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LINEAR AND NONLINEAR ANALYSIS OF THE
RAYLEIGH-TAYLOR SYSTEM WITH NAVIER-SLIP BOUNDARY
CONDITIONS

TIEN-TAI NGUYEN

ABSTRACT. In this paper, we are interested in the linear and the nonlin-
ear Rayleigh instability for the incompressible Navier-Stokes equations with
Navier-slip boundary conditions around a laminar smooth density profile po(z2)
being increasing in an infinite slab 27LT x (—1,1) (L > 0, T is the usual
1D torus). The linear instability study of the viscous Rayleigh-Taylor model
amounts to the study of the following ordinary differential equation on the
finite interval (—1,1),

= N[pok?¢ — (pod')'] = Ma(9™) — 2k¢" + K*9) — gk?phd,  (0.1)
with the boundary conditions
P(—1) = ¢(1) =0,
ne” (1) = €4.¢'(1), (0.2)

pg"(=1) = =€-¢'(-1),

where A is the growth rate in time, k is the wave number transverse to the
density profile. For each k € L™1Z\{0}, we define a threshold of viscosity
coefficient pc(k, E) for linear instability. So that, in the k-supercritical regime,
i.e. u> pe(k,Z), we provide a spectral analysis adapting the operator method
of Lafitte-Nguyén in [12] and then prove that there are infinitely solutions of
(0.1)-(0.2). Secondly, we will extend a result of Grenier [6], by considering
a wider class of initial data to the nonlinear perturbation problem, based on
infinitely unstable modes of the linearized problem and we will prove nonlinear
Rayleigh-Taylor instability in a high regime of viscosity coefficient, namely
1> 38UPger—17 (o} He(k, E).
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1. INTRODUCTION

The Rayleigh-Taylor (RT) instability, studied first by Lord Rayleigh in [16] and
then Taylor [17] is well known as a gravity-driven instability in two semi-infinite
inviscid and incompressible fluids when the heavy one is on top of the light one.
It has attracted much attention due to both its physical and mathematical impor-
tance. Two applications worth mentioning are implosion of inertial confinement
fusion capsules [13] and core-collapse of supernovae [15]. For a detailed physical
comprehension of the RT instability, we refer to three survey papers [10, 18, 19].
Mathematically speaking, for the inviscid and incompressible regime with smooth
density profile, the classical RT instability was investigated by Lafitte [1 1], by Guo
and Hwang [1] and by Helffer and Lafitte [3].

Concerning the viscous RT instability, one of the first studies can be found
in the book of Chandrasekhar [I, Chap. X], considering two uniform viscous fluid
separated by a horizontal boundary and generalizing the classical result of Rayleigh
and Taylor. We refer the readers to mathematical viscous RT studies for two
compressible channel flows by Guo and Tice [5], for incompressible fluid in the
whole space R? by Jiang et. al [7] and Lafitte and Nguyén [12], respectively.

In this paper, we are concerned with the viscous RT of the nonhomogeneous
incompressible Navier-Stokes equations with gravity in a 2D slab domain Q =
27 LT x (—1,1) with L > 0 and T is the 1D-torus, that read as

Ot (ptl) + div(pi ® @) + VP = pAd — pg, (1.1)
divi = 0,
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where t = 0,7 = (z1,22) € 2rLT x (—1,1). The unknowns p := p(t, Z), @ := 4(t, )
and P := P(¢,%) denote the density, the velocity and the pressure of the fluid,
respectively, while p is the viscosity coefficient and ¢ := ge2, ¢ > 0 being the
gravitational constant. Let ¥4 = 27 LT x{+1}, the Navier-slip boundary conditions
proposed by Navier (see [14]) are given on X4 as follows

w-1=0,

(u(VE + Vil - i), = E(Z). (1.2)

Here, 7 is the outward normal vector of the boundary, (u(V# + V) - ), is the
tangential component of u(Vi + Val) - 7 and £(7) is a scalar function describing
the slip effect on the boundary, only taking nonnegative constant values £+ on ¥4,
respectively.

Let po and Py be two C'-functions on x5 such that P} = —gpo with /' = d/dx,.
Then, the laminar flow (po(x2),0, Py(x2)) is a steady-state solution of (1.1). Of
interest of this paper is to study the nonlinear instability of the above laminar flow
to Eq. (1.1)-(1.2) that satisfies

Po € Cl([_L 1])7 p6 >0 on [_17 1]a po(il) =P+ € <07 —i—OO)’ (13>
i.e. to study the nonlinear Rayleigh—Taylor instability problem.

Linearizing (1.1) in the vicinity of (po(z2),0, Po(z2)) and then seeking a growing
normal mode at a horizontal spatial frequency k € L~1Z\{0} of the form

ek(k)tﬁ(f) = GA(k)t(COS(kfl)w(fEQ),Sin(lml)e(@)vCOS(k$1)¢($2)>COS(kxl)fJ(@))Ta

the linear RT instability amounts to the investigation of the parameter \(k) € C
(ReX > 0) such that there exists a solution ¢ € H*((—1, 1)) of the following ordinary
differential equation for the third component of velocity

— XN (pok?d — (pod')') = (') — 2k°¢" + k*¢) — gk” piyo, (1.4)
with the boundary conditions
o(—1) = ¢(1) =0,
pe” (1) = £+.¢'(1), (L.5)

pe"(=1) = =§-¢'(-1).

Note that H*((—1,1)) — C3((—1,1)) allows us to write (1.5). In this case, such a
A is called a growth rate of the instability or a characteristic value of the linearized
problem (see Eq. (2.5) below) as in [1, Sect. 92-93, Chap. X]). We will present the
derivation of the physical model in Section 2.

As the density profile is increasing, we firstly show that X is always real in Lemma
2.1. Since our goal is to study instability, we restrict our study to the case A > 0.
Hence, for linear instability, we continue the spectral analysis of Helffer and Lafitte
[8], Lafitte and Nguyén [12] for Eq. (1.4)-(1.5).

For any horizontal spatial frequency k € L~*Z\{0}, we then define a k-supercritical
regime of the viscosity coefficient p > p.(k,Z) (see p.(k,Z) in Proposition 3.1) , we
first prove that there exist an infinite sequence of characteristic values (A, (k, tt))n>1,
decreasing towards 0 as n — 0. This is stated in Theorem 2.1.

The second goal, described in Section 5 is to obtain a nonlinear instability re-
sult on more general initial conditions using the linear result of Theorem 2.1 (see
(2.13)) and working in the regime p > 3supyer-17 (o} He(k, Z). The classical way
of proving nonlinear instability is to estimate the difference between the solution to
the nonlinear problem and the growing mode solution to the linearized problem. In
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order to show that, we will apply the general framework of Grenier in the celebrated
paper [0], that took the maximal growing mode 5€>‘1tﬁ1(f) with 0 < § « 1 to be an
approximate solution of the nonlinear perturbation equation. Our nonlinear result,
Theorem 2.2, generalizes Grenier [0].

Organization of the paper. In Section 2, we present the governing equations
and state the main results. Section 3 is devoted to some materials for the linear
study. Then, in Section 4, we prove the linear instability, i.e. Theorem 2.1. The
last Section 5 is to prove the nonlinear instability, i.e. Theorem 2.2.

2. MAIN RESULTS

2.1. The governing equations. Let us recall the steady state (po(32), 0, Py(x2))
of (1.1), with pg satisfies (1.3) and P} = —gpo. We now derive the linearization of
Eq. (1.1) around the equilibrium state (po(22), 0, Py(x2)). The perturbations

o=p—po, Gi=i—-0, p=P-P
thus satisfy

0o + U - V(PO + 0') =0,
(po + 0)0ri + (po + 0)d - Vi + Vp = pAd — g, (2.1)
divt’ = 0.
Note that (u(Vii+ Val)-ii), = 7 x (u(Vi + Vi) - i) x 7 and that 7 = (0, £1)7.
Hence, the boundary conditions are
uy =0, on X4,
1Oz, w1 = €4y on X, (2.2)
WOzt = —€_uy onY_.
The linearized system reads as
0ro + phuz = 0,
P00t + Vp = pAid — og, (2.3)
divi = 0,
with the corresponding boundary conditions remain the same as (2.2).

The linear RT instability problem is to seek a growing mode of the form

o(t, %) = eM cos(kzi)w(z2),
up (t,Z) = eMsin(kxy)0(x2),

ua(t, T) = eM cos(kxy)p(x2), (24)
q(t, T) = e cos(kxy)q(xs).
where k € L=1Z\{0}, A € C\{0} and ReX > 0. It follows from (2.3) that
Aw + py¢ =0,
Aol — kg + (k20 — 0") = 0, o)

Aood + ¢ + p(k*d — ¢") = —gw,
kO+ ¢ =0

and from (2.2) that
BE1) =0, po'(1) = €,0(1), pb!(—1) = —€_6(—1). (2.6
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We obtain
w= —p—6¢ 0 = —lgb’ = —i()\ ¢ + (k2 — ¢™)) (2.7)
= ) ) = L ) q 2 Lo 1% . :

Then, we substitute ¢,w into (2.5), to get a fourth-order ordinary equation (1.4).
We have the boundary conditions deduced from (2.2) that are obtained by assuming
the solution to be in C?([—1,1]), that are (1.5).

2.2. Main results. Before stating our main results, we present our materials for
the linearized problem.

When the density profile pg is increasing, we firstly show that all characteristic
values \ are real. Let Ly' = || Z—g |0, we further obtain the following uniform upper

bound ,/#- of A.
0

Lemma 2.1. For any k € L='Z\{0},

e all characteristic values A are always real and non-negative,

e all characteristic values \ satisfy that X <, /{-.
0

Proof of Lemma 2.1 is given in Section 3.1. In view of Lemma 2.1, we seek for
functions ¢ being real and we only consider vector space of real functions in what
follows.

We now study the linearized problem, i.e. (1.4)-(1.5). Of importance is to
construct a bilinear coercive form By x, as A = 0 and k € R\{0} (i.e. we do not
restrict A € (0,4/7-) and k € L=17Z\{0} at this step) on the functional space

H*((~1,1)) := {¢ € H*((~1,1)), ¢(£1) = 0},

so that we can transform our problem into solving the variational problem
1
ABiau(9,0) = gkzj phdfdrs  for all @ € H?((—1,1)), (2.8)
-1

for all ¢,0 staying in the functional space H2((—1,1)) associated with the norm
A/ Bieau(-5 ). The desired bilinear form By, » , is

1

1
Bixu (9, 0) :=/\f po(E*90 + 19 o' )dxy + ,uf (" o" + 2k o' + k*o)dxo (2.9)
-1 —1 )

— & V'(-1)d(-1) — &9 (1) (1),
For all A = 0 and k € R\{0}, we will place ourselves in a k-supercritical regime of
the viscosity coefficient p > u.(k,Z) (see precise formula p.(k,Z) in Proposition
3.1) such that
B0, is coercive if and only if p > p.(k, =), (2.10)
it yields By x,, is coercive for all A > 0 and p > p.(k, Z). In view of the Riesz rep-

resentation theorem, we thus obtain an abstract operator Y  ,, from H?((—1,1))
to its dual, such that

Bk,)\,u(qsa 0) = <Yk,)\,,u¢7 0> (211)
for all @ € H?((—1,1)). It turns out that the existence of H*((—1,1)) solutions of
Eq. (1.4)-(1.5) on (—1,1) is reduced to that one of weak solutions ¢ € H?((—1,1)
of

A ud = gk*py
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n (—1,1). Owing to a bootstrap argument to solution ¢, we obtain (see Proposition
3.3) Yj . explicitly, that is a fourth differential operator of the form

Yiaud = Mpok?d — (pod')') + (6™ — 2k2¢" + k*9)

and get back that ¢ € H*((—1,1)) satisfies (1.4) on (—1,1) and the boundary
conditions (1.5).

Denoting by M the operator of multiplication by 1/p) in L?((—1,1)), the prob-

lem of finding (A, ¢) is thus to find v such that
A ~1
gﬁv = MYk,)\,}LMU'

This is the aim of Section 4. The theory of self-adjoint and compact operators for
a Sturm-Liouville problem on the functional space H2((—1,1)) will play a key role
here. Once it is proved that the operator MYk_/\l M/\/l is compact and self-adjoint
from L?((—1,1)) to itself, then its discrete spectrum is a sequence of eigenvalues
(denoted by 7, (k, A, 1)) and the problem of finding characteristic values A(k, u) of
(1.4) amounts to solving all the equations

Y lky A, p) = (2.12)

gk?’

For each n, we will show that (2.12) has a unique root A, € R} because of the
decrease of -, in A, which is an easy extension of Kato’s perturbation theory of
spectrum of operators [9]. In addition, thanks to Lemma 2.1(2), we then have A,

is a characteristic value, hence A\, < 4 /L% for all n > 1. That implies that for any
horizontal spatial frequency k € L~1Z\{0}, there exists a sequence of characteristic

values (A, (k, i1))n>1, that is uniformly bounded and decreases towards 0 as n — .

We sum up the above arguments in our first theorem.
Theorem 2.1. Let k€ L=1Z\{0} be fized and let py satisfy that (1.3), i.e.
po € CH([~1,1]), po(£l) = pi € (0,0), pp >0 everywhere on [—1,1].

For all p > pc(k,Z), there exists an infinite sequence (A, dn)n=1 with A, > 0
decreasing towards 0 and ¢, € H*((—1,1)), ¢, non trivial, satisfying (1.4)-(1.5).

Once Eq. (1.4)-(1.5) is solved, we go back to the linearized equations (2.3).
For a fixed k € L7'Z\{0}, we obtain a sequence of solutions to the linearized
equations (2.3) as indicated in Proposition 4.2, that are (e "m0, (#));51, with
Us(#) = (04:,p;)():

Let us choose a kg € L™1Z\{0}. In view of getting infinitely many characteristic

values of the linearized problem, we introduce a linear combination of unstable
growing modes

M

UM (t,2) =6 ) cjerFomtl (i) (2.13)
j=1

to construct an approximate solution to the nonlinear problem (1.1)-(1.2), with

0 > 0 and constants c; being chosen such that

" 1 .
el 2 ) > 5 >l 2 @) > 0. (2.14)

j=2
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Assume (2.1)-(2.2) is supplemented with initial datum U (0, Z), there is a unique

local strong solution (0, @) with an associated pressure ¢° to the nonlinear per-

turbed problems (2.1)—(2.2) on [0, Tinax) (see Proposition 5.1). We define the dif-
ferences

(Uda l—l:dv qd) = (067 ﬁéa q6) - (UMv 6M7 q]\/[)
and then estimate the bound of [[(¢¢, @%)|12(q) in time (see Proposition 5.2) in the
regime

> 31c(2), with p(2) :=  sup  pe(k,E). (2.15)
keL=17)\{0}

Indeed, since p > 3u.(E), we choose a constant wp > 0 such that
1> (34 @o)pe(E). (2.16)

Hence, vy = 3320 e (1,2). It follows from Theorem 2.1 and Lemma 2.1(2) that

) 24wg
exists
0<A= sup A(k,p) <4/i. (2.17)
keL-17)\{0} Lo

We further look for ko € L=1Z\{0} to have that

2u,
A = A (ko, ) > Aa(ko, ) > -+ > An (Ko, p) > ?OA > Avigi(ko, ) > ... (2.18)

For ¢ small enough, we then deduce the bound of |[(¢%, @%)| 12 (q) in Proposition 5.2,
that is

N 3
dipy ~d 2 3 oAt - } Equt)
0.7 ey < 5 (X e 4 maxt0. 0= N) (o fes) )’
iz
The nonlinear result then follows.

Theorem 2.2. Let u.(Z) be defined as in (2.15) and p > 3u.(Z). Let py satisfies
(1.3), ie.

po € CH([~1,1]), po(£1) = p+ € (0,0), ph > 0 everywhere on [—1,1].

Let M € N*, there exist positive constants mg, oo and €y such that for any é € (0, do),
the nonlinear perturbation equation (2.1) with boundary conditions (2.2) and the
initial data 62?11 cj(jj (Z) satisfying (2.14) admits a unique local strong solution
(00, 1) with an associated pressure q° such that

Hﬁé(Ta)”Lz(sz) = Mo¢o, (2.19)

where T? € (0, Trax) satisfies uniquely 52;‘11 |cj|e>‘jT‘S = €.

3. PRELIMINARIES

3.1. Proof of Lemma 2.1. Let ¢ € H*((—1,1)) satisfy (1.4)-(1.5) Multiplying by
¢ on both sides of (1.4) and then using the integration by parts, we get that

1 1 1
~ [ oy das = —iro|_ + [ oo
1 - —1
that

1 1
7J\ ¢”¢dl’2:*¢,¢l +J\ d)/d)/dl'g
-1 -1 1

and that
_ ¢/I¢I

1 1 1 1
J ¢(4)¢d:172 _ ¢I//¢ + J (b”(rb”d‘T%
1 — —1 1
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we obtain that

A [ (10 4 216 4 K0P~ €D - €l )

) ) (3.1)
+ )\Zf (K2p0l6l? + pold/|? ) daa = ngf Pl des.
—1 —1
Suppose that A = A\; + ¢)g, then one deduces from (3.1) that
1
M | (10712 + 20206+ 40P doz — €16 (-DP = €416 (D)
- ) ) (3.2)
+ (A=) j (K2p0l01? + pol¢/|?) dza = gh? j polof2dzs
—1 —1
and that
1
dap | (107 4 2K216/ + K46 ) dea — €1/ (-1 - €410 (DF)
-1
(3.3)

1
=2k [ (Rmlof? + pold?) oo
-1

If Ay # 0, (3.3) leads us to
1 1
o [ (Rmlof? + polo')ds = | (10 + 221 + Kol o
—1 —1

=& (D)~ &g’ (D,
which yields
1 1
~( - 23) L (k2001912 + pole|? ) das = —23 J_1 (K200l912 + pols/|? ) dey

1
e f ohlo|2ds.
1

Equivalently,
1

1
(OF428) | (Kpolol + pold)doa = ~gk | phlofPdon (3.0)
1 1

That implies

1 1
0% + M- | [0fdes < ~gk* | phloPa
—1 —1

The positivity of pj, yields a contradiction, then A is real. Due to (3.2) again, we
further get that

1

1
2 J po(K|6[2 + |/ P)das < gsz phlo[2dza.
—1 1

It tells us that A is bounded by , /L%. This finishes the proof of Lemma 2.1.

3.2. The threshold of viscosity coefficient. We begin with the precise formula
of critical viscosity coefficients p.(k,Z) (see (2.10) above) for all k € R\{0}. Note
that p.(k,Z) = pe(—k, E) for all k € R\{0}, it suffices to find pu.(k,Z) for k € R.

Proposition 3.1. The following results hold.
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(1) For all k € R, we have

NP O .

~oemz (S §L (|92 + 2K21' 2 + Ko|2)dny

Uc(kvE)

Moreover,
(sinh(2k) cosh(2k) — 2k) (&4 + €_)

1 1
(k) = ————— inh(2k) — 2k cosh(2k))? _)? 2
e, Z) = s | ((Gmh(2k) = 2kcosh() (€ + €)
+ sinh?(2k)(sinh?(2k) — 4k?) (&, — £_)2
(3.6)
(2) pe(k,E) is a decreasing function in k € Ry and
lim fic(k,Z) = sup pe(k,E) =: pe(2). (3.7)
k—0 keR\{0}
We have the asymptotic expansion of u.(k,Z) as k — 0%,
R 1
pikE) = 3 (6 + &+ /8~ +€)
A€ — .6 4 4€2 (3.8)

- %(4(5+ +E)+ K2+ O(k?).

-6 +¢&
That implies
pe(8) = é(@ +E /6 &g+ 5%). (3.9)

As k >» 1, we obtain the limit

2063 +¢2)

(3) We have

r(_ 2 / 2
-, L)
ef2((~1,1)) §_1 10”2 ds (3.11)

- GRTANCEra)

The proof is postponed to the appendices A, B, C.

Remark 3.1. We see that u.(Z) in [3, Proposition 2.2] is incorrect and redo the
computation the critical viscosity coefficient in Appendiz C.2. The authors in [3]
consider 2 LT x (0,1) instead of 2nLT x (—1,1) and constant values ko 1 instead
of &x. The formula of the critical viscosity defined as in [3, (1.29)] is

e = sup Z(¢),
¢y

where

1 1
Y= (o2 HY(O0.1) n HA(O0.1).5 [ 10"Pde = 1)

ko ky
206) = 2P + B
The authors in [3, Proposition 2.2] claim that p. = % if ko = k1 = k > 0. However,
in that case, let us take ¢ = %(xQ —x) € ), then we have

Z(%(ﬁ—x)) = g > %
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It is a contradiction.

3.3. A bilinear form and a self-adjoint invertible operator. In what follows
in this section we have A > 0. Let us recall the definition of Bz, from (2.9),

1 1
Biu(9,0) = )\f po(k*Vo + 19 o' )dxy + uf (0" 0" + 2k%9' o' + kK 90)dxs
-1 —1

— &V (=)o (—1) = &9'(1)d (1)
Lemma 3.1. We have the followings.

o Forall >0, By, is a continuous bilinear form on H?((—1,1)).
o For all pn > pe(k,Z), Bra, is coercive.

Proof of Lemma 3.1. Clearly, By, is a bilinear form on H?((—1,1)). We then
establish the boundedness of By, x . The integral terms of By, x , are bounded by

C* O+ Dl ga el (3.12)
Meanwhile, it follows from the general Sobolev inequality that
* . 1
1Y) coi((=1,1)) < C*|IY) |z ((=1,1)) for all j e [0, §)~
Therefore, we obtain
max ([0 (=1)%, [0' (D)%) < O |3 1,1y

where C* is a generic constant depending on py and other physical parameters,
independent of A\. Consequently, we get

1Biau(d,0)] < C*(2+ )\)\|19HH2((71,1))HQ\|H2((71,1))a (3.13)
i.e. Bi,x, is bounded.

We move to show the coercivity of By x,,. We have that
1

1
Biau(9,9) = Af po(K2[01? + [9'|*)day + “J (19" + 282191 + k*9|?)dao
—1 —1
S CACS VIR SUUACHI R
As A= 0 and p > p.(k,E), we have

1
Bk’)\“u(’l?,’l?) 2 )\J p()(k2|19|2 + |19/|2)d;v2
-1
1
(1 ek, D)) f (0" + 282102 + K4 0]2)dey  (3.14)
-1

1
> (0= e ) | (077 + 20200+ 40,
—1

It then follows from (3.13) and (3.14) that By, is a continuous and coercive
bilinear form on H?((—1,1)). O

With the above property of B x ., we then establish that.

Proposition 3.2. Let ju > pu.(k,Z) and (H?*((=1,1)))’ be the dual space of H*((—1,1)),
associated with the norm /By (-, ). There is a unique operator

Vi € L(H?((=1,1)), (H*((=1,1)))),
that is also bijective, such that
B (0, 0) = Y, 0) (3.15)
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for all ¥, 0 H?((—1,1)).

Proof. 1t follows from Riesz representation theorem that there exists an operator
Vi € LIH*((=1,1)), (H*((—1,1)))') such that

Bru(9;0) = Ve, 0
for all o € H?((—1,1)). Proof of Proposition 3.1 is complete. O

Proposition 3.3. We have the following results.

(1) For all¥ e H*((—1,1)),
Viau® = AME2pod — (po?')') + p(9® — 229" + k*9)
in D'((-1,1)). )
(2) Let f e L?((—1,1)) be given, there exists a unique solution ¥ € H?((—1,1))
0
! Yiaud = f in (H*((-1,1)))', (3.16)
then ¥ € H*((—1,1)) satisfies the boundary conditions (1.5).

Proof. Tt follows from Proposition 3.2 that there is a unique 9 € H2((—1,1)) such

that
1

1
)\f po(k*9o + 190 )dxa + p f (0" 0" + 2k o' + k*90)dws = (Vi 2 19, 0) (3.17)
-1

-1
for all p € CP((—1,1)). We respectively define (¢”)" and (") in the distributional
sense as the first and second derivative of ¥ which is in L?((—1,1)). Hence, (3.17)
is equivalent to

1

1
)\f pg(k2ﬂ9+19’g')dx2+uf ((9")" 0+ 2k*9 o + k*V)dwa = (Vi x u0, 0) (3.18)
-1 —1

for all p € C((—1,1)). We deduce from (3.18) that

1
AJ (K2 pod — (po"))oda + p{(9")" = 2k*9" + k*9, 0) = (Vi aut o) (3.19)
-1

for all p € C°((—1,1)). The resulting equation implies that
w((9")" = 229" + k*9) + A(k?po? — (po?')') = Yea ¥ in D'((—1,1)). (3.20)
The first assertion holds.

Under the assumption f € L?((—1,1)), we then enhance the regularity of the
weak solution ¥ € H?((—1,1)) of (3.20). Indeed, we rewrite (3.20) as

1 1
Mf (9")" odwy = J (Yiru® + 2uk>0" — pk*d — A2 pod + Apo?')') odzs
1 -1

for all g € CF((—1,1)). Since (f + 2uk?9” — uk*9 — Ak%pg + A(po?’)’) belongs to
L?((—1,1)), it then follows from (3.19) that (¢9")"” € L?((—1,1)). Furthermore, by
usual distribution theory, we define ¢ € D’((—1,1)) such that

(6,00 = {(0")",Co) (3.21)

for all p € C§((—1,1)), where (,(z) = §*_(o(y) — Sl_l o(s)ds)dzy. Hence, it can be
seen that

@00 =—(¢,0) = ~((")" . () = <), @
that implies (") — ¢ = constant. In view of (¢”)” € L*((—1,1)) and (3.21), we
know that (9”) € L*((—1,1)). Since ¥ € H((—1,1)) and (9"), (9")" € L*((~1,1)),
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it tells us that 9 belongs to H*((—1,1)) and we can take their traces of derivatives
of 9 up to order 3.

_ By exploiting (3.19), we then show that ¢ satisfies (1.5). Indeed, for all g €
H?((—1,1)), we perform the integration by parts to obtain from (3.19) that
1 1
)\f po(k*Vo + 19 o' )dxy + ,UJ (0" 0" + 2k*9' o' + k*9p)dxo
—1 -1

_ 19//9/ ! _ 2k219/

1 1
0 ) = f (Y x,u0) 0dzs.

It then follows from the definition of the bilinear form By, y , that

w(o7d' il) — £ 9 (—1)d(=1) + &9 (1) (1),
(3.22)

for all p € H?((—1,1)). By collecting all terms corresponding to ¢'(+1) in (3.22),
we deduce that

1
- /\poﬂ’p‘fl + u(ﬁ”’g -

1
>\P019/Q _19//9/7 —2/%‘219/9

pd" (£1) = £€49'(£1).
We have just proved that ¢ satisfies (1.5). This ends the proof of Proposition
3.1. d

We obtain more information on the inverse operator Yk_A1 u
A,

Proposition 3.4. The operator ij)iu : L2((—1,1)) — L2((—1,1)) is compact and
self-adjoint.

Proof. 1t follows from Proposmon 3.3 that Y} ., being supplemented with (1.5),
admits an inverse operator Yk_,k,u from L?((—1,1)) to a subspace of H*((—1,1))
requiring all elements satisfy (1.5), which is symmetric due to Proposition 3.1.
We compose Y,;/\l)u with the continuous injection from H*((—1,1)) to L*((—1,1)).
Notice that the embedding H?((—1,1)) — HI((-1,1)) for p > ¢ = 0 is compact.
Therefore, ij# is compact and self-adjoint from LZ(( 1)) to L2((—=1,1)). O

4. LINEAR INSTABILITY

4.1. A sequence of characteristic values. We continue considering A > 0 and
study the operator Sy, 1= MY}y #M, where M is the operator of multiplication

by ﬁ.

Proposition 4.1. Under the hypothesis (1.3), the operator Sy x, @ L*((—1,1)) —
L?((—1,1)) is compact and self-adjoint.

Proof. Due to the assumption of pg (1.3), the operator Si.»,, is well-defined and
bounded from L2((—1,1)) to itself. ij)iu is compact, so is Sk x mu. Moreover,

because both the inverse Yk_i u and M are self-adjoint, the self-adjointness of Sy » ,
follows. 0

As a result of the spectral theory of compact and self-adjoint operators, the
point spectrum of Sy, » ,, is discrete, i.e. is a decreasing sequence {v,(k, A, it) }n>1 of
positive eigenvalues of Sy » , that tends to 0 as n — o0, associated with normalized
orthogonal eigenvectors {w, }n>1 in L?((—1,1)). That means

Seau®n = MY uMw" = Yn(k, \, ).
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So that ¢, = ka/\l’“./\/lwn belongs to H*((—1,1)) and satisfies (1.5). One thus has

Vn(ka )\7 M)Yk,)\,pd)n = p6¢n (41)

and ¢, satisfies (1.5). (4.1) also tells us that 7, (k, A, 1) > 0 for all n. Indeed, we

obtain
1

1
'Yn(k'v A, ,u) J-_l(yk,A,u¢n)¢nd-T2 = f

p6 | On | 2d$2 :
1
That implies

1
'Vn(kv)\»/‘)Bk,)\,u(qﬁnv(bn) = f—l p6|¢n|2dx2 (42)

Since Bz, (¢n, ¢n) > 0 and py > 0 on (—1,1), we know that v, (k, A, 1) is positive.

For each n, ¢, is a solution of (1.4)-(1.5) if and only if there are positive A, such
that (2.12). To solve (2.12), we use two following lemmas.

Lemma 4.1. For each n,
o Yo(k, A\, 1) and ¢, is differentiable in A.
o v, (k,\, 1) is decreasing in A.

Proof. The proof of Lemma 4.1(1) is as same as [12, Lemma 3.3], we omit detail
here. We now prove that v, (k, A, p) is decreasing in \.

Let z, = df;, it follows from (4.1) that

, d 1
Poen + 57

N (m)ﬂfﬂ?n (4.3)

k‘2 n — /7 \/ Y, =
pod (Pody)" + Yeau2 e )

n (—1,1). At zo = +1, we have

zn(—1) = 2,(1) = 0,
pzp (1) = &4, (1), (4.4)
pel(=1) = —€ 20 (—1).
Multiplying by ¢, on both sides of (4.3), we obtain that
1

1
f (K p06n — (p0d,))bndzs + f (Vi pn)budas
-1

X - X (4.5)

1 d 1 )
= 7y f d e b |2dms.
Yo (R, X, 1) L’OOZ”% v+ 5 G A,M))Lpow [“dez

Note that z, enjoys (4.4), then

Jll(y’“’%uzn)d)nd@ - J

1 1
1

(Yk,A,;L¢n)an$2 = ’Y(k)‘ﬂ)f ) 0627L¢nd=’172~

That implies

d 1

1 1
P (m) J;l Pf)w)n‘zdah = J_l(kQPO(bn — (po¢},) ) Pnds. (4.6)

Using the integration by parts, we obtain from (4.6) that

A (sa) [ bl = [ po(210ul? 416, e > 0
ANk, A, ) )y PO L PO e T

Consequently, v, (k, A, 1) is decreasing in A > 0. O
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4.2. Proof of Theorem 2.1. In view of Lemma 4.1, we are able to prove Theorem
2.1.

Proof of Theorem 2.1. For each n, there is only one solution A, of (2.12). Indeed,
using (4.2), we know that

1 1 1
W’(kAM)J 1;06|¢n|2dx2 = J 1(Yk,/\,u¢n)¢nd$2 = B u(Pns Pn)-
Hence, it follows from (3.14) that
1 1 1
/ 2 2 2 712
o) p¢ndw>Aka¢n+¢n da
Pyn(k7>‘nu’) J—l 0| | 2 1 O( | | ‘ ‘ ) 2

1
e el ) | (67 + 287100, + 146, )

1 1
>0 [ polon Pz + (s = el 2K | [0 P
—1 1

That implies
— =)) k4
L07n (ka Aa IU/) P+
Consequently, for all n > 1,

A
T > gk? for \ large. (4.7)
TnFs Ay [

Meanwhile, for all n > 1 and A < § L%’
A A
<
Wk A ) oy (e, 4/ )

—0as A —0. (4.8)

In view of (4.7), (4.8) and Lemma 4.1, we obtain only one solution M\, of (2.12)
and (A, ¢n,) satisfies (1.4)-(1.5). That means for all n, ), is a characteristic value,

hence it is bounded by , /%

-,
We now prove that (A,)n>1 decreases towards 0 as n — o0. If A\, < Ajppq for
some m = 1, we have

7m(ka )‘maﬂ) > ’Ym(k;, )‘m+17/’[/)'

Meanwhile, we also have

Vm(ka )\m+17 /1,) > 7m+1(k7 )\m+17 M)-

That implies
)\m >\m+1
e Y (K A 1) > Y1 (Bs A1, 1) = e

That contradiction tells us that (A, ),>1 is a decreasing sequence. Suppose that

lim A, = dy > 0.
n—0o0

Note that for all n, v, (k, A\p, ) = g/\k"z, then

2 Yn(R; An, = .
'Yn(k>d0a,u) o (k A /’L) gkg

Let n — o0, we get that 0 > dy, a contradiction, i.e. A, decreases towards 0 as
n — 00. The proof of Theorem 2.1 is complete. U
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4.3. Growing mode solutions of the linearized system. We now solve the
linearized equations (2.3) to prepare for our nonlinear part.

Proposition 4.2. For each k € L=*Z\{0}\{0} and for all i > p.(k,=), there exists
an infinite sequence of solutions (n = 1)

A Bt (7) = A B0 (g, iy, )T ()

cos(kxy )wn (x2)
in(kx1)0n (2)
cos(kz1)pn (12)
cos(kx1)qn (z2)

to the linearized equation (2.3)-(2.2), such that
o, € HX(Q), i, € (H*(Q))? and p, € H'(Q).

Proof. For each solution A, € (0,4/7) of (2.12), we then have a solution ¢, =
ijmu/\/lwn e H*((—1,1)) of (1.4)-(1.5) as A = \,. We then find a solution to

the system (2.5) as A = \,,. Firstly, we obtain 6,, = —% and w,, = —pl&—in. Due to
(2.7), we get

Gn = = npodss + p(k26), — §1)) € H'(~1,1)).

k
With a solution (wp, 0r, ¢n,¢n) of (2.5), we then conclude that

e)m (k;N)t(o—T“ Un,1, un,Q;p’n)T(‘f)

= e’\”(k’“)t(cos(kxl)wn(scg), sin(kx1)0,, (z2), cos(kxy)pn (x2), cos(kwl)qn(xg))T

is a solution to the linearized equation (2.3)-(2.2). O

5. NONLINEAR INSTABILITY

5.1. The local existence. The first important things are the local existence of
strong solutions to the nonlinear perturbed equation and a prior nonlinear energy
estimates to those solutions. We restate Proposition 4.1 of [2].

Proposition 5.1. Suppose that the steady state satisfies (1.3). Then for any given
initial data (oo,1) € (H*(2) n L*®(Q)) x (H?*(Q))? satisfying diviip = 0, and
also being compatible with the boundary conditions (1.2), the nonlinear perturbed
problem (2.1) has a local strong solution

(0,4, Vg) € C([0,T™>), H(Q) x (H*(Q))* x (L*(2)))*. (5.1)

Let £(t) := \/Ha(t)Hip(Q) + ||t )HH2(Q) and dg > 0 be sufficiently small, we further
get that if E(t) < &y, there holds

t
EX(t) + [(Va, @) 720 +J (I ()1 71 ) + 1(8) 722yl
(5.2)

< Gy 52 J (o, @) HLz(Q ds)

Thanks to Proposition 4.2, we will formulate a sequence of approximate solutions
e (BT, (£) to the nonlinear perturbed problem (2.1)-(2.2), that are solutions to
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the linearized one (2.3). Let us fix a k = ko such that (2.18) holds. For ¢ > 0, we
define

M
(oM, a™M M) (t,Z) = Z Fop tU (5.3)

Keeping in mind that minj_; 17 po > 0, then due to the embedding from H?(Q) to
L*(Q)), there exists a constant dp > 0 such that

S 1.
Soll 3 05(0,2) |20y > 5 min_po(x2). (5.4)
e 2 [-1,1]

Hence,

1 . S

3 [I_mn] po(r2) < mén(ﬂo(ﬂﬁz) +o™M(0,))
for 6 < 6. By virtue of Proposition 5.1, the perturbed problem (2.1)-(2.2) with
initial data (o™, @™, ¢M)(0) admits a strong solution

(0%, @) € CO([0, T™*), H () x (H*())?)
with an associated pressure ¢° € CO([0, T™#*), L?()). Furthermore, we have
1 . . -
3 (min, po(w2) < inf(po(z) + o°(t, 7))
for all ¢ € [0, T™>>).

In what follows, the constants C;(i > 1) are universal ones depending only on
physical parameters, M and c;(j > 1).

Let Fp(t) = Z 1 lejlerit and 0 < €9 « 1 be fixed later (5.45). There exists a
unique 79 such that (5FM(T‘5) = ¢g. Let

Cr = A/l )21 ) + [T O) 320y Co = 3/lo™ )30y + [TV (0)[3:(q
We define

T-ﬂw{ (0,T")|E (0" (£), @ (1) < C1do} > 0, 5
T** .— sup{t c (0 dex)|”( ) —»5)(75)HL2(Q) < 2025F]V[(t)} > 0. .

Note that £(a°(0),@°(0)) = C16 < C16p and because of (5.1), we then have T* > 0.
Similarly, we have T7** > 0. Then for all ¢t < min{7T%, T*, T**}, it follows from (5.2)
that

(o’ (1), @ (1)) + [T (V)20 JHV iz dr < Cs8°Fi (). (5.6)

5.2. The difference functions. Let
ol —gd — oM gl — g —gM qd:qé_qM

Then (04, %, q?) satisfies

010 + phud = —i? - Voo,
P00 — pATt + Vgl = —0°0,i@° — (po + o®)@® - Vii? — goley, (5.7)
divii® = 0.

The initial condition is
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and the boundary conditions are

ug =0, on X,
posud = ud onxy, (5.9)
pop,ud = —&_uf on X_.

with compatibility conditions read as

ud (0,21, —1) = ud(0,21,1), diva?(0) = 0. (5.10)

We now establish the error estimate for |2 (q).

Proposition 5.2. For all t < min(T°, T*,T**), there holds

N

J(8) () < Cu*(Y, sl + maax(0, M = N) | mave Jesled M2, (5.11)

The proof of Proposition 5.2 relies on Lemmas 5.1, 5.2, 5.3, 5.4 below.

Lemma 5.1. We have the following inequalities

(1078 Ol + 107 @ Ol ) < Co0Fue(t),  (5.12)

0<s<2,0<7<1

and
lo® () @) + lof ()] L2) < CedFar(t). (5.13)

Proof. For T € {0, 1},
M —
oqaM(t) = Y, Nje;eN'U;(E),
j=1
it yields, for all s € {0,1, 2},
[0 @™ ()]s () < CroFu(t).

In view of (5.6), we then obtain that for s € {0,1,2} and 7 € {0, 1},
o7 a(t)]

o) < 07T (8) | e (o) + 1078 (8) | s (0) < Cs0Fni(t).
To prove (5.13), we use (5.7); and (5.6) again,
”Ud(t)”Hl(Q) + Hag(t)Hw(Q) < Hgé(t)HHl(Q) + o™ ()] a1 (e
+ Colu§(t) | 2@y + |7 (1) 12(0) VO |22 (e
< 0105FM(t).

Lemma 5.1 follows. O

We derive the following lemma for ;.

Lemma 5.2. The largest characteristic value Ay is the solution of the variational
problem

1
1 571 p6|¢|2dx2

—s = max —_—,
gk?  ger2((—1,1)) M B, u(9, 0)

where the bilinear form By x, ;. is defined as in (2.9) and ¢y is an extremal function.

(5.14)
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Proof. For all A > 0, we solve the variational problem

1
Bk, A, 1) = max (f 1 Pl des|o € A2((-1,1)), ABrau(6,6) =1).  (5.15)

Let us define the Lagrangian functional

1
Lp(¢, Bk, A p)) = £1 polélPdws — B(k, A, 1) (ABr,x,1u(¢,¢) — 1). (5.16)

Thanks to the Lagrange multiplier theorem, it suffices to find a stationary point
(B, ) of Lg, that satisfies

ABiu(6,0) =1 (5.17)
and

1
f phd0ds — Bk A, f)ABy . (6,6) = 0, (5.18)
-1

for all § € H?((—1,1)). Restricting # € CP((—1,1)) and following the line of

Proposition 3.3, one deduces from (5.18) that ¢ has to satisfy

Bk, A\ )AYg b = pod (5.19)

in a weak sense. We further get that ¢ € H*((—1,1)) and satisfies (5.17) and
the boundary conditions (1.5). Hence, if (B(k,\, ), ) exists, A3(k,\, ) is an
cigenvalue of the operator Sy, with ¢ being an associated eigenvector. That
implies

Bk, A, 1) < A3k A, ), (5.20)

Meanwhile, since the operator Sy » is self-adjoint and positive, we thus obtain

that (s N
W, W
71(1{:’)‘7#’) = sup IZL
wer2((-1.1) [Wl72(210)
Hence, for all we L?((—1,1)) and for ¢ = kaiu./\/lw e H*((—1,1)), we have
<Sk’)\7#w,w>2

Y1 (ka /\7 M)<Yk,)\,u¢v ¢> < 2
o2 -1

< Skl 22— 1,1))-

Equivalently,
IMBI1Z2 (-1 1y

T gy 10 € M1 1) and M Winu0 € (-1 10),

’71(k7 )‘wu’) < sup {
it yields
Ail’)/l(ka)‘nu) < 5(](1,)\,/.14) (521)

(5.20) and (5.21) tell us that B(k,\, ) = A= ty1(k, A\, p) for all A > 0, then the
proof of Lemma 5.2 finishes. U

Lemma 5.3. Let
X := {we (H*(Q))? @ satisfies (1.2) and divii = 0}.
There holds for all i € H2(2),
| omtlusPaz | (Eturton DF +E-fua(en, 1))
@ (2rLT)? (5.22)
< A? L pol@[2d7 + Ap L V3.

The proof of Lemma 5.3 is due to the definition of A (2.17) and Lemma 5.2, that
is similar to [2, Lemma 5.1], hence we omit here.
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Lemma 5.4. There holds for all @ € X\{0},

sup Sorpr(Ealwi (e, 1) + & fwi (21, —1)*)day
@ex V|22 0

< pe(2). (5.23)

Proof. Let us fix a horizontal frequency k € L™'Z and introduce the horizontal
Fourier transform

f(k, ) =J f(@)e *@1dy,.
27LT
For i € X, we write
wl(k,l’g) = _io(kaxQ)a 1;)2(/{3,332) = d)(kﬁ,l‘g)

Then, k6+¢' = 0 and (9, ¢) enjoy (2.6). Following Fubini’s and Parseval’s theorem,
one thus deduces

J (&4 wi (1, 1)[* + € |wi (21, —1)]?)day
27 LT 1 (5.24)
=57 2 (00D + €100k ~1)%)
k

eL—17Z

and

. 1 !
I\Vw\\iszﬁ > J1(k2(|9|2+|¢|2>+|0’|2+|¢>’|2)(k,x2)dz2. (5.25)
keL—17Z"Y—

For any k € L™1Z\{0}, we have from k6 + ¢' = 0 that

4|0k, 1)I* + &-10(k, —1)* = %(&(W(k, DI + &1/ (k, —1)) (5.26)

and that

1
|| 02008 + 1o+ 19+ 1617 (22}
- L (5.27)
— g | G162+ 2P 416 Pk e

Owing to (5.24), (5.26) and the definition of u.(k, Z), we get
f (s wi (@1, VP + E-wr (21, =1)[*)day
27 LT

Jim sup %(@rqu)'(kz, D2 + |/ (k, —1)])
k—0

1
< —
= 1
L Y € B P+ e (k-1
keL—17)\{0}
. pe(k,E) 49412 2| 4112 ap
limsup == 5= | (k0] + 2876 |° + |0"[?) (k. w2) ez
1 k—0 -1
S oL pe(kE) (1
™ c\vy =
+ b | (K0P 2R 4 67 k)
ke L—1Z\{0} -1

(5.28)
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Thanks to Proposition 3.1, we obtain

j (Exlwn (@1, D + & fwy (@1, ~1))day
2w LT
1 1
limsup j (K102 + 2K210/ 2 + 672 (. 22) iy
</’LC(E) k—0 k -1
1

2rL 1
Tl Y | WP 2R+ 167 (R, wa)de
keL—17\{0} -1

Combining the resulting inequality and (5.25), (5.27) gives

L LT(€+|w1(9€17 D + & fwi(zy, =1)P)der < pe(E)[Vd|Za(q)-

This ends the proof. O

We now prove Proposition 5.2.

Proof of Proposition 5.2. Let us recall wq from (2.16) and vy = gigg €(1,3). We
first fix two positive constants m; » such that

my = vy +4/vg—1 (5.29)

and that

ma = (=14 1) = 1o (2)(m3 +1) 4 (ulm3 — my + 1) — pe(E) (3 + 1)) — p2m,
(5.30)
and then derive nonlinear energy estimates.

We now rewrite (5.7), as
(po + %) 0@ — pAT + Vg = f° — go'és,

where f2 = —20,i@™ — (po + ¢®)@ - Vi . Differentiate the resulting equation with
respect to ¢ and then multiply by ¢, we obtain after integration that

| otiipaz+ | (oo + oty aiaz - | paataias- | Vol -tz
Q Q Q Q
+ [ (2 - goten) - dta
Q
Since diviid = 0, we use the integration by parts to further obtain
| ctwiaiora + [ o+ ot @ya - aia
- [ G0 - gotiwz) - aiedz - | vatePaz
Q Q
et (P et (o, —1) P,
2w LT

That means,
1d
2dt Jq

1 (2 = - " - "
——5 | tlPar+ | (20— oot - @lods—u | il

(po + o° ()l (1) [*d

+ J (Exluf o (80, D+ E-fud o (8,21, 1)) day.
2w LT



RAYLEIGH-TAYLOR INSTABILITY 21
Using (5.7),, we then get
d . .
G | (o @niaor - anfud(o)l)az
Q
Y f Vi (1) di — 2 f (Exlul (b a0, D + Efud (8,21, —1))dey
Q 2w LT
—f af|d’f|2di’+ QJ (f?(t) + gzl’é(t) . Vaé(t)t? ) - uf(t)da:.
Q Q

Integrating in time variable, we get
t
—d 2 —d 2
I3/ + o8 (1)) 2y + 20 f [V (5)|22cyds
t
9 j f (Exlud(s, 20, 1) + E_[ul(s, 21, —1)[2)da 1 ds
0 J2#xLT

(5.31)
- | amblusOPaz+ (| (o0 + P O)lud (0P az)

t=0
|| @)+ 208 0) Vot ()62 - o2(s)H(s) - 5.
0 JQ

We continue using (5.12), (5.13) and we can estimate each term of the r.h.s of (5.31)
to obtain that

t
oo + OOy + 20 | 1706) s
2| (el D ol DR (6552
27
< | arblud)Paz+ CnsF 0.

Due to (5.22), we further get that

t
Iy/po + 3O TD) 20 + 20 f [V () 2 s
t
— 2f f (§+|u‘f7t(s,x1,l)|2 +f,\u‘it(s,xl,—l)ﬁ)dxlds
2w LT
<A2j pola (1) 2 dw+Auj vat(b)|2dz
Q
- Af (§+|u1(t7x1, 1)|2 + §*|u(11(t’$1’ —1)|2)d$1 + Cll(SSF]?/[(t)
2w LT
< AQJ (po + o (t))|ad(t)2dZ + AMJ |Vad(t)|2di
Q Q

- Af (& fuf (t, 20, 1) + - fuf (8,21, =1)P)dar + Cra8® Fy ().
27 LT
(5.33)

On the other hand,

|| po+ o (t)a(t)]7 = QJ (po + o®(8))a’(t) - @} (t)d + L op (t)]a(¢)|*dz.
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With m; > 0 from (5.29), we use Young’s inequality to observe
2 [ (o + P O)T0) - W00
Q

1 —¢
< TWH po + 0’5(t)ﬁtd(t)“%2(ﬂ) + Am1|| po + O-J(t)ud(t)HQLz(Q)

That will imply

S+ O3 < ol + P OTO

+ Amy g/ po + o2 (D)E (8) |72 () + Cr38” Fir(t)-
(5.34)

With mg > 0 from (5.30), we obtain from (5.33) and (5.34) that
H po + o ()T (1) 720y + mal VI (1) 720

Iz _,
< (4 =) Mlyoo + P OT Oy + (L +ma) VT

i
|| ettt DF + € (o =D )dards
27

Am1

[ V) os + Crud? D)

Thanks to Lemma 5.4, we deduce
|| po + ()@ (1) 720 + ma| VA (1720
Y 2
< (m+ =) Al + a6< T2y + (o +m2) IVE OlFa@) (5.3

2~ 1e(E) [* 1o,
T A, HVU?(S)H%%Q)dS + CLad° Fiy(t).

We use Young’s inequality to get that

n .
(m—l + mg)HVu 720 = 2( f J. Vil ( @l (s)dzds
2(n — pe(2)) g
< HpspE) j v <s>\|iz<g ds (5.36)
i+ me) f Ivai(s) 2
+ 2(
2( u fie(Z o

Combining (5.35) and (5.36) gives us
|| po + ¥ ()@ ()72 + ma| VI (1) 720

< (m1 + —)AII po + 0"(t)ﬁd(t)|\2m Q) (5.37)

Am1 +m2 5
ds + C140°F
v Qu e fnv s + Cuad® E3y (1)

It follows from (5.29) and (5.30) that
2
Aml( + m2)
2(p — pe(5))

1
= A(ml + f>m2 = 2ugAms.
mi
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Therefore, (5.37) becomes
H po + o ()T (1) 720y + malVE (8)[72 )

<2VOA(|\ oo+ ST 2agqy + 2 f [V (5) 32y ) + Crad® iy (1)
(5.38)

Recalling that @%(0) = 0, thus, applying Gronwall’s inequality to (5.38), one obtains

t t
In/po + 3 (&) (£)[3 2 +m2 f [Vit(s) |72 ds < Crad®e® 0t | 7208 F (5)ds.

0
(5.39)
Since Fj;(t) < M? maxi<j<nm |c;|?Far(3t), we then have from (5.39) that
M ot
70 0 < Cus®eo 3 | ey e (5.40)
j=1

Because of (2.18), we have \; > %Z/OA for1<j<Nand);< %V@A for j > N +1.
It yields that for 1 < j < N,

t 1 1
(3)\1.,21,0A)Sd R N ¢ 2V 7Y\ Y L 2 N — (BXj—2wvoA)t
L ‘ "N - 2Vo-/\(e ) 3% — 200A°
(5.41)
and that for j > N + 1,
Jt 6(3)\j72qu)st _ ;(e(SAj*QVf)A)t — 1) < ; (5 42)
0 3)‘j — 29 = 2ug A — 3)\j ) '

In view of (5.41) and (5.42), we obtain from (5.40) that if M < N,

M
el e
Hu (t )||L2(Q) C150° (; 3)\j —21/0Ae )

and if M > N +1,

M M
;] 3t 2wo A
|a@(1)[72(0) < C156° ( -2:1 N - A e + D0 Jejle? )

j=N+1

Then, (5.11) follows. Proof of Proposition 5.2 is complete. O
5.3. Proof of Theorem 2.2. Note that

M
(1) 320y = 0% (e w2 Y aqel ™| @) a @),

i=1 1<i<j<M
(5.43)
It can be seen that
M M
D 213 ) — leall@lraoy (D o511l 2y ) e
@ ()2 > 0> | 77

+2 ] cz-cjew“ﬂtj @; () - ;(7)dT
Q

2<i<j<M
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By Cauchy-Schwartz inequality, we obtain

2 3 Cicje(AiH")tJQﬁi(f)'@(@dﬁ?? Do leillele A | Loy 5] 2o

2<i<j<M 2<i<j<M
M 9
> =P (N e 2oy )
j=2
That implies

M M
Z e T P le1|eM 22y | 2 g ( Z lejl |1 HLz(Q))

Jj=1 Jj=2
M

2
= e (3617 e

j=2

HﬁM(’f)Hiz(Q) > 82

Due to the assumption (2.14), we deduce that

i 1
2 C?62/\jt\|ﬁjH%2(Q) - 5@6(/\1“2)75“171 ||2L2(Q)
HﬁM(t)H%z(Q) > 6% | i=1

L o (otra)t)
- EC%G( 2t S)tﬂulH%%Q)

1 1
A PYEDY A2+ -
> 52C% (62 it _ 56( 1+A2)t 46( 2 3)t>||u1|\2[2(9)

M

+ 52 Z C?€2/\jt”ﬁj H%Q(Q)
j=2

Notice that for all ¢t > 0,

e2nt _ Loowinaye _ L owiaae o Loane

2 4 “ 4
Hence, we have
@™ (#) | L2y = C166Fa(t), (5.44)
for all t < min(7°, T*, T**).
Let
¢(M)= max M >0

CONHI<GEM o] T
We recall the definition of 7* and 7** from (5.5) and the fact that 7 satisfies
uniquely 6 Fpr(T%) = €, provided that ¢, is taken to be

. (C200 c3 Cts
. 5.45
0= mm( Cy " 204(1 + Me(M))® 4C4(1 + ME(M))3> (5.45)
We then prove that
T° < min{T*, T**}. (5.46)
In fact, if T* < T, we have by (5.6)
5((05,ﬂ6)(T*)) < Cg(SFM(T*) < Cg(SFM(T(S) = 0360 < 0250.
And if T** < T°, we have by (5.11) and the definition of 7°
H(Ua,ﬁé)(Té)Hm(Q)
< @™, @I L2 + (0%, @) (T°)] 120
N 3
5 2 AT . 1 2vATS ) 2
< CodFy (T) + A/Cy63 (j;|cj|e + max(0, M N)(N+r{12]x<M|c |)e3 0 )

(5.47)
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Notice from (2.18) that for N +1 < j < M,
2, A7 ¢4 5 cj cj
|Cj‘(563 oAT < :CJI(5|C1|€/\1T ) < ||CJ||(SFM(T6) = :CJIG().
1 1 1
Then, it follows from (5.47) that

3
2

(0%, @) (T*) (@) < CofFar(T°) 4+ /Cad* (1 + ME(M))* Fy(T°)
< Caeo +A/Ca(1 + ME(M)) ez
Using (5.45) again, we deduce
(0, @) (T°)| 2(q) < 20260 = 2C20Fp (T°).

which also contradicts the definition of 7.

Once we have (5.46), we then get from (5.11) and (5.44) that
1@ (T°)] L2
= ||ﬁM(T5)HL2(Q) - ||Ud(T6)||L2(Q)

N 3
5\ 3 AT _ ) %VoATJ)E
> C160F (T°) — A/ C462 (jzl cjle + max(0, M N)(Nf{lgjng |CJ|)e3

Therefore,

1@ (1)) L2 () = Croco — /Ca(l + ME(M))3eg >

(2.19) is proven by taking &y satisfying (5.4), €g satisfying (5.45) and mg = %
This ends the proof of Theorem 2.2.
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APPENDIX A. THE PRECISE VALUE OF pu.(k,Z)

In this appendix, we prove Proposition 3.1(1). (3.5) can be seen immediately
from the definition of By g .

To prove (3.6), let us consider the Lagrangian functional
1
Li(9,B) = J (16" 2 +2K21¢' |+ k| 0|*)dar2 — B(E-]6' (= 1) P +&4|¢'(1)[*=1). (A.1)
-1

for any ¢ € H?((—1,1)) and § # 0. Using Lagrange multiplier theorem again, we
then find a stationary point of (¢, O;) of L, that satisfies

E- 0L (=D + &40k (D = 1, (A.2)

and

1
| 2k 01 v =Bl 0 (1) (D)+€. (D (1) =0 (A3)
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for all w € H?((—1,1)). We obtain from (A.3) after restricting w € CL((—1,1)) and
taking integration by parts that
o) — 227 + k'or = 0
on (—1,1). Hence, ¢y is of the form
or(z) = (Az + B)sinh(kz) + (Cx + D) cosh(kx),
with A, B, C, D are four constants. Since ¢y, € 1‘?[2((—17 1)), we get

(A+ B)sinhk + (C + D) coshk =0,
(—A + B)sinh(—k) 4+ (—C + D) cosh(—k) = 0.

It yields
C = —Btanh(k) and D = —Atanh(k). (A.4)

We then compute
¢ () = (A+ kD + kCz) sinh(kz) + (C + kB + kAz) cosh(kx)
and
R (x) = (2kC + k*B + k*Ax) sinh(kz) + (2kA + k*D + k*Cx) cosh(kx).
Substituting this form of ¢, into (A.3), we have that for all w e H2((—1,1)),

1
J ((QkC + k*B + k*Ax) sinh(kz) + (2kA + k*D + k*Cx) Cosh(kz))w”(a:)dxz
-1
1
+ 2k? J ((A + kD + kCx)sinh(kz) 4+ (C + kB + kAx) cosh(kx))w/(x)dacg
-1
1
+ k4f ((Am + B)sinh(kx) + (Cz + D) cosh(k‘x))w(x)da:g
-1

£ ((A + k(D — C))sinhk + (C + k(B — A)) cosh k)w’(—l)
-8
re ((A + k(D + C))sinhk + (C + k(B + A)) cosh k)w’(l)

Integrating by parts, we observe
(2kC + k*(B + A))sinh k + (2kA + k*(D + C)) cosh k
= Brés ((A + k(D + C))sinhk + (C + k(B + A)) cosh k)
(2kC + k*(B — A)) sinh(—k) + (2kA + k*(D — C)) cosh(—k)
— BiE ((A + k(D — C))sinh(=k) + (C + k(B — A)) cosh(—k)).
With the help of (A.4), that reduces to
2k(C'sinh k + A cosh k)
= Bt <A + k(D + C)sinhk + (C + k(B + A)) cosh k)
2k(—C'sinh k + Acoshk)
= Bt ((A + k(D — C))sinh(k) — (C + k(B — A)) cosh(k:)).
Equivalently,

2k( A+ B + (A — B) cosh(2k)) = Brés ((A — B)sinh(2k) + 2k(A + B) ),
2k(A — B+ (A + B)cosh(2k) ) = Bré—( (A + B)sinh(2k) + 2k(A — B) ).
(A.5)
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Then, (A — B, A+ B) is a solution of the system
(mg sinh(2k) — 2k cosh(2k) kBt — 1) ) (A - B) iy
2k(Bré- — 1) Br&— sinh(2k) — 2k cosh(2k) | \ A+ B
That admits a nontrivial solution if and only if
(5k§+ sinh(2k) — 2k cosh(2k)) (ﬁkg, sinh(2k) — 2k cosh(2k))
= 4k*(Bré- — 1)(Brés — 1).

We then consider three following cases

(A.6)

(1) €+ >0= 577
(2) 5* >0= €+?
(3) &+ > 0.
The case ¢4 > 0 = ¢_. We then have
2k
/Bk;g_i,_ Slnh(2]€) — 2k COSh(2]€) = m(ﬁk§+ — 1)

Since sinh(4k) > 4k for all k£ > 0, we obtain
1, sinh(4k) — 4k

B ' dksinh?(2k)

Then we find a nontrivial (A, B, C, D) satisfying (A.5) and (A.4). From (A.5),, we
know that

A(1 + cosh(2k)) = B(1 — cosh(2k)), i.e. A= —Btanh®k.

Then, (A, B,C, D) = (—Btanh®k, B, —Btanh k, Btanh® k) with B # 0. The con-
stant B will be defined by (A.2), that satisfies

2
§+B2((A + kD + kC)sinh k + (C + kB + kA) cosh k:) ~1.
It yields
2
£,.B? cosh? k(k(tanh2 k— 1)2 — tanh k(tanh2 k+ 1)) =1.

The direct computation shows that

% (k;(tanh2 k —1)? — tanh k(tanh? k + 1)) - — (sinh® k + Kk tanh k) < 0.

cosh?

That yields k(tanh® k — 1)2 — tanh k(tanh® k + 1) is a decreasing function on k > 0.
Hence,

k(tanh? k1)~ tanh k(tanh k+1) < Jim (K(tanb? k—1)2—tanh k(tanh? k+1)) = 0.

for all £ > 0. Then
= /&, cosh k(k(tanh® k — 1)2 — tanh k(tanh? k + 1))

B

We have just shown that pc(k,Z) = 5, ie.

&40/ (1) sinh(4k) — 4k
e 1 P 2| 472 442 s inh?
pei2((—1,1) §_ (19" + 2k2|¢/|? + k*|¢|?)dx 4k sinh®(2k)

pre(k, Z)
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and this variational problem is attained by functions

1
_|_
~ /&, coshk(k(tanh® k — 1)2 — tanh k(tanh® k + 1))

X ((1 — xtanh? k) sinh(kz) — tanh k(1 — x tanh?® k) cosh(k’x)).

dr(z) =

The case £ > 0=¢,.

We have the same arguments, that imply

= (=D sinh(4k) — 4k
pe(k,Z) =  max T =¢ —
seir(o) [ (167 + 2K2|92 + KA|oP)de, Ahksinh®(2k)
and that variational problem is attained by functions

1
+
\/€_ cosh k(k(tanh® k — 1)2 — tanh k(tanh® k + 1))

x ((1 + ztanh? k) sinh(kz) — tanh k(1 4 2 tanh? k) cosh(lm)).

Pr(z) =

The case £,.&_ > 0.

Clearly Br = 0 is not a solution of (A.6). Eq. (C.7) rewrites as a quadratic
equation of /Bik’ that is

(sinh?(2k) — 4k?)E, € — 2k(sinh(2k) cosh(2k) — 2k) (&4 + £ ) 3
k
1

+ 4k?(cosh?(2k) — 1) — = 0.
Bi
The discriminant is
Ay = = k*(sinh(2k) cosh(2k) — 2k)? (&4 + €)?
— 4k?*(cosh?(2k) — 1)(sinh?(2k) — 4k?)e €
= k?(sinh(2k) — 2k cosh(2k))% (&4 + £_)?
+ k2 sinh?(2k) (sinh®(2k) — 4k%) (&, — €.)2.
Because tanh(2k) < 2k for all £ > 0 and £4.£_ # 0, Ay ¢ is always positive. Hence,
(A.7) has two roots
1 k(sinh(2k) cosh(2k) — 2k)(§4 +&-) + /Ak=
Br,+ 4k? sinh®(2k)

We take the higher value TJr that is always positive and then solve the system

(A.5) as By = Br,+. (A.5) implies that
A(?k(l + cosh(2k)) — Bk, +&+ (2k + sinh(2k) ))
- B(2k(cosh(2k) — 1) — B +&+ (sinh(2k) — 2/{))7 (A8)
A(Qk(l + cosh(2k)) — Bk, +&—(2k + sinh(2k) )) '
(2

- fB(Zk(cosh(%) — 1) — By £ (sinh(2k) — Qk)),
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If0<&y <&,
4 cosh? k:(% (coshZk) = 1) _ ¢ (sinh(2k) — 2k)>
Br,+
= %(Sinh(zuf) —4k)(é~ — £4) — 2(sinh(2k) — 2k cosh(2k))E4 + %\/K,E
> 0,

Then, we obtain from (A.8), that

2k(1 + cosh(2k)) — Br, +&+ (2k + sinh(2k))

B = A2k(cosh(2k:) — 1) — By, &4 (sinh(2k) — 2k)

= Aak’g. (A9)

So that (4, B,C,D) = A(1, ak,z, —ay,= tanh k, — tanh k) with A # 0. We compute
that

¢, (—1) = —A(1 — ktanh k + kay = tanh k) sinh k + A(—ag = tanh k + kay = — k) cosh k
A , :
- (akg(blnh@k) — 2k) + sinh(2k) + 2k>
A k(sinh(4k) — 4k) — Br.+ &4 (sinh® (2k) — 4k?)
coshk  2k(cosh(2k) — 1) — Bk +&+ (sinh(2k) — 2k)

(A.10)
and that

¢, (1) = A(1 — ktanh k — kay = tanh k) sinh k + (—ay = tanh k + kag = + k) cosh k
A . .
= m( — aj = (sinh(2k) — 2k) + sinh(2k) + 2k>
A 9 2k(sinh(2k) — 2k cosh(2k))
~ coshk " 2k(cosh(2k) — 1) — By, + &, (sinh(2k) — 2k)°

(A.11)

Substituting (A.10) and (A.11) into (A.2), we obtain

A%e_ (k(sinh(4k) — 4k) By + &4 — 4k? sinh2(2k))2 + 4A%¢, k?(sinh(2k) — 2k cosh(2k))?
— cosh? k<2k(cosh(2k) — 1) — By4 s (sinh(2k) — 2k)>2.
(A.12)

Owing to (A.7), (A.12) becomes

A2 (k(sinh(4k) — 4k) By €4 — AR? sinh2(2k)> ((sinh2(2k) — 4k?) B4 &4 — k(sinh(4k) — 4k))
+ 4A2By, &, k*(sinh(2k) — 2k cosh(2k))?
= B+ cosh? k(?k:(cosh(2k‘) — 1) — B, +&+(sinh(2k) — 2k)>2.

Equivalently,
a2 (sinh(4k) — 4k)(sinh?(2k) — 4k?)(Br. 1 £4)?
— 8k sinh?(2k) (sinh?(2k) — 4k%) By + &4 + 4K? sinh?(2k) (sinh(4k) — 4k)

= By.+ cosh? k(2k(cosh(2k) — 1) — Brs &4 (sinh(2k) — 2k))2.
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Notice that
(sinh(4k) — 4k)(sinh?(2k) — 4k?)(Br.1+ £+ )? — 8ksinh?(2k)(sinh? (2k) — 4k2) By, €4
+ 4k? sinh® (2k) (sinh(4k) — 4k)
: 2
— (sinh?(2k) — 44) (/Sinh(1k) — 4B &, - %)
N 16k sinh?(2k) (sinh?(2k) — 4k2)(sinh(2k) — 2k cosh(2k))?
sinh(4k) — 4k

> 0.
Then,
A=++/Bry coshk(Qk(cosh(Zk) — 1) — BrsEs (sinh(2k) — 2k;)>
(sinh(4k) — 4k) (sinh?(2k) — 4k2)(Br+£4)7\ 2 (A13)
x k7 | — 8ksinh?(2k)(sinh?(2k) — 4k%) Bk + &4
+ 4k? sinh® (2k) (sinh(4k) — 4k)
We have just shown that as 0 < {4 < &,
C e ¢ (=D + &' ()P
- . T
vei2((—1,1) §_, (|¢"]? + 2k2|¢'|2 + k*|¢|?)dzo
(sinh(2k) cosh(2k) — 2k) (&4 + &)

(sinh(2k) — 2k cosh(2k))2 (€4 + £_)2 ) 2
+ sinh?(2k)(sinh?(2k) — 4k?) (&, — £_)2

pe(k, Z)

1
 dksinh®(2k) | + (

That variational problem is attained by functions
or(z) = A(z + ay =) sinh(kz) — A(ak =z + 1) tanh k cosh(kx),
where aj = and A are from (A.9) and (A.13), respectively.
If0 < & <&y, that will imply
2k(cosh(2k) — 1)
Bre,+
We further get from (A.8), that

B 2k(1 + cosh(2k)) — Br,+&—(2k + sinh(2k)) L B
B = _A2k(cosh(2k) —1) — B+ & (sinh(2k) — 2k) Abg =

— ¢_(sinh(2k) — 2k) > 0.

Mimicking the above arguments, we also deduce
_ £ (=D + & l¢' (D)
= _max I
oeH2((-1,1) {_ (|¢"|2 + 2k2|¢/|? + k*|¢|?)da2
(sinh(2k) cosh(2k) — 2k) (&4 + &)
(sinh(2k) — 2k cosh(2k))? (&4 + £_)2 2
+ sinh?(2k)(sinh?(2k) — 4k?) (&, — £_)2

pe(k, E)

1
 dksinh?(2k) | + (

and that variational problem is attained by functions

or(r) = A(x — by =) sinh(kx) + A(bg,zx — 1) tanh k cosh(kz),
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where
A=++/Brs coshk(?k(cosh(%) — 1) — B4 £ (sinh(2k) — Qk))
(sinh(4k) — 4k) (sinh?(2k) — 4k2) (B 1 €)%\ 7
x k72 | — 8ksinh?(2k)(sinh?(2k) — 4k%) By, £
+ 4k? sinh® (2k) (sinh (4k) — 4k)

Combining all above cases, (3.6) is shown and the proof of the first part of
Proposition 3.1 then follows.

APPENDIX B. ASYMPTOTIC BEHAVIOR OF pi.(k,Z) IN LOW/HIGH REGIME OF
WAVE NUMBER

Let us prove Proposition 3.1(2). Clearly, we have that p.(k,Z) is a decreasing
function in k > 0. It yields (3.7).

We first consider k — 0. Let us recall the Taylor’s expansion of sinh(2k) and
cosh(2k). We have

4 4 2
sinh(2k) = 2k + gk?’ + 1—5k5 +O(k%), and cosh(2k) =1+ 2k* + §k4 + O(K®).

We deduce that
sinh(2k) cosh(2k) — 2k s+ 5k +O(K*) 1 8

=-— —k+ 0K,
4k sinh®(2k) 142240k 3 15 (k%)
that
sinh(2k) - 25: cosh(2k) _ -3 —;ngQ +O(k?) L T 00)
4k sinh*(2k) 16 + k% + O(k3) 6 45
and that
sinh?(2k)(sinh?(2k) — 4k?) L+ B2+ 0k*) 1 1 , 5
16k2 sinh” (2k) 64 + =2k + O(k?) 12 15
We deduce that
1 1 1
li ) == _ — )24 — (&4 —E0)2 B.1
Jim pre(k, Z) = (64 +€ )+\/36(£++£ )2+ 56 — &) (B.1)

That will imply (3.9), i.e.

@ =3 (6 ve + /@ -ce +e2).

Furthermore, we have that

4&—&¢+%3_

NCIRRES

For high wave number, i.e. K — 400, we can see that
sinh(2k) cosh(2k) — 2k 1 — e 8% — 8ke ¥
sinh?(2k) C 14 e 8k — etk

c(k,Z) — p2 (2
hm&ngiQ:_%@@+&H

B.2
k—0 k2 ( )

(B.1) and (B.2) help us to get (3.8).

<2,

that

sinh(2k) — 2k cosh(2k)  11—2k— (1 + 2k)e~ 4k
sinh?(2k) 2 ek 4 Ok —2e—2k
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Hence,
sinh(2k) cosh(2k) — 2k
- _ b sinh(2k) — 2k cosh(2k) \ 2 3
pell %) = 4k ( sinh2(2k) ) (&4 + 5_)2

—+

+ (1 - Smif;k))(& —¢)?

< ﬁ(%& +&0)+ \/@)

That implies (3.10). The proof of the second assertion of Proposition 3.1 is com-
plete.

ApPENDIX C. PROOF OF PROPOSITION 3.1(3)

In this appendix, we prove Proposition 3.1(3). We first show that
El¢' (=D + & ¢/ ()2

E) = sw (G1)
¢ beA2((=1,1)) Sl_l |¢"|2dxo
Indeed, we write
o £_¢/712+€ ¢/12
Fo(®) = sup 9'( ! ) * +]¢'(1)]
gei2((—1,1) §_y |97 [Pdy

and then prove that p3(2) = [.(Z). Clearly, we have p.(k,E) < fu
k e R\{0}. It yields pg(Z) < fic(E). It suffices to show that fic(Z) > p(Z). For
any ¢ > 0, we fix a function ¢. € H?((—1,1)) such that
€_¢/712+€¢/12 o
| a( - )| — +| a( )| >,Uc(‘:)
S_l |¢5| de
Let k # 0 be small enough, we then obtain
ENSLEDP + &M E LD +E LM
§L, (16212 + 2K2[ L2 + k4. |*)dry £, lor|2das
That implies

—&.

te(k, E) > f1c(B) — 2e.
We deduce that fic(2) = supger (o) te(k, E), i.e. (C.1).

Then, we show that

(=D + &M 1 \/ﬁ
= CRCRR R

Let us consider the Lagrangian functional

Lo(¢,B) = f_l |0 [Pdws — B¢/ (—1)]* + &40/ (D — 1), (C.3)

for any ¢ € H?((—1,1)) and 8 # 0. Owing to Lagrange multiplier theorem, we
have to find a stationary point (¢g, o) that maximizes Ly, that satisfies

E-[dp(~1)1* + E+len(1)]* = 1, (C.4)

and

1
|| dhwrdns = pa(e-oh( -1 (-1 + ) =0 (€
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for all w € H2((—1,1)). We obtain from (C.5) after restricting w € C°((—1,1)) and
taking integration by parts that

¢>(()4) =0 on(-1,1).
Hence, ¢q is of the form
¢o(z) = (2* = 1)(Az + B).
Substituting this form of ¢ into (C.5), we have that for all w e H?((—1,1)),

1
J_l(GAx +2B)w" (z)dz = Bo (5,(2,4 —9B)W (1) + £, (24 + QB)w’(l)).

Integrating by parts, we observe

3A+ B = 5O£+(A+ B)7
3A— B = ¢ (A—-B).

Hence,
AB = fo&+) + B(1 = foé+) =0, (C.6)
A3 = Bo&-) — B(1 = Boé-) = 0. '
That system admits a nontrivial solution (A, B) if and only if
(3 = Bo&+)(1 = Bo&-) + (3 = Bo&-)(1 — o) = 0.
It yields
E-6485 —2(E4 +€-)Bo +3 =0, (C.7)
We split our arguments into three following cases,
(1) €+ >0= 5—7
(2) & >0= £+7
(3) & >0,

The case £, > 0 =¢_. We then get §y = % and B = 3A. So that

do(x) = A(x® = 1)(z +3) (A #0).

Plugging into (C.4), we obtain that 64¢, A% = 1,ie. A = J_rg\}?. It then follows
+
that

/()P 12
_max 4 = =
gef2((-1,1) §_, |¢"|2dwy o 3

and that variational problem is attained by functions

do(z) =+ 1 (2 = 1)(z + 3).

Ve

The case £ > 0 = £,. We then get 5y = 2% and B = —3A. By a similar
computation to the previous case, we have

P 12

gei2((—1) §* | [¢"|2dzy  Bo 3

&

E-
and that variational problem is attained by functions

¢o(z) = 18\}?(352 —1)(z — 3)
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The case £, > 0. (C.7) rewrites as a quadratic equation of é, that is

326 +E) _
B2 ) +&+:6-=0. (C.8)
The discriminant of (C.8) is
Age = (E4 +E6)? =366, =& — €6+ >0.

Then, (C.8) has two roots

ﬂo% —s(erex/@-ce re)

We take the higher value ﬁ As By = Bo,+, we have from (C.6), that

A@B - ﬂ0,+f—) =B(1- 50,+§—)-

A NI
Bo,+

It is obvious that

It yields

1—Bo,+&-
3 — Bo,+&-

We continue using (C.4) to find a non-zero B. One deduces

A=B

46 |A— B + 4, A+ B = 1.
That implies
B +€.(2— o6 )?) = 53— Fo€ ) (©9)

Due to 8o +&+(Bo,+&— —2) +3 =259 +&- =0, (C.9) is equivalent to

1
B ((Bo.+€-)? = 360,46 +3) = 55P0+ (3= or&)™
We then find that

N v/ Bo,+(3 = Bo,+&-)
T 2v24/(Bo,+6-)% — 3Bo,+ & + 3

That means, we have proved that

EIF ()P +EJFOP 1 JEcee
max _ 1 e 4 - Y
ed2((—1,1)) Sl_l |¢”|2da:2 3 (§+ 13 £+ 46 ¢ )
That variational problem is attained by functions

VBo+ (3= Bo+£-) o (L= Bo+é
iQﬁ\/(ﬁO,Jrg—)Q — 380,46~ + 3(3: 1 (3 — 5O,+§,x + 1>'

# 0.

po(z) =

We sum up the previous three cases to have (C.2). Combining (C.1) and (C.2),
we obtain Proposition 3.1(3).
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ApPENDIX D. COMMENTS ON PAPER OF DING, ZI AND LI

In [2], the authors Ding, Zi and Li construct an approximate solution generated

a—'a

by the maximal growing mode, (%, @%,¢%)(t,x) = 56’\1(’“)’5171(5) with k being fixed

such that % < M (k) < A. Applying Proposition 5.1, the perturbed problem

(2.1)-(2.2) with the initial data

(0°,@,4°)(0) = (0%, q7)(0).
admits a strong solution (¢°,@°) € CO([0,T™*), H' x H?) with an associated
pressure ¢° € CO([0, T™2%), L?). Let T° such that seMT’ = €o « 1. We define

T = sup {1 € (0,7™)[E(0" (1), @ (1)) < Cdo} > 0,
T 1= supft (0, 77)[ (0, @) (1) 20y < OO} > 0.

Then for all ¢+ < min{T?,T*, T**}, we have
t
E2(o° (1), @ (1)) + @) (1) 72 (0 +J V@ (7)|32(qydr < C8%e* .
0

In [2, Proposition 5.2], they claim that the difference functions
(O-dv ﬁda qd) = (067 ﬂéa qé) - (Jaa ﬁa, qa)
enjoy
[(0%, @720y < CO%e* (D.1)

for all p > 0. We believe that (D.1) needs to be corrected, not for all p > 0.
Precisely, we are in doubt about inequality (137) in that paper, that is for all
t < min{T°,T*,T**},

t
I/ po + o (O (1) [12(q) + AplVE! (1) [72q) +ML |V (s)]1 720y ds

t
A(L I/ po + 0 ()i ()] 720y + Auuvgd(s)”i%m) (D.2)
+ A/ po + P ()T (1) |72 + CE% M.
Due to (D.2) and the following inequality

|| po+ ()@ (1)) = 2L(po +o®(t)ad(t) - @ (t)dz + JQ of (t)|@’ (t)[*dz

1
< X” po + o ()T (8720

+ Aly/po + o2 ()T (1) 720y + CE%™M,
(D.3)

it is claimed in [2, (138)] that
n po + DO (1) 32y + (I 00 + o (O 0320y + Al V(1) B
A (W P G0y + AT )

+ A/ po + o0 (£)a (8)[F (0 + C82e*Mt.
(D.4)

(D.1) is followed by applying Gronwall’s inequality to (D.4).
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We shall explain the arguments of (D.2) in [2]. Firstly, we still have

t
Iy/po + 05 (T 2 g + 20 f [9a(5)[2 s
t
—2j f (Exlud(s, 20, 1) + E_ul(s, 21, —1)|?)dayds
0 J2#wLT

= L gph|us (t)[*dZ + (L(po 4 Ué(t))\uf(t)\de)’

" f f (2f2(s) + 297 (s) - Vo (s)es — o2 (8)(s)) - @(s)ds.
0 JQ
We estimate

t
I/ po + o3 ()T (1)]32(q) + 2uf0 |Vt ()72 ds

t
9 j j (€4 lud(s, 20, 1) + E_ul(s, 21, ~1)?)da1 ds
0 J2nwLT

< J gphlud(t)|?dz + Co3e3Mt.
Q

That implies

t
I3/ + o ()2 + 20 f [9a(5)|2 5
t
—2j f (€4 lud (5,20, 1) + E_Jul (5,20, —1)[?)day ds
0 J2#wLT

< AQJ (po + o ()@ (¢)|2dz + Auf (vl (t)2dE
Q Q

- AJ Exlus (20, D + & fuf (t, 21, —1)P)day + C5ePMt.
27 LT

By using the inequality

t t
AV |2, ) < A%u j [9(5) |2 s + s j [Va(5) |25

and the identity

A (Exlud(t, 21, 1) + & fud(t, 2, —1)|*)dzy
2w LT

t
- AQJ f (&xlui(s, 21, DI + & Jui(s, 21, =1)[*)dwrds
0 J2#nLT

t
" j j (Exlu (5,20, D2 + E_fu (5,21, —1))dirds
0 J2#7LT

(D.6)

(D.7)

t
(el = s ) 6l = a0, ~D)deds,
0 J2w LT
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it is obtained from (D.7) that (see (134) in [2])
[\/po + o ()@ (£)]1 720

+ (VT O~ [ (Eelud(ton, DP + & ol -1 )i
27 LT
1 ' —d 2 d 2 d 2
5 | (VT By = [ (ol (o DP 4 €l (5,00, ~D)) o ) ds
0 2n LT
< 82/ o + oA (1) 32 g + OO
o f (uIVi' ()32 — f | (Efuf(s,m, D+ s 20, ~ 1)) ) ds

3
+ 5f | (it~ s 1) + A — ud (s, 1)) s,
0 J27LT
(D.8)

Integrating (D.3) in time from 0 to ¢ and using (D.8) and Young’s inequality, the
authors deduce (D.2) without providing any detailed explanation.

However, we observe by integrating (D.3) in time that

I/ o + 2 (B)@ (1) |72 < AJ M (s)| oy ds + Ce™t.

Then the Lh.s of (D.2) will be bounded by
¢
I/ o + o O (8)] 720y + Anl V' ()72 () + MJO IV (s) |72 () ds
¢
o 1
<A NI s + AT

t t
3 ,
*ML HVuf(s)H%z(Q)ds + §A2NJO HVud(s)H%Q(Q)ds

+A (€ luf (80, D+ E-fuf (8, 20, —1)[)da
2w LT

- AQJ (& luf (s, 20, D + E-fuf (s, 1, =1) %) dary
27 LT

t
+ J f (f_,_\Auil — u‘it\Z(s, x1,1) + £_|Auil - uf,t|2(s, x1,—1))dxy + Co3eMt,
27 LT
(D.9)

We are not clear about the way in [2] to remove all integral terms over 2r LT in the
r.hs of (D.9) to get (D.2) for all u > 0, especially the following term

t
j j (Exlhud — ud [2(s,21,1) + E_[Aud — ul,[2(s, 20, —1))dy.
27w LT
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