed by the
typical user in this less correlated model by LJ,lc. In this
model, the volume V that was used in the basic model has
to be replaced by Ṽ

∆
= V/2. Let LĨ1 be the interference

at the origin due to the quarter plane [0, π/2]. We have
LJ,lc = L4

Ĩ1
. Let Ĩn denote the total interference seen in

the box in the n-th stage and stemming from the region
R2 \B(0, Rn−1)∩C(0, [θ, θ+ 2π

2n+1 ]). By the same arguments
as above

Ĩn = Ĩn+1K
bn + Ĩ

′

n+1K
bn +An(Ṽ ), (9)

where bn ∈ {0, 1}, (∀n ∈ N) represent the presence of
blockage in the subinterval. Then, by the same arguments as
above,

LĨn(s) =
(
pLĨn+1

(Ks)2 + qLĨn+1
(s)2

)
A(s, Ṽ ). (10)

Lemma 1: The basic cascade model has larger Laplace
transform of total interference, thereby higher coverage prob-
ability, than the less correlated model.

Proof : We first prove this by for the model with N stages.
We have

LĨN (s)2 = LIN (s) = A(s, Ṽ )
2

= A(s, V ).

Take as induction assumption that

LĨN−k
(s)2 ≤ LIN−k

(s).

Then

LĨN−k−1
(s)2 =

(
pLĨN−k

(Ks)2 + qLĨN−k
(s)2

)2

A(s, Ṽ )
2

=
(
pLĨN−k

(Ks)2 + qLĨN−k
(s)2

)2

A(s, V )

≤
(
pLIN−k

(Ks) + qLIN−k
(s)
)2A(s, V )

≤
(
pLIN−k

(Ks)2 + qLIN−k
(s)2

)
A(s, V )

= LIN−k−1
(s),

where the first inequality is due to the induction assumption
and the second to convexity.

The result for the infinite cascade model is then obtained
when letting N to infinity.

�
In Fig.4a, the coverage probabilities of the two cascade

models are plotted when the virtual BS model is assumed. The
basic model has higher performance gains under all kinds of
penetration losses, especially when K is very small. It also
implies that the Shannon capacity of the basic model, which
is a monotonic increasing function of coverage probability,
is higher than that of the less correlated model. This is yet
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Fig. 4: Coverage performance comparisons (λ = 0.1/unit,
max. stage no. N = 5)

another illustration of the principle stated in [8] that the
positive correlation created by obstacle shadowing is beneficial
to wireless communications.

B. Periodic Cascade Model

The basic model can be revised to emulate well-planned
areas such as residential areas/business centers. One of the
two subintervals is declared as a blockage randomly and the
next subinterval is designated as the non-blockage. This leads
to a periodic model with a probability for an interval to be
blocked equal to 1/2. This model is only studied here in the
finite N case.

The iterative algorithm for the Laplace transform of inter-
ference at the n-th stage In,per is

LIn,per,(s) = E[e−sIn,per ]

= LIn+1,per
(Ks)LIn+1,per

(s)A(s, V ). (11)

Fig.4b shows the coverage performance of the two models.
The basic model has significant coverage performance gains
compared to the periodic one, especially so at high penetration
losses.
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C. Independent Model

The independent blockage model [4] is that where each
link between the typical user and a BS suffers from an
independent blockage penetration loss with a distribution that
depends on the distance between them. In the present situation,
this distribution can be evaluated as follows. For a BS at
distance r from the origin, let n(r) be the integer such that
n(r) ≤ r < n(r) + 1. Using the fact that there are n(r)
potential obstacles between the BS and the origin, which
are independently open or closed, we get that the blockage
penetration loss S(r) is a random variable with support on
{1,K,K2, . . . ,Kn(r)} and such that

P[S(r) = Kl] =

(
n(r)

l

)
plqn(r)−l, l = 0, . . . n(r). (12)

In this independent model, the interference at the origin is
the Poisson shot-noise

Iind =
∑
Xi∈Φ

hiSi.

Here Φ is the BS Poisson PP, the random variables hi are
independent Rayleigh fades with mean 1, whereas the random
variables Si is conditionally independent (given Φ and h =
{hi}), and such that Si is distributed like S(ri) with ri =
||Xi||. By standard arguments,

E[exp(−sIind)] = (13)

exp

(
−λ2π

∫ ∞
0

(
1− E

[
1

1 + sS(r)

])
rdr

)
,

with S(r) the random variable defined above. Hence

E[exp(−sIind)] = (14)

exp

−λ2π

∫ ∞
0

1−
n(r)∑
l=0

(
n(r)

l

)
plqn(r)−l 1

1 + sKl

 rdr

 .

The probability of coverage under this independent model
is then easily deduced from this expression.

V. BEAMFORMING IN UE - BEST BEAM SELECTION

A. Motivation

Up to this point in the paper, it was assumed that all UEs
are omnidirectional. This section and the next are focused on
the case where UEs are equipped with one or more panels,
and where each panel has beamforming functionalities. Such
a scenario will become a reality in a few years, particularly so
in the millimeter wave (mmWave) case. In this setting, panel
switch and beam selection/switch will become a particularly
important matter as this will allow the network to compensate
for the severe path loss in these bands. However, this will
require both sides to perform exhaustive sweeping through
all possible beamforming directions until the UE steers its
beam bore-sight toward the best serving BS’s transmission
beam. This search procedure is a part of initial access [9]
[10] [11] [12] [13] [14] [15]. This beam pairing procedure
will be re-initiated in case of severe blockage or UE/BS
mobility. It can be refined by hierarchical search (combining
both coarse-grained sector and beam refinement phases) or

o n n+1 n+2

1

nI

2

nI

1

1nI 

2

1nI 

nA1nA 

4

1nI 

4

nI

Fig. 5: An illustration of sectorized beam patterns in the
cascade blockage model.

omni-directionally reception [10] to shorten the association
procedure duration.

There is a large corpus of prior work on the combination of
these network paradigms with beamforming in different block-
age scenarios and for different link techniques. Unfortunately,
none of these capture the impact of correlated blockage on
beam selection and beam switching.

Here are interesting and to the best of our knowledge unre-
solved questions: (a) What is the effect of blockage/shadowing
correlation on beam selection? (b) What is the coverage
probability under the best beam or the best beam pair policy?
(c) What are the performance improvements after a beam
switch caused by some blockage event in such a correlated
blockage environment?

In the following, we leverage our cascade blockage model
to study these questions.

B. Beamforming Model for UE

The scenario retained for analyzing the case where UEs
have a beamforming capability is based on the following
assumptions:
• The UE is equipped with 2k beams, with k ≥ 1.
• The gain in the main lobe of a given beam is a constant
G ≈ 2k with beamwidth 2π/2k. That is, the actual beam
pattern is approximated by an ideal sector pattern. as
depicted by the shaded areas of Fig.5. On the uplink, all
radiated power is hence assumed to be concentrated in
the main lobe, whereas on the downlink, when activating
beam l, then only the BSs located in this beam interfere
with the serving BS signal.

• Whatever the beam, the serving BS signal on the down-
link is still assumed to be provided by an extra virtual
BS with power 1 and received with a Rayleigh fading.

• The obstacle structure is the basic binary random model
of the last section with obstacles being independently
present or absent with probability p and q respectively
on the arcs ( 2π

2n l,
2π
2n (l + 1)), l = 1, . . . , 2n, of the circle

of radius Rn, for all n ≥ 1. For the same reasons as
above, we assume that p ≥ 1/2 when considering the
infinite obstacle model.

• The UE beams are in phase with the obstacle structure.
Namely, the beam sectors are respectively on the arcs
( 2π

2k l,
2π
2k (l + 1)), l = 1, . . . , 2k.
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Some of these assumptions are debatable. The last one for
instance is rather specific and a random phase of one structure
w.r.t. the other would be more natural. All these assumptions
aim at making the mathematical model as tractable as possible.
The extension to less specific scenarios will be considered in
subsequent papers.

We still focus on the downlink. We adopt the Max SIR
beam selection scenario. This means the UE calculates the
SIR in each beamforming direction and selects the beam with
the maximal SIR. The best beam within this setting is hence
defined as the beam which has the maximal SIR among all 2k

beams.

C. Joint Distribution of Sector Interference

In this subsection k is a fixed parameter. The UE is assumed
to be equipped with 2k beam sectors. Under the assumptions
listed above, let I ln denote the interference received by the UE
in beam l = 1, . . . , 2k and stemming from the complement of
the closed ball of radius Rn−1. Below, we first give iterative
formulas allowing one to evaluate the joint Laplace transforms

Ln (s1, . . . , s2k) := E
[
exp

(
−s1I

1
n − · · · − s2kI2k

n

)]
, (15)

for all n ≥ 0, and all (s1, . . . , s2k) in R2k

+ . We then show
that the coverage probability achieved by the best SIR beam
strategy (and other strategies as well) can be derived from the
knowledge of L1(s1, . . . , s2k).

We build a family of functions Hk, Hk−1, . . . ,H1 by in-
duction. The function Hk is the function of 1 real variable

Hk(s) := E
[
exp

(
−sI lk

)]
. (16)

Note that, by symmetry, this function is the same for all l.
The function Hk−1 is the function of 2 real variables

Hk−1(s, t) := E
[
exp

(
−sI2j−1

k−1 − tI
2j
k−1

)]
, (17)

that is the joint Laplace transform of (I2j−1
k−1 , I

2j
k−1) at (s, t).

This function is again the same for all j, (1 ≤ j ≤ 2k−1).
More generally, the function Hk−n is the function of 2n

real variables

Hk−n(s1, s2, . . . , s2n)

:= E
[
e−s1I

2nj−2n+1
k−n −s2I2

nj−2n+2
k−n ···−s2n−1I

2nj−1
k−n −s2nI2

nj
k−n

]
.

(18)

By symmetry, this function is the same for all j, (1 ≤ j ≤
2k−n). The independence properties imply that

Lk (s1, . . . , s2k) =

2k∏
l=1

Hk(sl),

Lk−1(s1, . . . , s2k) =

2k−1∏
j=1

Hk−1(s2j−1, s2j), (19)

and more generally

Lk−n(s1, . . . , s2k)

o n=2 n=3 n=4

V

V

V/2

V/4

( )kH 
1( , )kH   2( , , , )kH     

Fig. 6: A pictorial representation of the iteration procedure.
The areas enclosed in red are the local boxes involved in
Hk−n(·, ..., ·).

=

2k−n∏
j=1

Hk−n(s2nj−2n+1, s2nj−2n+2, . . . , s2nj−1, s2nj).

(20)

In particular

L1(s1, . . . , s2k) = H1(s1, . . . , s2k−1)H1(s2k−1+1, . . . , s2k).
(21)

By the same arguments as in the last section, the function
Hk(s) is the solution of the functional equation

Hk(s) =
{
pH2

k(Ks) + qH2
k(s)

}
A(s, V ), (22)

which is the analogue of (5). Similarly, Hk−1(s, t) is obtained
from Hk through (see Fig.6)

Hk−1(s, t) =

{pHk(Ks)Hk(Kt) + qHk(s)Hk(t)}A(s, V/2)A(t, V/2).
(23)

More generally, if we know Hk−n+1 for some 1 ≤ n < k,
then Hk−n is obtained from Hk−n+1 through

Hk−n(t1, . . . , t2n) =

{pHk−n+1(Kt1, . . . ,Kt2n−1)Hk−n+1(Kt2n−1+1, . . . ,Kt2n)

+qHk−n+1(t1, . . . , t2n−1)Hk−n+1(t2n−1+1, . . . , t2n)}×
A(t1, V/2

n) · · · A(t2n , V/2n). (24)

Note that Hk−n is a function of 2n variables. So the
memory requirement of the iterative associated with (24) is
proportional to 2k. The numbers of function calls required to
evaluate in Hk−n(·, ..., ·) is also 2n (because of the product
A(t1, V/2

n) · · · A(t2n , V/2n)). Hence the number of opera-
tions is also proportional to 2k, the number of beams.
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Fig. 7: Best beam selection for different penetration losses K
(λ = 1/unit, max. stage no. N = 5, p = 0.5).

D. Coverage Probability under Best Beam Selection
Under our assumptions, when denoting by hl the Rayleigh

fading w.r.t. the BS signal in beam l and by G the directional
gain, the downlink θ-coverage probability of the UE by the
best beam is

Pmax
cov (θ) = 1− P

[
max
l

(
Ghl

I l1

)
< θ

]
= 1− P

[
Gh1

I1
1

< θ,
Gh2

I2
1

< θ, ...,
Gh2k

I2k

1

< θ

]

= 1−
(
E
∏2k

l=1
(1− e−θI

l
1/G)

)
= −

2k∑
j=1

(−1)j∑
1≤i1<i2<···<ij≤2k

L̃1(si1 , si2 , . . . , sij )|si1=θ/G,...,sij =θ/G,

(25)

where L̃1(si1 , si2 , . . . , sij ) stands for L1 evaluated at the point
s = (s1, . . . , s2k) with l-th coordinate equal to sim for l = im
for m = 1, . . . , j, and 0 elsewhere.

This shows that, as announced, the knowledge of L1 allows
one to evaluate the probability of coverage under the best beam
selection strategy.

E. Random Beam Selection Strategy
As a baseline, we also consider a random beam selection

strategy where a beam is selected randomly as the serving
beam for the typical UE. Since the joint Laplace transform
of the interference seen by the origin in the 2k beams is
L1(s1, . . . , s2k) with L1 the function defined in Subsection
V-C, the Laplace transform of the interference in any beam
is L1(s, 0, . . . , 0). Hence the coverage probability for SIR
threshold θ is P rand

cov (θ) = L1( θG , 0, . . . , 0).

F. Simulation Results
Fig.7 compares the coverage probability of the best beam

scheme for different penetration losses when N = 5, λ = 1.
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Fig. 8: Best beam coverage performance for different beam
numbers. (λ = 1/unit, max. stage no. N = 5, p = 0.5,K =
0.1)
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Fig. 9: A comparison between best beam and random beam
selections. (λ = 1/unit, max. stage no. N = 5, p = 0.5,K =
0.1)

Our analytical results match well with simulation. As ex-
pected, when penetration loss increases, the coverage prob-
ability increases due to stronger blockage effects.

The gain of best beam selection are shown in Fig.8 The
log in base 2 of the number of beam number varies from
k = 0 to k = 4, and K is set to 0.1. When k = 0, the UE
is almost uncovered due to strong LOS interference. When
k increases, the coverage probability increases dramatically
thanks to higher beam selection diversity, higher directional
gain and narrower beamwidth. This in a sense justifies the
use beamforming in 5G networks to compensate path loss at
mmWave frequencies.

Interestingly, when the number of beams doubles, the gain
obtained by the best beam selection over a random beam
selection increases as shown in Fig.9. When k is small, this
performance gain is not significant, particularly so at high
thresholds, e.g., almost no gain for k = 1, and a 25% gain
for k = 2, when θ = 10dB. This means when k is small,
a random beam selection does almost as well as best beam
selection, at least when the SIR target is high. In contrast,
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when k is large, the beam scanning and selection procedure
are justified.

VI. BEAM SWITCHING IN UE

In this section, we study beam switching. For a static UE
equipped with multiple antennas, beam switch could happen
for, e.g., the following reasons:
• Deep fade: the current UE beam towards the serving BS

suffers from a deep fade, which could not be corrected by
conventional physical layer techniques, such as channel
coding, interleaving, antenna diversity etc.

• Mobile blockage: the blockages caused by mobile block-
ers (e.g., a vehicle) could significantly impair the received
signal strength and system performance.

• UE rotation: for hand-held devices, the UE is rotated and
the current beam is obstructed due to a different holding
gesture.

All the above scenarios demand prompt beam switch pro-
cedures in order to reduce the outage duration. Since any
exhaustive beam sweeping comes with a large delay of syn-
chronization, signal detection, and reference signal quality
evaluation for each beam pair, fast association and beam
switch procedures are desirable.

A simple procedure is that where the UE operates a switch
to a new beam with a given angular separation from the
original beam. In this context, it is interesting to investigate
the conditional probability that the UE is covered in a target
beam conditional on the fact that it is covered (or not covered)
in the initial (or source) beam. Without loss of generality, we
assume the source beam is the first beam and the target beam is
that with index l. Taking l close to 1 (mod 2k) means a small
angular switch, whereas taking it far away from 1 means a
large angular switch.

The conditional coverage probability can be obtained from
the joint Laplace transform discussed in Section V-C through
the relation

Pcov(θ, l|θ, 1) :=
P{SIR1 > θ, SIRl > θ}

P{SIR1 > θ}

=
L1( θG , 0, . . . , 0,

θ
G , 0, . . . , 0)

L1( θG , 0, . . . , 0)
, (26)

where in the last numerator, the second non-zero argument is
for variable sl. Other conditional probabilities (like the chance
to be covered in the target beam given there is no coverage in
the source beam) can easily be deduced from this.

A. Simulation Results

In Fig.10, for each beam pattern, when the beam index l
increases, the conditional coverage probability degrades as the
target beam has more independent blockages. For example,
for 16-beam pattern, the 2-th beam has the largest condi-
tional coverage performance because it shares the maximal
common blockages with the source one (i.e., the 1-th beam).
When beam index increases to 4, only common blockages of
the first and second stages are shared by source and target
beams. Hence, conditional coverage probability decreases.
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Fig. 10: A comparison of conditional coverage probability of
beam switch among different beam patterns. (λ = 1/unit,
max. stage no. N = 5, p = 0.5,K = 0.1)

When beam index varies from 5 to 8, only first stage blockage
is shared by them. When index varies from 9 to 16, target
beams have complete independent blockage environments and
performance metric achieves the minimum.

B. Beam Switch Strategy Modification

The above analysis motivates us to modify the classical
beam switch strategy for static UEs. In the modified beam
switch procedure, the static UE alternatively sweeps beams
around the source one, and sequentially increase beam index
until a satisfied beam is obtained, instead of sweeping beam
towards uni-direction until whole beam space is scanned.
This modification takes the advantage of the fact that in the
correlated blockage/shadowing environment, the adjacent BSs
are often correlated over short space distance/angle [1]. In
other words, if a BS has satisfied coverage performance before
switch, its nearby BSs are likely to have similar performance,
as shown in Fig.10. This fast switch strategy can shorten
association duration during beam space scanning.

VII. CONCLUSION

This paper proposes a multiplicative cascade blockage
model to emulate correlated blockage environments. This
model is a complement to the Manhattan-type urban model and
random blockage models. This model leads to new iterative
algorithms for the Laplace transform of interference for omni-
directional UE. Another iterative algorithm is derived to ana-
lyze the coverage probability under the best beam selection for
beamforming capable UEs. A further analysis of conditional
coverage probability shows the benefit of correlation on beam
switch. It is also shown that: 1) Sparse blockage environments
have inferior coverage performance compared to dense block-
age environments. 2) Blockage correlation effects can improve
coverage performance in comparison with independent block-
age environments. 3) The best beam selection algorithm is
very effective for beamforming UEs to compensate path or
blockage penetration loss. 5) Correlation brought by blockages
can be leveraged to accelerate beam swtich and association
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procedures. This paper is the first attempt to use multiplicative
cascades in blockage effect problem and Rayleigh fading
assumption is made for computational tractability. In the future
work, other fading models, such as Rician fading or Nakagami
fading will be incorporated into this cascade blockage model
for more general cases.
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