Optimal description of Blaschke--Santaló diagrams via numerical shape optimization - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2022

Optimal description of Blaschke--Santaló diagrams via numerical shape optimization

Abstract

In this paper, we propose a method based on the combination of theoretical results on Blaschke-Santaló diagrams and numerical shape optimization techniques to obtain optimal description of Blaschke-Santaló diagrams in the class of convex sets. To illustrate our approach, we study three relevant diagrams involving the perimeter P , the diameter d, the volume | • | and the first eigenvalue of the Laplace operator with Dirichlet boundary condition λ1. The first diagram is a purely geometric one involving the triplet (P, d, | • |) and the two other diagrams involve geometric and spectral functionals, namely (P, λ1, | • |) (studied in [1, 24]) and (d, λ1, | • |) where a strange phenomenon of non-continuity of the extremal shapes is observed.
Fichier principal
Vignette du fichier
BS-numerics.pdf (20.71 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03646758 , version 1 (19-04-2022)

Identifiers

  • HAL Id : hal-03646758 , version 1

Cite

Ilias Ftouhi. Optimal description of Blaschke--Santaló diagrams via numerical shape optimization. 2022. ⟨hal-03646758⟩

Collections

TDS-MACS
55 View
29 Download

Share

More