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Abstract: In this paper, we study the performance properties of the phase Il exponential chart with
an unknown in-control (IC) rate parameter, used to monitor high-yield processes. The average time
to signal (ATS) is used as the chart performance criterion instead of the usual average run length
(ARL). Based on the IC conditional ATS (CATS) distribution, we examine the properties of both
the equal-tailed and the ATS-unbiased exponential charts with estimated control limits and adjust the
limits so that a nominal IC ATS performance is achieved. Two perspectives are investigated: the
unconditional, under which the average of IC CATS distribution is set equal to a nominal ATS and,
the conditional so that the IC CATS is set to or exceed a nominal ATS with a high probability. It is
shown that the ATS-unbiased exponential chart under the conditional perspective has a better IC

performance.

Keywords: Conditional and Unconditional perspectives; Equal-tailed and ATS-unbiased exponential

chart; Exact distribution; Guaranteed IC performance; Quality control.
1. Introduction

Processes with a very low rate of nonconforming items, say, parts per million (ppm) are termed as
high-yield processes. High-yield processes can be encountered in the manufacturing of integrated
circuits, automated manufacturing processes, in health care surveillance, in the monitoring of
earthquake occurrences [1-3]. Monitoring such processes with conventional attribute control charts

such as the p-, np-charts is known to be not as effective due to several reasons such as increased
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FAR (false alarm rate), negative lower control limits, etc. [2]. Instead, for such processes, the time
between two consecutive nonconforming items (or events of interest) is recommended as the quality
characteristic to be monitored. The control charts which consider the times between nonconforming
items (events) are known as TBE (Time Between Events) control charts and they have several
advantages over the conventional attribute charts [4]. In such situations, the occurrences of
nonconforming items may be modeled by a homogeneous Poisson process with a constant rate of
nonconforming, say, A, and therefore, the TBE, which is also known as the inter-arrival time, follows
an exponential distribution with mean 1/A. Several control charts (Shewhart-type or not) have been
proposed based on this exponential assumption [1, 3, 5-13]. The readers may also refer to the review
papers by Liu et al. [14] and Ali et al. [15]. Recently, Qu et al. [16] proposed a weighted cumulative

sum chart based on the exponential distribution using the power parameter of sample mean shifts i.e.

w
using (xi — %) in place of (xl- — %) in the CUSUM statistic where x; is the i-th observation (TBE

data) and w > 0 is the power parameter. In order to improve the sensitivity of the exponential chart
against small shifts in the process parameter, Cheng et al. [17] proposed a synthetic exponential chart
consisting of an exponential sub-chart and a conforming run length sub-chart. Recently, Shah et al.
[18] discussed the TBE chart for the gamma distribution using an exact distribution of the sample
TBE mean.

Most often the control charts are evaluated by their run length and associated statistical properties
such as the mean, standard deviation and percentiles. The run length may be defined as the total
number of charting points to be plotted on the chart to get the first OOC signal. We should mention
here that the run length only considers the plotted points on the chart, but, it completely ignores the
time needed to obtain these points, which is an important factor in the context of the TBE
monitoring. Therefore, in the Statistical Process Control (SPC) literature it is recommended that the
times needed to obtain the charting points must be considered in evaluating the chart's performance
[4,11]. We denote the time to signal by TS, as the waiting time to get the first OOC signal. Because
the TS conveys more information about the process than the run length, its average i.e. the average
time to signal (denoted ATS) may be a preferred metric of chart performance over the traditional
average of run length i.e. the ARL, which is more meaningful when the plotting points are obtained
at equal time intervals. Several authors including Zhang et al. [11], Bourke [19], Yang et al. [20]

have used the ATS to evaluate the TBE chart's performance.



It is well accepted that when a chart parameter is unknown, the control limits for monitoring (in
phase Il) may be constructed by replacing this parameter in the control limits for the known
parameter case, by a suitable estimator using an IC retrospective (phase | or a reference) sample. It
has been established by several studies that parameter estimation can drastically affect the control
chart's properties in a negative way and the resulting chart performs much differently (many more
false alarms, for example) from what it is nominally expected [21-26]. Note that most of the studies
evaluate the performance of phase Il control charts using the unconditional run length distribution
(that is averaging over the distribution of the estimator) and some associated characteristics.
However, it is now well recognized that the unconditional analysis may not provide a very realistic
picture about the control chart's properties for a given estimate from a given phase | sample [21- 22,
27]. The recent papers by Diko et al. [28]; Guo and Wang [29]; Kumar [30] highlighted the
importance of the conditional performance analysis and advocated the use of the conditional run
length (CRL) distribution and the conditional average run length CARL distribution and its
associated properties to evaluate the chart's performance for a given phase | sample. As noted
before, for TBE data, the TS is the more suitable random variable of interest and the average time to
signal (ATS) has been the chosen performance metric. Thus, following the literature, with estimated
parameters from a phase | sample, the phase Il control limits of TBE control charts are mainly
constructed and examined under the unconditional perspective, that is based on the expected value
of conditional ATS (CATYS) distribution [11,31].

Note that the CATS is a random variable in the unknown parameter case, whereas in the known
parameter case, it is a constant. In this paper, we derive the exact distribution of CATS and
investigate chart properties under both conditional and unconditional perspectives using various
characteristics of the CATS distribution such as the average, standard deviation and percentiles. Note
that the conditional approach is advocated to take into account the practitioner-to-practitioner

variability in evaluating the chart’s performance [27, 32].

When the plotting statistic has a skewed distribution, the common design to construct the control
limits of two-sided control charts in the known parameter case is based on the conventional equal-
tailed probability limits (henceforth called the equal-tailed chart). However, it is found that the
equal-tailed chart based on the ATS leads to an ATS-biased chart [20,31]. A control chart is said to
be ATS-biased chart if its ATS function does not achieve the maximum when the process is IC. This

implies that the chart takes on average, longer time to raise an OOC signal, than it takes to raise a



false alarm. This phenomenon has been considered as a highly undesirable property of a control
chart [11, 31]. To overcome this undesirable situation, ATS-unbiased charts are proposed in the
literature [20, 31] which do not have this shortcoming and provide a more balanced guard against

both process deterioration and improvement.

Many control charts are designed and evaluated on the basis of their ARL. It has been
acknowledged in the literature that when control charts for the known parameters are used with
estimated parameters, the variability in the run length distribution increases which shortens the 1C
ARL, which increases the number of false alarms, and thus reduces the value of process monitoring.
In order to rectify the situation, many authors including Aly et al. [33]; Diko et al.[28]; Faraz et al.
[34-35]; Gandy and Kvaloy [36]; Goedhart et al. [32, 37]; Hu and Castagliola [38]; Jones and Steiner
[39]; Zhao and Driscoll [40] have considered adjusting the control limits. In this paper, we consider
adjusting control limits of both equal-tailed and ATS-unbiased exponential charts under both
unconditional and conditional perspectives. Under the unconditional perspective, the control limits
will be adjusted so that the mean of IC CATS is equal to a nominal ATS, value whereas under the
conditional perspective, they will be adjusted so that the IC CATS meets or exceeds the nominal
ATS, value with a high pre-fixed probability.

The rest of this paper is organized as follows. In section 2, the phase Il control limits of the
exponential chart are constructed and the distribution of the CATS is derived. Section 3 examines the
conditional performance of the phase Il equal-tailed and ATS-unbiased exponential charts for a
given nominal ATSy, value. The control limits of these charts are then adjusted to guarantee the I1C
performance in Section 4 and their conditional IC and OOC performances are evaluated. An
example is given for illustration in Section 5 and some concluding remarks are summarized in

Section 6.
2. The Exponential chart and the CATS distribution
2.1.  Case of the known parameter

Let X;,i = 1,2, ... denote the time between two consecutive nonconforming items in a process which
follows an exponential distribution with density function f(x) = Aexp(—4x),x > 0,4 > 0. The
process is said to be IC when A = A,, otherwise it is OOC, that is when A = 1, (4, # 4,). Suppose
that LCL and UCL denote the lower and upper control limits of the exponential chart for individual

data, respectively. For equal-tailed limits with known parameter case, the control limits LCL and



UCL are obtained such that P(X < LCL|IC) = a/2 and P(X > UCLJ|IC) = a,/2, where «, is the
nominal false alarm rate (FAR). However, in general setting of unequal-tailed limits that is to have
flexibility in the unequal-tailed exponential charts and to attain the desired IC performance, we
introduce two design constants such that the probability of an observation X plotting below the LCL
is ép and above the UCL is (1 — &)p that is

P(X < LCL|IC) =&p and P(X > UCL|IC) = (1 = ¥)p

whereand 0 <p <1 and 0 < &< 1 is a constant (to be determined) that is used to split the FAR
towards finding the LCL and the UCL, respectively, in order to maintain the IC performance at a
desired level. Thus, for the equal-tailed exponential chart in the known parameter case, ¢ = 0.5 and

p = «, for a fixed FAR, «,.

The control limits, the UCL and LCL, can be expressed as

_ —In(1-%p) _ AL _ ~In(@-®p) _ 4y
LCL = ——= =2 and UCL = ——— = (1)
where
Ap = —In(1 - %) and Ay = —In((1 — Dp). (2)

The center line (CL) of the exponential chart can be considered as the median of the charting statistic
X and is given by

—In(0.5
;- ~In(0.5)
Ao

Let § = % quantify the standardized shift of the parameter A from A = A, (in-control) to some
0

A = A, (out-of-control). Clearly, § < 1i.e. 1; < 4, represents an improvement in the process as the
mean time between events increases while, § > 1 i.e. 4; > A, represents a deterioration in the
process as the mean time between events decreases. For the IC process, we have § = 1. Let Ej;,
i =1,2,... denote the event E; = (X; < LCL) U (UCL < X;) that a charting statistic lies outside the
control limits LCL and UCL. This is called a signalling event. When the parameter A, is known, the
run length RL of the exponential control chart is a geometric random variable with parameter
B(8) = P(E;) equal to

B(68) = P[X < LCLor X > UCL] =1 — exp(—06A4;) + exp(—64y)



It is shown in Appendix A that when the parameter A, is known, the random variable TS follows
an exponential distribution with parameter 6A,8(8). Concerning a change in the process parameter it
can be assumed to occur either (i) at the beginning of the monitoring period or, more generally, (ii) at
some random point in time (this case is known as the random shift model [41]). See also Schuh et al.
[42] and Zwetsloot and Woodall [43] for more details. In this paper, in order to simplify the model,
we assume that any change in the process parameter occurs at the beginning of the monitoring period

and we leave the more general random shift model for future developments.
2.2.  Case of the Unknown parameter

When the parameter A, is unknown, the estimated control limits are established by replacing

A, into Equation (1) by its estimator A,, obtained from a phase | sample, say, Y;, ..., Y,, of size m.

See Kumar and Chakraborti [44] for a phase | analysis of the exponential chart. Thus, the

estimated (phase 1) control limits become

AL Ay
LCL = == and UCL = =
Ao Ao

Usually, the UMVUE (uniformly minimum variance unbiased estimator) is used to estimate the IC

m

rate parameter A, which is A, = T_l where T = ). Y; is a sufficient statistic that follows a gamma

distribution with parameters m and A,. Thus, the estimated control limits can be re-written as
LCL = &L and UCL = 2% (3)

We mention here that when the parameter A, is estimated by A,, the signaling events E; are
dependent and hence, the TS no longer follows an exponential distribution. However, for a given
value of A,, the events E; are independent and consequently, the CTS (conditional time to signal)

(given ) follows an exponential distribution with parameter 51,43 (8) where
B(8) = P[X <LCL}or X > UCL]

=1-—exp (— (Si:’ﬂ) + exp (— M) (4)

-1 m-1
Thus, the conditional ATS (denoted CATS) which is the mean of the CTS distribution, for the
control limits in Equation (3) is given by

1
520 B(8)

CATS(6) = ®)



Using Equation (4), we can re-express the CATS in Equation (5) as follows.

T 5 TA S TAp\T
CATS(S) = m [1 — exp (— mo L) + exp (— 0 U)]

-1 m-—1
N 5(%7;)1) 6)
where
o) =T [1 — exp (— ‘Si‘;l’_f‘f‘u) + exp (_ %)]—1 -

For the known parameter case , the ATS = 1/(64,8(6) is a constant, but, for the unknown
parameter case, the CATS(6) is a random variable since it’s a function of the random variable T.
Because the conditional performance analysis heavily depends on the CATS(8) and its distributional

characteristics, we derive the exact distribution of CATS(S) in the following theorem.
2.1.  Distribution of CATS(8)
To obtain the exact distribution of CATS(6) in Equation (6), first we prove the following lemma.

Lemma 1. For given 0 < & p < 1,1,>0, 6 >0 and m > 1, the function ¢@(T) is an increasing

function of T in (0, ).
The proof is provided in Appendix B.

Theorem 1. For the two-sided exponential chart with control limits defined as in Equation (2), the
cumulative distribution function (c.d.f.) of the conditional average time to signal, CATS(6) is given
by

G(2) =Fr(e™1(8(m—1)2)),0<z< 0,6 >0,m>1 (8)
where the function @~1(-) is the inverse function of ¢(-) shown in Equation (7). The probability
density function (p.d.f.) of CATS(9) is given by

9@) = fi(p7 (6 = D) X e Hgos 0 < z < o (©)

where Fr(-) and fr(+) are the c.d.f. and p.d.f. of the gamma distribution with shape parameter m and

scale parameter A, respectively. The function ¢'(z) is the first derivative of ¢ (z) with respect to z.

The proof is provided in Appendix C.



Using this theorem, some properties of the CATS distribution can be obtained as follows. These

results play important roles in the developments that follow.

Theorem 2. The g-th quantile of the CATS distribution is given by

CATS((8) = 575 0 (@) (10)

where Fr1(+) is the g-th quantile of a gamma distribution with parameters m and A,. The proof is

given in Appendix D.

Theorem 3. The r** moment about origin of the CATS(8) distribution is given by

I} r r o) i i+i (— i ) . . . -m
1®) = (5m0m5) TR T (7) D 1+ 25 A - +4u] @)
The constants Ay, and Ay are defined in Equation (2). The proof is provided in Appendix E.

Thus, the mean of the CATS(6), i.e. ACATS(8) = p;(9) is given by putting » = 1 in Equation (11)

as follows.

108 = (5m) S0 Thao D' (D) [1+ 25 (4G = ) + 4|

We mention here that in the context of the ARL, Kumar [30] and Kumar et al. [45] suggested two
IC performance metrics: the LPB (lower Prediction Bound) which is defined as the smallest IC
CARL value that can be attained by the control chart with high probability, say, 1 —y, and the
probability that the IC CARL is greater than or equal to a nominal ARL value. The latter is referred
to as the exceedance probability criterion (EPC) [46] and has been investigated by several authors
including Albers et al. [47]; Gandy and Kvalgy [36], Faraz et al. [34]; Goedhart et al. [32, 37]; Guo
and Wang [29] to design the phase Il control limits for fixed probability, say, 0.90 to guaranteeing
that the IC CARL will meet or exceed the nominal ARL,.

Motivated by these, we define the metrics LPB and the exceedance probability (EP) in terms of I1C
CATS i.e. CATS(1) (thereafter we will denote it by CATS;¢ by first defining function ¢ (T) for the

IC situation as follows.

Ao TAL AT Ay ]‘1
T)=T|1- - —
o) =T [1=exp (=) +ewp (-3

Now we define the (1 —y)% LPB for the CATS,c, denoted by LPB;_, as

P[CATS;c = LPB;_,|=1—y



which gives

1
LPB,_, = m(plC(Fr_l(Y))

For the control chart with the LPB equal to LPB, _,, the user has a usually high confidence (1 —y)%

that his CATS;¢ will be at least as much as LPB;_,. Note that the LPB;_, is in fact the y-th quantile
of the CATS; distribution.

On the other hand, the exceedance probability (EP) that the CATS;¢ is at least as much as a nominal

ATS, value is defined as
EP = P[CATS;c = ATS,] =1 — Fr ((pl_cl((m — 1)ATSO))
Note that it is desirable that both LPB,_, and EP be high for a good chart.

3. Phase Il Exponential chart under the unconditional perspective

We should mention here that the exponential charts with known parameter A, are often constructed
using an equal-tailed probability approach by assigning the half of the FAR, a, to the both tails i.e.
using P[X < LCLJ|IC] = P[X > UCLJIC] = «,/2. However, when the parameter is unknown, the
control limits LCL and UCL, being the function of X (or T), become random variables. As a result, we
set E [P[X < L/C\L|IC]] =E [P[X > U’CLlIC]] for the equal-tailed exponential chart in the unknown
parameter case. The exact expressions for the unconditional probabilities are provided in Appendix

F.

In order to construct the equal-tailed exponential chart with estimated parameters under the
unconditional perspective for a fixed nominal ATS,, we determine the unique pair (§, p) that gives a

pair of control limits satisfying the following two equations:

Wy (1) = ATS, (15)
- (1) = (122 0

Clearly, Equation (15) ensures that the expected value of CATS;¢ i.e. the ACATS;¢ (given by u'(1))

is equal to the nominal ATS,, whereas Equation (16) ensures that the unconditional tail probabilities
E [P[X < LTTL|IC]] and E [P[X > U’CL|IC]] are equal i.e. a charting statistic has on average an equal

chance of lying below the lower control limit and above the upper control limit. As noted above, this
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is one analogue of the equal-tailed probability approach used in the known parameter case. Once we
find the required pair of (£, p) satisfying Equations (15) and (16), the corresponding P[X < LCL|IC]
and P[X < UCL|IC] can be obtained from Equation (2) for the phase Il equal-tailed exponential
chart. Note that the unconditional perspective is defined here in terms of the ATS, rather than in
terms of the ARL, as in [46].

It is worth mentioning that the equal-tailed exponential chart under the unconditional perspective is
ATS-biased as its ATS function does not achieve its maximum at the IC state (i.e. § = 1), which
causes the control chart take more time to give a signal in the OOC state than in the IC state of the
process. This is considered undesirable and hence, in this situation, it is worth using the ATS-
unbiased exponential charts (see [11]). In order to design the ATS-unbiased chart with the estimated
control limits under the unconditional perspective, we first set the p;(1) (the mean of the CATSc)
is equal to the nominal ATS, (see, Equation (17)) and then we set the derivative of ACATS(S), with
respect to 6, that is p;(8) evaluated at § = 1 equal to zero (see, for example, [29]) (see, Equation
(18)).Thus, the control limits of the ATS-unbiased exponential chart with estimated parameters
under the unconditional perspective can be obtained from first solving the following the two

equations

W, (1) = ATS, 17)
Fu®| =0 (18)

for the (&, p) pair and then using Equations (8) and (9) respectively by plugging in the values of the
pair (¢,p) of the corresponding chart. Note that Equation (17) ensures that the mean of the CATS,c
is equal to the nominal ATS, whereas Equation (18) ensures the unbiasedness that is the maximum
of the ACATS(S) is at § = 1. The chart design parameters are calculated and reported in Table 1 for
both the phase Il equal-tailed and the phase Il ATS-unbiased exponential charts corresponding to
different values of m. The control limits of the phase Il equal-tailed and the ATS-unbiased
exponential charts with unknown parameter can be obtained from Equation (3) by plugging in the

appropriate values of the pair (¢, p) of the corresponding chart.

3.1. In-control Performance of the phase Il exponential charts under the unconditional

perspective
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The c.d.f. and p.d.f. of the phase Il equal-tailed and the ATS-unbiased exponential charts with
unknown parameter can be obtained from Equations (8) and (9) respectively by plugging in the
appropriate values of the pair (¢, p) of the corresponding chart. Figures 1 and 2 show the p.d.f.s of
the CATS;c of the phase Il equal-tailed and ATS-unbiased exponential charts, respectively, with
nominal ATS,=370.4, m=20, 50, 100, 500 and A, = 1. We should mention here that we consider
small sample sizes, m < 30, moderate sample sizes, 30 <m < 100 and large sample sizes,
m > 100. It can be seen from Figure 1 that for smaller values of m, the p.d.f. of the CATS;. for the
phase Il equal-tailed exponential chart is skewed to the left of ATS, that is the higher values of the
CATS are located to the right of ATS, which produces a high EP value. However, as m increases,
the distribution of the CATS;c becomes more symmetric about ATS,. Thus, even when m is large,
the EP values tend to 0.50 which means that there is only about a 50% chance that the CATS;¢ will
be greater than or equal to ATS,. On the other hand, the CATS;¢ distribution of the ATS-unbiased
exponential chart is more left skewed than the corresponding equal-tailed chart for moderate to large
sample sizes (Figure 2). Note that for smaller values of m, the p.d.f. of the CATS,¢ distributions for

both control charts reaches its maximum, and then decreases rapidly tending to zero.
Insert Figures 1 and 2

Table 1 presents the values of various performance metrics of the of CATS;¢ distribution for both
the phase Il equal-tailed and ATS-unbiased exponential charts obtained under the unconditional
perspective, such as the mean (ACATS;c), standard deviation SDCATS;c, some percentiles,
coefficient of variation (CV=( SDCATS;c/ACATS;c) x 100) for different values of m with

ATS,=370.4. The following observations can be made from Table 1.

1. Though, the ACATS;c values are kept fixed at nominal ATS, =370.4, the corresponding
SDCATS are quite high as compared to ACATS;¢ especially for small sample sizes for both the
charts, for example, when m = 20, the CV values are 42.24 and 47.18 for the phase Il equal-
tailed and ATS-unbiased chart, respectively. Thus, looking at the ACATS,¢ only conveys half the
story and this raises a question about the unconditional perspective. In order to reduce the
practitioner-to-practitioner variability, i.e., to reduce SDCATS;c value to a reasonable level, a
huge number of phase I observations are required. Zhang et al. [26] suggested that the variability
in IC CARL values should be within 10% of the nominal ARL value. Following them, to keep
the SDCATS;¢ value within 10% of the desired ATS,, it is observed that more than 1000 phase I

observations are needed for the equal-tailed exponential chart whereas about 400 phase |
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observations are required for the ATS-unbiased exponential chart. Thus, the ATS-unbiased
exponential chart needs substantially lower number of observations.

2. It is worth noting that for smaller values of m, the equal-tailed exponential chart has smaller
SDCATS;c values than the ATS-unbiased exponential chart. For example, when m = 20, the
SDCATS;¢ value for the equal-tailed chart is 156.46, whereas it is 174.76 for the ATS-unbiased
chart about 12% lower. However, for moderate to large sample sizes m, the SDCATS;. values of
the ATS-unbiased exponential chart are smaller than that of the equal-tailed exponential chart.
For example, for m = 150, the SDCATS;¢ values are 99.80 and 61.86 (about 38% less) for the
equal-tailed and the ATS-unbiased exponential charts, respectively.

3. The EP values for both the charts are not particularly appealing, especially, for larger sample
sizes. This happens because as m becomes larger, the CATS;¢ distribution for both the charts
tends to become symmetric about the ATS, which produces EP values close to 0.50. This gives.
only a 50% probability that the CATS;¢c value will be greater than or equal to the nominal ATS,.
However, the ATS-unbiased chart has higher EP values than the equal-tailed chart except for
smaller values of m < 30.

Insert Table 1

Note that in the context of monitoring rare events, it can take a long time to even collect a small
number of phase | observations. The study suggests the use of an equal-tailed exponential chart
when a small number of phase I observations is available to estimate the parameter. However, under
the unconditional perspective neither chart accounts for practitioner-to-practitioner variability which
is reflected by their respective low EP values. This provides a motivation for designing the control
chart under the conditional perspective using the exceedance probability criterion (EPC), which
ensures a guaranteed IC performance in the sense that the CATS;c meets or exceeds (is at least equal

to) a nominal ATS, value with a prespecified (high) probability.

3.2.  Out-of-control Performance of the phase Il exponential charts under the unconditional

perspective

In order to examine the conditional OOC performance of the equal-tailed and ATS-unbiased charts
under the unconditional perspective, we consider & = 2.0,4.0 to reflect upward shifts and 6 =
0.25,0.5 for downward shifts and different values of m = 20,30,50,100,200,500. Table 2

provides the mean, standard deviation and percentiles of the conditional OOC CATS, denoted by
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CATSqgoc, distributions of the equal-tailed and ATS-unbiased exponential charts under the

unconditional perspective when ATS, = 370.4, A, = 1.
Insert Table 2

It can be observed from Table 2 that when the process improves i.e. § < 1 and the phase | sample
size m is small, the equal-tailed exponential chart under the unconditional perspective has larger
OOC mean and percentiles of the CATSgoc distribution than those for the ATS-unbiased
exponential chart under the unconditional perspective whereas for the moderate to large values of m,
the opposite pattern is observed i.e. the OOC mean and percentiles of the equal-tailed exponential
chart under the unconditional perspective are smaller than the corresponding values of the ATS-

unbiased exponential chart under the unconditional perspective.

However, when the process deteriorates i.e. § > 1 and the phase | sample size is small, the OOC
mean and percentiles of CATSyoc distribution for the equal-tailed chart under the unconditional
perspective are smaller than those for the ATS-unbiased exponential chart under the unconditional
perspective, however, for moderate to large values of m, these values for the former chart are larger
than the latter.

Overall, for a moderate to large phase | sample size, the ATS-unbiased exponential chart under the
unconditional perspective has better OOC performance in terms of lower ACATSqo¢ Values than the
equal-tailed exponential chart when the process deteriorates. Note that generally speaking, in typical
applications, the deterioration case is considered to be more serious than the improvement case in
practice. On the other hand, when m is small the latter performs better than the former. For the
improvement case i.e. § > 1, the ATS-unbiased exponential chart under the unconditional
perspective has better (worse) performance than the equal-tailed exponential chart under the

unconditional perspective for small (moderate to large) m.
4. Phase Il exponential charts under the conditional perspective

The study in Section 3 shows that both the equal-tailed and ATS-unbiased phase Il exponential
charts adjusted under the unconditional perspective have poor IC conditional performance since the
variation in the CATS,¢ distribution is not accounted for. Noting that the SDCATS,. value decreases
as the phase | sample size, m (See Table 1) increases, the SDCATS;. can be reduced to reasonable
degree, i.e., say within 10% of the desired ATS,, by increasing m. On the other hand, increasing m

reduces the confidence that the CATS;c will meet or exceed the nominal ATS, since the CATS;c
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distribution tends to become symmetric around ATS,. Thus, when m is large, there is about 50%
chance that the CATS;¢c will be less than the ATS, which will cause more frequent false alarms and
more unwanted process interruptions than desired [29]. We now consider adjusting the control limits
of both the phase Il equal-tailed and ATS-unbiased exponential charts under the conditional
perspective to achieve a fixed EP value, say, 1 —y (usually high, say, .90) i.e. CATS;c meets or
exceeds the desired nominal ATS, with a certain probability, 1 —y. In terms of the average run
length ARL, this criterion is known as the exceedance probability criterion (see for example, [34,
36]).

First consider the Phase Il exponential chart.

Let LCL* and UCL* be the lower and upper control limits of the phase Il exponential chart under
conditional perspective such that the resulting CATS;¢ is greater than or equal to the nominal ATS,

with a high probability, say, 1 — y. The adjusted control limits are given by

LCL =2k and UCL' =22 (19)

where A} = —In(1 — §'p*)) and Aj; = —In((1 — §")p*). The constants £* and p* for the phase II
equal-tailed exponential chart under the conditional perspective can be obtained from the following

equations

P[CATS;c = ATS,] =1 —v (20)

1- (1447 - (1+ i)_m (21)

m—1
and for the ATS-unbiased exponential chart from the following equations
P[CATS;c = ATS,] =1—¥ (22)
L3 '(5)| =0 23
a6 H1 so1 (23)
respectively where P[CATS;c = ATS,] can be obtained from Equation (14) by replacing A;, and Ay
by A] and Ay, respectively in ¢c(-). Equation (21) is obtained by equating the two unconditional

probabilities E [P[X < LfL*|IC]] and E [P[X > UfL*|IC]] which can be obtained from Equations

(E.1) and (E.2) by replacing A;, and Ay by A] and Ay. The p;(8) can be obtained from Equation
(11) using A7 and A5 instead of A[ and Ay, respectively. The design parameters & and p* are

calculated and reported in Table 3 for both phase Il equal-tailed and ATS-unbiased exponential
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charts under the conditional perspective corresponding to different values of m. Using these, the
control limits of the equal-tailed and the ATS-unbiased exponential charts under the conditional
perspective can be obtained from Equation (3) by replacing A;, and Ay by A and Ay, respectively.
The c.d.f. and p.d.f. of CATS(8) of the respective charts can be obtained from (8) and (9),

respectively by plugging in the corresponding design parameters.
4.1. Conditional In-control Performance of phase Il exponential charts

The p.d.f.s of the proposed phase Il equal-tailed and ATS-unbiased exponential charts with fixed
EP=0.90 i.e. P[CATS;c = ATS,] = 0.90 and nominal ATS, = 370.4 are shown in Figures 3 and 4,
respectively for m = 20,50,100, 500 and A, = 1. It can be seen from these figures that the
distribution of CATS;c of the ATS-unbiased exponential chart adjusted under the conditional
perspective is more skewed to the left than that of the corresponding equal-tailed exponential chart,
except for smaller values of m. Note that the CATS,¢ distribution of both exponential charts under
the conditional perspective becomes more symmetrical as m gets larger, however, the distribution of
the ATS-unbiased exponential chart under the conditional perspective is more skewed than the

equal-tailed chart under the conditional perspective, even for large m.
Insert Figures 3 and 4

In order to examine the IC performance of the phase Il exponential charts under the conditional
perspective, various metrics are calculated from the exact distribution of CATS;c. These metrics

are reported in Table 3. The following observations can be made.

1. The mean of CATS¢ i.e. ACATS,¢ values of both equal-tailed and ATS-unbiased exponential
charts under the conditional perspective are much higher than the nominal ATS,. It is the
price to be paid to ensure that the CATS;c will meet or exceed the nominal ATS, with a
guarantee of 90% probability. Similar observations have been made by Jardim et al. [46] for
the Shewhart chart for the mean. It is observed that the ACATS; values of the adjusted ATS-
unbiased exponential chart under the conditional perspective are closer to ATS, than the
adjusted equal-tailed exponential chart under the conditional perspective except for smaller
values of m < 30. The difference between the ACATS;c values of both charts under the
conditional perspective becomes smaller with the increase in m.

2. There is a significant difference in the conditional IC performances of the two types of

charts. The study reveals that for smaller values of m, there is large variability in the CATS;¢
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values of the ATS-unbiased exponential chart under the conditional perspective relative to
the corresponding equal-tailed chart. However, for m > 30, the former has lower
SDCATS;¢ values than the latter. For example, when m = 100, the SDCATS; is 108.67 for
the ATS-unbiased exponential chart under the conditional perspective whereas it is 214.18
for the equal-tailed exponential chart under the conditional perspective.

3. Due to a lower variability in the IC CATS values, the ATS-unbiased exponential chart under
the conditional perspective needs less phase | observations than the corresponding adjusted
equal-tailed chart to keep SDCATS;¢ value under the conditional perspective within 10% of
the ATS,. It can be observed from the last column of Table 3 that about 500 phase I
observations are required for the ATS-unbiased exponential chart under the conditional
perspective whereas more than 1000 observations are required for the equal-tailed chart
under the conditional perspective to keep SDCATS;cvalue below 10% of the ATS,.
However, as it was stated earlier, collecting such a large number of phase | observations may
not always be possible and therefore, one may need a trade off with the IC performance. In
this scenario (less phase | observations), the equal-tailed ATS-unbiased exponential chart
under the conditional perspective is preferred to the corresponding ATS-unbiased chart.

Insert Table 3

4.2.  Conditional Out-of-control performance of the phase 11 exponential charts

In this section, we examine the conditional performance of the proposed equal-tailed and ATS-
unbiased charts under the conditional perspective in an OOC situation. For this, we consider the
same & values and the m values as in the OOC study of the charts under the unconditional
perspective. The various performance metrics of the proposed charts are provided in Table 4 when
ATS, = 370.4, Ay = 1 and EP=0.90.

It can be observed from Table 4 that the findings are same as found in the OOC study of the equal-
tailed and ATS-unbiased exponential charts under the unconditional perspective. For example, when
6 <1 (8 > 1) and the phase | sample size m is small, the equal-tailed exponential chart under the
conditional perspective has larger (smaller) OOC mean and percentiles of the CATSg distribution
than those for the ATS-unbiased exponential chart under the conditional perspective whereas for the
moderate to large values of m, the opposite pattern is observed i.e. the OOC mean and percentiles of
the equal-tailed exponential chart under the conditional perspective are smaller (larger) than the

corresponding values of the ATS-unbiased exponential chart under the conditional perspective.
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Like the ATS-unbiased exponential chart under the unconditional perspective, for a moderate to
large phase | sample size, the ATS-unbiased exponential chart under the conditional perspective has
better OOC performance in terms of less ACATSqoc Values than the equal-tailed exponential chart

when the process deteriorates.

Overall, for moderate to large phase | sample size, the ATS-unbiased exponential chart under both
perspectives outperforms than the corresponding equal-tailed exponential chart in the deterioration
case, however, for the improvement case, the former has worse performance than the latter. We
should mention here that though the performance of the phase Il (equal-tailed or ATS-unbiased)
exponential chart under the conditional perspective seems to be worse than the corresponding
exponential chart under the unconditional perspective. However, one should keep in mind that the I1C
performance of the charts under both perspectives are not comparable in the sense that the ACATS;¢
of the exponential charts under the conditional perspective are larger than the corresponding charts
under the unconditional perspectives. Note that these observations are similar to the those of [46]
that the chart under the conditional perspective neither control the unconditional performance
(ACATS¢) nor its variability (SDCATS;¢) and produces larger ACATSqoc values than the chart under

the unconditional perspective.
Insert Table 4

Finally, in order to help practitioners in implementing the exponential chart with estimated
parameters, we provide in Tables 5 and 6 the required charting constants of both the equal-tailed and
ATS-unbiased exponential charts for different 4,. A program to obtain the charting constants,

written in MATLAB, is available from the authors on request.
Insert Tables 5,6
5. Example

In order to illustrate the application of the proposed phase Il equal-tailed and ATS-unbiased
exponential charts, adjusted under the conditional perspective, we first use the data given by Jarrett
[48]. The data comprises 190 recorded time intervals (in days) between coal-mining disasters in
England, from 15 March, 1851 to 22 March, 1962 and have been extensively used in the literature
by a number of authors for illustration of various procedures. The data are shown in Table 7 for
convenience. It has been tested that the time intervals between successive explosions follow an

exponential distribution and we monitor the unknown rate parameter A of this distribution [48]. We
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should mention here that according to Jarrett [48], the first 125 time intervals between the explosions
follow an exponential distribution with a mean rate of (an explosion) one every 106 days while for
the next 65 explosions, the mean rate is about one every 388 days.

In order to examine the ability of the proposed charts under both perspectives to trace the
improvement in the process with small phase | sample, we consider the first m = 15 observations to
be from an IC process and construct the proposed exponential charts under both perspective, from
which we estimate that A, = 0.0072 (or, equivalently, the sum of 15 TBEs is 1937 days). The
control limits of the charts under the conditional perspective are constructed for the nominal ATSy
=40,000 days for which the design parameters £* and p* are obtained solving Equations (20)-(21)
and (22)-(23), respectively. Note that the ATS, =40,000 days means a false alarm is expected on the
average, every 40,000/106=377 explosions. The lower and upper control limits of the equal-tailed
exponential chart under the conditional perspective are found to be 0.0839, 1222.4406 respectively
whereas these are found to be 0.0331, 1191.3600 respectively for the ATS-unbiased exponential
chart under the conditional perspective. For the unconditional perspective, the lower and upper
control limits of the equal-tailed exponential chart are found to be 0.2527 and 998.7904,
respectively, whereas these limits are 0.2084 and 904.6048, respectively, for the ATS-unbiased
exponential chart. The four pairs of the control limits are depicted in Figure 5. It follows from Figure
5 that except the equal-tailed chart under the conditional perspective, all the other chars show an
OOC alarm at the 119th time point of the phase Il monitoring (corresponds to the 134th observation )
whereas the equal-tailed exponential chart under the conditional perspective does not signal at this
point. This may be explained by the fact that the conditional perspective produces wider limits

which leads to poor OOC performance (see Table 4).

We mention here that the OOC signals indicated by the charts are on the upper side which indicates
a decrease in the mean rate of explosions per day. This is consistent with the fact that with more
technological advances, coal-mine explosions occur less frequently nowadays. As was stated
earlier, Jarrett [48] showed that the last 65 time intervals had an decreased mean rate of explosion
per day than the earlier 125 time intervals. The proposed ATS-unbiased exponential chart under the
conditional perspective detects the change in the mean rate of explosions earlier, after the 9th time
interval since starting the improvement in the process whereas the equal-tailed exponential chart
under the conditional perspective detects this change after the 28th time interval of the starting the

improvement.
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Insert Table 7
Insert Figure 5
6. Concluding Remarks

In this paper, we consider the phase Il exponential chart, which is one of the most widely used
control chart for monitoring TBE data from high-yield processes. To understand the impact of
parameter estimation, and to help the user better implement the chart in practice, we study the
conditional chart performance in terms of the time to signal and the metric ATS, which is known to
be more appropriate than the traditional run length and the ARL in case of TBE data. To study the
chart's properties, the exact distribution of the CATS was derived, and the (adjusted) control limits
of both the equal-tailed and the ATS-unbiased exponential charts fixed nominal ATS,were found
under two perspectives for a fixed nominal ATS,. Under the unconditional perspective, which sets
the average of the IC CATS distribution to a fixed nominal ATS, value while finding the adjusted
control limits, the study showed that both charts have poor IC conditional performance in terms of
very high practitioner-to-practitioner variability (SDCATS;¢ values), low LPB and low EP values.
Alternatively, under the conditional perspective, the control limits of both charts were calculated so
that the CATS; is at least equal to a specified value i.e. ATS, value with a high probability. For these
charts, the performance study revealed good IC conditional performance, even though they have
increased mean CATS;c than the nominal ATS,, this may be considered as the price to pay for a
guaranteed and improved IC performance. It was observed that for moderate to large phase | sample
sizes m > 30, the adjusted ATS-unbiased exponential chart under the conditional perspective has
less variability in CATS;c values than the corresponding equal-tailed chart. Nevertheless, if a
practitioner wishes to control both the metrics, for example, to keep SDCATS;¢ within 10% of ATS,
and EP=0.90, i.e., a guarantee that the CATS;c will meet or exceed ATS, with 90% probability, then
about 400 phase | observations are required for the adjusted ATS-unbiased exponential chart
whereas more than 1000 observations are needed for the adjusted equal-tailed exponential chart
under the conditional perspective. Moreover, the adjusted ATS-unbiased exponential chart under the
conditional perspective has a good OOC performance in the deterioration case for moderate to large
values of m. Thus, the phase Il ATS-unbiased exponential chart adjusted under the conditional
perspective is recommended to monitor TBE individual data from high-yield processes following an

exponential distribution with an unknown rate parameter.
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Finally, note that we have only considered the simpler Shewhart-type charts; however, the same
principles can be extended to a more general TBE chart such as the t,-chart [1, 22], which monitors
the time to ™ event/failure. However, there may be some concern about loss of information with ¢,.-
type charts since data collection at the end of an aggregation period (say at the ™ event) may have
an adverse effect on the chart’s performance[44, 45]. It will be interesting to examine the effect of
aggregation on the t,-chart’s performance with the estimated control limits constructed under the
ATS criteria. Note also that when the failures in a process occur due to sudden shock instead of a
slow wear and tear, the exponential distribution is a more suitable distribution to model time between
events/failures. However, when the failure rate changes over time, then the Weibull distributions is
more appropriate and can be considered as a probability model for TBE data. Other non-Shewhart-
type charts such as the CUSUM exponential and the EWMA exponential charts can be considered in

a future study.
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Appendices

A. Distribution of time to signal (TS)
For the known parameter case, the run length variable, R follows a geometric distribution with

parameter (&), thus the probability mass function of R is given by

PIR=1=60®)(1-6®) "j=12..
Thus, using the fact that sum of j independent and identically distributed exponential variables with
mean A, = 86\, follows a gamma distribution with PDF
fr@®) = )\—{tf‘le‘llt t>0,A>0
0 S

the probability distribution of time to signal, TS is given by
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P[TS < s] = P[3R,X; <]

=¥, P[2)_, X; < s|R = j]P[R =]
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B. Proof of Lemma 1

-1
To show @(T) =T [1 — exp (— 8;\:—2“) + exp (— 8);2#;”)] IS an increasing function of T €

(0,0), we must have the first derivative ¢'(T) >0 for all T € (0,). Let ¢(T) = [1—

¢(T) = T7(T)
[(M1?

where ¢'(T) is the first derivative of {(T). Because {(T) > 0 for all T, then «'(T) > 0 implies
¢(T) —TT(T) > 0.

@' (T) =

Let us define P(T) = {(T) —T{'(T). It can be easily shown that {(T) attains its minimum at

_ In(4y/AL)

=M= k(Ay—AL)

so that {'(M;) = 0 and ¢{""(M;) > 0. Further, {'(T) also attains its maximum at

T = M, so that {""(M,) = 0 and {"""(M) < 0 where M, = —ZKI:;AUZA;X
U—4L

Since, P'(T) = —T{"(T) and P'(T) = 0 implies either T = 0 or ''(T) = 0 which yields solution
T =M,in (0,0). Again, P"(T) =-T{"(T)—7'(T) and hence P"'(0) <0 and P"(M,) =
—M,3" (M) > 0.

This implies that the function P(T) attains its minimum at T = M, in (0, ). Thus the minimum
value of P(T) is P(M;) > 0. It implies that ¢'(T) > 0 for all T € (0,00) and consequently, the

function ¢(T) is an increasing on (0, o).

C. Proof of Theorem 1
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By definition, the c.d.f. of the CATS(6) is
G(z) = P[CATS(8) < z] = P[@(T) < §(m — 1)z]
Using Lemma 1, we can write
G(z) = P[T < 7' (8(m — 1)2)] = Fr(¢™(8(m — 1)2))

The p.d.f. of the CATS(8) in Equation (9) can be obtained by differentiating the c.d.f. in Equation
(8) with respect to z. Further note that the function ¢~ (-) has no closed form expression, so must

be computed numerically.

D. Proof of Theorem 2
The qt"* (0 < g < 1) quantile of CATS(68) distribution, denoted by CATS,(8), can be obtained by

the equation G (CATSq(é)) = q, that is.
F ((p_l (8(m — 1)caTs, (5))) —
which gives

™" (8(m — 1)CATS,(8)) = F(q),

where F71(+) is the g-th quantile of a gamma distribution with parameters m and 4,. Using

Lemma 1, we have
8(m — 1)CATS,(8) = p(F(q))
which gives the CATS, (8) in Equation (10).

E. Proof of Theorem 3
Proof. The rt* moment of CATS(8) is

w-(8) = E[CATS(8)]" = foozrg(z)dz.
0

-1
Using the transformation t [1 —exp (— %) + exp (— Sif—iAlU)] = 8(m — 1)z, we obtain

ur-(8) = —1))f t" [1 — exp( i 1Lt) + exp (_ Si:fft)]_r F}EO ) $m=1,=Aot gy
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SApALt SAgAyt
OL)_eX( 04y
m-—1 m-—1

Form>1,6 > 0,1, >0 and t > 0, we have |exp (— )| < 1. Thus, using

the negative binomial series expansion in the above expression, we get

- (8) = meZ(—lﬁ <_]r> [exp (— ?:lkof]“lt) — exp (_ ii\lofultﬂj

}\m
X ——— tm+r 1 —}Lotdt
Ir(m)

Again, using the binomial theorem, we can re-express p;-(6) as follows.

SAg t

1(8) = 1/(8(m = 1)) [7 T2 Bo(- 17+ (7)) (1) exp (- 220 [( — DAL + Auil) %

(13" gmr—1,-Aot ¢
r'(m)

Since the summation is absolutely convergent, we can interchange the summation and the integral.

We then have
15®) = ooy B0 Zeo D (7) (D7 ezt x s (Aot [1+

%{U — DAL + TAU}]) dy

On simplification, we have

pr(8) = — s 5 (17 (T) (D) [1+ (G - DAL+ Ai)]

(8o (m— 1)) r'(m)

We mention here that the infinite series in Equation (11) is bounded that is

(SAO(ZT:)SZF(m) [1-(r+2) - (1 M)_m}] <u(8) <

r(m+r) . _SAZT -m m I'T(m-r)
(82o(m—1)) T(m) i {(1 m—l) '(Al) I'(m) }
and hence, it always converges. The reader may refer to Appendix B of [28] to obtain bounds of
series (11).

F. Unconditional probabilities
The unconditional probability that a charting point lies below the lower control limits LCL is

o)

_SAoAL, }\m

joooP[X< L”C\L]fr(t)dtzjo (1—e m—1 )F(m) tm-le~Mot gt
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S m 8A
_ _ f }\0 tm_le—}\ot(1+m—_l'1)dt
o I'(m)

=1-(1+ SAL)_m (E.1)

m-1
In like manner, we can obtain the unconditional probability that a charting point lies above the upper

control limits UCL which is

[ P[x > UCL]fr(ode = (1+22) ™ (E.2)

m-1
For the IC process, the unconditional probabilities can be obtained from (C.1)-(C.2) respectively by
letting 6 = 1.
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Table 1. The performance metrics of phase Il equal-tailed and ATS-unbiased exponential chart under unconditional perspective with fixed nominal ATS,=

3704 and 15 =1

Design Parameters Percentiles

m & p ACATS;c SDCATS;c 10% 25% 50% 75% 90% EP CV
10 0.797302 0.002491 370.4 1525 104.2 269.6 443.8 4955 5028 0.63 41.17
15 0.712028 0.002608 370.4 156.8 115.0 251.2 4228 509.7 5323 0.59 4232
20 0.663459 0.002673 370.4 156.5 126.4 247.7 407.7 5109 548.0 0.57 4224
3 30 0.611706 0.002732 370.4 1515 146.1 251.3 391.0 502.7 5585 0.54 40091
T 50 0.568362 0.002761 370.4 1389 1748 263.6 378.6 4839 552.6 052 3751
Tg 100 0.534765 0.002755 370.4 115.0 215.7 2855 371.7 456.7 523.4 0.50 31.04
0 200 0.517561 0.002736 370.4 89.3 253.2 306.6 370.0 4338 488.2 050 24.11
500 0.507074 0.002717 370.4 60.2 292.7 328.6 369.9 4117 4488 0.50 16.25
1000 0.503546 0.002709 370.4 435 3145 3405 370.1 399.9 426.7 050 11.75
10 0.365339 0.003731 370.4 2489 425 1273 3610 619.0 710.2 0.49 67.19
15 0.509215 0.003010 370.4 2024 783 186.3 389.8 5629 6284 0.52 54.64
3 20 0.583302 0.002802 370.4 1748 109.6 223.0 396.2 530.4 5856 0.54 47.18
2 30 0.653178 0.002682 370.4 142.0 156.0 263.0 3959 4939 539.9 055 38.34
g 50 0.702982 0.002646 370.4 109.1 208.9 296.1 390.1 460.2 498.7 0.56 29.47
&' 100 0.735050 0.002655 370.4 76.3 262.2 3220 3822 429.7 4605 0.56 20.59
< 200 0.748781 0.002672 370.4 534 2971 336.9 376.8 4103 4344 055 14.40

500 0.756045 0.002688 370.4 334 3257 349.1 3731 3945 4114 053 09.02

1000 0.758269 0.002694 370.4 235 339.3 3552 3717 3870 3996 052 6.35




Table 2. OOC performance of the equal-tailed and ATS-unbiased exponential chart under the unconditional perspective with nominal ATSO = 370.4

Equal-tailed ATS-unbiased
) m  ACATS;c  SDCATS;c 10% 25% 50% 75%  90% | ACATSc SDCATS;c 10% 25% 50% 75% 90%
0.25 10 58.5 916 103 175 329 648 1243 33.3 41.1 79 126 218 390 682
15 38.3 381 110 168 275 462 757 30.9 27.9 97 145 231 375 595
20 32.0 245 117 167 254 392 59.1 29.6 220 111 158 237 363 542
30 27.2 154 126 169 235 333 459 28.2 162 129 174 243 345 479
50 24.2 99 138 173 223 290 369 27.1 115 151 190 247 325 418
100 224 6.2 153 180 215 258 305 26.1 76 175 207 250 302 361
200 21.6 41 167 186 211 240 270 25.6 52 194 219 250 286 324
500 21.1 25 180 193 209 227 244 25.2 32 213 230 250 272 295
1000 21.0 1.8 188 197 209 221 233 25.1 23 223 235 250 266 281
0.5 10 273.9 369.8 189 43.7 1193 3355 7759 136.7 2426 111 228 543 138.0 3308
15 168.4 2255 206 398 871 1974 4102 120.2 1736 161 298 622 1353 2783
20 126.3 1533 221 389 755 150.8 284.0 110.5 136.0 200 348 66.4 1308 2449
30 93.4 90.3 246 389 66.1 1147 19038 99.9 96.8 259 412 705 123.0 205.3
50 73.6 51.2 281 400 600 912 1342 90.7 647 334 481 733 113.0 168.0
100 62.2 284 330 424 563 754 985 83.4 399 426 555 750 1017 1344
200 57.5 179 375 448 548 672 809 79.6 261 505 610 754 93.6 1139
500 55.0 106 424 475 539 613 689 77.2 157 585 66.0 756 86.6 98.0
1000 54.2 73 453 491 537 588 638 76.4 109 631 687 756 832 90.8
2 10 124.5 8.3 1247 1259 126.0 126.1 126.1 175.4 245 1632 1811 1834 183.6 183.7
15 133.7 59 1335 134.6 1348 1348 134.9 160.5 11.1 1584 1625 163.2 163.3 1634
20 140.3 43 1399 1409 1411 1411 1412 151.9 58 151.0 1527 153.1 153.1 153.2
30 149.2 2.5 1487 1495 149.7 149.7 1498 142.4 2.1 1421 1427 1428 1429 1429
50 159.1 1.2 158.7 159.2 1594 1595 1595 134.4 0.5 1343 1345 1345 1346 1346
100 169.6 0.4 169.3 169.6 169.7 169.8 169.9 128.2 0.1 1281 128.2 1282 1283 1283
200 176.5 0.2 1763 1765 176.6 176.6 176.7 125.0 0.0 1250 125.0 1251 125.1 125.1
500 181.4 0.1 1813 1814 1815 1815 1816 123.2 0.0 123.1 123.1 1232 1232 1232
1000 183.3 0.1 1832 183.2 183.3 183.3 183.3 122.5 0.0 1225 1225 1225 1225 1225
4 10 31.6 02 315 315 316 316 316 45.9 06 459 459 46.0 46.0 46.0
15 33.8 0.1 337 337 338 338 338 40.9 0.1 408 409 409 409 409
20 35.3 00 353 33 353 354 354 38.3 00 383 383 383 384 384
30 37.5 00 375 375 375 375 375 35.8 00 357 38 358 358 358
50 39.9 00 399 399 399 399 400 33.7 00 337 337 337 337 337
100 425 00 425 425 425 425 425 32.1 00 321 321 321 321 321
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Table 3. The performance metrics of phase Il equal-tailed and ATS-unbiased exponential chart under conditional perspective with fixed P[CATS;c >
ATS,] = 0.90, nominal ATSy,=370.4and 1, = 1

Design parameters Percentiles
m ¢ p ACATS;c SDCATS,c 10% 25% 50% 75% 90% EP CcVv
10 0.899340 0.000743 1180.4 440.2 3704 9979 14242 1491.8 14973 0.90 118.85
15 0.805136 0.000766 1191.1 476.0 370.4 8815 1407.3 1584.6 16152 0.90 128.51
= 20 0.737654 0.000835 1132.3 464.8 3704 791.8 12935 1539.8 16046 0.90 125.48
% 30 0.658787 0.000981 1003.6 412.3 3704 684.0 1088.9 1369.7 1485.2 0.90 111.33
C_*Tu‘ 50 0.591891 0.001212 835.0 3229 3704 585.6 8644 1106.3 1249.6 0.90 87.19
= 100 0.543142 0.001540 661.3 2142 3704 502.1 665.6 824.7 945.8 0.90 57.83
H 200 0.520437 0.001833 552.9 138.7 3704 4535 5526 652.1 736.1 0.90 37.44
500 0.507768 0.002131 472.4 79.0 3704 4175 4718 526.7 575.3 0.90 21.32
1000 0.503784 0.002292 437.9 525 3704 401.8 4375 473.6 505.9 0.90 14.18
10 0.403709 0.000182 7412.7 5179.5 370.4 1876.0 8029.9 12884.3 13567.8 0.90 1398.46
15 0.567256 0.000432 2451.2 1377.7 370.4 11444 27541 37959 40356 090 37195
S 20 0.634341 0.000671 1486.3 716.8 370.4 8758 1658.7 2153.1 2301.1 0.90 19354
3 30 0.689898 0.001035 938.8 365.3 3704 666.9 1025.9 12595 13519 0.90 98.64
g 50 0.726065 0.001449 669.8 199.2 3704 5374 7124 834.8 896.5 0.90 53.78
&' 100 0.747894 0.001865 525.5 108.7 370.4 457.6 544.0 610.4 651.9 0.90 29.34
< 200 0.756494 0.002139 462.2 66.7 370.4 420.7 470.7 512.2 541.7 0.90 18.01
500 0.760345 0.002362 421.2 38.0 370.4 3972 4244 448.7 467.8 0.90 10.27
1000 0.761151 0.002467 404.3 25.7 3704 387.8 405.8 4225 436.2 0.90 6.94
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Table 4. OOC performance of the equal-tailed and ATS-unbiased exponential chart under the conditional perspective with nominal ATS0 = 370.4 and
P[CATS;c = ATS,] = 0.90

Equal-tailed ATS-unbiased
9) m ACATS;c SDCATS,¢ 10% 25% 50% 75% 90% | ACATS;c SDCATS,c 10% 25% 50% 75% 90%
0.25 10 124.5 277.8 14.3 26.4 550 122.3 265.3 1105 281.2 13.4 24.4 49.9 108.6 231.5
15 65.8 84.5 14.9 24.0 42.0 76.6 135.7 61.3 77.3 14.3 22.8 39.7 715 125.6
20 495 459 15.3 22.9 36.6 60.1 96.0 47.8 43.8 15.0 22.3 35.6 58.1 92.5
30 37.9 24.5 15.9 21.9 31.6 46.5 66.6 38.3 24.9 16.0 22.1 32.0 47.0 67.5
50 30.7 13.8 16.6 21.2 27.9 37.0 48.2 32.6 14.9 17.4 22.2 29.4 39.3 51.4
100 26.1 7.7 17.5 20.7 25.0 30.3 36.2 29.0 8.8 19.1 22.7 27.6 33.7 40.5
200 23.9 4.8 18.3 20.5 23.4 26.7 30.2 27.3 5.7 20.6 23.3 26.7 30.6 34.8
500 22.5 2.7 19.1 20.5 22.3 24.2 26.1 26.2 3.4 22.1 23.8 26.0 28.3 30.6
1000 21.9 1.9 19.5 20.6 21.8 23.1 24.3 25.8 2.3 22.9 24.1 25.6 27.3 28.8
0.5 10 931.1 1316.9 36.7 99.7 3340 11517 2920.9 1776.6 4948.2 32.4 86.3 288.3 1092.8 39454
15 498.1 779.2 374 812 2049 5432 1294.8 538.6 1102.6 34.5 74.2 186.1 500.2 1270.7
20 318.8 472.2 38.1 73.2 1583 356.8 752.8 314.7 507.9 36.5 69.8 150.5 339.7 726.8
30 189.5 2224 392 65.8 120.2 226.0 406.1 1925 223.1 39.9 67.0 122.5 230.5 4135
50 1215 97.1 40.9 60.3 94.4 150.2 231.1 134.2 106.3 44.6 66.3 104.4 166.9 256.8
100 85.9 42.6 43.1 56.4 76.5 104.7 139.6 103.8 52.4 51.1 67.4 92.2 127.1 170.3
200 71.1 23.3 45.3 54.6 67.4 83.5 101.6 91.0 30.8 56.8 69.0 86.0 107.3 131.4
500 62.4 12.3 47.7 53.6 61.1 69.7 78.7 83.3 17.3 62.9 71.0 81.5 93.6 106.1
1000 59.1 8.1 49.2 53.4 585 64.1 69.8 80.4 11.6 66.2 72.2 79.6 87.7 95.7
2 10 371.8 20.1 373.6 3744 3745 374.6 374.7 3307.5 416.1 3301.2 3404.3 34085 3408.6 3408.7
15 403.5 142 4042 405.2 4053 405.4 405.4 1010.7 60.3 10123 1020.8 1021.6 1021.6 1021.7
20 404.8 9.8 4050 406.0 406.2 406.2 406.2 584.4 18.6 584.5 586.9 587.3 587.3 587.4
30 386.3 50 386.0 386.8 387.0 387.1 387.1 349.7 4.1 349.5 350.1 350.3 350.3 350.4
50 348.4 19 3479 3485 3487 348.8 348.8 237.7 0.7 237.5 237.8 237.8 237.9 237.9
100 298.7 0.6 2984 298.7 298.9 298.9 299.0 179.3 0.1 179.2 179.3 179.4 179.4 179.4
200 262.0 02 2618 2620 262.1 262.2 262.2 154.6 0.0 154.5 154.6 154.6 154.6 154.6
500 231.1 0.1 2310 2310 2311 231.2 231.2 139.3 0.0 139.3 139.3 139.3 139.3 139.3
1000 216.6 0.1 2165 2165 2166 216.6 216.6 133.2 0.0 133.2 133.2 133.2 133.3 133.3
4 10 93.7 04 937 93.7 93.7 93.7 93.8 851.9 9.6 852.2 852.2 852.2 852.2 852.3
15 101.4 0.1 1014 1014 1014 101.4 101.5 255.5 0.5 255.4 2554 255.5 255.5 255.5
20 101.6 0.0 1016 1016 1016 101.6 101.6 146.9 0.1 146.9 146.9 146.9 146.9 146.9
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Table 5. The design constants of the phase Il equal-tailed and ATS-unbiased exponential chart under unconditional perspective with fixed nominal ATS,=

370.4 and different A,
Ao
0.01 0.1 0.5 10

m $ p ¢ p $ p ¢ p $ p ¢ p
10 0.472386 0.306454 0.578325 0.029152 0.726609  0.005220 0.862242 0.001202 0.928880 0.000469 0.961822  0.000234
15 0.482875 0.294162 0.555894 0.028913  0.658434  0.005407 0.767670 0.001259 0.838260 0.000485  0.884903  0.000237
20 0.487656 0.288154  0.543449 0.028695 0.621480 0.005492 0.708894 0.001299 0.771148 0.000500 0.817067  0.000244
% 30 0.492114 0.282169 0.530104 0.028360 0.582834  0.005551 0.643832 0.001341 0.690283  0.000522 0.727387  0.000255
= 50 0.495438 0.277353 0.518689 0.027965 0.550714 0.005557 0.588242 0.001368 0.617726 0.000539  0.642217  0.000266
u?j 100 0.497784 0.273697 0.509617 0.027555 0.525824 0.005516 0.544878 0.001374 0.560014 0.000547 0.572773  0.000272
200 0.498909 0.271847 0.504885 0.027299 0.513054 0.005470 0.522662 0.001368 0.530310 0.000547 0.536778  0.000273
500 0.499568 0.270728 0.501974 0.027124 0.505261 0.005431 0.509128 0.001359 0.512208 0.000544 0.514814 0.000272
1000 0.499784 0.270354 0.500990 0.027062 0.502637 0.005416 0.504575 0.001355 0.506119 0.000542 0.507426 0.000271
10 0.084039 0.372298 0.306853 0.037841 0.352058 0.007502 0.376461 0.001855 0.388755 0.000736 0.396685 0.000366
15 0.115953  0.334634 0.408015 0.032035 0.483813 0.006137 0.532074 0.001476 0.559415 0.000576 0.578428  0.000282
- 20 0.136177 0.316932  0.465428 0.029954 0.553643  0.005718 0.609939 0.001373 0.641637 0.000535 0.663511 0.000263
§ 30 0.159991 0.300150 0.525791 0.028409 0.621673  0.005456 0.681055 0.001319 0.713642 0.000517 0.735715 0.000254
§ 50 0.182082 0.287488 0.574953  0.027564 0.672155 0.005355 0.729743  0.001307 0.760393  0.000515 0.780767  0.000255
E' 100 0.200678 0.278494 0.611560 0.027169 0.706205 0.005345 0.759587 0.001319 0.787124 0.000523 0.805111  0.000260
200 0.210690 0.274173  0.629574 0.027054 0.721529  0.005364 0.771623 0.001331 0.796868 0.000530  0.813137  0.000264
500 0.216939 0.271641 0.640240 0.027013 0.730017 0.005383 0.777592 0.001342 0.801073 0.000536 0.816005 0.000267
1000 0.219063 0.270807 0.643767 0.027004 0.732706  0.005391 0.779318 0.001346 0.802116  0.000538 0.816519  0.000269
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Table 6. The design constants of the phase Il equal-tailed and ATS-unbiased exponential chart under conditional perspective with fixed P[CATS;; >
ATS,] = 0.90, nominal ATS,= 370.4 and different 4,

Ao
0.01 0.1 0.5 10

m $ p ¢ p $ p $ p ¢ p ¢ p
2 10 0.498121 0.121296 0.692139 0.007513 0.848639 0.001412 0.936908 0.000406 0.968826 0.000192 0.982887 0.000111
§ 15 0.495740 0.144321 0.621741 0.009267 0.750921 0.001567 0.853746 0.000387 0.906058 0.000164 0.935864 0.000088
§ 20 0.495535 0.159252 0.586650 0.010689 0.689553 0.001757 0.784809 0.000406 0.842046 0.000162 0.879445  0.000083
- 30 0.496085 0.177953 0.553362 0.012781 0.623250 0.002100 0.696294 0.000464 0.746954 0.000176 0.784560 0.000086
50 0.497134 0.197614 0.529137 0.015337 0.570079 0.002590 0.615899 0.000569 0.650451 0.000212 0.678217 0.000101
100 0.498331 0.218144 0.513109 0.018354 0.532552 0.003245 0.555025 0.000732 0.572637 0.000274 0.587329 0.000131
200 0.499089 0.233029 0.506057 0.020724 0.515343 0.003804 0.526185 0.000883 0.534773 0.000337 0.542011 0.000162
500 0.499610 0.246454 0.502254 0.022959 0.505811 0.004359 0.509981 0.001041 0.513297 0.000404 0.516100 0.000197
1000 0.499799 0.253291 0.501086 0.024122 0.502826 0.004655 0.504868 0.001128 0.506493 0.000442 0.507868 0.000217
10 0.257128 0.102276 0.361959 0.004515 0.393694 0.000481 0.412317 0.000068 0.422052 0.000019 0.428441 0.000007
s 15 0.298149 0.128457 0.475469 0.007616 0.542908 0.001028 0.589779 0.000181 0.617339 0.000057 0.636808 0.000024
é 20 0.314384 0.145115 0.527788 0.009960 0.606435 0.001514 0.659854 0.000297 0.690623 0.000101 0.712012 0.000045
E 30 0.324657 0.165612 0.575998 0.013076 0.660908 0.002220 0.715863 0.000482 0.746477 0.000176 0.767312 0.000082
< 50 0.324059 0.186875 0.611127 0.016375 0.697773 0.003003 0.750866 0.000699 0.779486 0.000267 0.798604 0.000129
100 0.311044 0.209124 0.634736 0.019676 0.721022 0.003788 0.770932 0.000919 0.796958 0.000361 0.814044 0.000178
200 0.293558 0.225610 0.644853 0.021925 0.730661 0.004309 0.778275 0.001062 0.802472 0.000421 0.818132 0.000209
500 0.271949 0.241007 0.649391 0.023843 0.735213 0.004737 0.781227 0.001178 0.804063 0.000470 0.818626 0.000234
1000 0.258848 0.249123 0.650090 0.024783 0.736220 0.004941 0.781735 0.001232 0.804082 0.000492 0.818230 0.000246
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Table 7. Time intervals in days between explosions in mines, from March 15, 1851 to March 22, 1962 (to be
read down columns), reproduced from Jarrett [43]

157 65 53 93 127 176 22 1205 1643 312
123 186 17 24 218 55 61 644 54 536
2 23 538 91 2 93 78 467 326 145
124 92 187 143 0 59 99 871 1312 75
12 197 34 16 378 315 326 48 348 364
4 431 101 27 36 59 275 123 745 37
10 16 41 144 15 61 54 456 217 19
216 154 139 45 31 1 217 498 120 156
80 95 42 6 215 13 113 49 275 47
12 25 1 208 11 189 32 131 20 129
33 19 250 29 137 345 388 182 66 1630
66 78 80 112 4 20 151 255 292 29
232 202 3 43 15 81 361 194 4 217
826 36 324 193 72 286 312 224 368 7
40 110 56 134 96 114 354 566 307 18
12 276 31 420 124 108 307 462 336 1358
29 16 96 95 50 188 275 228 19 2366
190 88 70 125 120 233 78 806 329 952
97 225 41 34 203 28 17 517 330 632
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Figure 1. The p.d.f. of the CATS, distribution for the equal-tailed exponential chart under the unconditional

20,50,100 and 500 for nominal ATS, = 370.4,4, = 1.
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Figure 2. The p.d.f.s of the CATSc distribution of the ATS-unbiased exponential chart under the

unconditional perspective for m = 20,50, 100 and 500 for nominal ATS, = 370.4,4, = 1
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Figure 3. The p.d.f.s of the CATS,c distribution of the equal-tailed exponential chart under the conditional
perspective for m = 20, 50,100 and 500 for EP=0.90 with nominal ATS, = 370.4,4, = 1.

0.012 T
m=20
m=50
m=100
m=500

0.01 |- I 4
[
[
|
[
[
0.008 - [ Bl
|
|
||
|
g 0.006 “ ‘\
=5 [
|
[
|
‘\ \
0.004 |- ‘ \‘ .
|
|
| |
| |
|
0.002 - | | -
| |
|
|
[
0 0 L \ L 1 1 1 L L 7)\
0 200 400 600 800 1000 1200 1400 1600 1800 2000

z

Figure 4. The p.d.f.s of the CATS;c distribution of the ATS-unbiased exponential chart under conditional
perspective for m = 20,50, 100 and 500 for EP=0.90 with nominal ATS, = 370.4,4, = 1.
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Figure 5. Control limits of equal-tailed exponential chart under the unconditional perspective (red and solid
lines), ATS-unbiased exponential chart under the unconditional perspective (red and dashed lines), equal-
tailed exponential chart under the conditional perspective (black and solid lines) and ATS-unbiased
exponential chart under the conditional perspective (black and dashed lines).



