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Cutting planes for signomial programming

Liding Xu∗ Claudia D’Ambrosio∗ Leo Liberti∗ Sonia Haddad-Vanier∗†

September 12, 2023

Abstract

Cutting planes are of crucial importance when solving nonconvex nonlinear programs
to global optimality, for example using the spatial branch-and-bound algorithms. In this
paper, we discuss the generation of cutting planes for signomial programming. Many global
optimization algorithms lift signomial programs into an extended formulation such that these
algorithms can construct relaxations of the signomial program by outer approximations of
the lifted set encoding nonconvex signomial term sets, i.e., hypographs, or epigraphs of
signomial terms. We show that any signomial term set can be transformed into the subset of
the difference of two concave power functions, from which we derive two kinds of valid linear
inequalities. Intersection cuts are constructed using signomial term-free sets which do not
contain any point of the signomial term set in their interior. We show that these signomial
term-free sets are maximal in the nonnegative orthant, and use them to derive intersection
sets. We then convexify a concave power function in the reformulation of the signomial
term set, resulting in a convex set containing the signomial term set. This convex outer
approximation is constructed in an extended space, and we separate a class of valid linear
inequalities by projection from this approximation. We implement the valid inequalities in
a global optimization solver and test them on MINLPLib instances. Our results show that
both types of valid inequalities provide comparable reductions in running time, number of
search nodes, and duality gap.

Key words: global optimization, signomial programming, extended formulation, cutting plane,
intersection cut, convex relaxation

1 Introduction

General nonconvex nonlinear programming (NLP) problems typically admit the following formu-
lation:

min
x∈Rn

c · x s. t. Ax+Bg(x) ≤ d, (1)

where c ∈ Rn, A ∈ Rm×n, B ∈ Rm×k, g : Rn → Rk, d ∈ Rm.
The mapping g(x) represents a vector (g1(x), . . . , gk(x)) of nonconvex functions on x, and

we denote gi as their terms. Note that the objective function is supposed to be linear, w.l.o.g.,
since we can always reformulate a problem with a nonlinear objective function as the problem
(1) above (epigraphic reformulation).

General-purpose global optimization solvers, such as BARON [65], Couenne [10], and SCIP

[11], are capable of solving the problem (1) within an ϵ-global optimality. They achieve this by
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employing the spatial branch-and-bound (sBB) algorithm, which explores the feasible region of
(1) implicitly, but systematically. The sBB algorithm effectively prunes out unpromising search
regions by comparing the cost of the best feasible solution found with the cost bounds associated
with those regions. These cost bounds can be computed by solving convex relaxations of (1).

The backend convex relaxation algorithms implemented in many general-purpose solvers,
including BARON, Couenne, and SCIP, are linear programming relaxations. These solvers take
advantage of the separability introduced in the rows of Ax + Bg(x), allowing them to relax
and linearize nonlinear terms gi individually. In the solvers’ data structures, the problem (1) is
transformed into an extended formulation:

min
(x,y)∈Rn+k

c · x s. t. Ax+By ≤ d ∧ y = g(x). (2)

All the nonlinear terms are grouped within the nonconvex constraints y = g(x). These constraints
give rise to a nonconvex lifted set defined as:

Slift := {(x, y) ∈ Rn+k : y = g(x)}. (3)

The relaxation algorithms used by these solvers are based on factorable programming [35, 47]:
This approach treats the multivariate nonlinear terms gi as composite functions. These algo-
rithms typically factorize each gi into sums and products of a collection of univariate functions.
If convex and concave relaxations of those univariate functions are available, these algorithms
can linearize these relaxations, and yield a linear relaxation for Eq. (1). Common lists of such
univariate functions, that are usually available to all sBB solvers, include ta (for a ∈ N), 1

t , log t,
exp t. Some solvers also offer a choice of trigonometric functions, e.g. Couenne.

Most sBB solvers can handle signomial term ψα(x) := xα =
∏
j∈[n] x

αj

j , where the exponent

vector α is in Rn, but in a way that yields poor relaxations (more about this below). In this paper,
we provide a deeper treatment of the signomial term w.r.t. convexification and linearization
within an sBB algorithm. The SCIP solver can handle signomial terms, but, as of version 8.0, the
treatment was limited to recognizing convexity and concavity. The technical report [11] explicitly
states that the techniques proposed in this paper are going to be integrated into SCIP.

When all the terms in g are signomial terms, the problem (1) falls under the category of
signomial programming (SP). In this scenario, we refer to (1) as the natural formulation of SP.
The left-hand sides of the constraints in this formulation are referred to as signomial functions.
The lifted set Slift in the extended formulation (2) is called a signomial lift.

Since negative entries may present in the exponent vector α, in general, variables of SP are
assumed to be positive. The point of restriction on SP over positive variables is simply to make
the theoretical treatment more readable and streamlined. We remark that the techniques in this
paper can also treat signomial terms in general mixed-integer NLP problems.

In the case of SP, LP relaxations can be derived from polyhedral outer approximations of
the signomial lift in its extended formulation. A typical relaxation algorithm for SP involves
factorizing the signomial term ψα(x) into the product of n univariate signomial terms xαi

i . After
the factorization, the algorithm proceeds to convexify and linearize the intermediate multilinear
term and univariate functions. However, this factorial programming approach can lead to weak
LP relaxation and introduce additional auxiliary variables that represent intermediate functions.
These problems have already been discussed in the context of pure multilinear terms [14, 21, 63].

We propose two cutting plane-based relaxation algorithms for SP. In contrast to the conven-
tional factorable programming approach, our method uses a novel reformulation of the signomial
lift. We transform each nonlinear equality constraint yi = gi(x) in (3) to an equivalent constraint
ψβ(u) − ψγ(v) = 0, where β > 0, γ > 0, max(∥β∥1, ∥γ∥1) = 1, u, v are sub-vectors partitioned
from (x, y), and ψβ , ψγ are concave functions. We consider approximating the following set

Sst := {(u, v) ∈ Rh+ℓ+ : ψβ(u)− ψγ(v) ≤ 0}. (4)
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Our first cutting plane algorithm is based on the intersection cut paradigm [19]. As shown in
Sec. 2, one can approximate a nonconvex set S using its polyhedral outer approximation. This
requires the construction of S-free sets, i.e., closed convex sets containing none of the interiors
of S. The main insight about S-free sets for a nonconvex set S is that they provide an explicit
and useful description of the convex parts of the complement of S. In Sec. 3 we extend several
general results from the literature on maximal S-free sets. In Sec. 4 we give the transformation
procedure leading to Sst and construct Sst-free sets from the transformation. We show that these
sets are also signomial-lift-free and maximal in the nonnegative orthant. We also discuss the
separation of intersection cuts.

To ensure convergence of the sBB algorithm, a common assumption for SP is that all variables
are bounded. Our second cutting plane algorithm aims to approximate Sst within a hypercube.
In Sec. 5, we provide an extended formulation for the convex envelope of the concave function
ψβ over the hypercube. This formulation yields a convex set including Sst (which is a convex
outer approximation of Sst), so that we can generate outer approximation cuts by projection.
We prove that ψβ is a supermodular function. For h = 2 we provide a closed expression for its
convex envelope by exploiting supermodularity, which allows us to remove the projection step.

For the computational part of this study, we note that signomials are one of the four main
types of nonlinearities found in the mixed-integer NLP library (MINLPLib) [9, 13]. Our re-
laxation approach does not require factorization or the introduction of intermediate functions,
so implementing the proposed cutting planes in the general-purpose solver SCIP is straightfor-
ward. In Sec. 6, we perform computational tests with instances from MINLPLib and observe
improvements to SCIP default settings due to the proposed valid inequalities.

1.1 Related works

The majority of relaxations for SP are derived from its generalized geometric programming
(GPP) formulation, which is an exponential transformation [25] of its natural formulation. The
exponential transformation replaces positive variables x by exponentials exp(z), where z are real
variables. The authors of [46] show that signomial functions in GGP are difference-of-convex
(DC) functions. For the signomial function in each constraint of GGP, they construct linear
underestimators of its concave part; the author of [61] constructs linear underestimators of the
whole function via the mean value theorem. The author of [68] proposes inner approximations of
GGP via the inequality of arithmetic and geometric means (AM-GM inequality). The authors of
[15, 24, 54] construct non-negativity certificates for signomial functions via the AM-GM inequal-
ity, and propose a hierarchy of convex relaxations for GGP. Exponential transformations can be
combined with other variable transformations, such as power transformations, and the inverse
transformations can be approximated by piece-wise linear functions, see [38, 43, 44].

The solvers SCIP [11], BARON [65], ANTIGONE [50], and MISO [51] are able to solve the nat-
ural formulation of SP or its extended formulation within a global ϵ-optimality using the sBB
algorithm. More precisely, MISO is a specialized solver for SP, which uses exponential transfor-
mations of some signomial terms only when necessary. For the following reasons, exponential
transformations can complicate general-purpose solvers. First, in certain NLP problems, signo-
mial terms may appear only as a subset of the nonlinear terms of g(x). In such cases, solvers
may need to force the inverse transformation xj = ln(zj), which requires additional processing
for convexification algorithms. Second, when dealing with mixed-integer SP and some variables
of x are integer, exponential transformations cause certain components of z to become discrete
but not necessarily integer. As a result, the sBB algorithm must adjust its branching rules.

While much attention has been paid to the construction of relaxations for GGP, the literature
on relaxations for the extended natural formulation of SP is relatively limited. The convex
relaxations used in the aforementioned solvers rely mainly on factorial programming [36, 47].
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Since exponential transformations are nonlinear variable transformations, it is impossible to
apply the relaxations developed for the GGP formulation directly to the natural formulation.

Numerous research efforts have been devoted to improving relaxation techniques for multi-
linear terms and univariate/bivariate functions commonly used in factorizable programming [6].
Multilinear terms over the unit hypercube are vertex polyhedral and their envelopes over the unit
hypercube admits simple extended formulations [58]. In particular, there are closed forms for the
convex envelopes of bilinear functions [1, 47] and trilinear functions [48, 49] over hypercubes. In
[62], the author presents convex envelopes for multilinear functions (sum of multilinear terms)
over the unit hypercube and specific discrete sets. For a comprehensive analysis of multilinear
term factorization via bilinear terms, we refer to [42, 63]. Additionally, [14] offers an in-depth
examination of quadrilinear function factorization through bilinear and trilinear terms, while [21]
presents a computational study on extended formulations.

Convexifying univariate/bivariate functions plays an important role in the field of global op-
timization. In [37], convex envelopes for monomials with odd degrees are derived. An approach
presented in [41] enables the evaluation of the convex envelope of a bivariate function over a poly-
tope and separating its supporting hyperplane by solving low-dimensional convex optimization
problems. The convex optimization problems are further reduced by solving a Karush-Kuhn-
Tucker system [40]. In [39], convex envelopes for bilinear, fractional, and other bivariate func-
tions over a polytope are constructed using a polyhedral subdivision technique. Additionally,
[55, 64] employ polyhedral subdivision and lift-project methods to derive explicit forms of con-
vex envelopes for various nonconvex functions, including a specific subclass of bivariate signomial
terms.

Convexifying high-order multivariate functions is a major challenge, and the available litera-
ture on convex underestimators for trivariate functions is relatively few. In [31, 32], the authors
propose a novel framework for relaxing composite functions in nonlinear programs. Another
approach is to use the intersection cut paradigm [19] to approximate nonconvex functions. This
paradigm can generate cutting planes to strengthen LP relaxations of NLP problems. Construct-
ing intersection cuts involves finding an S-free set, where S represents a nonconvex set defined
by nonconvex functions. The study of intersection cuts originated in the context of NLP [67].
Gomory later introduced the concept of corner polyhedron [30], and intersection cuts were ex-
plored in the field of integer programming [5]. The modern definition of intersection cuts for
arbitrary sets S is from [23, 29]. For more comprehensive details, we refer to [2, 7, 20, 22, 23, 57].
Recent research has revealed S-free sets for various nonconvex sets encountered in structured
NLP problems. Examples include outer product sets [12], sublevel sets of DC functions [59],
quadratic sets [53], and graphs of bilinear terms [28]. Intersection cuts have also been developed
for convex mixed-integer NLP problems [3, 8, 34, 52] and for bilevel programming [27].

1.2 Notation

We follow standard notation in most cases. Let [n1 : n2] stand for {n1, . . . , n2}, and let [n] stand
for [1 : n]. For a vector x ∈ Rn, xj denotes the j-th entry of x; given J ⊆ [n], xJ = (xj)j∈J
denotes the sub-vector formed by entries indexed by J . ∥·∥p denotes the Lp-norm (1 ≤ p ≤ +∞).
For a set X ⊆ Rn, conv(X), cl(X), int(X), bd(X), |X|, Xc denote the convex hull, closure,
interior, boundary, cardinality, and complement of X, respectively. For a function f , dom(f)
and range(f) denote the domain and range of f , respectively; graph(f) denotes its graph {(x, t) ∈
Rn+1 : f(x) = t}, epi(f) denotes its epigraph {(x, t) ∈ Rn+1 : f(x) ≤ t}, and hypo(f) denotes its
hypograph {(x, t) ∈ Rn+1 : f(x) ≥ t}; if f is differentiable, for a x̃ ∈ dom(f), ∇f(x̃) denotes the
gradient of f at x̃ and

Ξfx̃(x) := f(x̃) +∇f(x̃) · (x− x̃). (5)

4



The word linearization involves the replacement of a nonlinear function by its affine underes-
timators or overestimators. For example, the affine underestimators of convex functions f are
given as Ξfx̃(x) for some x̃.

2 Preliminaries

In this section we present an overview of S-free sets and intersection cut theory. The process of
constructing intersection cuts involves two fundamental steps [18]: constructing S-free sets and
deriving cutting planes from these sets. Since maximal S-free sets yield tightest cutting planes,
one can include an optional step to check the maximality of S-free sets.

Definition 1. Given a set S ⊊ Rp, a closed set C is (convex) S-free if C is convex and int(C)∩S =
∅.

Fig. 1 shows an example of an S-free set, where we find that C is a convex inner approximation
of cl(Sc). Thereby, we show how to construct S-free sets from a “reverse” representation of some
nonconvex sets. We look at sets involving a particular type of nonconvex function.

Definition 2. A function f is said to be difference-of-concave (DCC), if there exist two concave
functions f1, f2 such that f = f1 − f2.

It is easy to show that the negative of a DCC function is also a DCC function, and any DC
function can be converted into a DCC function. We call a nonconvex set a DCC set, if it admits a
DCC formulation, meaning that it can be represented as the sublevel set of a DCC function. The
superlevel set of a DCC function is a sublevel set of another DDC function (the negative of that
function), so the superlevel set is also a DCC set. By using the reverse-linearization technique,
the following lemma provides a collection of S-free sets for DCC sets.

Lemma 1. [59, Prop. 6] Let S := {z ∈ Rp : f1(z) − f2(z) ≤ 0}, where f1, f2 are concave

functions over Rp. Then, for any z̃ ∈ Rp, C := {z ∈ Rp : f1(z) − Ξf2z̃ (z) ≥ 0} is S-free.
Moreover, if z̃ ∈ Rp ∖ S, z̃ ∈ int(C).

The reverse-linearization technique involves reversing the inequality that defines S and lin-
earizing its convex component −f2. The point z̃ is referred to as the linearization point. It is
important to note that, when the shared domain G of f1 and f2 is not the entire space Rp, the
set S needs to be constrained to the ground set G. This restriction ensures the applicability of
the lemma.

To construct an intersection cut, an essential requirement is the availability of a translated
simplicial cone R that satisfies two conditions: (i) R is generated by linearly independent vectors,
(ii) R contains S, and (iii) the vertex z̃ of R does not belong to S. We assume that R admits
a hyper-plane representation {z ∈ Rp : B(z − z̃) ≤ 0}, where B ∈ Rp×p is an invertible matrix.
For every j ∈ [p], let rj denote the j-th column of −B−1, then rj turns out to be an extreme ray
of R. Thereby, R also admits a ray representation {z ∈ Rp : ∃η ∈ Rp+ z = z̃ +

∑p
j=1 ηjr

j}. For
every j ∈ [p], we define the step length from z̃ along ray rj to the boundary bd(C) as

η∗j := sup
ηj∈[0,+∞]

{ηj : z̃ + ηjr
j ∈ C}. (6)

Then, an intersection cut admits the form

p∑
j=1

Bj(z − z̃)/η∗j ≤ −1, (7)
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(c) Simplicial cone R and the
intersection cut.

Figure 1: An S-free set C, simplicial cone R, and intersection cut.

where Bj is the j-th row of B. When all step lengths are positive, the above linear inequality
cuts off z̃ from S. See for an example of an intersection cut in Fig. 1.

We can obtain the sets C, R and the vertex z̃ by the following procedure. Suppose that we
have an LP relaxation minz∈P c·z of an SP problem, where P is a polyhedral outer approximation
of the feasible set of the SP problem. If the solution to the LP problem turns out to be infeasible
for the SP problem, it means that the solution does not belong to the signomial lift. In such
cases, we can fix z̃ as the solution obtained from LP and let C be the signomial-lift-free (Slift-free)
set. Moreover, we can extract the cone R from the optimal LP basis defining z̃, see [18].

One focus of our study is the construction of (maximal) S-free sets. The importance of finding
maximal sets follows from the fact that if we have two S-free sets called C and C∗, where C is
a subset of C∗, then the intersection cut derived from C∗ dominates the cut derived from C (see
[19, Remark 3.2]). To give a precise characterization, we present a formal definition of maximal
S-free sets.

Definition 3. Given a closed convex set G ⊆ Rp such that S ⊊ G, an S-free set C is (inclusion-
wise) maximal in G, if there is no other S-free set C′ such that C ∩ G ⊊ C′ ∩ G.

The above definition provides a generalization of the conventional concept of maximal S-free
sets, which is a special case when G = Rp. Studying maximality for S-free sets in Rp can be
challenging in certain scenarios. However, Defn. 3 allows us to examine the intersections of S-free
sets within the ground set G. This constraint is essential for our analysis, especially considering
that all variables in SP are non-negative.

3 General results on maximality

In this section, we present two results on the maximality of S-free sets arising in general nonconvex
NLP problems. The results are used to construct maximal signomial-lift-free sets in non-negative
orthants.

3.1 Lifted sets

We consider the extended formulation (2) of a general NLP problem and focus on the associated
lifted set Slift in (3). We show a lifting result on constructing maximal Slift-free sets.
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Let z := (x, y) denote the vector variable in the extended formulation (2), with its index set
being [n+ k]. Consequently, we have z[n] = x and z[n+1:n+k] = y. Consider a closed subset X of
the domain

⋂
i∈[k] dom(gi) for x, and let Y be a closed subset of the domain×i∈[k]

range(gi) for

y. The ground set G can, thus, be set as X × Y. Consequently, the lifted set Slift in (3) admits
the form {(x, y) ∈ G : y = g(x)}.

Given that each gi(x) (for i ∈ [k]) may only depend on a subset of variables indexed by Ji ⊆
[n], we can express gi(x) as a lower order function g′i(xJi) defined over RJi . Let Ii := Ji∪{i+n}.
As above, we consider a closed subset X i of dom(g′i) and Yi of range(g′i). Consequently, the
graph, epigraph, and hypograph of g′i reside within sets Gi := X i×Yi, e.g., epi(g′i) = {(xJi , yi) ∈
Gi : g′i(xJi) ≤ yi}.

We refer to X ,Y, {X i,Yi}i∈[k] as the underlying sets of the lifted set Slift. The sets are
said to be 1d-convex decomposable by a collection {Dj}j∈[n+k] of closed convex sets in R, if
X =×j∈[n]

Dj ,Y =×j∈[n+1:n+k]
Dj , and, for all i ∈ [k], X i =×j∈Ji Dj ,Y

i = Dn+i. This

decomposability condition restricts the domains to Cartesian products of real lines, intervals, or
half rays, thereby excluding complicated domain structures.

The decomposability condition allows the analysis of sets with fewer variables. The con-
struction of epi(g′i)-free sets and hypo(g′i)-free sets is in general simpler than the construction of
Slift-free sets. We show that any maximal epi(g′i)-free or hypo(g′i)-free set can be transformed
into a maximal Slift-free set.

Theorem 1. Suppose the underlying sets of Slift are 1d-convex decomposable and g is continuous.
For some i ∈ [k], let C be a maximal epi(g′i)-free set or a maximal hypo(g′i)-free set in Gi. Then,
C̄ := C × RIci is a maximal Slift-free set in G.

See the proof in the appendix. For any i ∈ [k], we call the operation C × RIci the orthogonal
lifting of C with respect to gi. A similar lifting result for integer programming is given by
[19, Lemma 4.1]: given S := Zn × Rh, any maximal lattice-free set (i.e., Zn-free set) can be
transformed into a maximal S-free set by orthogonal lifting. Therefore, Thm. 1 serves as the
NLP counterpart to this lemma (whose proof is also similar). This theorem allows us to focus
on low-dimensional projections of the lifted set. We will show in Cor. 1 that the signomial lift
satisfies the prerequisites of Thm. 1. The following example illustrates the application of Thm. 1.

Example 1. Consider a lifted set Slift defined as

{(x1, x2, x3, x4, y1, y2, y3) : y1 = exp(x1 − x2/x3) ∧ y2 = log(x1) ∧ y3 = sin(x1/x4)}.

One can verify that the 1d-convex decomposable condition holds for D1 = R+, Dj = R (for
j ∈ [2 : 7]). Then G := R1

+×R6. We use log(x1) to construct a Slift-free set. A maximal Slift-free
set can be {(x1, x2, x3, x4, y1, y2, y3) ∈ G : y2 ≤ log(x1)}. Since log(x1) is defined over positive
reals, this example gives a reason to restrict maximality over G.

3.2 Sufficient conditions on maximality

We provide sufficient conditions for the maximality of S-free sets for two general classes of
nonconvex sets S. At the beginning, we give an overview of some basic results of convex analysis.
Our subsequent exposition relies on the use of support functions of convex sets. The properties
of support functions can be summarized as follows.

Lemma 2. [33, Chap. C] For a full-dimensional closed convex set C ⊊ Rp, let σC : Rp → R, λ 7→
supz∈C λ · z be the support function of C. Then: (i) C = {z ∈ Rp : ∀λ ∈ dom(σC) λ · z ≤ σC(λ)},
(ii) int(C) = {z ∈ Rp : ∀λ ∈ dom(σC)∖ {0} λ · z < σC(λ)}, (iii) σC(ρλ) = ρσC(λ) for any ρ > 0.
Moreover, for any closed convex set C′ including C, σC ≤ σC′ .
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A valid inequality a·z ≤ b of C is called a supported valid inequality, if there exists a supporting
point z′ ∈ bd(C) such that a · z′ = b. Geometrically, a closed convex set is the intersection of
half-spaces associated with supported valid inequalities.

Observation 1. It follows from Lemma 2 that every supported valid inequality of C must admit
the form λ · z ≤ σC(λ) for some λ ∈ dom(σC), where the supremum σC(λ) is attained at its
supporting points.

An inequality of the form λ · z ≤ σC(λ), for λ ∈ dom(σC), is referred to as an exposed valid
inequality, if there exists an exposing point z′ ∈ bd(C) such that λ · z = σC(λ) and, for all
λ′ ∈ dom(σC)∖ {ρλ}ρ>0, λ

′ · z′ < σC(λ
′).

Observation 2. An exposed valid inequality must be a supported valid inequality. Conversely,
a supported valid inequality is an exposed valid inequality if the manifold bd(C) is smooth at
its supporting point. For example, C1 := {(x, y) ∈ R2 : y = x2} is a smooth manifold, so any
supported valid inequality of C1 is exposed; C2 := {(x, y) ∈ R2 : y = |x|} is smooth at x ∈ [1, 2],
so any supported valid inequality of C2 with support point (x, y) (x ∈ [1, 2]) is also exposed by
the same point; however, a supported valid inequality of C2 with supporting point (x, y) (x = 0)
cannot be exposed, since there are infinitely many supported valid inequalities at the same point.

The first theorem we present holds for full-dimensional nonconvex sets S. As shown in Fig. 1,
we have observed the geometric equivalence between the closed convex inner approximation of
cl(Sc) and S-free sets. The theorem provides a sufficient condition for the maximality of closed
convex inner approximations.

Theorem 2. Let F be a full-dimensional closed set in Rp, and let C ⊆ F be a full-dimensional
closed convex set. If, for any z∗ ∈ int(F ∖ C) and any λ ∈ dom(σC) such that λ · z∗ > σC(λ),
there exists a point z′ ∈ bd(F)∩ bd(C) exposing λ · z ≤ σC(λ), then C is a maximal convex inner
approximation of F .

We call z∗ in Thm. 2 an outlier point, by which we try to enlarge an S-free set, and let
L(z∗) := {λ ∈ dom(σC) : λ · z∗ > σC(λ)}. The proof of Thm. 2 (in the appendix) was adapted
from [53, Thm. 2], which excludes the presence of the outlier point and requires a stronger
assumption, namely that for any λ ∈ dom(σC) there exists a point z′ ∈ bd(F) ∩ bd(C) exposing
λ · z ≤ σC(λ). As we will see in the proof of Thm. 3,

⋃
z∗∈int(F∖C) L(z

∗) can be a proper subset

of dom(σC), so we do not need to check that all λ ∈ dom(σC) are exposed.
We next focus on a specific type of function, namely positive homogeneous functions. We

summarize their properties as follows.

Lemma 3. Let f be a positive homogeneous function of degree d ∈ R, such that, for any z ∈
dom(f) ⊆ Rp and any ρ ∈ R++, f(ρz) = ρdf(z). Then: (i) int(dom(f)) is a cone, and (ii) if

d = 1, then for any z̆ ∈ dom(f), Ξfz̆ (z) = ∇f(z̆) · z for z ∈ dom(f) and Ξfz̆ (z) = f(z) for z = ρz̆
with ρ ∈ R++.

The proof is in the appendix. We recall that Ξfz̆ in the above lemma is defined in Eq. (5).
Moreover, dom(f) is embedded in Rp, so we call Rp the ambient space of f .

The second theorem we present offers a more structured result, specifically related to non-
convex DCC sets S. [60, Thm. 5.48] provides a sufficient condition for the maximality of the
S-free set described in Lemma 1. However, to clearly distinguish it from our result below, we
translate the condition into our setting as follows: (i) the functions f1 and f2 are superlinear,
i.e. they are positive homogeneous of degree 1 and superadditive (note that superlinear functions
are concave), (ii) they are separable and act independently on different variables u and v, (iii)
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f1 is negative everywhere except at 0, (iv) the linearization point ṽ of f2 is nonzero, and (v) the
domains dom(f1) and dom(f2) are Euclidean spaces.

Our second theorem provides an alternative condition for maximality that relaxes condition
(i) by requiring only that one of f1 or f2 be positive homogeneous of degree 1, while imposing
mild regularity conditions. Moreover, the domains can be full-dimensional convex cones.

Theorem 3. For every i ∈ {1, 2}, let fi be concave. Let S := {(u, v) ∈ dom(f1) × dom(f2) :
f1(u) − f2(v) ≤ 0}. Suppose that: (i) at least one of f1, f2 is positive homogeneous of degree 1,
(ii) f1, f2 are both positive/negative over the interiors of their domains, (iii) f1 is continuously
differentiable over int(dom(f1)), and (iv) dom(f1),dom(f2) are full-dimensional in the ambient
spaces of f1, f2, respectively. Then, for any ṽ ∈ int(dom(f2)), C := {(u, v) ∈ dom(f1)×dom(f2) :

f1(u)− Ξf2ṽ (v) ≥ 0} is maximally S-free in dom(f1)× dom(f2).

Proof. We first adapt Lemma 1 by restricting the domain of z to the convex ground set G :=
dom(f1)×dom(f2). It follows from Lemma 1 that C is an S-free set in G. Since dom(f1)×dom(f2)
are full-dimensional, S, C,G are full-dimensional. As S, C ⊆ G, the maximality of C in G is
equivalent to that C is a maximal convex inner approximation of F := cl(Sc) ∩ G = {(u, v) ∈
G : f1(u) − f2(v) ≥ 0}. Note that F is full-dimensional. We then apply Thm. 2 to prove that
C is a maximal convex inner approximation of F . Let z∗ ∈ int(F ∖ C) be any outlier point. It
follows from the separating hyperplane theorem that there exists a supported valid inequality
λ · z ≤ σC(λ) of C such that λ · z∗ > σC(λ). Since F ∖ C ⊆ G, int(F ∖ C) ⊆ G. Since C ⊆ G, the
inequality cannot be supported by a valid inequality at bd(G), so the inequality must be a valid
inequality supported at C ∖ bd(G). It follows from the concavity of f1 that the inequality must

admit the form Ξf1ŭ (u)−Ξf2ṽ (v) ≥ 0 for some ŭ ∈ dom(f1) (identical up to a positive multiplier).
By the smoothness of f1, w.l.o.g, we can perturb ŭ such that it is in int(dom(f1)). Let v̆ := ṽ.

We now have that ŭ ∈ int(dom(f1)), v̆ ∈ int(dom(f2)). We will prove that Ξf1ŭ (u) − Ξf2v̆ (v) ≥ 0
is exposed by a point (u′, v′) ∈ (bd(F) ∩ bd(C)) ∩ int(G). It suffices to show that the following
three equations hold:

Ξf1ŭ (u′)− Ξf2v̆ (v′) = 0 (i.e., supported at (u′, v′)),

f1(u
′)− Ξf2v̆ (v′) = 0 (i.e., (u′, v′) ∈ C),

f1(u
′)− f2(v

′) = 0 (i.e., (u′, v′) ∈ F).

(8)

Since C ⊆ F and they are both full-dimensional, the last two equations imply that (u′, v′) ∈
bd(C)∩bd(F). As f1 is continuously differentiable and concave in the interior of its domain, the

graph of f1(u)−Ξf2v̆ (v) over int(G) is a smooth manifold embedded in int(G)×R. The intersection
of a smooth manifold with a hyperplane yields another lower-dimensional smooth manifold. This
implies that the level set C of f1(u)− Ξf2v̆ (v) is also smooth at any point (u, v) ∈ int(G) ∩ C. By
Obs 2, (u, v) is an exposing point. Since (u′, v′) ∈ C ∩ int(G), (u′, v′) is an exposing point, and
the maximality of C is verified. We now proceed to construct (u′, v′) from (ŭ, v̆) and prove (8).
Let ρ := f2(v̆)/f1(ŭ). Since ŭ ∈ int(dom(f1)), v̆ ∈ int(dom(f2)), by the assumption, ρ > 0. We
consider the following two cases separately.

Case i. We first suppose that f1 is positive homogeneous of degree 1. Let (u′, v′) := (ρŭ, v̆),
which, by Lemma 3, is in int(G). We have that:

f1(u
′)

(i.1)
= Ξf1ŭ (u′)

(i.2)
= ρf1(ŭ)

(i.3)
= f2(v̆)

(i.4)
= f2(v

′)
(i.5)
= Ξf2v̆ (v′),

where equations (i.1), (i.2) follow from Lemma 3, (i.3) follows from the definition of ρ, and
(i.4), (i.5) follow from v′ = v̆.
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Case ii. We then suppose that f2 is positive homogeneous of degree 1. Let (u′, v′) :=
(ŭ, v̆/ρ) ∈ int(G). We have that:

Ξf1ŭ (u′)
(ii.1)
= f1(u

′)
(ii.2)
= f1(ŭ)

(ii.3)
= f2(v̆)/ρ

(ii.4)
= f2(v

′)
(ii.5)
= Ξf2v̆ (v′),

where equations (ii.1), (ii.2) follow from ŭ = u′, (ii.3) follows from the definition of ρ, and
(ii.4), (ii.5) follow from Lemma 3. Therefore, (8) are satisfied in both cases.

We present the motivation for restricting the maximality of the set C within the ground set
dom(f1) × dom(f2). The main reason for this restriction arises from the difficulty of finding a
nontrivial concave extension of f1 over its ambient space such that for all u /∈ dom(f1), f1(u) >
−∞. While such an extension can exist geometrically, the construction of a closed expression
remains unclear. In the next section, we will examine a specific example to illustrate this point.

Moreover, we will apply the above theorem to develop DCC formulations for a nonconvex
set. In particular, the functions f1 and f2 must not simultaneously have positive homogeneity
of degree 1, and their domains are non-negative orthants. Consequently, the relaxed condition
for homogeneous degrees and domains in Thm. 3 becomes necessary. We give two examples for
verification Thm. 3.

Example 2. Let f1(u) := u with dom(f1) ∈ R, and let f2(v) :=
∑
i∈[n]

√
vi with dom(f2) = Rn+.

Note that f1, f2 are concave, dom(f2) is a non-negative orthant, and f1 is positive homogeneous
of degree 1. Let G := R × Rn+. One can verify that the presupposition of Thm. 3 is satisfied.
Then, S := {(u, v) ∈ G : u−

∑
i∈[n]

√
vi ≤ 0} is a convex set. It is easy to see that C := {(u, v) ∈

G : u−
∑
i∈[n](

√
ṽi + (vi − ṽi)/

√
ṽi) ≥ 0} is maximally S-free in G with ṽ > 0.

Example 3. Exchange the functions f1, f2 in the previous examples. Then, S := {(u, v) ∈
G :

∑
i∈[n]

√
vi − u ≤ 0} is a reverse-convex set. It is easy to see that C := {(u, v) ∈ G :∑

i∈[n]

√
vi − u ≥ 0} is the unique maximal S-free set in G.

4 Signomial-lift-free sets and intersection cuts

In this section, we construct (maximal) signomial-lift-free sets and generate intersection cuts for
SP.

4.1 Signomial-lift-free and signomial-term-free sets

We introduce and study new formulations of signomial term sets. We transform signomial term
sets into DCC sets. We also construct signomial term-free sets and lift them to signomial term-
lift-free sets. The maximality of these sets is studied, and a comparison is made between signomial
term-free sets derived from different DCC formulations.

We consider an n-variate signomial term ψα(x) arising in the extended formulation (2) of SP.
The exponent vector α may contain negative/zero/positive entries. We extract two sub-vectors
α− and α+ from α such that α− ∈ Rh′

−− and α+ ∈ Rℓ′++, and let x− ∈ Rh′
and x+ ∈ Rℓ′ be the

corresponding sub-vectors of x. Entries xj with αj = 0 are excluded from consideration, and so
h′ + ℓ′ may be smaller than n. Since ψα(x) only depends on x− and x+, it can be represented in

the form of xα
−

− xα
+

+ of lower order. We consider the signomial term set as epigraph or hypograph

of xα
−

− xα
+

+ :

Sst = {(x−, x+, t) ∈ Rh
′+ℓ′+1

++ : t ⋚ xα
−

− xα
+

+ }. (9)
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We first give DCC reformulations of signomial term sets. Let ≶ denote < or >. The interior
of Sst in (9) is

int(Sst) = {(x−, x+, t) ∈ Rh
′+ℓ′+1

++ : t ≶ xα
−

− xα
+

+ }.

Reorganizing the signomial terms and taking the closure of the set, we recover

Sst = {(x−, x+, t) ∈ Rh
′+ℓ′+1

+ : tx−α
−

− ⋚ xα
+

+ }.

Notably, the exponents associated with signomial terms on both sides are now strictly positive.

Let u := (t, x−), v := x+, let h := h′+1, and let ℓ := ℓ′. Then, ψβ′(u) = tx−α
−

− and ψγ′(v) = xα
+

+ ,
where β′ := (1,−α−) ∈ Rh++ and γ′ := α+ ∈ Rℓ++. After the change of variables, the set admits
the following form:

Sst = {(u, v) ∈ Rh+ℓ+ : ψβ′(u) ⋚ ψγ′(v)}. (10)

The formulation (10) exhibits symmetry between u and v. We can therefore consider w.l.o.g. the
inequality “≤” throughout the subsequent analysis. Since the signomial terms ψβ′(u), ψγ′(v) are
non-negative over Rh+,Rℓ+, we can take any positive power η ∈ R++ on both sides of (10). Finally,
the signomial term set in (9) admits the following form:

Sst = {(u, v) ∈ Rh+ℓ+ : ψβ(u)− ψγ(v) ≤ 0}, (11)

where β := ηβ′, and γ := ηγ′.
A signomial term ψα(x) is said to be a power function if α ≥ 0, and ∥α∥1 ≤ 1. According

to [4, 16], power functions are concave over the non-negative orthant; if additionally ∥α∥1 = 1,
ψα(x) is positive homogeneous of degree 1. Through an appropriate scaling of the parameter η,
we obtain a family of DCC reformulations (11) of signomial term sets. We let G := Rh+ℓ+ , and
use the reverse-linearization technique to construct signomial-term-free sets. We recall that the
definition of the operator Ξ is given in Eq. (5).

Proposition 1. Let max(∥β∥1, ∥γ∥1) ≤ 1. For any ṽ ∈ Rℓ++,

C := {(u, v) ∈ Rh+ × Rℓ : ψβ(u)− Ξ
ψγ

ṽ (v) ≥ 0} (12)

is a signomial-term-free (Sst-free) set. If max(∥β∥1, ∥γ∥1) = 1, then C is a maximal signomial-
term-free set in G.

Proof. Since max(∥β∥1, ∥γ∥1) ≤ 1, ψβ(u), ψγ(v) are concave. By Lemma 1, C is signomial-
term-free. If max(∥β∥1, ∥γ∥1) = 1, then at least one of ∥β∥1, ∥γ∥1 is 1. Therefore, one of
ψβ(u), ψγ(v) is positive homogeneous of degree 1. Moreover, ψβ(u), ψγ(v) are both continuously
differentiable and positive over positive orthants Rh++,Rℓ++ (the interiors of their domains). Since

G = dom(ψβ) × dom(ψγ), by Thm. 3, C ∩ G = {(u, v) ∈ G : ψβ(u) − Ξ
ψγ

ṽ (v) ≥ 0} is a maximal
signomial-term-free set in G. Therefore, C is also a maximal signomial-term-free set in G.

Given that max(∥β∥1, ∥γ∥1) = 1 results in a desirable DDC formulation for the signomial
term set, we refer to this formulation as its normalized DCC formulation. Comparing Prop. 1 to

Thm. 3, we extend the domain of Ξ
ψγ

ṽ (v) from Rℓ+ to Rℓ, since it is an affine function. However,
the further extension requires a non-trivial concave extension of the power function ψβ , which
we are unaware of.

We have reduced the n-variate signomial term ψα(x) to a signomial term xα
−

− xα
+

+ of lower
order and constructed the corresponding signomial-term-free sets. A similar reduction is observed
for gi to g′i in Subsec. 3.1, where we demonstrate the relationship between Slift-free sets and
epi(g′i)-free/hypo(g

′
i)-free sets.
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Next, we let the lifted set Slift be the signomial lift, where all gi are signomial terms. Each
equality constraint yi = gi(x) defining the signomial lift is equivalent to two inequality constraints
yi ⋚ gi(x). Applying the normalized DDC reformulation to these inequality constraints, we thus
obtain a reformulation of the signomial lift, which we call its normalized DCC reformulation.

Corollary 1. Let C be as in (12), where ψα = gi for some i ∈ [k] and max(∥β∥1, ∥γ∥1) = 1.
Then the orthogonal lifting of C w.r.t. gi is a maximal signomial-lift-free (Slift-free) set in the
non-negative orthant.

Proof. We verify that the conditions of Thm. 2 are satisfied by the signomial lift. For any i ∈ [k],
the signomial term gi is continuous, and its domain and range are R++. Let Ji be the index set
of variables of its reduced signomial term g′i. Let X :=×j∈[n]

R++,Y :=×j∈[k]
R++. For all

j ∈ [n+ k], let Dj := R++. For all i ∈ [k], let X i :=×j∈Ji R++,Yi := R++. The underlying sets

of the signomial lift are X ,Y, {X i,Yi}i∈[k] that are 1d-convex decomposable by {Dj}j∈[n+k]. By
Prop. 1, C is a maximal hypo(g′i)-free set in X i × Yi. By Thm. 2, its orthogonal lifting w.r.t. gi
is a maximal signomial-lift-free set in positive orthant. By continuity of ψβ , ψγ , we change the
ground set (the positive orthant) to its closure, i.e., non-negative orthant.

The following examples show signomial term-free sets from different DDC formulations.

Example 4 (Comparison of DCC formulations). Consider Sst = {(u, v) ∈ R2
+ : u ≤ v}, which

is already in normalized DCC formulation. It is easy to see that C1 := {(u, v) ∈ R+ ×R : u ≥ v}
is a maximal Sst-free set in R2

+ given by Prop. 1. Let ṽ ∈ R++ be a linearization point. As
int(Sst) = {(u, v) ∈ R2

+ : log(u) ≤ log(v)} admits a DCC formulation, applying the reverse-
linearization technique at ṽ yields C2 := {(u, v) ∈ R2

+ : log(u)− (log(ṽ) + (v − ṽ)/ṽ) ≥ 0}, which
is also an Sst-free set. For any 0 < η < 1, Sst = {(u, v) ∈ R2

+ : uη ≤ vη} is a DDC set, applying
the reverse-linearization technique at ṽ yields C3 := {(u, v) ∈ R2

+ : uη−((1−η)ṽη+ηṽη−1v) ≥ 0},
which is also an Sst-free set. However, C2, C3 cannot be maximal in R2

+, because their intersections
with R2

+ are not polyhedral. These sets are visualized in Fig. 2 with a linearization point ṽ = 0.5
and scaling parameter η = 0.7.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(a) Sst and C1.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(b) Sst and C2.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(c) Sst and C3.

Figure 2: Sst-free sets from Example 4.

Example 5. Consider the hypograph of signomial term x−2
1 x22 and Sst = {(x, y) ∈ R3

+ : y ≤
x−2
1 x22}. For (x, y) ∈ R3

++, y ≤ x−2
1 x22 if and only if y1/3x

2/3
1 ≤ x

2/3
2 . The following set is

maximal Sst-free in G = R3
+: C4 := {(x, y) ∈ R3

+ : y1/3x
2/3
1 ≥ x̃

2/3
2 + 2

3 x̃
−1/3
2 (x2 − x̃2)}, where

x̃2 ∈ R++. See Fig. 3a for x̃2 = 0.2.
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Example 6. Consider the epigraph of signomial term x31x2 and Sst = {(x, y) ∈ R3
+ : y ≥ x31x2}.

For (x, y) ∈ R3
++, y ≥ x31x2 if and only if y1/4 ≥ x

3/4
1 x

1/4
2 . The following set is maximal Sst-free

in G = R3
+: C5 := {(x, y) ∈ R3

+ : ỹ1/4 + 1
4 ỹ

−3/4(y − ỹ) ≤ x
3/4
1 x

1/4
2 }, where ỹ ∈ R++. See Fig. 3b

for ỹ = 0.2.

(a) Sst and C4 from Example 5. (b) Sst and C5 from Example 6.

Figure 3: Sst and Sst-free sets from Examples 5 and 6.

4.2 Intersection cuts

We focus on the separation of intersection cuts for the extended formulation of SP. In Sec. 2 we
presented a method to construct a simplicial cone R from an LP relaxation. The vertex of this
cone is a relaxation solution z̃ = (x̃, ỹ).

We assume that the LP relaxation includes all linear constraints from (2). If z̃ is infeasible
for (2), then z̃ does not belong to the signomial lift. Thus, there is a signomial term gi such that
ỹi ̸= gi(x̃). Given the reduced form g′i, we obtain a set of signomial terms Sst: If gi(x̃) > ỹi,
we choose Sst to be the epigraph of g′i; otherwise, we choose it to be the hypograph of g′i. This
signomial term set yields a signomial term-free set C in (12) containing (ũ, ṽ) in its interior
(Lemma 1). Using orthogonal lifting of Cor. 1, we can transform C into a signomial-lift-free set
C̄.

We next show how to construct an intersection cut in (7). It suffices to compute step lengths
η∗j in (6) along extreme rays rj of R. Each step length η∗j corresponds to a boundary point

z̃ + η∗j r
j in bd(C̄). The left-hand-side ψβ(u) − Ξ

ψγ

ṽ (v) of the inequality in (12) is a concave

function over (u, v) ∈ Rh+ × Rℓ. Its restriction along the ray z̃ + ηjr
j (ηj ∈ R+) is a univariate

concave function:

τj : R+ → R, ηj 7→ τj(ηj) := ψβ(ũ+ rjuηj)− Ξ
ψγ

ṽ (ṽ + rjvηj),

where rju and rjv are the projections of rj on u and v respectively. Let η̄j := supηj≥0{ηj :

ũ+ rjuηj ≥ 0}. Therefore, η∗j is the first point in [0, η̄j ] satisfying the boundary condition: either
τj(η

∗
j ) = 0 or η∗j = η̄j . Since τj is a univariate concave function and τj(0) > 0, there is at most

one positive point in R+ where τj is zero. We employ the bisection search method [56] to find
such η∗j .
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5 Convex outer approximation

In this section we propose a convex nonlinear relaxation for the extended formulation (2) of SP.
This relaxation is easy to derive and allows us to generate valid linear inequalities, called outer
approximation cuts, for SP. Unlike intersection cuts, outer approximation cuts do not require an
LP relaxation a priori, so solvers can employ them to generate an initial LP relaxation of (2).

To ensure the convergence of the sBB algorithm, the feasible region of the extended formu-
lation (2) should be compact. Therefore, we assume in the sequel that the signomial lift is in a
hypercube.

We construct the convex nonlinear relaxation by approximating each signomial term set of
the signomial lift within the hypercube. W.l.o.g., we consider a signomial term set in hypergraph
or epigraph form. As Subsec. 4.1, we can convert it into normalized DDC formulation:

Sst = {(u, v) ∈ U × V : ψβ(u)− ψγ(v) ≤ 0}, (13)

where max(∥β∥1, ∥γ∥1) = 1, and U ,V are two hypercubes in Rh+,Rℓ+ respectively. Due to Sub-
sec. 5.3, the signomial term set is usually nonconvex, so our construction involves convexifying the
concave function ψβ in (13). This procedure yields a convex outer approximation of Sst, which
is non-polyhedral. Consequently, replacing Sst by its convex outer approximation, we obtain the
convex nonlinear relaxation of (2).

Next, we introduce the procedure of convexification. We should import the formal concepts
of convex underestimators and convex envelopes. Given a function f and a closed set D ⊆ Rp, a
convex function f ′ : conv(D) → R is called a convex underestimator of f over D, if for all x ∈ D
f ′(x) ≤ f(x). The convex envelope convenvD(f) of f is defined as the pointwise maximum
convex underestimator of f over D.

The following lemma gives an extended formulation of the convex envelope of a concave
function over a polytope, where the formulation is uniquely determined by the function values
at the vertices of the polytope.

Lemma 4. [26, Thm. 3] Let P be a polytope in Rn, let f : P → R be a concave function over P ,

and let Q be vertices of P . Then, convenvP (f)(x) = max{
∑
q∈Q λqf(q) : ∃λ ∈ RQ+,

∑
q∈Q λq =

1, x =
∑
q∈Q λqq}.

Based on the lemma above, we observe that the concave function f is convex-extensible from
its vertices (i.e., convenvP (f)(x) = convenvQ(f)(x) for x ∈ P ), and convenvP (f) is a polyhedral
function.

For the case of P = U :=
∏
j∈[h][uj , uj ] and f = ψβ , Q = {q ∈ Rh : ∀j ∈ [h] qj = uj ∨ qj =

uj} is the set of vertices of the hypercube U . The lemma yields an extended formulation of
convenvU (ψβ). Replacing ψβ by its convex envelope convenvU (ψβ), we obtain the convex outer
approximation of Sst in (13):

Sst := {(u, v) ∈ U × V : convenvU (ψβ)(u) ≤ ψγ(v)}.

By using this extended formulation, our convex nonlinear relaxation of SP contains additional
auxiliary variables. In particular, we need 2h variables λq to represent each convex envelope. For
most SP problems in MINLPLib where the degrees of the signomial terms are less than 6 and h
is less than 3, the convex nonlinear relaxation is computationally tractable.

5.1 Outer approximation cuts

To increase efficiency, we propose a cutting plane algorithm to separate valid linear inequalities
in (u, v)-space from the extended formulation of the convex outer approximation. This algorithm
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generates a low-dimensional projected approximation of Sst. Moreover, the projection procedure
converts the convex nonlinear relaxation into an LP relaxation, which is suitable for many solvers.

Given a point (ũ, ṽ) ∈ U × V, the algorithm determines whether it belongs to Sst. This
verification can be done by checking the sign of convenvU (ψβ)(ũ)−ψγ(ṽ). If convenvU (ψβ)(ũ)−
ψγ(ṽ) ≤ 0, then (ũ, ṽ) ∈ Sst.

Since convenvU (ψβ) is a convex polyhedral function, our cutting plane algorithm evaluates
the function by searching for an affine underestimator a · u + b of convenvU (u) such that a ·
ũ + b = convenvU (ũ). If (ũ, ṽ) /∈ Sst, then a · u + b ≤ ψγ(v) is a valid nonlinear inequality of
Sst. Subsequently, our cutting plane algorithm linearizes this inequality, resulting in an outer

approximation cut a · u + b ≤ Ξ
ψγ

ṽ (v): we recall that Ξ
ψγ

ṽ (v) is the linearization of ψγ(v) at ṽ
defined in Eq. (5).

Due to Lemma 4, we can solve the following LP to find the affine underestimator:

max
a∈Rh,b∈R

a · ũ+ b s. t.∀q ∈ Q a · q + b ≤ ψγ(q), (14)

where we omit the linear constraints that bound (a, b). The maximum value resulting from this
LP is exactly convenvU (ψβ)(ũ). The affine undestimator a ·u+b is called an facet of the envelope
convenvU (ψβ), if a ·u+b ≤ t is a facet of epi(convenvU (ψβ)). It should be noted that the solution
of the LP is not necessarily a facet.

For h = 1, 2 we can provide explicit projected formulations of convex envelopes of power
functions. This allows us to obtain facets of convenvU (ψβ) without having to solve LPs. As a
result, our cutting plane algorithm can efficiently separate outer approximation cuts for low-order
problems.

To simplify our representation, we translate and scale the domain of ψβ to [0, 1]h. This leads
to a new function s(w) := ψβ(u), where for all j ∈ [h], uj := uj + (uj − uj)wj . After these

transformations, we have U = [0, 1]h and Q = {0, 1}h. W.l.o.g., we focus on the study and
computation of facets of convenvU (s). For h = 1, the only facet is s(0) + (s(1)− s(0))w1.

A set D ⊆ Rh is called a product set, if D =×j∈[h]
Dj for Dj ⊆ R. Moreover, a function

f : D → R is supermodular over D ([66, Sec. 2.6.1]), if the increasing difference condition holds:
for all w1, w2 ∈ D, d ∈ Rh+ such that w1 ≤ w2 and w1 + d,w2 + d ∈ D, f(w1 + d) − f(w1) ≤
f(w2 + d)− f(w2). We find that the following operations preserve supermodularity.

Lemma 5. Let w′ ∈ Rh, ρ ∈ Rh++, and let D′ be a product subset of D. The following results
hold: (restriction) f is supermodular over D′;(translation) f(w+w′) is supermodular over D−d;
(scaling) f(ρ ∗ w) is supermodular over D/ρ, where +,−, ∗, / are taken entry-wise.

Proof. The results follow from the definition.

We note that when D = Q, d is in Q. We observe a useful property of s.

Proposition 2. s is supermodular over Q and convenvU (s) = convenvQ(s).

Proof. According to [66, Example 2.6.2], the signomial term ψα with α > 0 is supermodular
over Rh+. This implies that the power function ψβ is supermodular over Rh+. By Lemma 5, s
is supermodular over U = [0, 1]h. As Q = {0, 1}h is a product subset of U , s is supermodular
over Q. After the scaling and translation, s is still concave. By Lemma 4, convenvU (s) =
convenvQ(s).

Finding facets of s can be reduced to a more general problem of finding facets of supermodular
functions over Boolean hypercubes. We note that a similar argument can show that both power
functions and multilinear terms over any product subset of Rh+ are supermodular.
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5.2 Projected convex envelopes of bivariate supermodular functions

We present a general characterization of projected convex envelopes of supermodular functions
and give a closed-form expression for bivariate cases. Let f be a supermodular function over Q.
We can use a bit representation to denote Boolean points in Q. For example, 10 denotes the
point w that w1 = 1 and w2 = 0. For an affine function a · w + b, we call Boolean points in Q
where a · w + b equals f(w) its supporting points.

Lemma 6. Each facet of f is supported by h+ 1 affinely independent points in Q.

See the proof in the appendix. We can enumerate all possible subsets of h + 1 affinely
independent points of Q. Each such subset S := {w1, . . . , wh+1} determines a function over Rh
via the following affine combination:

fS(w) :=

 ∑
j∈[h+1]

λjf(w
j) : ∃λ ∈ Rh+1

∑
j∈[h+1]

λj = 1 ∧
∑

j∈[h+1]

λjw
j = w

 .

Because of the affine independence of S, the Barycentric coordinate λ is unique for any w in
the above affine combination. We can consider fS as a single-valued affine function and call it
the supported function of S. Since fS(w) = f(w) solves the linear system a · w + b = f(w) (for
w ∈ S), we can compute a, b which defines fS . If the supported function fS underestimates f ,
we call the subset S facet-inducing.

Assuming we have a collection of facets of f , we then determine whether these facets define
the convex envelope of f . We recall that the convex hull of h+ 1 affinely independent points is
an h-simplex. A finite collection of h-simplices {Pk}k is called a triangulation of the unit cube
U , if the following conditions hold: (i)

⋃
k Pk = U , (ii) Pk ∩Pk′ is empty or a face of both Pk, Pk′

for any k, k′, (iii) the vertices of Pk are contained in Q for all k.

Proposition 3. Let {Sk}k be a collection of facet-inducing subsets of Q. For each k, let fSk
be

the supported function induced by Sk, and let Pk := conv(Sk) be the simplex spanned by Sk. If
{Pk}k is a triangulation of U , then convenvQ(f)(w) = maxk fSk

(w) for all w ∈ U .

Proof. Since
⋃
k Pk = U , for any w ∈ Q, there exists Pk such that w ∈ Pk. Since the vertices Sk

of Pk are contained in Q, w must be in Sk. Therefore, fSk
(w) = f(w). This implies that f(w) =

maxk fSk
(w) for all w ∈ Q, i.e., maxk fSk

is an exact convex underestimator. Suppose, to aim at a
contradiction, that there exists another convex underestimator f ′ of f such that f ′(w) = f(w) for
all w ∈ Q, and f ′(w′) > maxk fSk

(w′) for some w′ ∈ U . Again, since
⋃
k Pk = U , there exists Pk

such that w′ ∈ Pk, i.e., w
′ ∈ conv(Sk). Let Sk = {w1, . . . , wh+1}. It follows from w′ ∈ conv(Sk)

that there exists λ ∈ [0, 1]h+1 such that
∑
j∈[h+1] λj = 1,

∑
j∈[h+1] λjw

j = w′. Note that Sk
induces the supported function fSk

, which has supporting points Sk. This implies that fSk
(w′) =∑

j∈[h+1] λjfSk
(wj) =

∑
j∈[h+1] λjf(w

j). By the convexity of f ′, f ′(w′) ≤
∑
j∈[h+1] λjf

′(wj) =∑
j∈[h+1] λjf(w

j) ≤ fSk
(w′) ≤ maxk fSk

(w′), which leads to a contradiction. Thus, maxk fSk
is

the convex envelope of f over Q.

The collection {Sk}k is called envelope-inducing family in Q, if the presupposition “{Pk}k is
a triangulation” in Prop. 3 is satisfied. Using the above result, we can construct an envelope-
inducing family for bivariate supermodular functions. Let

S2
1 := {00, 10, 01}, S2

2 := {11, 10, 01}. (15)
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One can find that conv(S2
1) = {(w1, w2) ∈ [0, 1]2 : w1 + w2 ≤ 1}, conv(S2

2) = {(w1, w2) ∈
[0, 1]2 : w1 + w2 ≥ 1} are two triangles in [0, 1]2. We have that

fS2
1
(w) = f(00) + (f(10)− f(00))w1 + (f(01)− f(00))w2,

fS2
2
(w) = f(11) + (f(01)− f(11))(1− w1) + (f(10)− f(11))(1− w2).

We show that these two affine functions define the convex envelope of f .

Theorem 4. For h = 2, {S2
k}k∈[2] as in (15) is the envelope-inducing family in Q.

Proof. It is easy to see that, for all k ∈ [2], S2
k is affinely independent and {conv(S2

k)}k∈[2] is a
triangulation of U . Therefore, it suffices to show that {S2

k}k∈[2] is facet-inducing, i.e., fS2
1
, fS2

2

are affine underestimators of f .
Case i. We note that, for all w ∈ S2

1 = {00, 10, 01}, fS2
1
(w) = f(w). Note that Q∖S2

1 = {11}.
It follows from the definition of the affine function fS2

1
that

fS2
1
(11) = fS2

1
(10) + (fS2

1
(01)− fS2

1
(00)) = f(10) + (f(01)− f(00)).

It follows from the supermodularity of f that

f(10) + (f(01)− f(00)) ≤ f(10) + (f(11)− f(10)) = f(11).

Thereby, fS2
1
underestimates f .

Case ii. We note that, for all w ∈ S2
2 = {11, 10, 01}, fS2

2
(w) = f(w). Note that Q∖S2

2 = {00}.
It follows from the definition of the affine function fS2

2
that

fS2
2
(00) = fS2

2
(10)− (fS2

1
(11)− fS2

1
(01)) = f(10) + (f(11)− f(01)).

It follows from the supermodularity of f that

f(10)− (f(11)− f(01)) ≤ f(10)− (f(10)− f(00)) = f(00),

which concludes the proof.

5.3 Convexity and reverse-convexity

Our cutting plane algorithm can detect convexity/reverse-convexity of signomial term sets. The
detection is easily done by normalized DDC formulations.

Denote by eℓj and ehj the j-th unit vector in Rh and Rℓ, respectively. Then, we have the
following observations:

i) if ∥β∥1 = 1, γ = 0, i.e., ψβ is concave and ψγ is 1, then Sst is reverse-convex;

ii) if ∥β∥1 ≤ 1, γ = eℓj for some j ∈ [ℓ], i.e., ψβ is concave and ψγ is a linear univariate function,
then Sst is reverse-convex;

iii) if β = ehj , ∥γ∥1 ≤ 1 for some j ∈ [h], i.e., ψβ is a linear univariate function and ψγ is
concave, then Sst is convex;

iv) if ∥β∥1 = 0, ∥γ∥1 = 1, i.e., ψβ is 1 and ψγ is concave, then Sst is convex.

We note that similar results are found in [17, 45]. The results in [17] are proved by checking
the negative/positive-semidefiniteness of the Hessian matrix of a signomial term. According to
the normalized DCC formulation, the results are evident.
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6 Computational results

In this section, we conduct computational experiments to assess the efficiency of the proposed
valid inequalities.

The MINLPLib dataset includes instances of MINLP problems containing signomial terms,
and some of these instances are SP problems. To construct our benchmark, we select instances
from MINLPLib that satisfy the following criteria: (i) the instance contains signomial functions or
polynomial functions, (ii) the continuous relaxation of the instance is nonconvex. Our benchmark
consists of a diverse set of 251 instances in which nonlinear functions consist of signomial and
other functions. These problems come from practical applications and can be solved by general
purpose solvers.

Experiments are performed on a server with Intel Xeon W-2245 CPU @ 3.90GHz, 126GB
main memory and Ubuntu 18.04 system. We use SCIP 8.0.3 [11] as a framework for reading and
solving problems as well as performing cut separation. SCIP is integrated with CPLEX 22.1 as LP
solver and IPOPT 3.14.7 as NLP solver.

We evaluate the efficiency of the proposed valid inequalities in four different settings. In
the first setting, denoted disable, none of the proposed valid inequalities is applied. In the
second setting, denoted oc, only the outer approximation cuts are applied. The third setting,
denoted ic, applies only to the intersection cuts. The fourth setting combines both the oc

and ic settings by applying both cuts. We let SCIP’s default internal cuts handle univariate
signomial terms and multilinear terms. Our valid inequalities only handle the other high-order
signomial terms. The source code, data, and detailed results can be found in our online repository:
github.com/lidingxu/ESPCuts.

Each test run uses SCIP with a particular setting to resolve an instance. To solve the instances,
we use the SCIP solver with its sBB algorithm and set a time limit of 3600 seconds. In our
benchmark, there are 150 instances classified as affected in which at least one of the settings oc,
ic, and oic settings adds cuts. Among the affected instances, there are 86 instances where the
default SCIP configuration (i.e., disable setting) runs for at least 500 seconds. Such instances
are classified as affected-hard. For each test run, we measure the runtime, the number of sBB
search nodes, and the relative open duality gap.

To aggregate the performance metrics for a given setting, we compute shifted geometric means
(SGMs) over our test set. The SGM for runtime includes a shift of 1 second. The SGM for the
number of nodes includes a shift of 100 nodes. The SGM for relative distance includes a shift
of 1%. We also compute the SGMs of the performance metrics over the subset of affected and
affected-hard instances. The performance results are shown in Table 1, where we also compute
the relative values of the SGMs of the performance metrics compared to the disable setting.
Our following analysis is based on the results of the affected and affected-hard instances.

Setting
All Affected Affected-hard

solved nodes time gap solved nodes time gap solved nodes time gap

disable
absolute

138/251
6510.5 122.0 4.7%

71/150
15592.4 253.6 5.7%

7/86
175973.8 3600.0 26.7%

relative 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

oc
absolute

140/251
5954.1 118.0 4.5%

73/150
13443.9 241.4 5.4%

10/86
115262.3 2872.7 23.3%

relative 0.91 0.97 0.97 0.86 0.95 0.95 0.65 0.8 0.87

ic
absolute

140/251
6144.3 122.4 4.4%

73/150
14081.5 252.1 5.2%

10/86
128072.7 2994.1 22.0%

relative 0.94 1.0 0.95 0.9 0.99 0.91 0.73 0.83 0.82

oic
absolute

139/251
5934.6 117.7 4.6%

72/150
13275.6 236.8 5.6%

10/86
118054.1 2758.3 23.0%

relative 0.91 0.96 0.99 0.85 0.93 0.98 0.67 0.77 0.86

Table 1: Summary of performance metrics on MINLPLib instances.
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First, we note that the proposed valid inequalities lead to the successful solution of 2 additional
instances compared to the disable setting. The oc setting solves 2 more instances than the
disable setting.

The reductions in runtime and relative gap achieved by the oc setting are 5% and 5%, re-
spectively, for affected instances and 20% and 13%, respectively, for affected-hard instances. The
ic setting solves 2 more instances than the disable setting. The reduction in runtime and rel-
ative gap achieved by the ic setting is 1% and 9% for affected instances and 17% and 14% for
affected-hard instances, respectively. The oic setting resolves 1 additional instance compared
to the disable setting. The reduction in runtime and relative distance achieved by the oic

setting is 7% and 2%, respectively, for affected instances and 23% and 14%, respectively, for
affected-hard instances.

We note that the runtime does not provide much information about affected-hard instances,
since only 10 instances can be solved within 3600 seconds. For these instances, the gap reduction
is more useful to measure the reduction of the search space by the proposed valid inequalities.
However, for all affected instances, the runtime is still important because it measures the speedup
due to the valid inequalities.

Second, we find that all cut settings have a positive effect on SCIP performance, although
the magnitude of the reduction varies. When we compare the oc and ic settings, we find
that the oc setting leads to a larger reduction in runtime. This difference in runtime is due
to the fact that computing intersection cuts requires extracting a simplified cone from the LP
relaxation and applying bisection search along each ray of the cone. These procedures require
more computational resources compared to the construction of outer approximation cuts.

On the other hand, the ic setting shows better performance in terms of reducing gaps. Inter-
section cuts approximate the intersection of a signomial term set with the simplicial cone, while
outer approximation cuts approximate the intersection of a signomial term set with a hypercube.
Around the relaxation point, the simplicial cone usually provides a better approximation than the
hypercube. Therefore, ic achieves a greater reduction in the relative gap. However, the better
simplicial conic approximation does yield a significant improvement compared to the hypercubic
approximation.

Finally, the oic setting combines both the oc and ic settings and achieves the best reduction
in runtime. However, for affected and affected-hard instances, the setting shows different gap
reduction results. In fact, the results for affected-hard instances give more insight, since the goal
of the valid inequalities is to speed up convergence for hard instances. In this sense, the oic

setting achieves almost the best result, so it carries the best of both valid inequalities. However,
the improvement compared to each setting is not significant.

In summary, the performances of the oc and ic settings are comparable. They can lead to
smaller duality gaps with less computation time, which is desirable for solvers, and one can use
either of them. Moreover, they do not hurt each other.

7 Conclusion

In this paper we study valid inequalities for SP problems and propose two types of valid linear
inequalities: intersection cuts and outer approximation cuts. Both are derived from normalized
DCC formulations of signomial term sets. First, we study general conditions for maximal S-free
sets. We construct maximal signomial term-free sets from which we generate intersection cuts.
Second, we construct convex outer approximations of signomial term sets within hypercubes. We
provide extended formulations for the convex envelopes of concave functions in the normalized
DCC formulations. Then we separate valid inequalities for the convex outer approximations by
projection. Moreover, when h = 2, we use supermodularity to derive a closed-form expression
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for the convex envelopes.
We present a comparative analysis of the computational results obtained with the MINLPLib

instances. This analysis demonstrates the effectiveness of the proposed valid inequalities. The
results show that intersection cuts and outer approximation cuts have similar performance and
their combination takes the best of each setting. In particular, it is easy to implement outer
approximation cuts in general purpose solvers. In the future, we plan to carefully optimize outer
approximation cuts and develop them as an easy-to-use plugin.

We currently deal with signomial terms explicitly present in the signomial terms, but our
results can be extended to deal with multiple signomial terms. In the future, the proposed valid
inequalities can approximate nonlinear aggregations of constraints that define the signomial lift.
Specifically, given signomial constraints {ψαi(x) = yi}i∈[r] with any exponent vector ζ ∈ Rr,
we can employ signomial aggregation to generate a new signomial constraint: ψ(

∑
i∈[r] ζiα

i)(x) =

ψζ(y). This constraint is valid for the signomial lift and encodes more variables and terms.
Next, we can apply the DCC reformulation to the constraints ψ(

∑
i∈[r] ζiα

i)(x) ≤ ψζ(y) and

ψ(
∑

i∈[r] ζiα
i)(x) ≥ ψζ(y). Finally, we can separate the proposed valid inequalities. As far as we

know, the signomial aggregation operator is not yet used for polynomial programming, since it
outputs a signomial constraint.
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do the partners of the Chair assume any liability for the content of this publication, for which
the author alone is responsible.

Declarations

No conflicts of interest with the journal or funders.

Appendix

Proof of Thm. 1. It suffices to consider the case that C is a maximal epi(g′i)-free set in Gi.
W.l.o.g., we can assume that C,Gi are full-dimensional in RIi . Since epi(g′i) includes graph(g′i),
C, as an epi(g′i)-free set, is also graph(g′i)-free. First, we prove that C is a maximal graph(g′i)-free
set in Gi. Assume, to aim at a contradiction, that C′ is a graph(g′i)-free set that C ∩Gi ⊊ C′ ∩Gi.
Suppose that epi(g′i)∩ int(C′ ∩ Gi) is not empty and contains (x′Ji , y

′
i). As C is epi(g′i)-free, there

exists a point (xJi , yi) ∈ int(C ∩ Gi) ⊆ int(C′ ∩ Gi) such that (xJi , yi) ∈ hypo(g′i). It follows
from the continuity of g′i that there exists a point (x∗Ji , y

∗
i ) ∈ graph(g′i) in the line segment

joining (xJi , yi) and (x′Ji , y
′
i). As int(C′ ∩ Gi) is convex, we have that (x∗Ji , y

∗
i ) ∈ int(C′ ∩ Gi),

which leads to a contradiction to graph(g′i)-freeness of C′. Therefore, epi(g′i) ∩ int(C′ ∩ Gi) must
be empty, so C′ ∩ Gi ⊆ hypo(g′i). This means that C′ is also epi(g′i)-free. However, note that
C ∩ Gi ⊊ C′ ∩ Gi, this contradicts with the fact that C is a maximal epi(g′i)-free set in Gi. There-
fore, C is a maximal graph(g′i)-free set in Gi. Secondly, we prove that C̄ is a maximal Slift-free
set in G. Assume, to aim at a contradiction, that there exists an Slift-free set D̄ in G such that
C̄∩G ⊊ D̄∩G. We look at their orthogonal projections on RIi . It follows from the decomposability
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that C ∩ Gi = C ∩ projRIi (G) = projRIi (C̄ ∩ G) ⊆ projRIi (D̄ ∩ G). Denote D := cl(projRIi (D̄ ∩ G)),
which is a closed convex set in Gi. Since C̄ = C ×RIci , D must strictly include C ∩ Gi. Note that
D is graph(g′i)-free. Since C is a maximal graph(g′i)-free set in Gi, this implies that C ∩ Gi = D,
which leads to a contradiction.

Proof of Thm. 3. Let C be a set satisfying the hypothesis. Suppose, to aim at a contradiction,
that there exists a closed convex set C∗ such that C ⊊ C∗ and C∗ is an inner approximation of
F . Then, there must exist an open ball B such that B ⊆ F ∖ C and B ⊆ C∗. Let z∗ be the
center of B, so z∗ ∈ int(F ∖ C). W.l.o.g., we let C∗ = conv(C ∪ {z∗}), which is a closed convex
inner approximation of F . Since z∗ /∈ C, by the hyperplane separation theorem, there exists
λ ∈ dom(σC) such that

λ · z∗ > σC(λ). (16)

For any such λ, by the hypothesis, there exists a point z′ ∈ bd(F) ∩ bd(C) such that

λ · z′ = σC(λ), (17)

and z′ is an exposing point of C. We want to show that, for any λ′ ∈ dom(σC∗), λ′ · z′ < σC∗(λ).
We consider the following three cases. First, we consider the case λ′ = λ. Because z∗ ∈ C∗, by
the definition of support functions, we have that

λ · z∗ ≤ sup
z∈C∗

λ · z = σC∗(λ). (18)

It follows from (16), (17), and (18) that

λ · z′ = σC(λ) < λ · z∗ ≤ σC∗(λ) = σC∗(λ′). (19)

Second, we consider the case λ′ = ρλ for some ρ > 0. Since σC∗ is positively homogeneous of
degree 1, it follows from (19) that λ′ · z′ = ρλ · z′ < ρσC∗(λ) = σC∗(λ′). Last, we consider the
case λ′ ∈ dom(σC∗)∖{ρλ}ρ>0. By Lemma 2, σC ≤ σC∗ . By the hypothesis that z′ is an exposing
point of C, provided that λ′ ̸= ρλ, we have that λ′ · z′ < σC(λ

′) ≤ σC∗(λ′). In summary, we have
proved that for any λ′ ∈ dom(σC∗), λ′ · z′ < σC∗(λ′). So by Lemma 2, z′ ∈ int(C∗). We find that
z′ ∈ bd(F) ∩ int(C∗). This finding means a point near z′ exists, which is in C∗, but not in F .
Hence, C∗ is not an inner approximation of F , which leads to a contradiction.

Proof of Lemma 3. Given z ∈ dom(f), f(ρz) = ρdf(z) is a real number for any ρ ∈ R++,
so int(dom(f)) is a cone. Suppose that f is positive homogeneous of degree 1. For any z ∈
dom(f), Ξfz̆ (z) = f(z̆) + ∇f(z̆) · (z − z̆) = ∇f(z̆) · z, where the second equation follows from
Euler’s homogeneous function theorem: f(z̆) = ∇f(z̆) · z̆. For any z = ρz̆ with ρ ∈ R++,

Ξfz̆ (z) = ∇f(z̆) · ρz̆ = ρΞfz̆ (z̆) = ρf(z̆) = f(ρz̆), where the first and second equations follow from

the previous result, the third follows from that Ξfz̆ has the same value as f at z̆, and the last
equation follows from the homogeneity.

Proof of Lemma 6. We note that any hyperplane in Rh+1 is uniquely determined by h+1 affinely
independent points. By definition, an affine underestimator a ·w+ b of f is a facet if and only if
a ·w+ b ≤ t is a facet of the epigraph epiQ(f). Then, the affine underestimator is a facet, if and

only if, there exists h+1 affinely independent points {(wi, ti)}i∈[h+1] ⊆ epiQ(f) ⊆ Rh+1 such that

for all i ∈ [h+1], a ·wi+ b = ti. Moreover, ti must equal f(wi), otherwise a ·wi+ b = ti < f(wi),
which implies that a ·w+ b ≤ t does not underestimate f at wi. Therefore, wi is the supporting
point of a ·w+ b. Note that {(wi, ti)} are affinely independent, if only if, {wi}i∈[h+1] are affinely
independent.
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