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LINEAR AND NONLINEAR ANALYSIS OF THE VISCOUS
RAYLEIGH-TAYLOR SYSTEM WITH NAVIER-SLIP BOUNDARY
CONDITIONS

TIEN-TAI NGUYEN

ABSTRACT. In this paper, we are interested in the linear and the nonlinear
Rayleigh-Taylor instability for the gravity-driven incompressible Navier-Stokes
equations with Navier-slip boundary conditions around a smooth increasing
density profile po(z2) in a slab domain 27 LT x (—1,1) (L > 0, T is the usual
1D torus). The linear instability study of the viscous Rayleigh-Taylor model
amounts to the study of the following ordinary differential equation on the
finite interval (—1,1),

= X[pok?¢ — (pod')'] = Ma(6™W) — 2k¢" + K*0) — gk?pho,  (0.1)
with the boundary conditions
P(—1) = ¢(1) =0,
ne” (1) = €4.¢'(1), (0.2)

ne"(=1) = =§-¢'(-1),

where A > 0 is the growth rate in time, g > 0 is the gravity constant, k is the
wave number and two Navier-slip coefficients £+ are nonnegative constants.
For each k € L~1Z\{0}, we define a threshold of viscosity coefficient p.(k, Z) for
the linear instability. So that, in the k-supercritical regime, i.e. p > pc(k, E),
we describe a spectral analysis adapting the operator method initiated by
Lafitte-Nguyén [13] and then prove that there are infinite nontrivial solutions
(Ans dn)n>1 of (0.1)-(0.2) with A, — 0 asn — o0 and ¢, € H*((—1,1)). Based
on the existence of infinitely many normal modes of the linearized problem,
we construct a wide class of initial data to the nonlinear equations, extending
the previous framework of Guo-Strauss [5] and of Grenier [7], to prove the
nonlinear Rayleigh-Taylor instability in a high regime of viscosity coefficient,
namely p > 3SUPger—17)\(0} pe(k, Z).
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1. INTRODUCTION

The Rayleigh-Taylor (RT) instability, studied first by Lord Rayleigh in [17] and
then Taylor [18] is well known as a gravity-driven instability in two semi-infinite
inviscid and incompressible fluids when the heavy one is on top of the light one.
It has attracted much attention due to both its physical and mathematical impor-
tance. Two applications worth mentioning are implosion of inertial confinement
fusion capsules [14] and core-collapse of supernovae [16]. For a detailed physical
comprehension of the RT instability, we refer to three survey papers [11, 19, 20].
Mathematically speaking, for the inviscid and incompressible regime with a smooth
density profile, the classical RT instability was investigated by Lafitte [12], by Guo
and Hwang [4] and by Helffer and Lafitte [9].

Concerning the viscous RT instability, one of the first studies can be found in
the book of Chandrasekhar [, Chap. X]. He considered two uniform viscous fluid
separated by a horizontal boundary and generalized the classical result of Rayleigh
and Taylor. We refer the readers to mathematical viscous RT studies for two
compressible channel flows by Guo and Tice [6], for incompressible fluid in the
whole space R? by Jiang et. al [3] and Lafitte and Nguyén [13], respectively.

In this paper, we are concerned with the viscous RT of the gravity-driven incom-
pressible Navier-Stokes equations in a 2D slab domain Q = 27LT x (—1,1) with
L > 0 and T is the 1D-torus, that read as

0t (ptl) + div(pi ® @) + VP = pAd — pg, (1.1)
divi = 0,
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where t > (x1,22) € 2 LT x (—1,1). The unknowns p := p(t, &), @ := 4(t, T)
and P := ) denote the density, the velocity and the pressure of the fluid,
respectively, while p is the viscosity coefficient and ¢ := ge2, ¢ > 0 being the
gravity constant. Let X4 = 27LT x {£1}, the Navier-slip boundary conditions
proposed by Navier (see [15]) are given on X4 as follows

0,7 =
(t.&

U-n=0 onX;uX_|

(u(Vi + Vi) i), = E@)id on ¥, UX_. (1.2)

Here, 7 is the outward normal vector of the boundary, (u(Vi + Va®) - i), is the
tangential component of u(Vi + Vil) - it and £(T) is a scalar function describing
the slip effect on the boundary, only taking nonnegative constant values 4 on ¥4,
respectively.

Let pp and Py be two C'-functions on x5 such that P} = —gpo with ' = d/dx>.
Then, the laminar flow (po(z2),0, Py(x2)) is a steady-state solution of (1.1). Of
interest of this paper is to study the nonlinear instability of the above laminar flow
to Eq. (1.1)-(1.2) that satisfies

pPo € Cl([ila 1])7 p6 >0 on [717 1]a PO(il) =P+ € (07 +OO), (13)
i.e. to study the nonlinear Rayleigh—Taylor instability problem.

Linearizing (1.1) in the vicinity of (po(z2),0, Py(22)) and then seeking a normal

mode at a horizontal spatial frequency k € L='Z\{0} of the form
AP (E) = 2P (cos(kay w(m2), sin(kay)0(x2), cos(kzy ) (x2), cos(kxy)q(z2))T,

the linear RT instability amounts to the investigation of the parameter \(k) € C
(ReA > 0) such that there exists a nontrivial solution ¢ € H*((—1,1)) of the
following ordinary differential equation for the second component of velocity

— XN (pok?d — (pod')') = (V) — 2k°¢" + k*¢) — gk 0o, (1.4)
with the boundary conditions
¢(—1) = ¢(1) = 0,
pe" (1) = £4¢'(1), (1.5)

pg"(=1) = =§-¢'(-1).

Note that the embedding H*((—1,1)) < C3((—1,1)) allows us to write (1.5). In
this case, such a A is called a growth rate of the instability or a characteristic value
of the linearized problem (see Eq. (2.5) below) as in [1, Sect. 92-93, Chap. X]).
We will present the derivation of the physical model in Section 2.

As the density profile is increasing, we first show that A is always real in Lemma,
2.1. Since our goal is to study the instability, we are left to look for A > 0. Hence,
for the linear instability, we continue the spectral analysis of Helffer and Lafitte [9],
Lafitte and Nguyén [13] for Eq. (1.4)-(1.5).

For any horizontal spatial frequency k € L=*Z\{0}, we then define a k-supercritical
regime of the viscosity coefficient p > p.(k,Z) (see p.(k,Z) in Proposition 3.1), we
prove that there exists an infinite sequence of characteristic values (A, (k, tt))n>1,
decreasing towards 0 as n — 0. This is stated in Theorem 2.1.

The second goal, described in Section 5 is to obtain a nonlinear instability result
on more general initial data using the linear result of Theorem 2.1 (see (2.15)) and
working in the regime p > 3supyer-17 (o) e(k, E). The classical way of proving
the nonlinear instability is to estimate the difference between the solution to the
nonlinear problem and the normal mode solution to the linearized problem. In order
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to show that, in the spirit of Guo-Strauss [5] and Grenier [7], only the maximal
normal mode eM*{/, () was taken to derive a solution of the nonlinear equation
whose initial datum is 60, (Z) with 0 < § « 1. Our nonlinear result, Theorem 2.2,
generalizes the previous results of Guo-Strauss and of Grenier, by showing that
a wide class of initial data (related to a linear combination of normal modes) to
the nonlinear problem departing from the equilibrium gives rise to the nonlinear
instability.

This paper is organized as follows. In Section 2, we present the governing equa-
tions and state the main results. Section 3 is devoted to some materials for the
linear study. Then, in Section 4, we prove the linear instability, i.e. Theorem 2.1.
Section 5 is to prove the nonlinear instability, i.e. Theorem 2.2.

2. MAIN RESULTS

2.1. The governing equations. Let us recall the steady state (po(z2),0, Po(z2))
of (1.1), with pg satisfies (1.3) and P} = —gpo. We now derive the linearization of
Eq. (1.1) around the equilibrium state (po(22), 0, Py(x2)). The perturbations

g = p— pPo, ﬂ::ﬁ_67 p:P_PO
thus satisfy
(7t0+17~V(PO+U) =0,

(po + 0)0ti + (po + 0)u - Vi + Vp = pAd — og, (2.1)
divy' = 0.
Note that (u(Vii+ Val) - i), = 7 x (u(Vi@ + Vil) i) x 7t and that 7 = (0, £1)7.

Hence, the boundary conditions are

U = 0, on Zi:
1Og,u1 = €Uy on X, (2.2)
WOz, up = —€_uy on X_.

The linearized equations are

0ro + phuz = 0,
P00t + Vp = pAid — og, (2.3)
divi = 0,

and the corresponding boundary conditions remaining (2.2).

The linear RT instability problem is to seek a normal mode of the form

a(t, ¥) = eMcos(kxy)w(ws),
uy (t, %) = eMsin(kx)0(xs), (2.4)
us(t, ©) = eM cos(kxy)p(s), )
q(t, @) = eM cos(kxy)q(xs).
where k € L7'Z\{0}, A € C\{0} and ReX > 0. It follows from (2.3) that

Aw + py¢ = 0,

Apol — k k20 —6") =0
pob — kq + p( ) =0, (25)

Apod + ¢ + p(k*¢ — ¢") = —guw,
kO + ¢ =
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and from (2.2) that

(1) =0, /(1) = £.0(1), p/(~1) = —€6(—1). (2.6)
We obtain

/ 1 1
w==R0, 0=—1d a=—0md +uRe - "), (27)

Then, we substitute ¢,w into (2.5), to get a fourth-order ordinary differential equa-
tion (1.4). We have the boundary conditions (1.5) deduced from (2.2), which are
obtained by assuming the solution to be in C?([—1,1]).

2.2. Main results. Before stating our main results, we present our material for
the linearized equations.

When the density profile pg is increasing, we show that all characteristic values
A are real. Let Lo be the characteristic length, such that Ly* = H%HLOO((—LU)’ we

further obtain the uniform upper bound , /L% of .

Lemma 2.1. For any k € L='Z\{0},

e all characteristic values A are always real,

e all characteristic values \ satisfy that X <, /£-.
0

Proof of Lemma 2.1 is given in Section 3.1. In view of Lemma 2.1, we look for
functions ¢ being real and we only consider the vector space of real-valued functions
in what follows in the linear analysis.

We now study the linearized problem, i.e. (1.4)-(1.5). Of importance is to
construct a continuous and coercive bilinear form By », as A = 0 and k € R\{0}
(.e. we do not restrict A € (0,,/7~) and k € L=17Z\{0} at this step) on the

functional space

H((1,1)) := {p € H*((~1,1)),(+1) = 0},
so that the finding of a solution ¢ € H‘l(g—l7 1)) of Eq. (1.4)-(1.5) on (—1,1) is
equivalent to finding a weak solution ¢ € H2((—1,1)) to the variational problem

1
B x (9, 0) = gsz phdfdrs  for all § € H?((—1,1)), (2.8)
-1

and thus improving the regularity of that weak solution ¢.

The desired bilinear form By, »,, is

1 1
B xu (9, 0) ::/\J po(k290 + ' o' )dxy + “J (" o" + 2k o' + k*o)dxo 2.9)
—1 —1 .

=&V (=1 (=1) = &' (1) (1),
For all A > 0 and k € R\{0}, we will place ourselves in a k-supercritical regime

of the viscosity coefficient p > u.(k,Z) with 2 = (£_,£,) (see the precise formula
te(k, E) in Proposition 3.1) such that

B0, is coercive if and only if p > p.(k, =), (2.10)

it yields that By, is coercive for all A > 0 and p > p.(k,=). As By, is a coer-

cive form on H?((—1,1)), we have that /By u(:,-) is a norm on H?((—1,1)).
Let (H%((—1,1)))" be the dual space of H?((—1,1)) associated with the norm
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A/ Biau(, ). In view of Riesz’s representation theorem, we thus obtain an ab-
stract operator Yy » ,, from H?((—1,1)) to (H?*((—1,1)))’) such that

Biau(¥,0) = Y ut,0) foralld,pe ﬁ2((—1, 1)). (2.11)

Owing to (2.8) and (2.11), it turns out that the existence of a solution ¢ € H*((-1,1))
of Eq. (1.4)-(1.5) is reduced to the existence of a weak solution ¢ € H?((—1,1) of

AYiaud = gk*phd  in (H?((—1,1)))". (2.12)

Restricting o € C&((—1,1)) in (2.11), we find that, for all ¥ € H2((—1,1)) (see
Proposition 3.3),

Yiau® = Mpok®9 — (po?)) + p(9® = 2k%9" + E*9) in D'((—1,1)).

Owing to a bootstrap argument, we further get that a weak solution ¢ of (2.11) actu-
ally belongs to H*((—1,1)) and ¢ satisfies the boundary conditions (1.5). Hence, we
are able to define the inverse operator of iji . of Yix u (see Proposition 3.4), from
L?((—1,1)) to a subspace of H*((—1,1)) requiring all elements satisfy (1.5). Com-
posing the above operator kai ., with the continuous injection from H 4((-1,1))

to L?((—1,1)), we obtain that Yk_,/\{ . is a compact and self-adjoint operator from
L?((—1,1)) to itself.

Denoting by M the operator of multiplication by 4/pf, in L?((—1,1)). Note from
(2.12) that, we thus find (A, v) such that

A -1
g?'l} = MYk,)\”u,MU'
Once it is proven that the operator MY[)}, uM is compact and self-adjoint from
L?((—1,1)) to itself, then

the discrete spectrum of MYkTi uM is an infinite sequence of eigenvalues
(denoted by {5 (k, A, p1)}nz1).

Let vp 2, be an eigenfunction of the operator MY,y .M associated with the
eigenvalue v, (k, A, 1) and let ¢y, 1 5,0 = ijl,qun,k,)\,u7 we have

Yoo (ks My 1) Yie A Bk = MGk A = Pobnke - (2.13)
From (2.13), it can be seen that, for each n, we have to solve the equation
k, A A 2.14

We will show that Eq. (2.14) has a unique root A, (k,u) € R4 because of the
decrease of 7, in A (see Lemma 4.1), which is an extension of Kato’s perturbation
theory of the spectrum of operators [10]. In addition, when \,, is a characteristic

value, we have \, < , /L% for all n > 1.

This yields that for any horizontal spatial frequency k € L~1Z\{0}, there exists
a sequence of characteristic values (A, (k, tt))n>1, that is uniformly bounded and we
further obtain that A, decreases towards 0 as n — o0. For each A,, we have that
Orke A = ijlmﬂvn,k’)\mu is a solution in H*((—1,1)) of (1.4)-(1.5) associated
with A = A,.

We sum up the above arguments in our first theorem.
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Theorem 2.1. Let k€ L=*Z\{0} be fived and let py satisfy that (1.3), i.e.
po € CH([~1,1]), po(+1) = p+ € (0,0), ph >0 everywhere on [—1,1].

For all p > pc(k,Z), there exists an infinite sequence (A, dn)n=1 with A\, > 0
decreasing towards 0 and ¢, € H*((—1,1)), ¢, non trivial, satisfying (1.4)-(1.5).

Once Eq. (1.4)-(1.5) is solved, we go back to the linearized equations (2.3).
For a fixed k € L7'Z\{0}, we obtain a sequence of solutions to the linearized
equations (2.3) as indicated in Proposition 4.2, which are (e**tU; (k, u, 7)) 1,
with Uj(k7 U, .’f) = (Uj, 'l_jj,pj)T(k, s QL_")

Let us choose a kg € L='Z\{0} and fix p > 3u.(Z). In view of getting infin-
itely many characteristic values of the linearized problem, we introduce a linear
combination of normal modes

M
UM (t, &) = > c;e’ Fomt T (ko, p, ) (2.15)
j=1

to construct an approximate solution to the nonlinear problem (1.1)-(1.2), with
constants ¢; being chosen such that

at least one of ¢; (1 < j < N) is non-zero (2.16)
and let jp, :=min{j: 1 <j < N,c; # 0},
1
gt I22(0) > 5 D leillugleae)- (2.17)
JZjm+1
Eq. (2.1)-(2.2) is supplemented with the initial data U (0,z) (0 < § « 1) has
a unique local strong solution (0%, u?) with an associated pressure ¢° on [0, Tinax)
(see Proposition 5.1). We define the differences

O_d:(.1_5_50,1\/17 ﬁd:ﬂ(?_é*ﬁM, qd=q5—5qM,

which satisfy Eq. (5.6), along with the initial condition (5.7) and the boundary con-
ditions (5.8). For t small enough, we estimate the bound in time of [ (%, @%)(t)] 12(q)
(see Proposition 5.2) in the regime

> 3u:(2), with p(E) :=  sup  pe(k,E). (2.18)
keL—17\{0}

Indeed, since p > 3u.(Z), we can choose a constant @y > 0 such that

1> (34 @o)pe(E). (2.19)
Hence, vy = gigg € (1,2). It follows from Theorem 2.1 and Lemma 2.1(2) that
exists
0<A= sup Mlkp) <, L. (2.20)
keL—17)\{0} Ly

We further look for ko € L~1Z\{0} to have that
2y
A = A (ko, ) > Aa(ko, ) > -+ > An(ko, p) > 701\ > Avsi(ko, ) > ... (2.21)

For t small enough, we deduce the bound in time of ||(c®, @?)(t)|| 12 in Proposition
5.2, that is

N 3
d ~d 2 3 Ajt N ) 20/t
[0, @)()22(qy < C6 ('2; ;1€ + max(0, M N)(N+I}1%X<M|c]\)63 0 ) .
J=Im

The nonlinear result follows.
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Theorem 2.2. Let p.(Z) be defined as in (2.18) and p > 3u.(Z). Let py satisfies
(1.3), i.e.

po € CH([~1,1]), po(+1) = p+ € (0,00), ph >0 everywhere on [—1,1].

Let M € N*| there exist a positive constant mqg and two positive constants oy and
eo sufficiently small such that for any ¢ € (0,00), the nonlinear equations (2.1) with
boundary conditions (2.2) and the initial data

M —
8§ ¢;U;(@)
j=1

satisfying (2.16)-(2.17) has a unique local strong solution (o°, ) with an associated
pressure ¢° such that

1@ (T°)| 22(0) = moco, (2.22)

M

AT
i=im CilET = €.

where T® € (0, Trax) is given by >

3. PRELIMINARIES

The first aim is to prove Lemma 3.1, showing that all characteristic values A
are real for any increasing density profile pg. In the second part, we find the exact
formula of the k-critical viscosity coefficient p.(k, Z) (see (2.10) above) for all & > 0.
The last goal is to study the bilinear form By, in Section 3.3 to prepare for our
linear study.

3.1. The positivity of characteristic values .

Lemma 3.1. For any k € L='Z\{0},

e all characteristic values A are always real,

e all characteristic values \ satisfy that X <, /£-.
0

Proof. Let ¢ € H*((—1,1)) satisfy (1.4)-(1.5). Multiplying by é on both sides of
(1.4) and using the integration by parts, we get that

1 _ 1 1
[ 0B = 03|+ [ ol
-1 - -1
that

1 - 1 1
*J ¢"pdry = —¢'¢| + J |¢' Py
-1 —1 1

and that

ot

1
7¢//¢ ) +J |¢”|2d$2,
- —1

1
—1

1
f 6D das = ¢
1

we obtain that
1
Aw j_1<|¢”\2 + 226/ + K 6[2)dws — €[0! (~ DI — &4 16/ (D)

) (3.1)

1
+ AZJ (K2po|d)? + pol¢/|*)dzs = gsz po| o[ das.
—1 1
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Suppose that A = A1 + i\a, then one deduces from (3.1) that

1
M | (107 + 20710 + K0l da — €16/ (<D = €416 (1))
- (3.2)
1 1
(=) | (Pmlof + polof P)de = o® | polofday
and that
1
Sai | (6" 4 2R216' 4 W9 )dzz — €16/ (-1 - &0 (1)P)
-1 (3.3)

1
I j (K pol]? + pold ) de.
—1

If Ay # 0, Eq. (3.3) leads us to
1 1

oy, j (2ol + pol¢/|?)dirz = j (16" + 282|8'? + K4[[)drs

—1 1

=& (D)~ &g’ (D,
which yields
1

1
SN f (k2p0|¢|2+po|¢’\2>dx2=—mf (K pol6P” + pold/|?)ds
-1

1
— gk* J polof*ds.
1

Equivalently,
1

1
(A2 1 X2) f (Rpolf + pol!|2)ds = —gh? f
-1

Pl o 2dxs. (3.4)
1

That implies
1 1
(A2 +)\§)k2p_J |p|?dxy < —gkﬁ ool das.
-1 -1

The positivity of pj, yields a contradiction, then A is real. Due to (3.2) again, we
further get that

1 1
22 f (IO + 0Pz < ngJ hlofdas

It tells us that A is bounded by 4 /L%. This finishes the proof of Lemma 3.1. O

Note again that, thanks to Lemma 2.1, in what follows in this section, we only
use real-valued functions for the linear analysis.

3.2. The threshold of viscosity coefficient. We obtain the precise formula of
the critical viscosity coefficient u.(k, =) for all k& € R\{0}. Note that p.(k,Z) =
te(—k, Z) for all k € R\{0}, it suffices to find p.(k,Z) for ke R.

Proposition 3.1. The following results hold.
(1) For all k € Ry, we have
E-(¢'(=1)) + & (¢'(1))?

pe(k, E) = oaax 1 2 2( 412 442 '
pei?((-1,0) § ((¢”)2 + 2k%(¢')? + k*¢?)da,

(3.5)
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Moreover,

(sinh(2k) cosh(2k) — 2k) (&4 + &)
te(k,2) = leesm1hz(2k) . ((sinh(Zk) — 2k cosh(2k))? (&4 + €-)? )é

+ sinh?(2k)(sinh?(2k) — 4k?) (&, — £_)2

(3.6)
(2) pe(k,E) is a decreasing function in k € Ry and

lim p.(k,Z) = sup pe(k,Z) =: pi(2). (3.7)

k—0 keR\{0}

We have the asymptotic expansion of u.(k,Z) as k — 0%,
— 1
Holk E) = 3 (6 + & +1/8 — e+ €2)

463 — g6 +482 (3.8)

_%(4(€++§7)+ )k2+0(k3).

\JE &+ &2
That implies
pE =3 (6 +e o8 —ge +a). (39)

As k » 1, we obtain the limit

2063 + &
te(k, E) < (i“ — 0. (3.10)
(3) We have
pi(E) =  max 5—(¢’(—11))2 +E&4(¢'(1)?
peH?((—1,1)) 8_1(¢”)2d$2

(3.11)

= %<§++§_+\/m>

The proof of Proposition 3.1 is postponed to Appendix A.

Remark 3.1. We see that p2(Z) in [3, Proposition 2.2] should be revised and we
redo the computation the critical viscosity coefficient. The authors in [3] consider
2 LT x (0,1) instead of 2n LT x (—1,1) and constant values ko 1 instead of £&+. The
formula of the critical viscosity defined as in [3, (1.29)] is

Me = SUup Z<¢)v
PEY

where

1 1
Y= {02 HY(O.1) n HA(O0.1).5 [ [0"Pde = 1)

ko ke

. 210/ (1)

Z(¢) = - 1¢'(0)]* +
The authors in [3, Proposition 2.2] claim that p. = % if ko = k1 = k > 0. However,

i that case, let us take ¢ = %(aﬁ —x) € ), then we have a contradiction that

Z(%(ﬁ—x)) = g > %
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3.3. A bilinear form and a self-adjoint invertible operator. In what follows
in this section we have A > 0 and k£ € R, being fixed. Let us recall the definition
of Bk)\,/t from (29),

1 1
B (9, 0) = /\f po (k%Yo + 19 o' )dxy + ,uf (0" 0" + 2% o' + k*0o)dxo
—1 1

— &V (=1 (=1) = &0 (1) (1)
Lemma 3.2. We have the followings.

o For all 1> 0, By, is a continuous bilinear form on H?((—1,1)).
o For all p > pc(k,=), the bilinear form By x,, is coercive.

Proof of Lemma 3.2. Clearly, By, is a bilinear form on H?((—1,1)). We then
establish the boundedness of By, x ;. The integral terms of By, » , are bounded by

C*(A + 1)H19||ﬁ12((—1,1))\|Q||ﬁ12((—1,1))v (3.12)

where C* is generic constant depending on physical parameters. Meanwhile, it
follows from the general Sobolev inequality that

(0" (=1)) + (9'(1))* < C* 9 I3 ((—1.1))-
Consequently, we get
1B (9, 0)] < C*(1+ A)Hﬁum((—m))HQHH2((—1,1))a (3.13)
i.e. By, is bounded.

We show the coercivity of By, » . We have that

=& (0'(-1))7 = & (V' (1))*.
As A= 0 and p > p.(k,E), we have

1
Biru(®,9) =X | po(k*0? + (9)?)das

-1

+ (0 — pie(k, 2)) L((ﬂ”ﬁ +2K2(9)? + k9% dzs  (3.14)

1 1
Bixu(9,9) = )\J po(k29% + (¢)*)dxy + “J (92 + 2K2(0")? + E*9?)da,
1 —1

> (1 — pe(k,Z)) f (92 + 2k*(0)? + k*9?)da,.

-1
It then follows from (3.13) and (3.14) that By, is a continuous and coercive
bilinear form on H?((—1,1)). O

With the above property of B x ., we then establish:

Proposition 3.2. Let ju > p.(k,Z) and (H*((=1,1))) be the dual space of H*>((—1,1)),
associated with the norm /By x (-, ). There is a unique operator

Yioan € LIH?((-1,1)), (H*((-1,1)))"),
which is also bijective, such that
Biau(9,0) = Vel 0 (3.15)
for all ¥, 0 H?((—1,1)).



12 TIEN-TAI NGUYEN
Proof. It follows from Riesz’s representation theorem that there exists a unique
operator Yy, € L(H?((—1,1)), (H?((—1,1)))’) such that
Biau(,0) = Vel 0)
for all p € 1@2((—17 1)). Proof of Proposition 3.2 is complete. O

Proposition 3.3. We have the following results.

(1) For all ¥ € H*((—1,1)),
Yioaud = Mk pot? — (po?)') + p(0 — 269" + k)

in D'((—1,1)). )
(2) Let f e L?((—1,1)) be given, there exists a unique solution ¥ € H?((—1,1))

of

Yiaud = f in (H*((=1,1)))" (3.16)
Moreover, we have that ¥ € H*((—1,1)) satisfies the boundary conditions
(1.5).

Proof. Tt follows from Proposition 3.2 that there is a unique 9 € H?((—1,1)) such

that
1

1
)\f po(k*9o + 190 )dxa + p f (0" 0" + 2k o' + k*90)dwy = (Vi 219, 0) (3.17)
—1

—1

for all p € CF((—1,1)). We respectively define (9”)" and (9")” in the distributional
sense as the first and second derivative of ¥” which is in L2((—1,1)). Hence, Eq.
(3.17) is equivalent to

1 1
AJ po(k*V0 + 9’0" )das + pd(0")", 0) + "f (2k%9 o' + k*90)dwa = (Yixu0, 0)

-1 —1

(3.18)

for all p € C°((—1,1)). We deduce from (3.18) that

1
)\f (k2 ot — (po") )odwa + p (9")" — 2k%9" + k*9, 0) = (Vi a9, 00 (3.19)
-1

for all o € C°((—1,1)). The resulting equation implies that
w((9")" = 2k29" + k*9) + M(k%pod — (po?)') = Yea ¥ in D'((—1,1)). (3.20)
The first assertion holds.

Under the assumption f € L?((—1,1)), we improve the regularity of the weak
solution ¥ € H2((—1,1)) of (3.20). Indeed, we rewrite (3.20) as

1
w (9" 0y = J 1(Yk,,\7,ﬂ9 + 2uk” — pkt — Mk%pod + A(po?')") odi;

for all o € CL((—1,1)). Since (f + 2uk?9”" — pk*d — Mk2ped + A(po?’)’) be-
longs to L?((—1,1)), it then follows from (3.19) that (¢¥")” € L?((—1,1)). Let
x € CL((—1,1)) satisfy Sil Xx(y)dy = 1. Using the distribution theory, we define
¥ e D'((—1,1)) such that

(Z,0) ={(¥")", o) (3.21)
for all € C§°((—1,1)), where

To 1
T9) = 0(y) — 0(s)ds |d
o) = [ (0) = x) | ods)ay
for all —1 < z9 < 1. We obtain

& 0) = =(%,60") = <(")", Cor)-
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Note that
xo 1
(W), Cory = (")", 0(w2) — J X(y) f 0'(s)dsdyy = {(9")",0),
-1 -1

this yields (X/,0) = —{((¢")",0). Hence, we have that (¢") + ¥ = constant. In
view of (9")" € L*((—1,1)) and (3.21), we know that (9”)" € L?((—1,1)). Since ¥ €
H?((—1,1)) and (¢9")', (9")" € L?((—1,1)), it tells us that ¥ belongs to H*((—1,1))
and we can take their traces of derivatives of ¥ up to order 3.

By performing (3.19), we then show that ¢ satisfies (1.5). Indeed, for all ¢ €
H?((—1,1)), we perform the integration by parts to obtain from (3.19) that

1 1
/\f po(k*90 + 9o )dxs + uJ (9" o" + 2k*9' o' + k*90)dxo
—1 —1
1 1 1 1
) :J (Y]ﬁ)\’#ﬁ)gdl’g.
_ 1 1

It then follows from the definition of the bilinear form By, that

(97 ) = eV (1) + &I (W),

(3.22)
for all p € H?((—1,1)). By collecting all terms corresponding to ¢/(+1) in (3.22),
we deduce that

1
- )\0019'9‘71 + u(ﬂ"'g

_ 19// Q,
1

—2k%9p
1

1 1 1 1
Apo? 0

9 Ql
1

—2k%9'0
1

pd"(£1) = £€49'(£1).
This yields that o satisfies (1.5). The proof of Proposition 3.3 is complete. O

We obtain more information on the inverse operator Y,;A1 u

Proposition 3.4. The operator ij# : L2((=1,1)) — L%((—1,1)) is compact and
self-adjoint.

Proof. It follows from Proposition 3.3 that Y} » ,, being supplemented with (1.5),
admits an inverse operator ij,u from L?((—1,1)) to a subspace of H*((—1,1))
requiring all elements satisfy (1.5), which is symmetric due to Proposition 3.2.
We compose Yk_yi,u with the continuous injection from H*((—1,1)) to L?((—1,1)).
Notice that the embedding H?((—1,1)) — H?((-1,1)) for p > ¢ > 0 is com-
pact. Therefore, the operator Yk_,/\{ ., 1s compact and self-adjoint from L?((—1,1))
to L2((—1,1)). O

4. LINEAR INSTABILITY

4.1. A sequence of characteristic values. We continue considering A > 0 and
k € L='Z\{0} being fixed. We study the operator Sk, := MYk_iu./\/l, where M

is the operator of multiplication by +/pj.

Proposition 4.1. Under the hypothesis (1.3), the operator Sk, : L*((—1,1)) —
L?((—1,1)) is compact and self-adjoint.

Proof. Due to the assumption on pg (1.3), the operator Si ., is well-defined and
bounded from L?((—1,1)) to itself. Yk—)}’u is compact, so is Sy .. Moreover,

because both the inverse kaj , and M are self-adjoint, the self-adjointness of Sk,
follows. O
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As a result of the spectral theory of compact and self-adjoint operators, the
point spectrum of Sy » , is discrete, i.e. is a sequence {v,(k,\, pt)}n>1 of eigen-
values of Sy » ., associated with normalized orthogonal eigenfunctions {wy}n>1 in
L?((—1,1)). That means

Sk,/\,uwn = MYkT)}’#Mwn = 'Yn(kv A M)wn-
So that ¢, = ij M, belongs to H*((—1,1)) and satisfies (1.5). One thus has

'Yn(ka A, H)Yk,A,u¢n = pIOQSn (4'1)

and ¢, satisfies (1.5). Eq. (4.1) also tells us that v, (k, A\, u) > 0 for all n. Indeed,

we obtain )

1
’)’n(k, A, /U') J;l(Yk)\”u(ﬁn)d)nde = J

pod2ds.
1
That implies
1
kA B0 60) = [ oo, (12)
-1

Since By x u(@n, ¢n) > 0 and pj > 0 on (—1,1), we know that v, (k, A, 1) is positive
for all n > 1. Hence, by reordering and using the spectral theory of compact and
self-adjoint operators again, we have that {v,(k, A, u)}n>1 is a positive sequence
decreasing towards 0 as n — 0.

For each n, we have that ¢, is a solution of (1.4)-(1.5) if and only if there are
positive A, such that (2.14) holds. To solve (2.14), we use the two following lemmas.

Lemma 4.1. For each n,

o Yu(k,\, ) and &, are differentiable in .
o Yu(k, A\, 1) is decreasing in \.

Proof. The proof of Lemma 4.1(1) is the same as [13, Lemma 3.3], we omit the
details here. We now prove that v, (k, \, ) is decreasing in .

Let z, = 9= it follows from (4.1) that

dx
1 d 1

/ /
S Bl 4.

k2 podn — (podl) + Yiauzn =
n (—1,1). At 2o = +1, we have
zn(—1) = 2,(1) = 0,
pzp (1) = &4z, (1), (4.4)
pzn(—1) = =62, (=1).
Multiplying by ¢, on both sides of (4.3), we obtain that

1

1
J (k2p0¢n - (p0¢;1)/)¢ndx2 + f (Yk,/\,uzn)¢nd‘r2
-1

1 J‘l / (b d + d ( 1 )fl I¢2d
=——— | poinPndre+ —~(——— PoPadrs.
kA ) )1 P A (kA ) S PO
Note that z, enjoys (4.4), then

1 1 1
1
(mk%wm@:f mx@wm@:————f;mmm@
f—l : —1< : 771(]97)"/1“) —1 0
That implies
1

d 1 1’ A
i Gote) | s = [ (mon = ot ondon. (a5
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Using the integration by parts, we obtain from (4.6) that

i(#) Jq pl¢2d$2 =J-1 po(k2¢2 +(¢/ )2>d$€2 > 0.
dA ’Yﬂ(kaAnu) —1 0n —1 " "
Consequently, v, (k, A, 1) is decreasing in A > 0. O

4.2. Proof of Theorem 2.1 and normal modes of the linearized equations.
In view of Lemma 4.1, we are able to prove Theorem 2.1.

Proof of Theorem 2.1. For each n, there is only one solution A, of (2.14). Indeed,
using (4.2), we know that

1 1 1
o | oo = [ 0rsn)udes = Burn(o o)
n » 7Yy —1 —1
Hence, it follows from (3.14) that
1 ' /52 ' 2,2 7 \2
o) ), Poondrz = A | po(R0, + (6n,)7 )y

1
el ) | (@007 + 202000 + k402 )

1 1
>0 | poddaa + (- el EDH | G
—1 1

That implies
1 — pe(k, E))k*
LO'Yn (ka >‘7 ,u) P+
Consequently, for all n > 1,

m > gk? for \ large. (4.7

Meanwhile, for all n > 1 and A < 3, /L%’
A A
ky A, 1) < 1 /g
’Yn( y Ay b ’Yn(kai 707/1’)

In view of (4.7), (4.8) and Lemma 4.1, we obtain only one solution A\, of (2.14)
and (A, ¢n) satisfies (1.4)-(1.5). That means for all n, A, is a characteristic value,

—0as A —0. (4.8)

hence it is bounded by , /-L

.
We now prove that (A,)n>1 decreases towards 0 as n — oo0. If A\, < Ajq1 for
some m > 1, we have

Y (ks Ay 18) > Y (ky A1, 14)-
Meanwhile, we also have
Y (ks At 15 1) > Y1 (K, A1, ).
That implies
Am Amat
gk? gk? ’
That contradiction tells us that (A,),>1 is a decreasing sequence. Suppose that

lim A, =dp > 0.

n—o0

= Y (ks Ay 1) > Ymer1 (ks A1, 1) =
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Note that for all n, v, (k, Ap, ) = ;‘ﬁ, then

A
’7n(k7d07,u/) = ,Yn(ku )\n»/l) = gﬁ
Let n — o0, we get that 0 > dy, a contradiction. Hence \,, decreases towards 0 as
n — 0. The proof of Theorem 2.1 is complete. U

We derive the following property for the largest characteristic value A\; found in
Theorem 2.1.

Lemma 4.2. Let us recall the bilinear form By x ,, on H*((—1,1)) (2.9) and (A1, ¢1)
from Theorem 2.1. We have that

1 §" pho2das

—_— = max —_—
gk?  ger2((=1,1)) M Br o, u(0, 0)

and the variational problem (4.9) is attained by the function ¢.

(4.9)

Proof. For all A > 0, we solve the variational problem

1
Bk g = max ([ ppodmafore BH(-11), ABa (o) = 1).

Let us define the Lagrangian functional

1
Lo(0,0) = [ pho?da = BABLu(6.0) - )
-1
Thanks to the Lagrange multiplier theorem, the extrema of the quotient
1
S_l p6¢2d:c2
ABjo x (9, 0)
are necessarily the stationary points (fs, ¢«) of Lg, which satisfy

ABi x (@5, 0x) = 1 (4.10)

and .
f PoOx0dxs — B AB \ u(h4, 0) = 0, (4.11)
—1

for all 0 € ﬁg((—L 1)). Restricting 0 € CP((—1,1)) and following the line of the
proof of Proposition 3.3, one deduces from (4.11) that ¢, has to satisfy

B*)\Yk:,k,u(é* = 06¢* (412)

in a weak sense. We further get that ¢, € H*((—1,1)) and satisfies (4.10) and the
boundary conditions (1.5). Hence, A3, is an eigenvalue of the compact and self-
adjoint operator Sy x , from L%((—1,1)) to itself, with M ™Y \ b, € L?((—1,1))
being an associated eigenfunction. That implies

Bk, X, 1) < Xk, A, ). (4.13)

Meanwhile, since the operator Sj. . is self-adjoint and positive, we thus obtain
that

Ska,uw,w
y(k,A,p) = sup %
weL2((—1,1)) HWHL2((_171))

Hence, for all w € L%((—1,1)) and for ¢ = ij’#/\/lw € H*((—1,1)), we have

<Sk’)\7#w,w>2

Al (ka /\7 M)<Yk,)\,u¢7 ¢> < 2
ool (-1,

< 1Skl 72((—1,1))-
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Equivalently,
[ M7= _
kA ) < sup {56 € (-1,1)) and MO0 € L(-1 1)}
Ao Ps
it yields
Ay (R, A ) < Bk, A, ). (4.14)

Two inequalities (4.13) and (4.14) tell us that B(k,\,pu) = A1y (k, A\, ) for
all A > 0. We thus obtain S(k, A1, ) = g% and the variational problem (4.9) is
attained by the function ¢,. Proof of Lemma 4.2 is complete. O

We now solve the linearized equations (2.3) to prepare for our nonlinear part.

Proposition 4.2. For each k € L='Z\{0}\{0} and for all u > p.(k,=), there exists
an infinite sequence of solutions (n = 1)

eAn(k’#)tU’n(kv 12 f) = eAn(k’H)t(Unv ﬁn,pn)T(k, 12 f)
cos(kx1)wn (k, 1, x2

)

— Akt sin(kz1)0n (K, g, z2)
)

)

(kz1)
cos(kxq)pn (k, p, T2
cos(kx1)qn (K, p, 2

to the linearized equation (2.3)-(2.2), such that
on € H*(Q), 1, € (H*(Q))? and p, € H*(Q).

Proof. For each solution A, € (0, /) of (2.14), we have that ¢,, = Yk_,/\lmu./\/lwn

is a solution of (1.4)-(1.5) in H*((—1,1)) as A = \,,. We now find a solution to the

system (2.5) as A = \,,. First, we obtain 6,, = —% and wy, = —pgj\%. Due to (2.7),

we get
1
0 = 5 Ol + (K20, — o)) € H'((~1,1).
With a solution (wy,, 0y, ¢n, gn) of (2.5), we then conclude that

cos(kx1)wn (k, 1, 22

(kz1) )
sin(kx1)0,, (k, p, x
e“(k’”)t(an, un,lyun727pn)T(kaM; f) — Akt ( 1) ( o 2)
cos(kx1)pn (k, p, v2)
cos(kx1)qn(k, p, x2)

is a solution to the linearized equations (2.3)-(2.2). O

5. NONLINEAR INSTABILITY

5.1. The local existence. The first important things are the local existence of
strong solutions to the nonlinear equations and a priori energy estimates to those
solutions. We restate Proposition 4.1 of [2].

Proposition 5.1. Suppose that the steady state satisfies (1.3). For any given
initial data (09, o) € (H*(Q) n LP(Q)) x (H*(Q))? satisfying diviig = 0, and also
being compatible with the boundary conditions (1.2), the nonlinear equations (2.1)
has a local strong solution

(0,1, Vg) € C([0,T™™), H(Q) x (H*(Q))* x (L*(2))). (5.1)
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Let £(t) := \/Ha(t)H?{l(Q) + ||t )HH2(Q) and dy > 0 be sufficiently small, we further
get that if supg< <, E(t) < o, there holds

t
E2(1) + (Ve 20|20 + j (1006 s g + 1(5) By )5
(5.2)

<Oo(£0 + [ 106 - ay5).

Thanks to Proposition 4.2, we will formulate a sequence of approximate solutions
e BT, (k, 1, Z) to the nonlinear equations (2.1)-(2.2), which are solutions to the
linearlzed equations (2.3)-(2.2). Let us fix a k = kg € L7'Z\{0} such that (2.21)
holds and p > 3u.(E). We recall (2.15),

(oM, a™, M Zce ’“tU (k, p, X).

Keeping in mind that minj_; 1) po > 0, then due to the embedding from H?(Q) to
L*(9), there exists a constant 69 > 0 such that
1

oll 3050, D) Loy > 5 min po(az). (5.3)

=1 2[-11]
Hence, for 6 < 6o,

. . Mo =

= < ,Z)).

5 (i po(w2) < min(po(z2) + 007 (0, 7))

By virtue of Proposition 5.1, the nonlinear equations (2.1)-(2.2) with the initial
data §(c™,@M)(0) admits a local solution

(0%, @) € CO[0,T™), H'(2) x (H*(2))*)
with an associated pressure ¢° € CO([0, T™8), L?(9)). Furthermore, we have

1
3 [grllig] po(w2) < inf(po(z2) + o (t, )
for all ¢t € [0, T™®).

In what follows, the constants C;(i > 1) are universal ones depending only on
physical parameters, M and c;(j > 1).

Let Fp(t) = Z;Vijm Icjlert and 0 < €p « 1 be fixed later (5.41). There exists a
unique 7 such that 6 Fy(T%) = €o. Let

v =\ JloM O3 ) + 1T (O 32y Co = 3/l O[3y + 187 (0)]3

We define

T* := sup {t € (0,T™%)|E(a% (1), @ () < Chdo} > 0,
(5.4)
T 1= supft € (0, 7)o, @)(8)| 2(0) < 2C26Fu (1)} > 0.

Note that £(a°(0),%°(0)) = C16 < C1dp and because of (5.1), we then have T* > 0.
Similarly, we have T** > 0. Then for all ¢ < min{T?,T*, T**}, it follows from the
a priori energy estimate (5.2) that

E2(0° (1), @ (1)) + |00 (1)1 720 J [Vou@ (7)1 72 (qydr < C30®Fiy (1) (5.5)
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5.2. The difference functions. Let us recall

ol =00 —6cM, @ = —suM, ¢t =q° —5gM.

Hence, (0%, 1%, q%) satisfies
010 + phud = -’ - Voo,
podsii® — pAit + Vqt = —°04ii® — (pg + 0°)i® - Vi’ — goléy, (5.6)
divi® = 0,

along with the initial condition,

(o4, @) (0) =0 (5.7)
and the boundary conditions,
ud =0, on X4,
pog,uf = Epuf on X, (5.8)

oz, uf = —&_ud on X_.
The compatibility conditions read as

ul (0,21, 1) = uf(0,21,1), diva?(0) = 0. (5.9)

We now establish the error estimate for |(o?, @%)] 12(q)-

Proposition 5.2. For all t < min(T°, T*,T**), there holds

N

d —d 2 3 Aj voAt\3
(e, a®) ()72 < Cad (Z:l|cj|e i* + max(0, M — N) N+11n§JX<M|C \es 0Aty3,
jn

(5.10)
The proof of Proposition 5.2 relies on Lemmas 5.1, 5.2, 5.3, 5.4 below.

Lemma 5.1. We have the following inequalities

M 107t () ey < C50Fu(t), (5.11)

0<s<2,0<7<1

and
lo® () o) + 10:0% ()| £2(0) < CodFar(t). (5.12)

Proof. For T € {0, 1},
M
Z jeie™ Ty ko, T),

it yields, for all s € {0,1,2},
lo7a™ () () < CrFm(t).
In view of (5.5), we then obtain that for s € {0,1,2} and 7 € {0, 1},
lo7a@’ ()| me () < 8107 T ()]l mo () + |07 @ (8) | 1oy < CsdFnr(2).
To prove (5.12), we use (5.6); and (5.5) again,
lo ) @) + 100 @) L2 () < 10° O ) + 8lo™ (B (@)

+ Collug (1) L2y + () L2 (0 Vo’ |20
< ChodFu(t).

Lemma 5.1 is proven. O
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Lemma 5.2. There holds

[0 (0)[1 720y < C1168° (5.13)

Proof. From (5.6), 5 and the boundary conditions (5.8), we use the integration by
parts to obtain that

J polovi?|?di = J pAGt - o atdz — J (0°0,1° + (po + )@ - Vi) - dpuitdi
Q Q Q
—j golouddz.
Q
Thanks to Lemma 5.1, one has
— J (0°0,1° + (po + )@ - Vid®) - dyutdid < C120° F3p(t). (5.14)
Q

That implies

[0:@ (1)1 2y < Cis ((||ﬁd(t)|\H2(Q) + o (@) 2@ 0a (1) 20y + 53F§’4(t))~

Using Young’s inequality, we further get

. Lo .
RG] FARES §H5tud(t)|\%z<m + Cra(|@ ()2 () + |0 (D) 22()) + Crad®Fiy (b).

That implies

1T D)3y < Cus (1T O ey + 10" Oy + F(0). (515)
Letting ¢ — 0 in (5.15), we complete the proof Lemma 5.2. O
Lemma 5.3. Let

X:= {w e (H*(Q))?,@ satisfies (1.2) and divii = 0}.
There holds for all i € H2(S2),
| gpbluaPaz e n | uren DP + - ur(en, ~DP)day
Q (2rLT)?

(5.16)
< AQJ p0|u7|2d:E'+AuJ |V 2di.
Q Q

The proof of Lemma 5.3 is due to the definition of A (2.20) and Lemma 4.2, that
is similar to [2, Lemma 5.1}, hence we omit the details here.
Lemma 5.4. There holds for all @ € X\{0},

sup Sorpr(Ealwi (e, 1) + & fwi (21, —1)*)day
e Vil

< p1e(E). (5.17)

Proof. Let us fix a horizontal frequency k € L™'Z and introduce the horizontal
Fourier transform

fk,z2) :J f(@)e ko1 dy .
27 LT
For @ € X, we write

’uA)l(k,.%‘Q) = —ie(k‘,xz), ’UAJQ(](J,J?Q) = ¢(k,$2)
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Then, k6+¢' = 0 and (0, ¢) enjoys (2.6). Following Fubini’s and Parseval’s theorem,
one thus deduces

j (€ lwr (22, D + € wn (21, ~1)[?)day
2w LT

! (5.18)
=57 X (€005 D + oGk —DP)
keL=17
and
[V} o) = o L 2 f (K*(10)* + [8]) + 10" + |¢'|*) (k, m2)dza.  (5.19)

keL—

We may reduce to estimate (5.17) when 6 and ¢ are real-valued and continue the
estimate to the real and imaginary part of § and ¢. For any k € L~1Z\{0}, we have
from k6 + ¢’ = 0 that

Er(0(k,1))* + & (0(k,—1))* = %(&((d’(k, 1))? + & (¢ (k, —1))?) (5.20)
and that

fll (k2(02 4 ¢2) + (9/)2 4 (¢/)2) (k, ) ds

(5.21)
1 4 42 2 \2
- [ B+ @R
Owing to (5.18), (5.20) and the definition of u.(k, =) (see (3.5)), we get
| (elunton DF + & fua(or, 1))
27 LT
. 1
limsup - (€4 (' (K, 1)) +&-(¢'(k, —1))?)
< 1 k—0
= 1
e Y @ kD) +E (@ (k1))
keL—1Z\{0}
’:‘ 1
lim sup MQ’H) J (K*¢? + 2k2¢" + ¢"*)(k, x2)dxo
1 k—0 k —1
S oL k,Z) [*
™ + Z He kQa—' f (k4¢2+2k2¢/2+¢”2)(k71'2)d$2
keL—17\{0} -1
Thanks to Proposition 3.1, we obtain
| <§+|w1<x1,1>|2+§4w1<x1,—1>\2>dx1
27 LT
li k' + 2k ")) (k, z2)d
@) Hl?jélp 2 ( ¢* +2k%(¢))% + (¢")?) (k, w2)ds (5.22)
S —f (K'6? + 2K2()? + (¢)2) (, 22)dd
keL- 12\{0}
Combining (5.19), (5.21) and (5.22), it gives
J LT(§+Iw1($17 D2+ & wi (@1, =1)*)dar < pe(E)[| V|72 q)-
2m
Lemma 5.4 is proven. O

We now prove Proposition 5.2.
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Proof of Proposition 5.2. We rewrite (5.6), as
(po + %) 0 — pAa + Vg = f° — go'és,

where f5 = —0°0,iM — (po + %)@’ - Vii®. Differentiate the resulting equation with
respect to t and then multiply by 0;@?, we obtain after integration that

f 0,00 |0y dit + f (po + 0®)o2a? - o,utdz
Q Q

= f uAo @ - oyutda — f Vo - o,a%di + J (0,f° — go,0%8) - 0,udz.
Q Q Q
Since divo;@? = 0, we use the integration by parts to further obtain

f 0,00 (t)| 0, (t)|?dz + f (po + o®(t))02a(t) - oyt (t)dz
Q Q
- [ @ - gt o az - [ voioPar
Q Q
+ J- (§+|6tu?(ta T, 1)|2 + gf‘atu(f(tv L1, _1)‘2)d'731'
27 LT

That means,

1d

= —lf 0,0 (t)]0,a (1) |?dE + J (0,2 (t) — goro(t)@) - o, (t)dE
2 Jo Q

(po + 0°(t)) |0y (t)|*dz

i f Vayi (1) + f (Lo (t, o0, 1) + €2 (t, 21, —1)|?)ds.
Q 27 LT

Using (5.6),, we then get

it Jo, (0o + 0" O (W) — gpud () ) a7

+ QMf Vot (t)|?di — QJ (Exlorud(t, 21, 1))? + E-|opud (¢, 21, —1)|?)das
Q o LT

- —f 0,0° ()| 0y () 2d7 + 2 f @O (t) + g (1) - Vob (0)8y) - oy (£)d.
Q Q

Integrating in time variable, we get

t
/o + o3 (D)2 (8) 2 + 240 IV3,7%(5) 2 g s
t
2| [ (el DP + a0, ~DP)dands
0 J2nw LT

(5.23)
- | anblusoPaz+ (| oo+ AP @)l0T 0 7)

t=0

+ f J (20,5 () + 291 (5) - Voo (5)s — 010° ()07 (5)) - yit(s)ds.
0 JQ
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We continue using (5.11), (5.12) and (5.13) to estimate each term of the r.h.s of
(5.23). This yields

t
\|m+ww@WmﬁmﬁngLMm@ﬁmws
—2f €\t a1, D + € (o0, ~1)[P)dar (5.24)
2w LT
<jwmeM+awmm>
Q
Due to (5.16), we further get that
t
n m+a%>nmwﬁmn+quwawww;mﬂs
t
— 2[ J (§+|6tu‘f(s,x1, 1)|2 + £,|5tu'11(s,x1, —1)|2)dx1ds
2w LT
< A2J pol@?(t)|*dz + AHJ \Vad(t)|2dz
—A (Exlud @t 2, 1)? + E-Juf(t, 21, —1)|*)day + C166° Fiy(t)
2w LT
< AQJ (po + o (t))|a(t)2dZ + A,uJ |Val(t)|?di
Q Q

—A (£+|utli(t7 Ty, 1)|2 + §,|uil(t, L1, —1)|2)d$1 + CI7§SF]%/[(t)'
27 LT
(5.25)

On the other hand, we have

d q 4 » q S
il pot o (8@ (1) |72 () = 2 L(Po +o®(t))a’(t) - o,a’(t)dz + L oo’ ()@ (t)[*dz.

3+wo
2+wg

my = v +4/vE —1 (5.26)

Let us recall wp from (2.19) and vy = e (1, %) We fix two positive constants

my 2 such that

and that

my = p(mi—my+1)—p.(Z)(mi+1) +\/ —my + 1) — pe(E)(m? +1))2 — u2m3.
(5.27)
With m; > 0 from (5.26), we use Young’s inequality to observe

QJ (po + o®(t))a(t) - o, (t)dz
Q

1 (g
< rmlH po + ° (1) 0T (1) |72y + A/ po + o® ()T (1) |72 (0 -

That will imply

1 o
um+wo YD) < I/ po + (D ()72 )
Amy

+ Amy g/ po + o2 ()T (8) |72y + Crs8 Fir(t).
(5.28)
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With mg > 0 defined as in (5.27), we obtain from (5.25) and (5.28) that
d
ZrWpo + O (D72 () + ma [ VE )70

1 1%
< (o)A o+ OO gy + (5 +m2) IV (e

t
jJ‘ (Exlovud(s,21, D + E_|oud(s, 21, —1))dayds
27 LT

Am1
2 (90, (5) o ds + CroB FS, (1)
Am1 0 tu S LQ(Q) S 19 M .
Together with (5.17), we deduce
|| po + ()@ (1) 20 + ma| VA (1)]72 ()

<@hﬁ;ﬂ“m+ﬁﬂ Ola@) + (5o +m2) IVE Ol 2@)  (5.20)

2 c
- M lZD [ 10,63 s + Cuo8” 1)

We use Young’s inequality to get that

t
H —d (1) (12 _ H Sd oy —d -
(- ma) IV Ol g0 = 2( 2+ ma) L L Vil(s) - Vaat(s)dads

2 — 11e(E) [ 1on -
<J—K—iﬁijaw@w;mds (530
. Am1 +m2 J HV"d HLz
2( u He(E

Combining (5.29) and (5.30) gives us
|| po + ()@ (1) () +ma| VE' (H)]72q)

< (m1 n —)AH po + 05(t)ﬁd(t)l\iz o (5.31)

Am1 + mg 5
d 0°F
+ 2u e fnv (5)3 s + Crod* Fiy ).

It follows from (5.26) and (5.27) that
2
Amy ( + mg)

2(p — pe(2))
Therefore, (5.31) becomes

1
= A(ml + —)mg = 2v9Ams.
my

d - ~,
@H po + Ué(t)ud(ﬂ”%?(n) + mo| Vi (t) H2L2(Q)

t
<20 (Iy/o0 + P OTO sy +ma | 19T aq0ds) + Cuad* Fy ).
0
(5.32)
Recalling that #%(0) = 0, thus, applying Gronwall’s inequality to (5.32), one obtains

I/ po + 0% (t)i mhm+m4thnm>w 0m3M“ij“W<w&
0
(5.33)
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Since Fy;(t) < M? max;, <j<um |¢j|*Far(3t), we then have from (5.33) that
Mt
[@ () 1720y < Ca06®e® oM J |cjleri 2o gy, (5.34)
J=Jm
Because of (2.21), we have \; > %V()A for j,, <j < Nand); < %VOA forj > N+1.
It yields that for j,, < j < N,

¢ 1 1
(3N —2v0A)s 7o (3 —2w0A)t _ 1) < (3A;—2woA)t
L c s 3Aj - 21/0A <e ) 3)\] - 21/0Ae
(5.35)
and that for j > N + 1,

1

(3 —2v0A)t _ 1
(e )< A=y,

t
f (BN —200A)s 7o _ (5.36)
0

3)\j - QZ/QA

In view of (5.35) and (5.36), we obtain from (5.34) that if M < N,

M
—d 2 3 % 3A;t
102y < Cood®( 3 gr—pe™)

=Jm

and if M > N + 1,

M
Sl () (12 < 3 |Cj| 3Nt |CJ| 2u0At
[7 ) [22(0) < C200 ( 2 X, — 200 - Z 2o — 3X; )

J=jm =N+1
That means
N 3
70 a0y < Con0™( D5 lesle™" + max(0, M = N) (| max | [e;[)ed o)
J=Im

(5.37)

To show the bound of |o0%(t)|| 12(q), we use Cauchy-Schwarz’s inequality to deduce
from (5.6), that

d i
o ®Olz2@) < o (®)lza) < (maxp)[ug ()] z2(@) + 1 ©)] 22 (@) lo° B) 2 (@)-

Using (5.5), we obtain

d
E\\Ud(t)HLz(Q) < Coo([ud ()] 2y + 62 Fis (1))

Note that ¢?(0) = 0, integrating the resulting inequality in time, we have

t
o ()] 22y < Cho j (Jus()] 2y + 62F2(5))ds.

Together with (5.37), we have

N
d 2 3 At vo At
o (1) gy < Cost®( 3 legle + max(0, M = W) (| ma e} 3o
J=Im

(5.38)
The inequality (5.10) follows from (5.37) and (5.38). Proof of Proposition 5.2 is
complete. O



26 TIEN-TAI NGUYEN

5.3. Proof of Theorem 2.2. Note that
M

B Ol = 3 Gl +2 Y g™ | (@) @@
i=jm Jm<i<j<M «
(5.39)
It can be seen that
M
|@ 72 = D) G @170y +2 D, Cicje(xiﬂ")tj () - 0y (2)dZ
J=Jm Jm+1<Z<J$M 2
M
— ‘ij H’ij LZ(Q)( Z ‘Cj|Hﬂ:j”LZ(Q))e(>\jm+>\jm+l)t.
Jj=jm+1
By Cauchy-Schwarz’s inequality, we obtain
2 ) cigeitA f @y (T) - i@;(7)d
Jmtl<i<j<M Q
> — > lcillejle 29 | Ly 1] 2 ()
JmH1<i<j<M
M 2
> _e(>\jm+1+)\jm+2)t< Z |CJ|H’IIJHL2(Q)) .
J=jm+1
This yields
M M 9
N Y L R GO G D)
J=Jm J=jm+1
M
N N - N
_ ‘ij|e( Gm T J7VL+1)t‘|UijL2(Q)( 2 ‘Cj|HUj HL2(Q)).
Jj=jm+1
Due to the assumption (2.17), we deduce that
l 1
[@ O 520) > Y G ]2 — 565, N i, 72
J=Jm
1 _ . ~
= GG R i [ .

This yields

quM(t)H%z(Q) > 2 (62>\jmt — %e()‘j7n+/\j7n+1)t _ ie(&mﬂ-kkmu)t)‘

Jm ‘/L_L'Jm ”iz(ﬂ)

M
+ Z Cieg’\thUﬂ&zm)-

J=jm+1
Notice that for all ¢t > 0,

1
e2Nimt _ le(ka‘y,ﬁ)\jmﬂ)t — ZePim+1tAim2)t > le”\jmt

Hence, we have
1@ (t) | p2(0) = CaaFu(t), (5.40)

for all ¢ < min(T°, T*, T**).
Let

¢(M) = max lol >
N+1<i<M |5, |
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We recall the definition of 7* and T** from (5.4) and the fact that 7° satisfies
uniquely 6 Fy;(T%) = €, provided that ¢ is taken to be

ey C3 &7
) 41
€p < min ( C3 ) 204(1 I ME(M))S’ 404(1 + ME(M))?’) (5 )
We then prove that
T5 < min{T*7T**}- (542)

In fact, if T* < T?, we have from (5.5) that

E((0°, @) (T*)) < C30Fn (T*) < C36Fy(T%) = Caeg < Cady.
And if T** < T°, we have by (5.10) and the definition of T° that
[(0, @ )(T?)] 2o

< 8™, TN (T0) |20y + (0%, @) (T°)] L2 ()

e

N
< C25FM(T6) + \/0745% ( Z |Cj|e/\jT6 + max(0, M — N)( max |cj|)e§V0AT5)

o N+1<js<M
(5.43)
Notice from (2.21) that for N +1 < j < M,
‘Cj|56%VOAT6 < |Cj| (5|ij|€/\1T‘$) < |Cj| 5FM(T6) _ ‘Cj| €0
|Cj”774‘ |Cj”7L| ‘Cj"71|

Then, it follows from (5.43) that
(0%, @) (T*) (@) < CodFar(T°) + /(1 + Me(M)) 6% Fy (T°)
< Caeo + A/Ca(1 + ME(M)) ez
Using (5.41) again, we deduce
(0, @) (T°)| 2(q) < 2Ca€0 = 2C20Fp (T°).

which also contradicts the definition of 7*.

Once we have (5.42), we then get from (5.10) and (5.40) that
1@ (T°)] 220

> 6™ (T°)| 2oy — 74T |22 (o

3
2

> CosdFar (T7) = V/Cu8% ()] lejleM™ + max(0, M = N) (| max |e;|)ed*oAT")

. N+1<j<M
j=1
Therefore,
3 C
|@ (T%)| 12 () = Casco — A/Ca(1 + MEM))FeZ > %60 > 0. (5.44)

The inequality (2.22) is proven by taking dq satisfying (5.3), € satisfying (5.41)
and mo = 3C54. This ends the proof of Theorem 2.2.
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APPENDIX A. THE PRECISE VALUE OF pu.(k,Z)

In this appendix, we prove Proposition 3.1(1). The equality (3.5) can be seen
immediately from the definition of By g .-

Note that the quotient
£ (¢'(-1))* + &4 (¢'(1))?
§21((9")2 + 2k2(¢)? + K1¢?)das

is bounded because of the embedding H?((—1,1)) — C*((—1,1)). To prove (3.6),
let us consider the Lagrangian functional

1
£068) = B( | (0" + 2637 + K6?)daa = 1) = (60 (-1)* + €. (¢ (D))
(A1)

for any ¢ € H2((—1,1)) and 8 # 0. Using Lagrange multiplier theorem, the extrema
of the quotient

E(¢'(—1))? + &4 (¢/(1))?
§1,((07)2 + 2k2(¢)2 + kA2 dars

are necessarily the stationary points of (¢, Ox) of Lg, which satisfy

1
|| (@0 4 2k2()° + ko) = 1. (A2)
-1
and
1
ﬂkf ((,25” " 2k2¢);§w' + k4¢)kw)dx2 = ﬁ_(b;e(fl)w'(fl) + §+¢;c(1)w’(1) (A.3)

for all w € H?((—1,1)). We obtain from (A.3) after taking integration by parts that
oY — 220 + ko = 0,

and
Br(ek (1) + 2k2¢} (1))w(1) =
(5k¢”(1) £ (1))’ (1) =
Br(¢5 (—1) + 2k ¢ (—1))w(— ) =
(Brg(=1) + &= (=1))'(=1) = 0,
for all w € H?((—1,1)). This yields

Brfi(1) — €06,(1) = 0,
{ﬁm;;( 1)+ € 6(~1) = 0 (A4

Hence, ¢ is of the form
or(x2) = (Aze + B)sinh(kzo) + (Cxe + D) cosh(kxs),
with A, B,C, D are four constants such that A% + B2 4+ C? + D? > 0. Since
ér € H?((—1,1)), we get
(A+ B)sinhk + (C + D) coshk =0,
{(—A + B)sinh(—k) + (—=C + D) cosh(—k) = 0.

It yields
C = —Btanhk and D = —Atanhk. (A.5)
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We then compute
&1 (22) = (A+ kD + kCuxs) sinh(kxs) + (C + kB + kAxs) cosh(kxz)
and
R (x2) = (2kC + kB + k*Axo) sinh(kxs) + (2kA + k*D + k*Cxy) cosh(kxy).
Substituting these formulas into (A.4), we have
By ((zkc + k2(B + A))sinh k + (2kA + k(D + C)) cosh k)
—c, ((A + k(D + C))sinhk + (C + k(B + A)) cosh k)
B ((ch + k2(B — A))sinh(—k) + (2kA + k2(D — C)) cosh(—k))
—_— ((A + k(D — C))sinh(=k) + (C + k(B — A)) cosh(—k)).
Thanks to (A.5), that reduces to

2k (C'sinh k + Acosh k)
—c (A + k(D + C)sinhk + (C + k(B + A)) coshk;),
2kBy(—Csinh k + Acosh k)
—c ((A + k(D — C))sinh(k) — (C + k(B — A)) cosh(k)).
Equivalently,

{21@ EA +B+(A-B) cosh(2k); _ E(A — B)sinh(2k) + 2k(A + B)),

2kBr| A— B + (A+ B)cosh(2k) ) = &_( (A + B)sinh(2k) + 2k(A — B) ).
Then, (A, B) is a solution of the following system o
A<2k(1 + cosh(2k)) Bk — &£+ (2k + sinh(2k)) )
- B(2k(cosh(2k) - 1)5,c ¢, (sinh(2k) — 2k)>7 "
A(Qk;(l + cosh(2k))Br — - (2k + sinh(2k)) '
fB(Qk(cosh(%) ~1)By — £_(sinh(2k) — 2k)).
System (A.7) admits a nontrivial solution if and only
(2k(1 + cosh(2k)) B — €4 (2k + sinh(2k)))
x (2I<;(cosh(2k) ~1)By — £_(sinh(2k) — 2k))
(A.8)
- (2k(1 + cosh(2k)) By — E_(2k + sinh(2k)))
x (2k(cosh(2k) ~1)By — £, (sinh(2k) — Qk)).
We rewrite Eq. (A.8) as a quadratic equation of S, that is
4k?(cosh?(2k) — 1)82 — 2k(sinh(2k) cosh(2k) — 2k) (&4 + £_)Br A9)

+ (sinh?(2k) — 4k?)E 6 = 0.
The discriminant is
Ag= = k*(sinh(2k) cosh(2k) — 2k)?(&, + €.)?
— 4k (cosh?(2k) — 1)(sinh?(2k) — 4k*)E €
= k%(sinh(2k) — 2k cosh(2k))? (&4 + €2
+ k% sinh?(2k) (sinh?(2k) — 4k%) (&, — £.)2.
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Because tanh(2k) < 2k for all k¥ > 0 and Ei + €2 > 0, we have Ap¢ is always
positive. Hence, we have that (A.9) has two roots

k(sinh(2k) cosh(2k) — 2k) (€4 + &) £ A/ Ak =
4k2? sinh? (2k) '
We take the higher value fj + > 0 and then solve the system (A.7) as By = By +-

Br,+ =

Ifé_ = €4, we have

4sinh? k:<2k(cosh(2k) — 1)Bhy — &4 (sinh(2k) — 2k:)>

= (sinh(2k) cosh(2k) — 2k) (- — &1 ) — 2(sinh(2k) — 2k cosh(2k))&, + %«/Akg
> 0.
Then, we obtain from (A.7), that

2k(1 + cosh(2k)) Bk, + — £+ (2k + sinh(2k))

B = A (cosh(2k) — 1)Br., — &, (sSinh(2k) — 2k) _ 10k (A.10)
So that
(A,B,C,D) = A(1, ak,z, —aj = tanh k, — tanh k)
with A # 0 and ¢y (x2) = Azk(x2), with
zi(x2) = (z2 + ag =) sinh(kxs) — tanh k(ag zz2 + 1) cosh(kzs).
We find A from (A.2), such that
A? fll((zg)z +2k%(2,)* + k*23)dwg = 1. (A.11)
If0 < & < &, that will imply
2k(cosh(2k) — 1)Bk + — &—(sinh(2k) — 2k) > 0.
We further get from (A.7), that
B _A2k(1 + cosh(2k)) Bk, + — 57(2.]{3 + sinh(2k)) T
2k(cosh(2k) — 1) Bk, + — &—(sinh(2k) — 2k) ’
So that, we have
(A,B,C,D) = A(1, —bg =, by = tanh k, — tanh k)
with A # 0 and ¢ (x2) = Awg(z2), with
wg(z2) = (w2 — bi,z) sinh(kza) + (by,zx2 — 1) tanh k cosh(kzs).
We still find A from (A.2),
A? fll((wg)2 + 2% (w},)? + k*wi)dry = 1. (A.12)

We have just shown that
Mc(k,E) _ _max . 6*(¢/(_1)>2 + £+(¢I(1))2
oei2((-1,1) §° ((¢")? + 2k2(¢)? + kp?)da,
(sinh(2k) cosh(2k) — 2k) (&4 + &)

(sinh(2k) — 2k cosh(2k))? (&4 + £_)? ) 2
+ sinh?(2k)(sinh?(2k) — 4k?) (&, — £_)2

1
 4ksinh?(2k) | + (
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That variational problem is attained by the function ¢y (z2) = Azk(x2), where A
satisfies (A.11) or ¢p(x2) = Awg(x2), where A satisfies (A.12). The equality (3.6)
is shown and the first part of Proposition 3.1 then follows.

APPENDIX B. ASYMPTOTIC BEHAVIOR OF fi.(k,=) IN LOW/HIGH REGIME OF
WAVE NUMBER

Let us prove Proposition 3.1(2). Clearly, we have that p.(k,Z) is a decreasing
function in k > 0. It yields (3.7).

We first consider & — 0. Let us recall the Taylor’s expansion of sinh(2k) and
cosh(2k). We have

4 4 2
sinh(2k) = 2k + §k3 + ka’ +O(k%), and cosh(2k) = 1+ 2k + gk“ + O(K®).

We deduce that
sinh(2k) cosh(2k) — 2k §+ Sk +O(K*) 1 8

= =-— —k+0(K),
4k sinh?(2k) $+22+ 0K 3 15 ()
that
sinh(2k) - 25; cosh(2k) _ —3 —ézg/ﬁ +O(K*) 1 T 00
4k sinh*(2k) 16 + k% + O(k3) 6 45
and that
sinh®(2k)(sinh®(2k) —4k%) ¥+ BE+O(K*) 1 1o, O(k?)
16k2 sinh* (2k) S 64+ k2 4+ 0(k2) 12 15 '
We deduce that
i (6. Z) = 364+ €0 4yl + €05 b6 € (B)
pg HeVT =) = glee e 3607 ST TS TS '

That will imply (3.9), i.e.

pi(E) = %(& FE 48 e +E2).

Furthermore, we have that

. ,uc(kv E) 7 :LL(S'(E)
L 2

4ﬁ—a¢+%3_

V& e+

_ 7135 (4(§+ +E )+ (B.2)

Two limits (B.1) and (B.2) help us to get (3.8).

For high wave number, i.e. K — +00, we can see that

sinh(2k) cosh(2k) — 2k 1 — e 8% — Bke ¥
sinh?(2k) T 14 e 8k — etk

<2,

that

sinh(2k) — 2k cosh(2k)  11—2k— (1 + 2k)e~ 4k
sinh?(2k) 2 ek 4 Ok —2e—2k
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Hence,
sinh(2k) cosh(2k) — 2k
sinh?(2k) (€ +&-)
1e(k, Z) = 1 (Sinh(2k) - 2kcosh(2k))2(§ Le ) 3
o 4k sinh?(2k) T
* L ,
( B sinh2(2k))(€-'r —&)

< (26 +e) + @ + ).

That implies (3.10). The proof of the second assertion of Proposition 3.1 is com-
plete.

ApPPENDIX C. PROOF OF PROPOSITION 3.1(3)

In this appendix, we prove Proposition 3.1(3). We first show that
£ (¢'(=1))* + &4 (¢'(1))?

(B) = C.1
pelS) ¢ef1§<l£171)) §1 1 (@)2das (C1)
Indeed, let
/ 2 / 2
e wp  EEEDPE@)

$ef2((—1,1)) §1,(¢7)2dxs

and then prove that p3(2) = fi.(2). Clearly, we have p.(k,Z) < fi
k e R\{0}. It yields p3(Z) < fic(E). It suffices to show that fic(Z) > pg(E

that , ,
(=) + & (@) _ - o
Fpdn, T
Let k # 0 be small enough, we then obtain
E@LD+HE(0(1)? L)) + & (0L(1)*
§L1((91)2 + 2K2(9L)2 + k*62)da (CARES
That implies

te(k,E) > fic(B) — 2e.
We deduce that fi.(Z) = supyegy (o} te(k, Z), ie. (C.1).

Then, we show that

(¢ (1)) +& (1) 1 \/ﬁ
s SEGIEGOWE ey e ve). o

Let us consider the Lagrangian functional

oo =5( [

-1

(¢")2dws = 1) = €-(¢/(-1)* — (/)% (C3)

for any ¢ € H*((—1,1)) and 8 # 0. Owing to Lagrange multiplier theorem, the
extrema of the quotient

€-(¢'(-1))* + &4 (¢'(1))?
Sil(¢//)2d"£2
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are necessarily the stationary points (¢g, 8o) of Lo, which satisfy
1
J (¢0)?dws = 1,
-1

and

1
Bo | s — (€651 (<) + €461 (1) = 0
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(C.4)

(C.5)

for all w e ]9'2((—1, 1)). We obtain from (C.5) after taking integration by parts that

84) =0 on(-1,1).
and
{ 6(1) = €+65(1),
0(—1) = —&-¢5(—1).
Hence, ¢q is of the form
¢0($2) = (.T% — 1)(14332 + B)
Substituting this form of ¢q into (C.6), we have that
Bo(BA+ B) = (A + B),
Bo(BA—B) = (A-B).
Hence,
A(3Bo —&+) + B(Bo — &+) =0,
A(3B0 —&-) = B(Bo —¢-) = 0.
System (C.7) admits a nontrivial solution (A4, B) if and only if
(380 = &+)(Bo —&-) + (380 — €-)(Bo — &+) = 0.
It yields

305 —2(6+ +€)Bo + €64 =0,
The discriminant of (C.8) is

Doe = (§4 + 57)2 =36 & = fi —&E 42 >0

Then, Eq. (C.8) has two roots

fox =3 (6 +E /8 66 +2).

We take the higher value By 4. As By = o +, we have from (C.7), that

Ao+ —&-) = B(Bo,+ —§&-).
It is obvious that

3Bo+ — & =& 4/ — &€ +E2 >0,

Then we have

Bo,+ —&—
A=pB 2T 57
3B0,+ —&-
and
Go(2) = Bzo(z), with z(s) = (%IQ 1))

We continue using (C.4) to find a non-zero B. This yields

1
Bzf (25 (x2))%dxy = 1.
—1
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That is equivalent to
2
]B2 3M +4) =1,
B cr )
this yields
1 380+ — &

+ .
2v2 \/3953+ — 3089+ £ + TE2

That means, we observe

E(¢ (1)) +E.(¢/(1)2 1 \/ﬁ

max _1 Le 4 - )

deH2((—1,1)) Sl_l(qs//)zdxz 3 (f-ﬁ- 3 &5 — &€ 3 )
That variational problem is attained by the function

+ 1 350,+ & ( 50,+ —&
T2V2 \/3953+ — 3086 + 762 \3Bo+ —&-

Combining (C.1) and (C.2), we obtain Proposition 3.1(3).

Po(z2) = T + 1)(m§ —1).

APPENDIX D. COMMENTS ON THE PAPER OF DING, ZI AND LI

In [2], the authors Ding, Zi and Li construct an approximate solution generated

a s7a

by the maximal normal mode, (0%, @, ¢%)(t, z) = de* M, (Z) with k being fixed
such that % < M(k) < A. Applying Proposition 5.1, the nonlinear equations
(2.1)-(2.2) with the initial data

(0°,@,4¢°)(0) = (%, a,¢%)(0).

admits a strong solution (o, @) € CO([0,T™2¥), H' x H?) with an associated
pressure ¢° € CO([0, T™%%), L?). Let T° such that 5eMT’ = ¢y « 1. We define

T* = sup {t € (0, T™)[E (o (1), @ (£)) < Oy} > 0,
T = supft e (0,7")|| (0, @) (1) r2(e) < CFeM} > 0.

Then for all ¢+ < min{T?,T*, T**}, we have

t
52(06(t)7ﬂ6(t)) + Hatﬁé(t) H%Z(Q) + f Hvat’ljé(T)H%z(Q)dT < 0(5262/\1t.
0

In [2, Proposition 5.2], they claim that the difference functions
(Ud7 ’Jda qd) = (067 ’L_I:(S, qé) - (Uaa ﬁa7 qa)
enjoy
[(o, @72 () < C8%* (D.1)

for all p > 0. We believe that (D.1) needs to be corrected, not for all p > 0.
Precisely, we are in doubt about inequality (137) in that paper, that is for all
t < min{T°,T*,T**},

1
I\ po + 02 (1)0:@ (6) |72y + Ap| VI (1) 720y + ﬂfo Vo (s)[7 20y ds

t
< A(f0 [\/po + a0 ()@ (5[ 2 () + AuHVﬁd(s)“?Lz(Q)) (D.2)

+ A” Po + Ué(t)’ljd(t)Hiz(Q) + C(SBESAlt.
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Due to (D.2) and the following inequality

d —¢
S po + (T3 20
= QJ (po + o (t))ad(t) - atﬁd(t)derJ 000 (1) (1) P
@ Q
1 —
< KH Po + Ué(t)atﬁd(t)“%g(ﬂ) + A” £0 + UJ(t)ud(t)”%Q(Q) + 05363)‘1t7

it is claimed in [2, (138)] that
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(D.3)

d _, .
Vpot o? () ()72 + (H po + 0% (£)0,a" (1) 22 () + Aul\Vud(t)||2L2<n))

t
<A [ (W + @D a0y + AT ) s

+ A/ po + o®(t)ad(t) 132¢) + C§3edMt,

The inequality (D.1) is followed by applying Gronwall’s inequality to (D.4).

We shall explain the arguments of (D.2) in [2]. First, we still have
t
oo+ O30 ey + 20 | 190 8) s
¢
2 [ (et P+ € fuf(s,m, -1 dords
0 JorrLT

- | arblusPaz+ ( |+ o wploio)az)

t=0

+ J J (20,12 (s) + 29 (s) - Voo (s)ey — 000 (5)0,1%(s)) - 0% (s)ds.
0 Jo

We estimate
t
In/po + 03 (DA (1) |2 ) + 2uf0 [V 20%(5) |2y s
t
o j j (Exlul(s, 21, D) + € |ul(s, 21, —1)[?)dards
0 J2nwLT
< JQ gphlug(t)|?dz + Co3e3Mt,
That implies
t
/o + 08 ()20 (1) |2 ) + 20 f [V8,3(5) 2y s
t
—2f f (ol (s, a0, [ + E_|opud(s, 1, ~1)[?)dryds
0 J2#wLT
< AQJ (po + o (t))|a(t)2dZ + AMJ \Vad(t)|2dz
Q Q
A e D el —)P)day + O5%N
27 LT

By using the inequality

t t
AIVE 22 ) < A% f [9a(5) |2 s + ujo IV 8,(5) 2y s

(D.4)

(D.6)

(D.7)
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and the identity
M| (eludtt o, DP + € fud(ton, ~1)P)day
27 LT
t
—2 [ (@l P + € ful(symn, 1) Pdeds
0 JorrLT
¢
+ J J (£+|(?tu(11(5,l’1, 1)‘2 + £_|(}tutli(8,’£1, 71)|2)dl’1d$
0 JorLT
t
- f J (€4 |Aud — 0pud)? (s, 21,1) + E_|Aud — du|? (s, 21, —1))dx1ds,
0 JorrLT
it is obtained from (D.7) that (see (134) in [2])

|A/po + ¥ (t)ria(t) H%?(Q)

1
+ o A(UIVE O~ [ (Elud(ton, DP + & fulm, -1 P)d)
27 LT

2 (uved o) -
2 . 1% tU (S L2(Q)

(€4 1ovut (5,0, D + € [0 (s, 21, 1)) ) ds
27 LT

< A/ po + o0 (1) (1) 2 + COeM?
3 2 ! d 2 d 2 d 2
+ oA f (uIVE (5)]320) - j (&4 ud(s, 0, DI + € ud(s, 1, ~1)P)dar ) ds
0 2w LT

3 t
+ 5 J f (§+|Au‘11 — 6tu‘f|2(s,x1, 1)+ £,|Au§l — 8tu‘11|2(5,3:1, —1))dx1ds.
0 JorLT
(D.8)

Integrating (D.3) in time from 0 to ¢ and using (D.8) and Young’s inequality, the
authors deduce (D.2) without providing any detailed explanations.

However, we observe by integrating (D.3) in time that
. L (" Aes)ia
A/ po + Jé(t)ud(t)ﬂig(m < KJO RNQ )H@tud(s)Hiz(Q)ds + Ce3Mit,
Then the Lh.s of (D.2) will be bounded by
—d d i —d
/o + o2 (AT 220y + AIVE D220 + 1 J IV 8,3(5) |2y s
t
s 1 .
<A | AT ) s+ AUV e
1 (t 3 t
w0 | IV s + 30% [ 1970 s
P (et DP € fud (1))
27 LT
t
7 [t DP + € fud(sinn, ~DP)doads
0 J2rn LT

¢
+ J f (Ex|Aud — 0uud)? (s, 21, 1) + E_|Aud — dpud (s, 21, —1))dz; + Co3e3ME,
0 J2rLT
(D.9)
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We are not clear about the way in [2] to remove all integral terms over 2w LT in the
r.h.s of (D.9) to get (D.2) for all 1 > 0, especially the following term

(1]
2]

[10]
[11]

[12]

18]
[19]

[20]

f j (€4 Aud — Bl (s, 00, 1) + E_|Au — dpud 2 (s, 21, —1))dry.
2w LT
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