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• Novel 24-hour perturbation method for the estimation of the Heat Transfer
Coefficient

• Binary signals with 5+-hour heating and free-floating periods show highest
accuracy

• BIC model selection among RC models most accurate for physical inter-
pretation

• Proposed method very accurate in winter conditions

• Mid-season conditions might need slighlty longer measurement durations
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Abstract

On-site measurement of the actual thermal performance of a building envelope
could considerably benefit to the building sector by securing an effective perfor-
mance of newly built or retrofitted buildings. Current methods to estimate
the Heat Transfer Coefficient, for example, suffer however from either excessive
equipment downtime and therefore large costs, or fail to achieve a reasonable
accuracy. This paper aims therefore at developing and assessing an original
24-hour perturbation method for estimating the whole-building thermal resis-
tance. Based on a binary heating signal, the proposed method exploits the data
collected with stochastic RC models.

The paper first presents a numerical comparison of 398 binary signals along
with variable initial indoor temperatures to bring out common characteristics
of signals that achieve highly accurate estimations of the thermal resistance.
An experimental campaign in a highly insulated wooden-framed house then
implemented one particular signal and assessed its reproducibility under variable
weather conditions. The paper shows that the proposed 24-hour method indeed
achieves a highly accurate estimation when performed in cold weather. In mid-
season conditions, the method shows a better robustness from 30- to 36-hour
measurements. The results invite to further investigate other building types in
variable weather conditions to validate the proposed method.

Keywords: Thermal performance, Heat Transfer Coefficient, Perturbation
method, Binary signal, Stochastic RC models

1. Introduction

In a world-wide effort to decrease the carbon footprint of the existing build-
ing stock, massive and extensive building retrofit operations are to be expected.
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Energy performance contracting (EPC) could benefit the investors by securing
an effective thermal performance. Achieving a win-win partnership between con-
tractor and client may, however, be jeopardized by a number of risks. Berghorn
and Syal [1] identified in particular that the quality of the energy audit is crucial
to the success of the EPC. In addition, Mozzo underlined in [2] that the energy
audit method must be agreed upon by all parties and must be binding before
project implementation. Among the available methods, the author recalls that
actual measurements can be a useful, yet maybe costly, method to set a baseline
to the energy consumption.

On-site measurements to set a baseline for an extensive building retrofit op-
eration or to assess the performance after retrofit will rely on measurement and
verification of the actual intrinsic thermal performance of the building envelope.
The estimation of the whole-building Heat Transfer Coefficient (HTC), or its
inverse the whole-building thermal resistance Req, is then an interesting option.
For on-site measurements of the HTC to be financially incentive for all parties,
a test should fulfil the two following criteria. First it needs to be short as to
not be burdensome or costly to carry out. Secondly, it needs to be accurate and
robust so that all parties may trust its result.

Therefore, this paper first provides a broad background on data-based meth-
ods for whole-building HTC or Req estimation. The literature review then fo-
cuses on so-called active or perturbation methods used for whole-building HTC
estimations and more specifically on signal design for system identification.

Background on data-based whole-building HTC or Req estimation

HTC or Req estimation from on-site collected data has been a continuous
focus for decades now, as summarised in Figure 1. Researchers focussed on
either wall-scale or building-scale HTC or Req estimations. Wall-scale HTC
or Req estimations may however not be representative of the overall thermal
intrinsic performance of the building envelope. It does not account for air
infiltrations and may overlook heterogeneity of wall composition over the overall
envelope as well as thermal bridges. Wall-scale or element-scale methods are
therefore not further discussed in this paper. We refer to Soares et al [4] for a
recent and broad review of such non-destructive methods.

Whole-building HTC or Req estimations on the other hand have been docu-
mented to rely on data from either occupied or unoccupied buildings. Accurate
HTC estimations from data collected in occupied buildings requires several days
to several months to converge and be reasonably accurate.

The energy signature method for example, also called change-point regres-
sion model, uses several months data. The collected data needs to be aggregated,
at least daily [13], or monthly as in Rabl and Rialhe [14]. Even then, both au-
thors underline the difficulty to provide a trustworthy physical interpretation of
the estimated parameters. Hammarsten [13] precisely raised criticism against
physical interpretation given the unverified assumptions made in such models.

Using RC models, Hollick et al. [15] inferred an HTC estimation of two case
studies from respectively 5 and 10 days data: one was occupied the other had
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Nomenclature

∆T Difference in indoor and outdoor temperature Ti − Text (K)

ηHS Heating system efficiency (%)

Φi Other indoor heat gains (W)

Φsol Solar heat gains (W)

Asol Solar aperture (m2)

I10% 10% interpretability score, see section 2.5 (no unit).

Isol Solar global horizontal radiation (W/m2)

Ph Measured heating power (W)

Req Overall or whole-building thermal resistance (K/W). Req is the in-
verse of the whole-building HTC. Target numerical or experimental
value is noted R∗

eq

Swind Wind speed (m/s)

AIC Akaike Information Criterion

BEM Building Energy Model

BIC Bayesian Information Criterion

EPC Energy performance contracting

HTC Heat Transfer Coefficient (W/K): overall or whole-building heat
transfer of the building envelope towards exterior as defined in the
ISO 13789 standard [3]. The HTC is the inverse of the whole-
building thermal resistance Req.

MLS Maximum Length Sequence

PRBS Pseudo-Random Binary Signal

ROLBS Randomly ordered logarithmically distributed binary sequence

SA Sensitivity analysis, in this paper performed with the EASI RBD-
FAST method

occupant-friendly indoor temperature set-points and internal electric gains but
no actual occupants. They used a first-order RC model and investigated several
models accounting for solar gains. HTC estimations fell under 10% error in
winter, although the estimation uncertainties seem overconfident compared to
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Figure 1: Literature background on whole building HTC estimation. Duration dataset needed
is given in orange italic.

the target values. Senave et al [16], in a fully numerical study, trained grey-box
ARX models on 26 weeks synthetic winter data. They found that the models
tested are unable to provide a satisfactory HTC estimation when indoor and
solar heat gains are neglected but give an acceptable estimation when the global
solar radiation is taken into account.

More generally, it can concededly be assumed that these methods require a
very reasonable amount of sensors which makes such methods easily deployable.
However, long equipment downtime may be problematic for practitioners and
occupants. In addition, Baasch et al [17] found in a numerically based study
that occupancy contributed greatly to the uncertainty of HTC estimations
inferred from both grey- and black-box models.

Unoccupied premises allow on the contrary to fully control the indoor am-
biance and therefore provide measurement conditions that are favourable for
HTC or Req estimations.
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Based on the hypothesis that the building energy balance can reach steady-
state under particular conditions, the co-heating test sets a constant indoor
temperature with electric heater and fans during several weeks. During the test,
the shutters are closed and the mechanical ventilation system, if there is any,
is shut. With daily averaged data, the steady-state assumption can be roughly
considered to hold. A multiple linear regression model allows then to infer an
estimation for the HTC. Physical assumptions and thorough literature review
can be found in Bauwens and Roels [5]. Let us underline that, notwithstanding
its strong assumptions on building physics, the co-heating test is very often used
as a reference value for comparison, such as in [18] or in [10].

To avoid, again, an equipment downtime of several weeks, other methods aim
at determining the dynamical characteristics of a building envelope and succeed
within a few days. These methods are developed on the basis of fully controlled
and optimised, in a loose sense, indoor conditions. They are usually called active
or perturbation methods, given that a perturbation is induced in the building
by controlling the indoor conditions. The response to this perturbation is then
measured and used to infer the thermal characteristics of the envelope. The
next paragraphs review a few significant and recent contributions to envelope
thermal characterisation by active methods.

Madsen and Schultz presented in [6] an identification method based on a
pseudo-random binary (PRB) heating signal. Their idea was to use a highly
informative perturbation signal to excite the building envelope system in both
large and short frequencies. PRB signals have the advantage of exciting the
building envelope within a desired range of frequencies, here chosen to be rep-
resentative of the expected time constants of a building. PRB signals shift
between two constant levels of heating (for example on–off) and have the very
desirable property not to be correlated to the outdoor conditions. In [6], the
authors calibrated a second-order stochastic RC model and concluded that two
different PRB signals were necessary to identify with better accuracy both short
time and long time dynamics of the building measured.

In [7], Baker and van Dijk use a similar type of heating signal called randomly
ordered logarithmically distributed binary sequence (ROLBS) to calibrate a RC
model of a Passys test facility. A ROLBS sequence is very similar to a PRBS
sequence, with ordered frequencies across the test duration, as can be seen in
Figure 2b.

Thébault and Bouchié described and refined in [10] a HTC estimation
method, called ISABELE, based on a 2- to 4-day experiment (see figure 2c).
During an ISABELE test, the indoor temperature is regulated at a fixed value,
for example 30 ◦C. The authors compared the proposed ISABELE method with
other types of signals by means of an experimental campaign in a test cell:
constant heating power of various duration, constant temperature setpoint of
various duration, pseudo-random heating binary signal and a triangle-shaped
heating signal. A set of 20 RC models, from first- to third-order models, is cali-
brated from the collected data of each experiment and a likelihood ratio test as
in Bacher and Madsen [19] is performed to select the best-fitting model. They
found that the repeatability was satisfactory for both the temperature and the
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heating control strategies for the 2-day and longer tests. The heating controlled
tests showed a faster convergence, within 2 days. Shorter tests, such as the
nightly tests, seemed to fail to provide repeatable results. Last but not least, a
particularity of the ISABELE method is to propagate measurement systematic
uncertainties onto the final estimation. The authors found on 2-day tests on
an individual house and after uncertainty propagation that the relative error to
the target value did not exceed 15–20 %.

Brastein et al [8] assessed the identifiability and physical interpretation of a
second order RC model. The model was calibrated using a 10-day dataset shown
in Figure 2d. The heating perturbation signal is a binary signal. Unlike PRB
signals, this signal does not cover all frequencies in a given range, but does cover
a few short and a few large frequencies. This test duration seems rather long
compared to the other perturbation methods. Optimisation of the heating signal
was indeed not the objective of the paper. However, the authors investigated
what they call the consistency of dynamic information. They calibrated the
RC model with a 2- or 4-day data subset and with a given offset. The authors
showed how the estimations of four thermal parameters varied with the offset,
in particular with the 2-day data subset. Although the authors did not conclude
on a preferential signal design for parameter estimation, this result definitely
implies that part of the signal is more informative.

In [9], Rouchier et al investigated parameter identification and indoor tem-
perature forecasting from various perturbation signals. The paper aimed at
comparing stochastic and deterministic RC models and the target HTC value
seems unknown, which is why the authors did not focus on physical interpreta-
tion from parameter estimation given each signal. However, signal shape and
identified parameters can be discussed. Each sequence had a 3–5-day duration
with at some point during the test an imposed 2 kW heating period of either 24
or 48 hours. When not heated, the test box is left in free-floating conditions. A
first-, second- and third-order models were used to exploit the data. Noteworthy
is the HTC estimation variability : sequence K1 systematically under-estimates
the HTC compared to the other sequences whereas sequence D1 tends to over-
estimate it. From this paper can be understood that binary signals could be, to
a certain extent, optimised for an accurate HTC estimation.

The shortest test found in the literature is the QUB method [11], which is
performed overnight, as illustrated in Figure 2e. The night signal is split in two
regimes. During the first nh hours of the night, the heating power is set at power
P1. During the remaining nh hours, the heating power is set back at power P2.
This signal induces a rise and decay of the indoor temperature. The slopes at
the end of the rise period and at the end of the decay period are measured and
used to infer a value of the HTC. According to a numerical study in Ahmad et al
[12], the accuracy of the HTC estimation is moderately influenced by the initial
conditions, by the weather conditions and by the choice of heating power P1 and
P2. Overall, the error is expected to be bounded within a 20 % range. Unlike
the other perturbation methods, based on data exploitation by RC models, the
QUB method does, however, not provide any uncertainty range of the estimated
HTC.
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(a) Heating power induced perturbation
in Madsen and Schultz (see Fig. 3 in [6].
Note from the authors : ”the sampling
index corresponds to 5 minutes at the
two periods of 42 hours, and to L hour
at the long period of 300 hours”)

(b) ROLBS heating sequence perturbation in
Baker and van Dijk (see Fig. 10 in [7])

(c) Heating
power induced
perturbation in
the ISABELE
method (see Fig.
11a in [10])

(d) Heating power induced perturbation in
Brastein et al (see Fig. 18 in [8])

(e) Heating power induced
perturbation in the QUB
method (see Fig. 1 in [12])

Figure 2: Perturbation signals used for thermal characterisation of a building envelope

From general perturbation signal theory to easily deployable whole-house HTC
estimation method

More generally, perturbation signals are efficient to make linear system iden-
tifications [20] and therefore efficient to provide insight into the thermal dynam-
ics of a building envelope. If the input signal, i.e. the perturbation, is indeed
carefully designed, it should maximize the information contained in the collected
measurements and therefore allow for highly accurate parameter identification,
at least for a given experimental duration. In addition, in the case of building
envelopes, a well-designed heating signal is also expected to make the identifi-
cation less sensitive to the uncontrollable outdoor weather conditions.

The previously surveyed methods all either used a heating power based
perturbation binary signal or a temperature regulated perturbation. Other
perturbation signals are, however, available in the literature for system iden-
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tification. Among many available references, Godfrey et al [20] conveniently
reviewed readily accessible perturbation signals whereas Tan and Godfrey [21]
proposed a guide to the design and selection of perturbation signals. Signal
types and applications are also thoroughly discussed in [22]. Shortly, other than
pseudo-random binary signals (PRBS), linear system identification can indeed
be performed by the use of pseudo-random multi-level signals (PRMLS), Dis-
crete Interval Binary or Ternary (DIB/DIT) signals, Multilevel Multiharmonic
(MLMH) signals, Multisine signals or a hybrid combination of these signals.

These perturbation signals are not binary and can take three or more values.
Creating such a signal is concededly feasible, provided that electric portable
heaters used to deliver the heating power indoors are equipped with appropriate
power regulators. Whether a multi-level power supply and the induced indoor
temperature can easily be made homogeneous across all zones during a whole
house test is however less certain. In addition, the available amount of heating
power to be delivered is also limiting. In France for example, 6 kW electric
power is often the upper limit in a house. Therefore, a first reasonable step
would be to use a binary signal with constant heating power input up to 6 kW.

Should a binary signal be used, another practical limitation would be the
cost. The applications in [6] or in [7] showed that both PRBS and ROLBS tests
run over several days, which is prohibitive in terms of equipment downtime. To
deploy such methods widely and for a reasonable cost, a 24-hour test would be
more easily acceptable among practitioners. The literature review showed that
experiments under 48-hours might be achievable, but none of the signals used
in the presented methods were optimised in the sense of signal design. It is very
likely that richer optimised signals could achieve more accurate results within
possibly 24 hours, provided that data are exploited with an adequate model.

Objectives of this paper

Within the scope of the SEREINE project in the PROFEEL program1, the
work presented in this paper aims at developing and assessing the practical limits
of a 24-hour test for the estimation of the whole-building thermal resistance. In
particular, the focus of this paper is placed on accurate estimations even for
highly insulated buildings, which are expected to be difficult to characterise
given their higher time constants.

Given the desirable properties of binary signals, this paper intends to design
a 24 h binary heating signal that would enhance the accuracy of the estimation
of an overall thermal resistance Req of a building envelope. The paper proposes
therefore a numerical methodology to characterise well-suited binary heating
signals as well as suitable initial temperature conditions to achieve satisfactory
estimations of an overall thermal resistance. Then, an experimental campaign
tested one particular binary heating signal on a full-scale experimental house.
Results and reproducibility are also presented to discuss the practical feasibility
of such short experiment.

1programmeprofeel.fr
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Figure 3: Overview methodology for the design and the experimentation of a 24-h on-site test
for accurate Req (or HTC) estimation based on a binary heating signal

2. Methodology

2.1. Overview of the methodology

The methodology adopted in this paper, as illustrated by Figure 3, is twofold:
first the design of satisfactory binary heating signals is performed in a numerical
investigation, then a signal is implemented during an experimental campaign in
an actual house for validation.

The numerical investigation first generates a wide variety of binary signals,
each with a different pre-heating temperature. This step is detailed in section
2.2. Then, these signals are implemented in a high-fidelity building energy model
(BEM) of a wooden-frame house, which is detailed in section 2.3. The response
of the BEM to each signal is then simulated under known outdoor conditions.
From this synthetic dataset, an estimation of the overall thermal resistance Req

is inferred. The inference is done with calibrated stochastic RC models and is
described in section 2.4. Whether the inferred Req estimation is satisfactory is
determined with an interpretability index which is detailed in section 2.5. In the
end, the numerical investigation therefore allows to draw a map of theoretically
low- and high-scoring binary signals and to infer favourable initial temperature
conditions.

To validate the results, a particular binary signal is selected and implemented
in an experimental campaign. The signal is tested in the actual house that
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served as case study for the BEM. The signal is tested several times as to assess
reproducibility. Information on the house can be found in section 2.3 whereas
details on the experimental setup are given in section 4.2.

2.2. Generating and mapping suitable binary heating signals for Req estimation

2.2.1. Generation of a wide variety of binary heating signals

Since the test is meant to last only 24 hours, the binary heating signal
is not, stricto sensu, a pseudo-random signal. However, using pseudo-random
signal generation methods allows to cover a very wide variety of binary signals
that can be truncated to 24 hours. For this reason, a maximum length sequence
(MLS) method is used to generate binary signals.

Originally, the objective of a MLS is to produce a signal which contains
all possible frequencies given a specified length, and which has very low auto-
correlation. By truncating the signal to 24 hours, it concededly annihilates
these original properties. Nevertheless, MLS produces a large variety of signals
with very few hyper-parameters. In this paper, only three hyper-parameters
were used. To produce as many signals with hyper-parameters directly describ-
ing heating and free-floating periods, much more parameters would have been
necessary, which makes the MLS solution preferable.

The MLS is generated with linear feedback shift registers. An algorithm of
this generator is implemented in the Python library SciPy [23]. The algorithm
can be used with physically-scaled hyper-parameters which allows to link their
values to the shape of the binary heating signal. The largest hyper-parameter is
the first heating period of the signal (in hour), the difference between the largest
and second largest hyper-parameter is the first free-floating duration (in hour)
and the difference between the second largest and last hyper-parameter is the
immediately next heating period (in hour). If this last difference is negative, as
can be the case for some signals, it produces a very short second heating period.
In any case, it also contributes to creating a wide set of variable binary signals.

The scaling trick is illustrated here in Code 1 with ordered hyper-parameters
14/6/5 that generate a signal that starts with a 14-hour heating period. To be in
line with experimental and practical feasibility considerations, the binary signal
produced with this code has a time step of 5 minutes. This implies that the
duration of the heating or free-floating periods are multiples of 5 minutes.
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Figure 4: Four binary signals that can be generated from a 3-hyper-parameter MLS generator

Code 1: Generating a binary heating signal of predefined duration with scaling trick

# hyperparameters for binary signal generation

hyperparameters = [14, 6, 5] # order of magnitude of an hour ,

represents heating and free -floating durations

timestep = 5 # minutes

length = 24 * 12 # duration 24h with 12 states/h (time step 5

minutes)

# inputs for max_len_seq

taps = [int(i * 60 / timestep) for i in hyperparameters]

nbits = max(taps)

# generate pseudo -random binary signal with predefined duration

signal ,_ = max_len_seq(nbits=nbits , taps=taps , length=length)

Figure 4 shows four examples of 24-hour signals that can be generated with
a 3-hyper-parameter MLS-generator. Both single heating periods and multiple
heating and free-floating periods can be generated which indeed ensures a wide
coverage of pseudo-random signal types over a 24-hour timespan.

2.2.2. Mapping suitable binary heating signals for Req estimation

Finding a suitable binary signal for an accurate Req estimation could be per-
formed by optimisation of the MLS hyper-parameters by minimizing a measure
of the error between estimated and reference thermal resistance. An optimisa-
tion routine on the MLS parameters is, however, not guaranteed to be successful.
It would indeed rely on a major and unverified hypothesis that there exists a
global maxima for the accuracy indicator assessing the quality of the estima-
tion. Instead, there could be many sets of MLS parameters achieving similar
outcomes and/or multiple local maxima could also co-exist.

Exploring the hyper-parameter space and searching for optimal areas is
therefore a safer option and allows for a global glance at all signals which should
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help uncover common characteristics. To efficiently explore the 3-dimensional
hyper-parameter space, a Latin Hypercube Sampling is performed to draw
samples under a uniform distribution: U(0.5, 24) for the first parameter and
U(0.25, 22) for the other two parameters.

If, however, a set of hyper-parameters produces a signal with a heating or
a free-floating period shorter than 15 minutes, it is discarded. Periods shorter
than 15 minutes are indeed difficult to implement due to limitations of the
electric heaters used for the experimental campaign and are in any case less
informative.

In addition to varying the binary signal shape, the pre-heating temperature
setpoint is also investigated and included in the Latin Hypercube sampling.
The objective is indeed to ascertain that the initial indoor temperature, when
kept in a usual range, is not influential on the Req estimation. It can indeed
be expected that, regardless of the initial temperature, the dynamic induced by
the binary signal alone suffices to provide an accurate Req inference. The pre-
heating temperature setpoint, in ◦C, follows a uniform distribution U(15, 23).

In the end, after clearing out the inapplicable signals, a set of 398 hyper-
parameter triplets are used in the numerical investigation.

2.3. The case study and its building energy model

2.3.1. Description of the experimental INCAS house

The case study used in this paper for both the numerical investigation and
the experimental campaign is a wooden-framed two-storey house in the French
Alps (see Fig. 5a). This house is one of the four experimental houses called
INCAS, built on the full-scale Building Energy platform at the French National
Solar Energy Institute (INES). The platform is located in Le Bourget-du-Lac
(N: 45◦650, E: 5◦867).

Regarding geometry, all four houses are oriented at 15.3◦ on a North/South
axis. Their geometries are simple, compact and similar in shape. Their net
usable area is around 95 m2 with on the first floor an entrance, kitchen, living
room, store room as well as lavatory and on the second floor 3 bedrooms and
a bathroom. They have been designed to achieve similar low-energy needs and
are equipped with approximately 100 sensors for experimental purposes.

In this paper, the wooden-framed house (so-called I-OB visible in Figure 5)
is used as case study. This house is a low thermal inertia building built in 2010.
As suggested by Figure 5b, house I-OB has unheated but heavily insulated attics
and crawlspace. The insulation of the walls and attics is made of wood wool
whereas the insulation from the crawlspace is made of polyurethane. Across
the envelope, the U-value varies from 0.08 to 0.17 W/m2K. The windows are
equipped with triple-glazing on the South- and West-façades. On the East- and
North-façades, two double-glazing windows are installed, with a 15 cm air gap
between each window.

A 32-day co-heating test was performed late 2020 and established the overall
thermal resistanceRcoheating at 15.7 K/kW (standard deviation 0.5 K/kW). The
airtightness has also been measured with multiple blower-door tests in December
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(a) The experimental house is a two-storey wooden-framed house
(net floor area ≈ 95 m2, measured overall thermal resistance R∗

eq = 15.7 K/kW)

(b) Timber-structure and insulation views of the I-OB house

Figure 5: Case study : wooden-framed INCAS house

2020. Its air change rate at 50 Pa n50 is in the range 2.85–2.97 h−1 (with a
±5% uncertainty) and can be considered quite efficient. A larger air change
rate would have been problematic, as it would contribute greatly to the energy
balance with a strong dependence on wind speed and outdoor temperatures.
Here, sensitivity of the overall thermal resistance estimation to wind speed and
outdoor temperatures should be limited.

2.3.2. Building energy model of the INCAS house

For the numerical investigation, a 5-zone energy model of the wooden-framed
INCAS house was used and implemented in the simulation software EnergyPlus.
Ventilation is not modelled as to mimic experimental conditions, where air vents
would be sealed and mechanical ventilation switched off. In addition, in order
to keep the focus on the thermal behaviour of the envelope, air infiltrations
are assumed null. The time characteristics of the envelope alone are indeed
expected to be significantly larger than for air infiltration or ventilation. In
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the case of buildings with large thermal inertia, it can be expected that a 24-
hour test might fail to provide an accurate estimation of Req, precisely because
the largest time characteristics in such buildings are too high. Air infiltration
on the other hand might concededly affect reproducibility of a 24-hour test,
in particular under windy conditions. Wind speed will be kept in mind when
exploiting the experimental campaign results.

The overall thermal resistance of the building energy model is R∗
eq =

23 K/kW. It is calculated by an appropriate simulation of the building en-
ergy model under constant outdoor temperature and no solar radiation. The
indoor temperature is set at a constant setpoint. In these conditions, when
averaged daily, the heating power delivered to maintain the indoor temperature
setpoint is a direct function of the indoor outdoor temperature difference with
Ph = ∆T/R∗

eq, from which a target value of R∗
eq is calculated.

This numerical reference value is higher than the measured thermal resis-
tance of the actual building (Rco−heating = 15.7 K/kW). The absence of air in-
filtrations, modelling simplifications and highly possible discrepancies between
model and actual envelope composition in terms of thermal bridges and het-
erogeneity of a wooden-framed envelope probably explain this difference, which
should be kept in mind for later discussion of the results.

The building energy model is equipped with electric convective heaters in
each zone. The total heating power available is 3.1 kW and is split among the
five zones as to allow reasonably close indoor temperatures across all zones.
The 3.1 kW heating power available in the building energy model is lower than
what can be installed in an actual experiment, which is expected to be up to
6 kW. However, given the larger thermal resistance of the model, delivering more
heating power would be followed by a indoor temperature rise so steep that the
35◦C limit would be attained within a few hours, which in turn will jeopardise
the identification process. In practice, the number of heaters during an actual
experiment would also be adapted to the expected thermal performance of the
house.

2.4. Data exploitation : inference of Req with stochastic RC model calibration

Whether it be with synthetically generated data or with experimental data,
an adequate model is needed to exploit the data and infer the thermal resistance
Req.

The literature review previously revealed that stochastic RC models are
almost always chosen to exploit dynamic data, with the exception of a few
papers that used auto-regressive models. This tendency can be understood in
the light of review [24] on techniques and tools for building energy performance
prediction. The authors found that hybrid or grey-box models combine the
advantage of being physically interpretable while needing a reasonable amount
of data for training. RC models therefore are a sensible choice for exploiting
24-hour dynamic data.

Ideally, data exploitation by RC models is done by a very large number of
different models, among which, for each dataset, a best-fitting model is cho-
sen. However, a very large model bank will be computationally costly, which is
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Model name
Model
order

Number of
parameters Calculation Req

TwTi RoRi in Fig. 6a 2 8 Ro +Ri

TwTi RoRi Rp in Fig. 6b 2 9 1/(Ro +Ri) + 1/Rp

TwTiTm RoRi in Fig. 6c 3 11 Ro +Ri

TwTiTm RoRi Rp in Fig. 6d 3 12 1/(Ro +Ri) + 1/Rp

Table 1: Description of the four RC models calibrated in this study

precisely the problem encountered by Baasch et al [17]. To alleviate this issue,
Baasch et al chose to narrow their study down to only one first- and one second-
order model, without any model selection process, which makes interpretation
of the results all the more difficult.

This paper adopts instead the following compromise : pre-select a set of likely
models and then apply model selection. The models calibrated in this paper are
described in Table 1 and represented in Figure 6. A preliminary model selec-
tion process had indeed found that first order models fit very poorly the data
whereas fourth order models seemed to be constantly overfitting and yielded
extremely correlated parameters. Furthermore, solar aperture coefficients were
systematically found non significant which is why there are none in the chosen
models. This is barely surprising since the shutters are simulated closed during
the numerical experiment and are also closed during the experimental campaign.

A stochastic formulation of the RC models is used in agreement with [6],
to account for model prediction discrepancy. Calibration of each model is per-
formed in a frequentist approach with the pySIP python package [25], using the
BFGS algorithm.

After all models are calibrated, it is necessary to select the best-fitting model
to infer a single thermal resistance. How the overall thermal resistances Req are
calculated is described in Table 1. It is indeed possible to find a disagreement
between all model-inferred resistances. Model selection procedures for physical
interpretation is under discussion in the literature. Deconinck and Roels [26] as
well as Thébault and Bouchié [10] proceed to stochastic RC model selection by
the use of the likelihood ratio statistical test as described in Bacher and Madsen
[19]. Other non hierarchical selection have also been used in literature, such as
the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC). Rasmussen compares both criteria for ARX model selection in [27] and
underlines that BIC is the most likely to avoid overfitting although the selected
model might show auto-correlated residuals which makes model validation dif-
ficult. Hastie et al [28] also underlined that, with non-finite samples, the BIC
often selects too simple models, compared to the AIC. Too simple models are
indeed likely to show auto-correlated residuals, when they do not capture all
important thermal dynamics.

As part of the study, these three model selection procedures, likelihood ratio
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Figure 6: Four RC models used in the model selection procedure

test, AIC and BIC, will therefore be compared in the results section and their
individual performance discussed in the light of physical interpretation of the
calibrated parameters.

2.5. Thermal resistance Req interpretation and assessment

Each dataset provides an estimation of the overall thermal resistance Req

which can be compared to a target value R∗
eq. Let us recall that the target value

for the synthetically generated data is the numerically calculated resistance
from the building energy model whereas the experimental target value is the
estimated thermal resistance from the co-heating test.

A mere relative error between the estimated and the target values only gives
partial knowledge for interpretation: it does not account for uncertainty. Instead
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Figure 7: Illustration of the interpretability score : it takes values between 0 and 1. Scores close
to 1 are considered very satisfactory estimations whereas scores close to 0 are unacceptably
far from the target value.

of a relative error based comparison, an interpretability score is defined and used.
This score is defined as the area under the Req estimation curve that is within
a ±x % error range to the target value R∗

eq. In the numerical investigation, a
10 % error range is set here to allow for satisfactory discrimination among all
estimations.

As illustrated in Figure 7, the interpretability score takes values between 0
and 1. A 0-score means that the estimation is completely outside the ±10 %
error range whereas a score close to 1 means that the estimation and its un-
certainty are entirely within the ±10 % bounds. Scores higher than 0.5 can be
considered as acceptable as it means that half of the area under the curve is
within the ±10 % error range.

3. Results of the numerical investigation of binary signals

This section presents the results of the numerical part of the study which
aims at characterising the type of binary signal that yields the best estimations
of the overall thermal resistance Req. This section first describes the numerical
experiment as has been implemented in Energy Plus. Before analysis, section
3.2 compares three model selection procedures to determine which one is more
likely to give interpretable results. Then in section 3.3, the 398 binary signals are
examined by means of the interpretability score. From there, common charac-
teristics of high-scoring binary signals are inferred. Influence of the pre-heating
temperature is also assessed in section 3.3.

3.1. Numerical test setup

The numerical simulations are performed in January using actual weather
data measured in Le Bourget-du-Lac (France) in 2019, on the INCAS platform.
The simulation starts on January 1st. The test is then implemented as to
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Figure 8: Outdoor temperature and global horizontal solar radiation used as boundary con-
ditions in the building energy model simulation, the day before and during the test.

start on January 17th. This allows for over two weeks of dynamic thermal
simulation and should avoid any influence of the warm-up iterations performed
by EnergyPlus on the first day of the weather dataset. The boundary conditions
before and during the numerical experiment are given in Figure 8. It can be
noticed that the outdoor temperatures are reasonably cold and that the solar
radiation is very low. This needs to be kept in mind for the analysis of the
experimental campaign.

In the simulation, the building is ideally heated at a constant temperature
Tpreheating during 2 weeks before the test begins. As mentioned in the method-
ology section, temperature Tpreheating varies with each simulation as to assess
whether it influences the accuracy of the Req estimation.

The numerical test starts on January 17th at noon, with the hypothesis that
in actual measurement conditions, a practitioner would set up the test in the
morning and collect the sensors on the morrow afternoon.
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third order model.

3.2. Model selection for physical interpretation

For each of the 398 simulated datasets, estimations of the overall thermal
resistance Req have been inferred with all four stochastic RC models. To move
forward with the analysis of the results, a single model among the four needs to
be selected. As mentioned in section 2.4, several procedures exist but have origi-
nally been designed for model prediction rather than for physical interpretation.
Likelihood ratio, AIC and BIC procedures are compared in this section.

The three selection procedures tend indeed to favour different models, as
shown in Figure 9. The likelihood ratio favours in overall the third order model
with higher complexity TwTiTm RoRi Rp (as in fig. 6d). On the contrary, AIC
and in particular BIC tend to favour the third order model TwTiTm RoRi (as in
fig. 6c), which is slightly simpler. Second order model are almost never selected.
This difference is completely in agreement with the idea that AIC and BIC tend
to select simpler models ([28, 27]).

Physical interpretability for each selection procedure is compared in Figure
10 by means of the cumulated interpretability scores calculated for 5, 10 and
15 % error ranges. The lower the cumulated interpretability score line, the more
accurate the estimation of the thermal resistance Req. The BIC procedure is for
all error ranges the lowest curve. This means that in overall, the interpretabil-
ity is better with a BIC-estimation than with the other selection procedures.
Around 70% (resp. 84%) of the BIC-estimations score indeed higher than 0.5
in the error range 10% (resp. 15%). The interpretability score within the 5%
error range is much more discriminant, but the BIC shows again in overall a
better Req interpretability than the likelihood ratio and the AIC test.

Noteworthy is that although model TwTiTm RoRi Rp is often chosen by
the likelihood ratio test, and sometimes by the AI- and BI- criteria, calibrated
parameter Rp is actually often not considered significant. In 90% of all cases,
the p-value of the estimated Rp is indeed higher than 0.05. There is therefore in
90% of all estimations no solid evidence that parameter Rp is necessary to the
model to explain the dynamics in the data as its value could very well be null.
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axis). Model TwTiTm RoRi shows in overall the best fit to the data without Kalman filtering,
meaning it catches satisfactorily the thermal dynamics.

Cases where the p-value of Rp is higher than 0.05 should therefore be discarded
from any selection procedure.

To assess whether the BIC-chosen models carry a risk of correlated residuals
as suggested in [27], a comparison of the root mean square error (RMSE) of the
unfiltered prediction of all four models is shown in Figure 11. The idea is to
perform a prediction on the same set of data without the automatic Kalman
update. If the parameters of the model without filtering describes satisfactorily
the thermal dynamics in the data, the RMSE should be very low. A validation
analysis would concededly be best performed on a different validation dataset,
but this allows a primary analysis without the need of more data. Figure 11
suggests that the best-fitting model is model TwTiTm RoRi. Both models with
a Rp parameter tend to have much higher prediction errors. On the right hand
side of Figure 11 can be seen that AIC and BIC perform very similarly and in
any case much better than the likelihood ratio procedure. In this case study,
it will therefore be rather unlikely to find autocorrelated residuals with the
calibration results selected by the AIC or BIC procedure.

To sum it up, the BIC model selection procedure seems preferable when
physical interpretation of the overall thermal resistance is the objective. For
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Figure 12: Convergence check of the global sensitivity analysis of the Req estimations under
variable binary signal hyper-parameters and pre-heating temperature:

this reason, the following results are given for Req estimation given by the BIC.

3.3. Characterising signals and initial indoor conditions that provide satisfac-
tory estimations

The numerical investigation is based on the one hand on the study of high-
scoring signal shapes and on the other hand on suitable initial indoor conditions
through pre-heating temperature setpoints. This result section first presents the
results of the EASI RBD-FAST sensitivity analysis to establish relevant char-
acteristics to an accurate test. Common characteristics of high-scoring signals
and influence of the pre-heating temperature setpoint are then produced.

3.3.1. Common characteristics of high scoring signals

To establish what characteristics are relevant to an accurate estimation of
the thermal resistance Req, a global sensitivity analysis (SA) is first performed.
Given that the four input parameters are sampled by Latin-Hypercube, it is
possible to calculate first order sensitivity indices with the EASI [29] RBD-FAST
[30] method (with bias correction according to [31]). Provided convergence is
verified and uncertainty considered, it will give a sense of what characteristics
are influential on the Req estimation considered as output of the SA.

The global sensitivity analysis reveals one single significant first-order in-
dex: the first heating period duration. Its index is 0.31, which means that it
directly explains about 30% of the variability of Req. The other input param-
eters, pre-heating temperature and the other two signal hyper-parameters, are
non-significant. This means that the remaining variability of the Req estima-
tions is explained by interactions between some or all four input parameters
[32]. Convergence of the index related to the first heating period, the only
one significant, is calculated by bootstrap on sub-samples of growing size with
replacement and is shown in Figure 12, proving convergence. Noteworthy is
the relatively high uncertainty (±0.1), which incidently confirms that the other
three indices are non-significant.
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Figure 13: Variability of the thermal resistance Req estimation as a function of the longest
heating period of the binary heating signal.

To further investigate how the signal shape is influential on the accuracy of
the Req estimation, it makes therefore sense to study how the heating periods
affect accuracy. Given that relevant interactions are likely to be found to explain
the variability in Req estimations, free-floating durations too are further studied.

Figure 13 shows how the longest heating period of each binary signal in-
fluences the Req estimation. The longest heating period varies between 1/2 h
(mostly free-floating periods) and 24 h (heating only during 24 h). A significant
variability is encountered when the longest heating duration is less than around
8 h or over 18 h. On the contrary, in the range 8–18 h, the Req estimations
show an overall steadiness and their maximum-likelihood estimators (the dots
in the figure) have relative errors below 10%.

The interaction between longest heating and longest free-floating durations
further explains the variability in Req estimations, as shown in Figure 14. In
this figure, the signals are assessed by their 10% interpretability score, calculated
with the BIC-estimation of Req. The high-scoring signals are coloured in deep
green whereas low-scoring signals turn to dark red.

All signals in Figure 14 are naturally found in the bottom left part of the
figure, given that heating and free-floating durations cannot sum up higher
than 24 h. The good scoring signals with a 8–18 h of heating duration are again
visible as a much greener area in the center of the figure. Within this range, the
bottom signals, with the shortest free-floating durations, score in overall worse.
Signals with a 5–8 h heating duration and free-floating periods larger than 8 h
also score highly. From this figure can therefore be understood that most of
the high-scoring signals have a 5–18 h longest heating duration and a longest
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Figure 14: Assessment of each binary signal by means of the 10% interpretability score:
dispersion of the coloured dot signal uncovers common favourable characteristics in terms of
heating and free-floating duration.

free-floating duration higher than 5 h but lower than 18 h.

3.3.2. Pre-heating temperatures in the range 15–23 ◦C found non influential

To make sure the results are not highly dependent on the indoor temperature
conditions before the test, the pre-heating temperature varied in the range 15–
23 ◦C. The global sensitivity analysis shown previously in section 3.3 already
indicated that the pre-heating temperature had no first-order influence on the
Req estimation, given that its sensitivity index was non-significant.

Figure 15 shows all Req estimations according to the pre-heating tempera-
ture. The Req estimations show a certain vertical dispersion which is mainly due
to the variability of the binary signals. As suggested by the sensitivity analysis,
there is, however, no visible trend along the x-axis that would indicate that the
pre-heating temperature influences the accuracy of the Req estimation.

More importantly, variable pre-heating temperatures also address the issue
of temperature difference between indoors and outdoors during the test. Given
that the outdoor conditions remain identical in the numerical study, starting
at 15◦C or at 23◦C imply more or less heat flux through the envelope during
the test. This could therefore mean that the test can be performed in slightly
warmer or slightly colder outdoor temperatures without significant change in
accuracy, therefore implying a certain robustness under variable winter weather
conditions. This point will be further investigated in the experimental campaign.
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Figure 15: Influence of the pre-heating temperature on the Req estimation.

4. Experimental results

The numerical investigation assessed the 24-hour estimations of a whole-
building thermal resistance Req from 398 binary heating signals. Common
characteristics of high-scoring signals have been found.

An experimental campaign has then been set up to assess the feasibility of
an actual on-site 24-hour estimation. One signal has been implemented and re-
peated 8 times as to assess its reproducibility under variable weather conditions.

This section presents the binary signal that has been selected and tested,
describes in detail the experimental setup, then shows the estimation results
for a 24-hour, revealing a significant variability. The section finally discusses
the advantage of slightly extending the test to 30 or 36 hours to mitigate this
variability.

4.1. A binary signal of interest to be further investigated

Preliminary experiments on a first binary signal, with a 7-hour heating pe-
riod, showed poor results [33]. One plausible reason is that the actual time
constants of the INCAS house are larger than what had been modelled in the
building energy model. However, minimal heating and free-floating durations
have been found necessary to achieve accuracy and are intrinsically related to
the building time constants. Then, the 7-hour longest heating duration might be
the reason why this original signal did not achieve the expected results. A signal
with longer heating and free-floating durations should therefore be explored in
the experimental campaign.
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Figure 16: The binary signal investigated in the experimental campaign (details in Table 2)

Signal id. MLS parameters
Theoretical 10%

interpretability
Tested on

BS-1
–
BS-2
BS-3
BS-4
BS-5
BS-6
BS-7
BS-8

14.5 - 7.8 - 6.49 I10% = 0.89 26–27 Dec
02–03 Jan*
01–02 Mar
05–06 Mar
08–09 Mar
12–13 Mar
18–19 May
21–22 May
30–31 May

Table 2: Summary of all tests performed on the wooden-framed INCAS house
* The test planned on January 2nd failed due to an equipment issue. BS stands for binary
signal.

A particular binary signals, shown in Figure 16, has therefore been selected
to be tested in the experimental campaign. The longest heating period lasts
over 14 hours. This signal is expected to achieve high interpretability scores.
Indeed, according to the numerical results presented in section 3.3, its expected
10%-interpretability score I10% is is expected at around 0.9.

Table 2 summarises the characteristics of the signal tested, its theoretical
interpretability score according to the numerical investigation and specifies what
days the signal was tested. Noteworthy, the signal has been tested 8 times as
to assess its robustness under variable weather conditions.

4.2. Experimental setup in house I-OB

The house used for the experimental campaign is the INCAS I-OB real-size
house previously described in section 2.3. The house was left unoccupied and
was set up following the protocol defined in the SEREINE project, henceforth
called the SEREINE protocol. In this protocol, the heating, domestic hot water
and the mechanical ventilation systems are turned off. The air vents and water
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evacuation pipes are sealed, identically to what is requested for a blower-door
test. Roller shutters are closed as to avoid direct solar radiation into the house.

A set of sensors, called the SEREINE kit, is deployed in and around the
house to monitor its thermal behaviour and its boundary conditions during the
tests. The SEREINE kit consists indeed of both indoor and outdoor equipment.

Before installing the kit, the test must be configured via the online SEREINE
user-interface. This webpage is first used to declare the number, the serial
identification and the locations of the indoor and outdoor equipment. The
binary heating signal used during the test is also defined via the interface and
later fetched through the mobile phone network by the central communication
box of the kit to control the indoor conditions.

The indoor equipment of the SEREINE kit includes 3-level power fan coils
(adjustable to deliver 650, 1300 and 2000 W) temperature sensors, additional
fans to homogenise the air temperature in all equipped room, controllers and
a central communication box. The central box connects the SEREINE web-
interface with the controllers in order to get the binary signal used during the
experiment. It later sends the data collected, again through the mobile phone
network. As for the controllers, they can each operate one fan coil and one
additional fan depending on the signal played (ON/OFF). The controllers also
monitor the indoor temperature in the room and the energy consumption of
both the fan coil and the additional fan.

In addition to indoor equipment, the outdoor equipment is used to monitor
the boundary conditions during the test. The outdoor kit includes outdoor air
temperature sensors, and SENS probes. The SENS probes, shown in Figure
17, have been specifically designed to estimate an equivalent outdoor surface
temperature that accounts for both outdoor air temperature and surface tem-
perature rise due to solar radiation. A full description of the probe is given in
Bouchié et al [34] . The equivalent surface temperature is indeed estimated with
two temperature sensors set up behind a white face for the first one and a black
face for the second one. An estimation of the building surface emissivity on each
building face allows an estimation of the outdoor surface temperature on each
measured wall. In the end, a weighted mean of all measured surfaces allows to
infer an overall equivalent outdoor surface temperature of the building.

In the experimental campaign presented in this paper, 7 controllers have
been used. Each controlled one 650 W-fan coil, one additional fan and a tem-
perature probe. Three controllers were deployed on the first floor (entrance,
living room and cellar) and four on the second floor (one per bedroom and one
in the bathroom). To monitor the boundary conditions, 2 air temperature sen-
sors and 7 SENS probes have been used. One air temperature sensor was placed
outdoors near the north façade of the house to specifically measure the outdoor
air temperature. The other temperature sensor was placed in the crawlspace.
The SENS probes were placed vertically in front of each vertical wall, horizon-
tally in the attics and sideways on both sides of the roof, as to cover both roof
slopes.

The temperature and electrical consumption data collected are saved at a
1-minute time step during each test. The data were then averaged (or summed
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Figure 17: SENS probe used to measure the equivalent outdoor surface temperature of the
building

for the energy consumption) at a 5-minute time step in order to speed up data
exploitation.

Although designed over 24 hours, all 8 tests were carried out over 48 hours.
The proposed binary signal has indeed been generated for 48 hours. For data
analysis, the data collected are then truncated to the desired duration, namely
to 24, 30 and 36 hours, as shown in Figure 16.

The collected data from all tests of the experimental campaign have been
exploited by an extended set of RC models. Unlike the numerical investigation,
there are much less estimations to perform. It is therefore less computationally
expansive to calibrate a larger set of RC models. In addition, data collected in
an actual measurement campaign might present more complex dynamics which
implies that an appropriate model is more likely to be found with a larger set
of models.

Unlike the numerical investigation, the set of RC models is used to infer a
Heat Transfer Coefficient (HTC) value instead of a thermal resistance value Req.
The HTC has indeed been found to be more easily perceived by practitioners
given its order of magnitude. All results in this section are therefore given
through HTC estimations.

Finally, in agreement with the results given in section 3.2 about model se-
lection, the selected HTC estimations are obtained from the best-fitting model
according to the BIC procedure.

4.3. Results of the experimental campaign for 24-hour tests

As mentioned earlier, the tests have been repeated several times as to assess
their reproducibility under variable weather conditions. The tests were pro-
grammed to cover winter, mid-season and early summer conditions. All test
results and average weather indicators are later given in Table 3.

As for the interpretability assessment, from now on, the score is calculated
within 15% error bounds. A 10% interpretability score is slightly too discrimi-
nant to clearly visualise the variability of the estimations.
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Figure 18: HTC estimations from all 24-hour tests of the experimental campaign

Figure 18 presents all 24-hour HTC estimations from the experimental cam-
paign. The tests have been repeated between late December and May 2020.
Test BS-1 achieves a very accurate estimation (I15%(BS-1) = 0.99) and test
BS-2 is fairly satisfactory but has a wide uncertainty (I15%(BS-2) = 0.57). All
other tests are significantly inaccurate.

From Figure 18 could be inferred that there is a significant variability across
all test results. The most likely explanation is weather variability from one
test to the other. The next section explores therefore in detail the influence of
weather conditions on the HTC estimations.

4.4. Reducing weather induced variability : results from 30- and 36-hour tests

The experimental campaign, performed between late December and May
2021, revealed a significant variability in the accuracy of the HTC estimations.
Weather variability is therefore likely to be influential on the estimations. Test
results and averaged weather conditions can be found in Table 3 below.

Figure 19a shows the 15% interpretability scores as a function of the average
outdoor temperature and the average global solar radiation during the 24-hour
test. The variability of the outdoor conditions is clear : average outdoor tem-
peratures vary from below 0 ◦C to 17.5 ◦C whereas the average global solar
radiation shows that tests have been performed during both cloudy and very
sunny days. The mid-season weather conditions are particularly evident on the
right side of the figure, where the outdoor temperature and the solar radiation
are highly correlated.

In Figure 19a, the accurate estimations have high 15% interpretability scores,
in deep green. Orange coloured estimations can be considered fairly satisfactory.

The first and only very accurate test BS-1 has been performed during very
cold and cloudy days. BS-2 is the test with the second coldest average outdoor
temperatures and was indeed considered fairly satisfactory. On the other
hand, tests BS-7 and BS-8, on the extreme right side of the figure, have been
performed in May in early summer conditions and are both severely inaccurate,
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with a maximum relative error of 119%.
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(a) Illustration of the correlation between the average outdoor temperature, the average global solar
radiation and the 15% interpretability scores
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(b) Evolution of the 15% interpretability scores I15% with the 30-hour and 36-hour experiments :
the correlation between the average outdoor temperature, the average global solar radiation and
the interpretability scores weakens significantly, compared with a 24-hour test.

Figure 19: Correlation between the average outdoor temperature, solar radiation and the
HTC estimations

Weather conditions seem then to have, from a 24-hour test, a significant
influence. It could be expected that longer tests allow on the contrary a more
accurate HTC (or Req) estimation thanks to the additional information brought
by a larger dataset. Let us briefly recall that all tests in the experimental cam-
paign had been performed over 48 hours with 48-hour truncated binary signals.
As can be seen from the dotted line in Figure 16, the first 24 hours remain
identical to the signals tested in the numerical investigation. The additional 24
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Test id BS-1 BS-2 BS-3 BS-4

Duration 24h 30h 36h 24h 30h 36h 24h 30h 36h 24h 30h 36h

HTC (W/K) 61.8 60.9 60.5 67.6 64.7 41.1 78.0 76.9 70.5 81.9 72.3 51.5

I15% 1.00 1.00 1.00 0.57 0.97 0.00 0.13 0.00 0.59 0.02 0.36 0.32

T ext (◦C) -0.5 1.1 2.2 6.0 6.3 5.9 8.3 8.2 7.8 7.4 7.3 6.1

Isol (W/m2) 36 29 24. 138 111 92 146 117 98 150 120 100

Swind (m/s) 4.3 4.9 5.3 1.0 1.0 0.9 6.0 5.8 5.0 3.2 3.3 3.0

Test id BS-5 BS-6 BS-7 BS-8

Duration 24h 30h 36h 24h 30h 36h 24h 30h 36h 24h 30h 36h

HTC (W/K) 107.8 55.2 50.9 123.4 62.1 57.9 135.9 62.6 57.9 121.4 60.8 51.5

I15% 0.00 0.51 0.37 0.00 0.72 0.82 0.00 0.46 0.76 0.0 0.77 0.41

T ext (◦C) 9.1 9.2 8.9 11.4 11.0 10.3 14.4 15.0 14.4 18.0 17.6 16.8

Isol (W/m2) 125 101 84 228 195 163 292 262 219 349 280 245

Swind (m/s) 4.9 5.3 5.5 2.0 2.1 1.9 3.1 3.0 2.7 2.0 1.8 1.5

Table 3: Summary of all results and averaged weather conditions from the experimental
campaign. The red color font underlines the highest wind speeds.

hours are concededly not optimally designed, but add information to the signal
in any case. The 24-hour experimental results are simply truncated from the
48-hour datasets.

Figure 19b now shows the 15% interpretability scores from 30 and 36-hour
datasets, again as a function of the average outdoor temperatures and average
global solar radiations. The overall weather variability observed during the 8
tests is fairly high, with average temperatures in the range 1–17 ◦C and again
both cloudy and sunny couple days. In overall, 30-hour and 36-hour tests seem
to achieve more accurate estimations, with, however, differences among tests.
Test BS-2 performs significantly worse with the 36-hour dataset than with the
30-hour dataset which is counter-intuitive. Yet, the weather conditions during
the test is remarkably similar to the conditions during tests BS-3, -4 and -5. The
estimations from BS-3, -4 and -5 are not very satisfactory but their I15% score
is higher than 0.3. The three latest tests, although performed during warmer
and sunnier days, gain a considerable accuracy with a longer test.

What the 15% interpretability indicator in Figure 19b fails however to reveal
is that the relative error drops significantly with these longer datasets : from a
maximum of 119% error from a 24-hour dataset to 24% with a 30-hour dataset
and then a maximum of 18% with a 36-hour dataset (except for the counter-
performance of BS-2 respectively with 33.7% error). This seems to indicate
that a slightly longer test improves significantly the robustness of the HTC
estimation.

30



5. Discussion

The numerical investigation in section 3 found common characteristics to
binary heating signals that achieve, to the least numerically, accurate esti-
mations of the whole-house thermal resistance Req (or HTC). One particular
binary signal has then been put to the test in an extensive experimental
campaign, shown in section 4. This section will now confront both numerical
and experimental results, discuss the lessons learnt from the experiments and
elaborate on valuable research prospects.

The comparison of the numerical investigation with the experimental results
is undoubtedly challenging, mainly because the experimental campaign could
not be achieved in perfect agreement with the conditions simulated in the nu-
merical investigation. First, let us recall that the actual thermal resistance of
the I-OB house, estimated at 15.7 k/kW , is significantly different than that
modelled in the BEM, calculated at 23 K/kW. In addition, as established in
Table 4, the heating power delivered in the INCAS house was variable, in a
range between 3200 W and 5500 W. Variable heating power delivered during
different outdoor conditions means variable indoor temperatures achieved and
therefore variable indoor-outdoor temperature differences. This makes the in-
duced heat flux through the envelope different from one experiment to the other
and makes any comparison all the more difficult. As also underlined in Table
4, the actual start time of each test depended on other experiments performed
during the week in the INCAS house and made it impossible to start at noon,
except once. Let us here shortly recall that a noon-starting test is a recom-
mendation from the practitioners that were contacted in the framework of the
funding project.

Test BS3-1 BS-2 BS-3 BS-4

Max heating power (W) 3516 3211 3917 3932

Actual start time 17:30 18:00 18:30 18:30

Test BS-5 BS-6 BS-7 BS-8

Max heating power (W) 4278 4644 5592 4896

Actual start time 17:40 17:40 17:30 12:00

Table 4: Actual test conditions of the experimental campaign : actual maximum heating
power delivered and actual start time of each test. These values are to be compared to the
constant 3.1 kW delivered in the numerical building energy simulations and the theoretical
start at 12:00.

In addition, given that the experimental results have shown a significant cor-
relation between weather conditions and accuracy of each signal, the boundary
conditions must be taken into account to compare the expectations from the
numerical investigation with the experiments. Figure 8 had shown that, during
the numerical simulations , the average outdoor temperature was around 2 ◦C
and that the solar radiation was very low, with a maximum around 150 W/m2.
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With these boundary conditions in mind, the only test in the experimental cam-
paign that can compare is the test BS-1. This test has indeed been performed
late December 2020 in cold and cloudy winter conditions.

With these elements in mind, the 24-hour signal BS-1 scores well and in
agreement with the findings of the numerical investigation, which predicted an
interpretability of I10% = 0.89. In a few words, with this strict comparison
between numerical and experimental results, the proposed 24-hour binary
heating signal seems to be validated for similar weather conditions.

What the experimental campaign however reveals about the proposed signal
is a lack of robustness with respect to weather conditions. With outdoor temper-
atures warmer than 7◦C and correlated solar radiations larger than 100 W/m2,
the interpretability score decreases significantly.

From the point of view of a practitioner, this can be considered as highly
problematic. It means indeed that the validity of the signal is limited, especially
if the limit is lower than 5◦C, which does not even cover the entire winter season.
Concededly, other better suited signals for warmer temperatures could easily be
determined with another numerical investigation. But in practice, it would
mean having to consult weather forecast and then decide what signal is the
most appropriate. It would naturally be feasible, but is rather inconvenient.

Although it was not the original objective, a solution that arises from the
results of section 4.4 is to extend the duration of the test. In practice, a 24-hour
was concededly convenient to perform tests between 12:00 and 12:00 (D+1).
Similarly, a 36-hour test remains convenient, in particular if it starts at the end
of the afternoon and stops early in the morning two days later.

Again, it must be underlined that the proposed binary signal had not been
designed to be optimal in a 30-hour or 36-hour test. Yet, the Req estimations
scored significantly better over longer datasets. This means that an adequate
numerical investigation on a 36-hour signal could be performed and would very
likely point to other more informative signals. With a longer and better suited
36-hour binary heating signal, weather conditions can be expected to be less
influential. Higher overall accuracy can also be expected.

In any case, a focus on the influence of weather conditions and seasonal vari-
ability on the accuracy of Req estimations cannot be overlooked. The experi-
mental campaign indeed revealed a significant influence of seasonal variability.
Natural variability of solar radiation, wind speed and outdoor temperature in a
single season could, however, not be assessed through the campaign but could
nonetheless have a significant influence on accuracy. Robustness of the Req esti-
mations under natural weather variability is then a first research prospect that
should be investigated.

On another note, summer is likely to be the less convenient season for a
short test because of low indoor-outdoor temperature differences and therefore
low heat flows through the envelope. Given the results of the experimental
campaign, a 24-hour test is unlikely to be found suitable. Whether a 36-
hour, or longer, test can be found suitable and robust with respect to summer
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weather variability is left to be established and also constitutes a major prospect.

The numerical investigation has also been the opportunity to discuss model
selection procedures with the particular objective of physical interpretation
of the model resistive parameters. The numerical investigation indicated
that the BIC procedure is the most promising for physical interpretability.
An indisputable limitation is that for computational reasons, the set of RC
models in the numerical investigation had been limited to four different models.
Although the four models chosen were the most promising in terms of data
fitting, the conclusions would be stronger with a larger set of models. Then,
the conclusions drawn here might be case-related, i.e. related to a house with
moderate thermal inertia and high insulation. Finally, other procedures for
model selection could be investigated. This highlights the necessity to further
investigate RC model selection for physical interpretation by considering a
larger set of RC models and comparing selection procedures on different
building types.

Although the experimental campaign showed a decreased interpretability
with warmer temperatures, these results are likely to be, to some extent, case-
related. Let us indeed underline that the I-OB house is a very highly insulated
wooden-framed house. A 24-hour test might achieve much more robust HTC
estimations in many other building types with different thermal characteristics.

Comparing the accuracy achieved with the proposed method on this case
study to literature is also tricky. In the aforementioned whole-building scale
methods, the experiments were carried out on houses with HTC values at least
twice as large as in this case study: house I-OB has an estimated HTC around
62.1 W/K against HTC ≈ 125 W/K in [10], HTC ≈ 185 W/K in [19] or
HTC1 ≈ 120 W/K and HTC2 ≈ 260 W/K in [11], who tested two houses. This
again underlines the interest of testing the proposed method on other building
types and on moderately insulated houses. This also puts in perspective the
results of the experimental campaign presented in this paper: achieving a high
accuracy with the proposed 24-hour signal in test BS-1 is comparatively to the
literature case studies an remarkable result given that I-OB house has extreme
high insulation levels.

The prospect of a 24-hour accurate test remains valuable in particular for
houses before and after retrofit. Renovated buildings are indeed unlikely to
either present a wooden-framed structure nor achieve, overall, extreme high
thermal performances. Instead, indoor or outdoor insulated houses with mod-
erate to good insulation levels and possibly untreated thermal bridges can be
expected. As such, a 24-hour test has higher chances to yield accurate results
while having an enhanced robustness under variable weather conditions than
this case study.
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6. Conclusion

On-site measurement of the thermal performance of a building envelope can
be a powerful leverage for energy performance contracting. To do so, accuracy
and robustness of measurement protocols need to be developed while maintain-
ing costs at an acceptable level. In this prospect, this paper investigated the
feasibility, accuracy and robustness of a 24-hour test based on a binary heat-
ing perturbation signal. This 24-hour test procedure relies on data exploitation
with stochastic RC models.

The paper first proposed a numerical investigation of binary signal shapes
and initial indoor temperatures through a pre-heating temperature setpoint.
Overall, 398 signals were implemented in a building energy model of a wooden-
framed house, each with a pre-heating temperature in the range 15–23◦C. Each
synthetic dataset simulated served to infer a whole-building thermal resistance.
Given their respective accuracy, common characteristics of high-scoring signal
shapes could be determined.

The paper then presented the results of an experimental campaign where
a numerically highly accurate signal was tested. The experiment was repeated
8 times as to assess reproducibility, and henceforth robustness under variable
weather conditions.

Take-home messages

• The numerical investigation showed that, in theory, high-scoring binary
heating signals have both heating and free-floating periods of at least 5
hours each. Pre-heating temperatures between 15–23◦C do theoretically
not seem to be influential on the estimation accuracy, which makes the
method applicable in many indoor conditions regardless of the initial tem-
perature.

• The proposed perturbation method is therefore based on a high-scoring
binary heating signal. The data is exploited by a BIC-selected RC model,
according to findings presented in the numerical investigation suggesting
that BIC model selection achieves higher physical interpretability.

• The experimental campaign showed that, in weather conditions close
to those used for the numerical simulations, the proposed perturbation
method indeed achieves a very satisfactory accuracy.

• The results also revealed that an accurate test in such a highly insulated
house in mid-season and early summer should maybe preferably rely on a
slightly longer test, for example over 30- to 36-hours. A longer test should
ensure a better robustness of the HTC or whole-house thermal resistance
estimation under variable weather conditions.
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Research prospects

The results presented in this paper suggest to further use the numerical
methodology on other buildings types and under variable weather and season
conditions. Characterising binary heating signals suitable for other building
types would indeed be valuable to propose adequate signals to any building. In
addition, it would be highly relevant to compare the characteristics of suitable
signals among different building types to maybe determine common character-
istics. From a practitioner’s point of view, if such tests were to be deployed at
large scale, it would be very convenient to reduce the number of suitable signals
to a minimum, as to simplify the procedure. A wider numerical investigation
could also quantify the advantage of slightly extending the duration of the test,
from a 24-hour test to, for example, a 30- or 36-hour test. An optimum between
equipment downtime, inconvenience for occupants and robust accuracy of the
HTC estimation may then be found.

The results also invite to further pursue the experimental campaign, not
only in other building types but also in buildings with a wider variety of insula-
tion level. In particular, 24-hour tests in the frame of energy retrofit validation
remains a promising prospect and need to be thoroughly examined by an ap-
propriate measurement campaign. More on-site experiments may also provide
a clearer insight on the model selection procedure by the use of non-synthetic
data and therefore further assess the suitability of the Bayesian information
criterium, compared to other selection criteria.
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building modelling and energy performances prediction: A review, Renew-
able and Sustainable Energy Reviews 23 (2013) 272–288.

[25] L. Raillon, S. Rouchier, S. Juricic, pySIP : an open-source tool for Bayesian
inference and prediction of heat transfer in buildings, in: Congrès français
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