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ABSTRACT

In a series of three papers, the dynamical interplay between environments and dark matter
haloes is investigated, while focusing on the dynamical flows through the virtual virial sphere. It
relies on both cosmological simulations, to constrain the environments, and an extension to the
classical matrix method to derive the responses of the halo. A companion paper (Paper I) showed
how perturbation theory allows us to propagate the statistical properties of the environment to
an ensemble description of the dynamical response of the embedded halo. The current paper
focuses on the statistical characterization of the environments surrounding haloes, using a
set of large-scale simulations; the large statistic of environments presented here allows us to
put quantitative and statistically significant constrains on the properties of flows accreted by
haloes.

The description chosen in this paper relies on a ‘fluid’ halocentric representation. The in-
teractions between the halo and its environment are investigated in terms of a time-dependent
external tidal field and a source term characterizing the infall. The former accounts for fly bys
and interlopers. The latter stands for the distribution function of the matter accreted through the
virial sphere. The method of separation of variables is used to decouple the temporal evolution
of these two quantities from their angular and velocity dependence by means of projection on
a 5D basis.

It is shown that how the flux densities of mass, momentum and energy can provide an
alternative description to the 5D projection of the source. Such a description is well suited
to regenerate synthetic time lines of accretion which are consistent with environments found
in simulations as discussed in the Appendix. The method leading to the measurements of
these quantities in simulations is presented in detail and applied to 15 000 haloes, with masses
between 5 × 1012 and 1014 M� evolving between z = 1 and 0. The influence of resolution,
class of mass, and selection biases are investigated with higher resolution simulations. The
emphasis is put on the one- and two-point statistics of the tidal field, and of the flux density of
mass, while the full characterization of the other fields is postponed to Paper III.

The net accretion at the virial radius is found to decrease with time. This decline results
from both an absolute decrease of infall and a growing contribution of outflows. Infall is found
to be mainly radial and occurring at velocities ∼0.75 times the virial velocity. Outflows are
also detected through the virial sphere and occur at lower velocities ∼0.6Vc on more circular
orbits. The external tidal field is found to be strongly quadrupolar and mostly stationary,
possibly reflecting the distribution of matter in the halo’s near environment. The coherence
time of the small-scale fluctuations of the potential hints a possible anisotropic distribution of
accreted satellites. The flux density of mass on the virial sphere appears to be more clustered
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than the potential, while the shape of its angular power spectrum seems stationary. Most of
these results are tabulated with simple fitting laws and are found to be consistent with published
work, which rely on a description of accretion in terms of satellites.

Key words: methods: N-body simulations – galaxies: formation – galaxies: kinematics and
dynamics.

1 G A L A X I E S I N T H E I R E N V I RO N M E N T

Examples of galaxies interacting with their environments are nu-
merous. The Antennae, the Cartwheel Galaxy and M51 are among
the most famous ones. One of our closest neighbours, M31, exhibits
a giant stellar stream which may be associated with its satellites
(e.g. McConnachie et al. 2003). Even the Milky Way shows relics
of past interactions with material coming from the outskirts, such
as the Sagittarius dwarf (Ibata, Gilmore & Irwin 1995). It appears
clearly that the evolution of galactic systems cannot be understood
only by considering their internal properties but also by taking into
account their environment. From a dynamical point of view, it is
still not clear, for example, if spirals in galaxies are induced by in-
trinsic unstable modes (e.g. Lynden-Bell & Kalnajs 1972; Kalnajs
1977) or if they are due to gravitational interactions with satellites
or other galaxies (e.g. Toomre & Toomre 1972). Similarly, normal
mode theories of warps have been proposed (Hunter & Toomre
1969; Sparke & Casertano 1988) but failed to reproduce long-lived
warps in a live halo for example (e.g. Binney, Jiang & Dutta 1998).
Since warped galaxies are likely to have companions (Reshetnikov
& Combes 1998), it is natural to suggest satellite tidal forcing as a
generating mechanism (e.g. Weinberg 1998; Tsuchiya 2002). An-
other possibility is angular momentum misalignment of infalling
material (e.g. Ostriker & Binney 1989; Jiang & Binney 1999). The
existence of the thick disc may also be explained by past small
mergers (e.g. Quinn et al. 1993; Walker, Mihos & Hernquist 1996;
Velazquez & White 1999). Conversely, very thin discs put serious
constraints on the amplitude of the interactions they may have ex-
perienced in the past.

On a larger scale, dark matter haloes are built in a hierarchical
fashion within the cold dark matter (CDM) model. Some of the most
serious challenges these models are now facing – the overproduction
of dwarf galaxies in the Local Group (e.g. Klypin et al. 1999; Moore
et al. 1999), the cuspide crisis of Navarro–Frenk–White (NFW)-like
haloes (e.g. Flores & Primack 1994; Moore 1994), the overcooling
problem and the momentum crisis for galactic discs (e.g. Navarro
& Steinmetz 1997) – occur at these scales; it is therefore important
to study the effects of the cosmological paradigm on the evolution
of galaxies in order to address these issues.

In fact, the properties of galaxies naturally present correlations
with their environments. For example, Tormen (1997) showed that
the shape of haloes tends to be aligned with the distribution of
surrounding satellites. Also, the halo’s spin is sensitive to recently
accreted angular momentum (e.g. van Haarlem & van de Weygaert
1993; Aubert, Pichon & Colombi 2004). More generally, haloes
inherit the properties of their progenitors.

At this point, a question naturally arises; ‘what is the dynamical
response of a galactic system (halo + disc) to its environment?’. One
way to address this issue is to compute high-resolution simulations
of galaxies into a given environment (e.g. Abadi et al. 2003; Gill
et al. 2004; Knebe et al. 2004). However, if one is interested in re-
producing the variety of dynamical responses of galaxies to various

environments, the use of such simulations becomes rapidly tedious.
An alternative way to investigate this topic is presented here, which
should complement both high-resolution simulations and large cos-
mological simulations. In a series of three papers, a hybrid approach
is presented to investigate the interplay between environments and
haloes. It relies on both cosmological simulations (to constrains the
environments) and a straightforward extension of the classical tools
of galactic dynamics (to derive the haloes’ response). A companion
paper (Pichon & Aubert 2006, hereafter Paper I) describes the ana-
lytic theory which allows us to assess the dynamics of haloes in the
open, secular and non-linear regimes. The purpose of the current
paper is to set out a framework in which to describe statistically the
environments of haloes and present results on the tidal field and the
flux density of matter. Paper III (Aubert & Pichon, in preparation)
will conclude the complete description of the environments of dark
haloes.

1.1 Galactic infall as a cosmic boundary

Clearly, a number of problems concerning galactic evolution can
only be tackled properly via a detailed statistical investigation. Let
us briefly make an analogy to the cosmological growth of density
fluctuations. Under certain assumptions, one can solve the equa-
tions of evolution of those overdensities in an expanding universe
(e.g. Peebles 1980, see Bernardeau et al. 2002 for an extensive re-
view). Their statistical evolution due to gravitational clustering fol-
lows, given the statistical properties of the initial density field. For
example, the power spectrum, P(z, k), may be computed for various
primordial power spectra, Pprim(k), and for various cosmologies. In
other words, the statistical properties of the initial conditions are
propagated to a given redshift through an operator ℵ given by the
non-linear dynamical equations of the clustering:

P(z, k) = ℵ(Pprim(k), z). (1)

In a similar way, how would the statistical properties of environ-
ments be propagated to the dynamical properties of galactic sys-
tems? This is clearly a daunting task: the previous analogy with the
cosmological growth of perturbation is restricted to its principle.
For example, the assumption of a uniform and cold initial state can-
not be sustained for galaxies and haloes. While spatial isotropy is
clearly not satisfied by discs, and hot, possibly triaxial haloes, the
velocity tensor of galaxies may also be anisotropic. Environments
also share these inhomogeneous and anisotropic features since they
are also the product of gravitational clustering and cannot be sim-
ply described as Gaussian fields. These boundary conditions are not
pure ‘initial conditions’ since they evolve with time and in a non-
stationary manner (e.g. the accretion rate decreases with time). A
whole range of mass must be taken into account, each with differ-
ent statistical properties. Finally, trajectories cannot be considered
as ballistic (even in the linear regime) and must be integrated over
long periods. Notwithstanding the above specificities of the galactic
framework, two questions have to be answered.
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Dynamical flows through – II 879

(i) What is the ‘galactic’ equivalent of Pprim(k), i.e. how does one
describe statistically the boundary conditions?

(ii) What is the ‘galactic’ equivalent of ℵ, i.e. how does one de-
scribe the inner galactic dynamics?

The second point is discussed extensively in Paper I and is briefly
summarized in Section 2. In that paper, it is shown how a perturba-
tive theory can describe the dynamics of haloes which experience
both accretion and tidal interactions (see also Aubert et al. 2004).
Within this formalism, the environment is described by the external
gravitational potential and a source function. The former describes
fly bys and the tidal field of neighbouring large-scale structures. The
latter describes the flows of dark matter, i.e. the exchanges of mate-
rial between the halo and the ‘interhalo’ mediums. The knowledge
of these two quantities fully characterizes the boundary condition.
The focus here is on well-formed haloes which do not undergo
major merger between z = 1 and 0. This bias is consistent with
a galactocentric description in which a perturbative description of
the inner dynamics is appropriate and equal mass mergers are ex-
plicitly ignored. As briefly explained in Section 2, this formalism
provides a link between the statistical properties of environments
to the statistical distributions of the responses of haloes: this link
is referred to as statistical propagation. In this manner, the distri-
bution of haloes’ dynamical state can be directly inferred from the
statistical properties of environments, without relying on the follow
up of individual interacting haloes. The observed distributions of
dynamical features provide information on the cosmic boundaries
which influence haloes. This, together with the perturbative formal-
ism described in Paper I, should allow us to address statistically the
recurrent ‘nurture or nature’ problem of structure formation within
galactic systems.

This statistical formalism is complementary to methods based on
merger trees (which also couple environment and inner properties
of galactic systems; see e.g. Kauffmann & White 1993; Roukema
et al. 1997; Somerville & Kolatt 1999). These ‘analytic’ or ‘semi-
analytic’ models, with prescription for the baryons contained in
haloes, angular momentum transfer, cooling and star formation,
may predict properties of galaxies given in their formation history
(e.g. Cole et al. 1994). This history may be provided analytically
using extended Press–Schechter formalism (see e.g. Bond et al.
1991; Lacey & Cole 1993) or using simulations (e.g. Kauffmann
et al. 1999; Benson et al. 2001). Even though this technique now
extends its field of application to subhaloes (see e.g. Blaizot et al.
2006), it remains somewhat limited for the purpose of dynamical
applications. These require a detailed description of the geometrical
configuration of the perturbations, and of the dynamical response
of the halo. Both of these are difficult to reduce to simple recipes.
Conversely, full analytic theories of the inner dynamics of interact-
ing haloes were developed in e.g. Tremaine & Weinberg (1984),
Weinberg (1998) and Murali (1999). Relying on the matrix method,
these theories do take properly into account the resonant processes
that occur when the halo is perturbed by an external potential. How-
ever, they usually do not account for the perturbations induced by
the accretion of matter, while these authors generally considered
test cases where a halo responds to a given configuration (or statis-
tics; see e.g. Weinberg 2001) of perturbations. Paper I extended
these theories to open stellar systems and, while relying on numeri-
cal simulations to constrain the environments, it reformulated them
in terms of the statistics of the inner dynamics of a representative
population of haloes.

Paper I presents a list of possible applications. For instance, grav-
itational lensing by haloes is affected by inner density fluctuations,

which are induced by the halo’s environment: hence the statistics
of the lensing signal are be related to the statistics of halo’s pertur-
bations, therefore to the cosmological growth of structures. Paper I
showed how this approach could be extended to other observables,
such as X-ray temperature maps, SZ surveys or direct detection of
dark matter. Statistical propagation allows us to relate cosmology
to the inner properties of cluster and galaxies. Conversely, it should
be possible to show if the perturbations measured in simulations
are consistent with a secular drift towards a universal profile of
haloes. Closer to us, the correlation of the numerous artefacts of
past accretion in the Local Group, such as streams or tidal tails, can
be understood in terms of statistics of environments. All processes
which depend critically on the geometry of the interactions may be
tackled in this framework.1

The statistical propagation relies on the knowledge of the prop-
erties of the environment and is stated by the point (i) mentioned
above. This question is investigated the current paper by using a
large set of simulations, where each halo provides a realization of
the environment. From this large ensemble of interacting haloes,
the aim is to extract the global properties of their ‘cosmic neigh-
bourhood’. Such a task requires an appropriate description of the
source and the surrounding tidal field. It is the purpose of this work
to implement this description which should both provide insights
on the generic properties of cosmic environments and be useful in a
‘dynamical’ context. Specifically, a method is presented to constrain
the exchanges between the halo and its neighbourhood, via the prop-
erties of accretion and potential measured on the virial sphere. The
advantages, specificities and caveats (and the methods implemented
to overcome them) provided by this halocentric approach will be
presented in this paper.

As shown in the following sections, the source function is given by
the phase-space distribution function (DF hereafter) of the advected
material. As a consequence, its full characterization is a complex
task since it involves sampling a five-dimensional space and relies
on the projection of its DF on a suitable 5D basis. In particular, it
is shown that how such a description can be used to constrain the
kinematic properties of accretion by dark matter haloes in cosmo-
logical simulations. The detailed statistical characterization of the
higher moments of the source is postponed to Paper III. An alter-
native description of the source is also presented; it relies on flux
densities through the virial sphere, i.e. the moments of the source
DF. Even though it is less suited to the dynamical propagation, this
alternative description is easier to achieve numerically and to in-
terpret physically. In particular, it illustrates how the source term
may be characterized statistically via its moments. The link be-
tween these flux densities and the 5D projection of the source is
discussed together with the one- and two-point statistics of the flux
densities of mass through haloes in simulations. Also, the mean of
reprojecting the effect of the external gravitational potential inside
the halo (through Gauss’s theorem) while knowing its properties
on the virial sphere is discussed. The potential’s one- and two-
point statistics are also investigated around simulated haloes and
interpreted.

Finally, Appendix F provides means of regenerating such flows
ab initio from its tabulated statistical properties. Such tools yield a
way to embed idealized simulations of galaxies into realistic cos-
mological environments.

1 However, all departure to angular isotropy on the sphere will be ignored
here (in contrast to what was stressed in Aubert et al. 2004), and its impli-
cations will be postponed to the discussions in Section 8.
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The outline of the paper is as follows. Section 2 presents briefly
the dynamics of open collisionless systems and states the princi-
ple of statistical propagation. Section 3 presents the procedure used
to compute the source term, and illustrates its implementation on
a given halo. The simulations and the corresponding selection bi-
ases of our sample are then described in Section 4.2. Sections 5
and 6 present the statistical measurements for one- and two-point
statistics, respectively. Section 7 draws a global picture of galactic
infall on L� galaxies, while a discussion and conclusions follow in
Section 8.

Among the different results described in this paper, the reader
will find the following.

(i) A statistical description of the external gravitational field felt
by haloes: the potential is found to be quadrupolar and stationary.

(ii) A study of the evolution of accretion: accretion by dark mat-
ter haloes decreases with time, while the outflows become more
significant at recent times.

(iii) Constrains on the trajectory of infalling material: accretion
is found to be essentially radial, while outflows are found to be more
circular.

(iv) Results on the two-point statistics of the external potential
measured on the viral sphere: the potential provides hints of an
anisotropic perturbation of the halo.

(v) Results on the two-point statistics of the accretion’s distri-
bution on the virial sphere: accretion is dominated by small-scale
fluctuations and has a shorter coherence than the external gravita-
tional field.

2 DY NA M I C S O F O P E N C O L L I S I O N L E S S

S Y S T E M S

The exchanges occurring between a halo and its environment can be
characterized in several ways. One of the classical method involves
building a merger tree where the whole history of formation of a
halo is expressed in terms of global properties of its progenitors
(e.g. Kauffmann & White 1993; Lacey & Cole 1993; Somerville
& Kolatt 1999). While well suited to study the evolution of those
characteristics, it cannot be directly applied to predict in detail the
haloes’ inner dynamic because of the lack of spatial information
on these interactions. One could track the whole (six-dimensional)
phase-space history of all the progenitors, but not only would it
be difficult to store in practice it would also not give information
on the influence of large-scale structures through their gravitational
potential. In the present paper, following Aubert et al. (2004), it
is suggested to measure the relevant quantities on a surface at the
interface between the halo and the intergalactic medium. Accre-
tion is described as a flux of particles through the haloes’ external
boundaries.

This section presents an extension of the formalism developed by
e.g. Tremaine & Weinberg (1984) and Murali (1999) to open spher-
ical collisionless systems. The dynamics of a dark matter spheri-
cal halo is obtained by solving the collisionless Boltzmann equa-
tion coupled with the Poisson equation

∂t F + v · ∂r F − ∇� · ∂vF = 0, (2)

�� = 4πG

∫
d3vF(v), (3)

where F(r, v, t) is the system’s DF coupled to �(r , t) ≡ ψ + ψ e,
the total gravitational potential (self-gravitating + external pertur-
bation). Note that, in a somewhat unconventional manner, ψ e refers

here to the external potential, i.e. the tidal potential created by the
perturbations outside the boundary. The gravitational field of in-
coming particles is accounted for by the source term. Equation (2)
coupled with Hamilton’s equations is a conservation equation

∂t F + ∇̃(uF) = 0, (4)

where u ≡ (v, − ∇�) and ∇̃ ≡ (∂r ,∂v). As a consequence, consid-
ering a ‘source of material’ described by f e(w) located on a surface
S(w) implies

∂t F + ∇̃(uF) = −δD[S(w) − a]u · ∇S
|∇S| fe(w), (5)

where w≡ (r , v) describes the phase space and a defines the surface
boundary of the studied system (here δD stands for the Dirac delta
function). If this boundary is defined as a spherical surface with
radius R, then equation (5) becomes (e.g. Appel 2002)

∂t F + ∇̃(uF) = −δD(r − R)vr fe(w) (6)

≡ −δD(r − R)se(w). (7)

The function se will be hereafter referred to as the ‘source’ function.
Formally, the right-hand side of equation (7) can be seen as an addi-
tional local rate of change of the system’s DF. Note that equation (7)
involves the external potential, ψ e, via u.

2.1 Moments of the source term

Integrating equation (7) over velocities leads to the mass conserva-
tion relation

∂tρ + ∇(vρ) = −δD(r − R)(ρvr)e ≡ −δD(r − R)�ρ, (8)

where the source appears as an external flux density of matter (ρvr)e

or �ρ . Taking the next moment of equation (7) leads us to the Euler–
Jeans equation

∂tρv+ ∇ · (ρvv) + ρ∇� = −δD(r − R)(ρvrv)e, (9)

where the source adds a flux density of momentum, �ρv, to the
conventional Jeans equation. Taking the successive moments of
equation (7) will generically include a new term in the resulting
equations.

2.2 Propagating the dynamics

Following Tremaine & Weinberg (1984), equation (7) can be solved
along with Poisson’s equation in the regime of small perturbations.
In the spirit of Paper I, let us define the system’s environment by
the external perturbative potential ψ e(r , t) and the source se(r , v, t).
Given this environment, the system’s linear potential response ψ(r,
t) can be computed. Writing the following expansions:

ψ(r , t) =
∑

n

an(t)ψ [n](r ), (10)

ψ e(r , t) =
∑

n

bn(t)ψ [n](r ), (11)

se(r ,v, t) =
∑

n

cn(t)φ[n](r ,v), (12)

where φ[n] (r ,v) and ψ [n] (r ) are suitable basis functions, and solving
the Boltzmann and Poisson’s equations for an, one finds (Aubert
et al. 2004)

a(t) =
∫ ∞

−∞
dτ K (τ − t) · [a(τ ) + b(τ )] + H(τ − t) · c(τ ). (13)
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Dynamical flows through – II 881

Table 1. Description of the various flux densities. The first 10, together with the external potential,
are sufficient to characterize fully the environment as shown in Section 3.3.

Flux density, � Flux, � Motivation

Mass ρvr dm/dt Heating and cooling
Angular momentum ρvr r × v dL/dt Warp, shape of haloes
Kinetic energy ρvr σi σ j dE/dt Virialized objects
Shear ρvr(∂v j /∂xI + ∂vi /∂xj ) dc/dt Tidal field
Vorticity ρvr ∇ × v dω/dt Anisotropic accretion

The kernels K and H are functions of the equilibrium state DF, F0,
and of the two bases, φ[n](r , v) and ψ [n](r ) only (see Paper I). As
a consequence, they may be computed once and for all for a given
equilibrium model. Since the basis function, ψ [n], can be customized
to the NFW-like profile of dark matter haloes, it solves consistently
and efficiently the coupled dynamical and field equations so long as
the entering fluxes of dark matter amount to a small perturbation in
mass compared to the underlying equilibrium.

Assuming the linearity and knowledge of K and H, one can see that
the properties of the environments (through b and c) are propagated
exactly to the inner dynamical properties of collisionless systems.
Note in particular that the whole phase-space response of the halo
follows from the knowledge of a. For example, taking the temporal
Fourier transform of equation (13), the cross-correlation matrix is
easily deduced:

〈â · â∗�〉 = 〈(I − K̂ )−1 · [K̂ · b̂ + Ĥ · ĉ]·
[K̂ · b̂ + Ĥ · ĉ]

�∗ · (I − K̂ )−1∗�〉, (14)

where x̂ = x̂(ω) is the Fourier transform of x(t). The environment’s

two-points statistic, via 〈b̂ · b̂
∗�〉, 〈ĉ · ĉ∗�〉 and 〈b̂ · ĉ∗�〉, modifies the

correlation of the response of the inner halo.
Linear dynamics do not take into account the effects on the per-

turbation induced by dynamical friction. More generally the damp-
ing of incoming fluxes will ultimately require non-linear dynamics
(since the relative temporal phases of the infall do matter in that
context). It is also assumed in equation (13) that the incoming mate-
rial does not modify the equilibrium state of the system. The secular
evolution of the system should also be ultimately taken into account,
through a quasi-linear theory for example (see e.g. Paper I).

Let us emphasize that, since the addressed problem is linear, the
response, equation (13), can be recast into a formulation which only
involve an ‘external potential’, namely the sum of ψ e and the poten-
tial created by the entering particles described by se. While formally
simpler at the linear deterministic level, this alternative formulation
does not translate well non-linearly or statistically (since it would
require the full knowledge of the perturbation everywhere in space
in a manner which is dependent upon the inner structure of the halo).

In the following sections, our aim is to describe how the two fields
ψ e(r, t) and se(r, v, t) can be extracted from haloes in cosmological
simulations. Then it will be shown how to characterize their statisti-
cal properties as a function of time via their expansion coefficients,
bn(t) and cn(t).

2.3 Convention and notations

In what follows, let us characterize the properties of two fields,
either angularly, kinematically, statistically or temporally, or any
combination (for various classes of masses). For a given field, X, let

us introduce the following notations for clarity:

X ≡ 1

4π

∫
X (θ, φ) d sin(θ ) dφ, (15)

which represents the angular average of X over the sphere. Alterna-
tively, let us define the temporal average over �T as

X ≡ 1

�T

∫ T +�T

T

X (t) dt . (16)

Finally, let us define the ensemble average as

〈X〉 ≡
∫

X F (X ) dX = E{X}, (17)

where F is the density probability distribution of X. Here E{X}
stands for the expectation of X. In practice, in Section 5, an estimator
for ensemble average of X measured for N haloes is given:2

〈X〉N = 1

N

N∑
i

Xi . (18)

The underlying probability distributions are sometimes very skewed
(when e.g. corresponding to a strong or weak accretion event around
massive or smaller haloes), which requires special care when at-
tempting to define statistical trends. Hence, let us also define 〈〈X〉〉
as the mode (or most probable value) of the fitting distribution of F .

All external quantities (flux densities, potential, etc.) will gener-
ally be labelled as Xe. Let us introduce moments of the source over
velocities, which correspond to flux densities, noted �X , and their
corresponding fluxes, noted �X . Table 1 gives a list of such flux
densities and flux pairs. Finally, the harmonic transform of the field,
X, will be written as aX

�,m and its corresponding power spectrum CX
� ,

while the parameters relative to fitting the statistics of the field will
be written as qX . Note that the contrast of the field, X, was also
introduced as

δX ≡ X − X

〈X〉 , (19)

and its corresponding harmonic transform, ã X
�m . A summary of all

the notations can be found in Appendix H.

3 T H E S O U R C E O F I N FA L L

Let us first describe our strategy to fully characterize the source
of cosmic infall at the virial radius via collisionless dark matter
simulations, and enumerate the corresponding biases. In particular,
let us illustrate our procedure on a template halo.

2 An alternative would be to weight the sum by the relative number of ob-
jects in each halo, hereby down-weighting light haloes. It is found that this
alternative estimator did not significantly affect our measurements.
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3.1 Describing the source

As argued in Section 2, computing the response of an open system
to infalling material requires the knowledge of the source function,
se(r, v, t). Given the particles accreted by a halo, one possibility
involves storing those phase-space properties for all particles. While
feasible for a limited number of haloes, this task would become
rapidly intractable for our large number of simulations. In order to
compress the information, the accreted DF is projected here on a
basis of function, following equation (12).

Since the measurement is carried at a fixed radius, the phase space
is reduced from six to five degrees of freedom: two for the angular
position on the sphere, described by two angles (θ , φ) ≡ Ω, and
three for the velocity space described in spherical coordinates by
(v, �1, �2) = (v, Γ), where v is the velocity modulus and Γ are
the two angles describing its orientation (see Fig. 1). The angle, �1,
indicates how radial is the velocity, with �1 > π/2 for infalling dark
matter and �1 < π/2 for outflows. �2 indicates the orientation of
the tangential motion of the infall.

Recall that the two fields, cn (hence se(Ω, Γ, v, t)) and bn (hence
ψ e(Ω, t)) are, respectively, five and two dimensional (as a function
of mass and time). Note also that both se and ψ e are statistically
stationary with respect to Ω, while se is partially isotropic and not
stationary with respect to Γ; neither ψ e and se is stationary with
respect to the cosmic time.

3.1.1 Harmonic expansion of the incoming fluxes

The Ω and Γ dependences are naturally projected on a basis of
spherical harmonics, Y�m(Ω) and Y�′m′ (Γ). The velocity amplitude
dependence is projected on a basis of Gaussian functions, gα(v),
with mean μα and a given rms σ . One can write

φ[n](r ,v) = Ym(Ω)Ym′ (Γ)gα(v), (20)

where n ≡ (�, m, α, �′, m′) = (m, α, m ′). The expansion coefficients,
cmα

m′ (t), are given by

cm
m′α(t) = (

G−1 · sm
m′

)
α
, (21)

θ

φ

Γ1 Γ2

X

Z

Figure 1. The angles Ω and Γ. The dot indicates the position of the particle
on the sphere. The dashed ellipse represents the plane which contains both
the particle and the sphere centre. X and Z are arbitrary directions defined by
the simulation box. (θ , φ) = Ω are the particle’s angular coordinates on the
sphere. Γ = (�1, �2) define the orientation of the particle’s velocity vector
(shown as an arrow).

where(
sm

m′
)

β
=

∫
dΩdΓdvv2gβ (v)Y ∗

m(Ω)Ym′ (Ω)se(v,Ω,Γ, t), (22)

given

Gα,β =
∫

dvv2gα(v)gβ (v). (23)

Note that the expansion defined in equation (12), where the coeffi-
cients are given by equation (21), involves five subscripts spanning
the five-dimensional phase space, while the expansion in equa-
tion (10) only involves three subscripts. This description of the
source term is reduced to a set of coefficients which depends on
time only. Furthermore, this procedure requires parsing the particles
only once, and all the momenta (e.g. mass flux density, probability
distribution function, hereafter PDF, of impact parameter, etc.) of
the source terms can be computed directly from these coefficients.
As a consequence, the statistics of momenta follow linearly from
the statistics of coefficients only, as shown in Section 4.2.

3.1.2 Harmonic expansion of the external potential

Let us call b′
�m(t) the harmonic coefficients of the expansion of the

external potential on the virial sphere. Following Murali (1999), let
us expand the potential over the biorthogonal basis (u�m

n , d�,m
n ), so

that

ψ e(r ,Ω, t) =
∑
n,�,m

b′
�m(t) Y m

� (Ω)

(
r

R200

)�

,

=
∑

n

bn(t)ψ [n](r ), (24)

where ψ [n](r ) ≡ Ym
� (Ω)u�m

j (r). The first equality in equation (24)
corresponds to the inner solution of the three-dimensional poten-
tial whose boundary condition is given by Y�

m(Ω)b′
�m on the sphere

of radius R200 (defined below). Since the basis is biorthogonal, it
follows that

bn(t) =
[∫

d�m
n (r )

(
r

R200

)�

dr

]
b′

�m(t). (25)

It is therefore straightforward to recover the coefficient of the 3D
external potential from that of the potential on the sphere.

3.2 From simulations to expansion coefficients

Once a halo is detected, its outer ‘boundary’ is defined as a sphere
centred on its centre of mass with a radius, R200 (or virial radius),
defined implicitly by 3M/(4πR3

200) = 200ρ0. This choice of radius
is the result of a compromise between being a large distance to
the halo centre, to limit the contribution of halo’s inner material to
fluxes, and being still close enough to the halo’s border, to limit
the simulation’s fraction to be processed and avoid contributions
of fly by objects. Let us emphasize that several definition of the
virial radius can be found in the literature, involving e.g. the critical
density, or a different contrast factor, where the latter may or may
not depend on the cosmology. Hence, one should keep in mind that
all the quantitative results presented in this article depend on our
specific choice of a definition.

The time evolution of accretion is measured backwards in time by
following the biggest progenitor of each halo detected at redshift z =
0. The positions and velocities of particles passing through the virial
sphere between snapshots are then stored. All positions are measured
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Figure 2. Top: the distribution of the ratio between the virial radii measured
at z = 1 and 0. Bottom: the distribution of R200(z = 1)/R200(z = 0) as a
function of the halo’s final mass. Each point represents one halo. Symbols
stand for the median value of R200(z = 1)/R200(z = 0) in six different classes
of masses. Bars stand for the interquartile. The two measurements were
performed on 9023 haloes which satisfy the selection criteria defined in
Section 4.2.

relative to the biggest progenitor centre of mass, while velocities are
measured relative to its average velocity, for each redshift z. In one
of the simulation described below, the total comoving drift distance
of the centre of mass was compared to the distance between the
halo’s positions measured at z = 1 and 0. The haloes were chosen
to satisfy the criteria described in Section 4.2. It is found that the
scattering of the motion of the centre of mass represents less than
10 per cent of the distance covered in 8 Gyr. The centre of mass of
the biggest progenitor seems stable enough to be a reference.

Sticking to the previous definition of R200 would imply a chang-
ing outer boundary, and an ‘inertial’ flux through a moving surface
would have to be taken into account. To overcome this effect, the
sphere was kept constant in time at a radius equals to R200(z = 0).
This choice corresponds to a reasonable approximation since the
actual virial radius does not change significantly with time between
z < 2 for a reasonably smooth accretion history. As shown in Fig. 2,
the virial radius at z = 1 is only 20 per cent smaller than R200 mea-
sured at z = 0. Larger haloes have larger variations, but the median
value of the difference between the two radii remains smaller than
30 per cent for final masses smaller than 1014 M�. Finally, mea-
surements were done using physical coordinates (and not comoving
coordinates). These choices were partly guided by the fact that they
simplify future applications of these results to the inner dynamic of
the haloes (see Paper I).

3.2.1 Sampling on the sphere

As shown in Section 2, the source function se reads

se ≡ f (r ,v, t)vr =
∑

i

δ3
D[r − r i (t)]δ3

D[v− vi (t)]vr,i . (26)

Switching to spherical coordinates leads us to

se =
N∑
i

δD[R200 − ri (t)]
R2

200

δD[v − vi (t)]
v2

(27)

× δD[Ω − Ωi (t)]
sin �1

δD[Γ − Γi (t)]
sin(�1)

vr,i (t),

where i is the particle index. Now,

vr,iδD[R200 − ri (t)] =
∑

k

vr,k,i

∣∣∣∣ dt
dr

∣∣∣∣ δD(t − t200,k,i ),

=
∑

k

wk,iδD(t − t200,k,i ), (28)

where t200,k,i corresponds to the kth passage of the ith particle through
the virtual boundary R200 (and vr,k,i is the corresponding radial ve-
locity). In our conventions, the weight function wk,i takes the value
1 if the particle is entering and −1 if it is exiting the virial sphere.
Given that our time resolution is finite, let us consider a time inter-
val �T around t and define the (temporal) average phase-space flux
density over �T:

se(t) ≡ 1

�T

∫ t+�T

t

dτ se(τ ). (29)

Equation (28) becomes

se(t) =
N∑

i,k

δ(v − vi,k)

v2�T R2
200

δ(Ω − Ωi,k)

sin �1

δ(Γ − Γi,k)

sin(�1)
wi,k . (30)

The simulations were sampled in time regularly in ln (z) [i.e. �ln
(z) = constant]. From z = 2 to 0.1, 23 snapshots were taken (and a
z = 0 snapshot was added to the sample). If �t is small, the sum
over k should mostly involve one passage, i.e.

se(t) ∼ 1

�T R2
200

N∑
i

δ(v − vi )

v2

δ(Ω − Ωi )

sin �1

δ(Γ − Γi )

sin(�1)
wi . (31)

Now, these measurements only give access to (v, Ω, Γ) at fixed
redshift, z, and at every varying redshift �z. Consequently, these
values need to be interpolated at the sought t200,i approximated
by

t200,i = ti (zn) + t(zn+1) − t(zn)

ri (zn+1) − ri (zn)
[R200 − ri (zn)]. (32)

Given these ‘crossing’ instant, the positions, r, and velocities, v, are
also linearly interpolated. For instance, one gets for the x component
of the velocity

vx,i (t200) = vx,i (zn) + vx,i (zn + 1) − vx,i (zn)

t(zn+1) − t(zn)
[t200 − t(zn)]. (33)

Such an interpolation is not strictly self-consistent since a ballistic
motion requires a constant velocity along the trajectory. The worst-
case scenario would correspond to particles which have entered the
virial sphere with an outflowing velocity vector and vice versa. As
a simple but important check, the distribution of interpolated ra-
dial velocities was plotted (see Fig. 3). Those were computed from
the whole history of accretion of a typical halo (R200 = 860 kpc,
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Figure 3. The distribution of interpolated radial velocities vr of particles
passing through the virial radius. Those particles were taken from the whole
history of accretion of a typical halo [R200 = 860 kpc, M(z = 0) = 3 ×
1013 M�]. Entering particles (solid line) have vr < 0, while exiting particles
(dashed line) have vr > 0, as it should be.

Mz=0 = 3 × 1013 M�). The two types of particles (entering/exiting)
are confined in their radial velocity plane: entering (respectively
exiting) particles have negative (respectively positive) radial veloc-
ities. Velocities are correctly interpolated. It also means that our
time-steps are small enough to ensure a small variation of posi-
tions/velocities of particles, validating a posteriori our assumptions.
A fraction of exiting particles do have a negative radial velocity but
represent less than a few per cent of the total population. For safety,
those particles are rejected from the following analysis.

One should note that the measured angular scales are sensitive to
the time sampling (see Fig. 4). Increasing the sampling time tends to

TIME

POSITION

TIME

POSITION

TIME

POSITION

ΔT

ΔT

ΔT

Figure 4. The impact of time averaging on the measured scales of dark mat-
ter passing through the sphere. On the left-hand side, time–position diagram
of dark matter (black ellipses) as they pass through the sphere. Time integra-
tion is performed during �T (the two horizontal lines). On the right-hand
side, the accreted dark matter as seen on the sphere. A longer integration
time increases the length-scale of the incoming blob. If �T gets very large,
different blobs may be seen as one (upper diagram).

increase the apparent size of objects as measured in the sphere. Since
this increase depends on the shape or the orientation of the objects,
this effect cannot be simply time averaged. As a consequence, a
varying time-step would induce a variation of typical spatial scale.
The interpolation given by equation (32) allows also for a constant
time-step resampling of the source term se. All reference to the time
average will be dropped from now on.

Given equation (30), computing the expansions coefficients of se

is straightforward:

cm
α,m′ =

[
G−1

N∑
i

wi
g(vi )Y ∗

m(Ωi )Y ∗
m′ (Γi )

�T R2
200

]
α

. (34)

It is expected that the above procedure is more accurate than the
strategy presented in Aubert et al. (2004), where the flux densities
were smoothed over a shell of finite thickness (R200/10).

The harmonic expansion b′
m of the external potential ψ e(R200,

Ω) is computed directly from the positions of external particles
(e.g. Murali & Tremaine 1998):

b′
�,m(t) = − 4πG

2� + 1

N∑
j

Y ∗
�m[Ω j (t)]

R�
200

r �+1(t)
j

, (35)

where rj and Ωj are the distance and the two angles defining the
position of the jth external particles, respectively. The quantities
rj (t) and Ωj(t) at time t are obtained by linear interpolation between
two snapshots. Using equation (24), ψ e(r < R200, Ω) can be recon-
structed from the coefficients b′

m.
Section 4.2 makes extensive use of equations (34) and (35) for

each halo in our simulations to statistically characterize these two
fields.

3.3 From flux densities to the 5D source

The description of the source term se involves time-dependent coef-
ficients c�m

α�′m′ (t). Their computation from the particle coordinates is
quite straightforward and as shown in the previous sections, the dif-
ferent margins can be recovered through the manipulation of these
coefficients. Yet a projection of the source on an a priori basis is
a complex operation. Here this projection aims at describing a 5D
space for which little is known. As shown in the following sections,
the distribution of incidence angles is quite smooth, while the distri-
bution of velocities appears to be easily parametrized by Gaussians.
The 5D basis presented in the current paper induces little bias, but
it is very likely that a more compact basis exists and that the size of
the expansions chosen can be reduced in the future.

Because of this large amount of information contained in the
source, it is not always convenient to relate coefficients or their
correlations to physical quantities, like the mass flux or the flux
density of energy. An alternate description of the source term was
presented in Aubert et al. (2004) with the following ansatz:

se(r ,v, t) =
∑

m

Ym(Ω)
�̂ρ,m(2π)−3/2

det(�̂ρσσ,m/�̂ρ,m)

× exp

[
−1

2

(
v− �̂ρv,m

�̂ρ,m

)
�

(
�̂ρσσ,m

�̂ρ,m

)−1(
v− �̂ρv,m

�̂ρ,m

)]
.

(36)

This representation of the source is by construction consistent with
the first two velocity moments∫

d3vse(r ,v) = �ρ(r ),

∫
d3vvse(r ,v) = �ρv(r ), (37)
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while∫
d3v

(
vi − �ρv,i

�ρ

)(
v j − �ρv, j

�ρ

)
se(r ,v)

= �ρσi σ j (r ) − �ρv(r )2

�ρ(r )
+

∑
m

Ym(Ω)δ(r − R200)
�̂ρv,m(t)2

�̂ρ,m(t)
,

≈ �ρσi σ j (r ). (38)

Obviously, the third moment is not fully recovered from the ansatz
given by equation (36). This example should be taken as an illus-
tration and highlights the possibility of building a source term from
its moments. It is not unique and more realistic expressions could
be found, which satisfies higher moments of the source. Still, the
successive measurements on the sphere of the flux density of mass
�ρ , momentum �ρv and velocity dispersion �ρσσ allow a coher-
ent description of the infall of matter. Unlike the coefficients, these
flux densities are easier to interpret since they describe physical
quantities and are directly involved in specific dynamical processes
(see Table 3.3). Furthermore, these three flux densities are easily ex-
pressed in terms of coefficients, c�m

α�′m′ (t), or more precisely in terms
of a subset of the source’s coefficients, implying a smaller number of
computations relative to a complete calculation of c�m

α�′m′ (t). Finally,
these flux densities are particularly suited to the regeneration of syn-
thetic environments. As shown in Appendix F, synthetic spherical
maps can be generated from the two-point correlations and cross-
correlations of these fields. Such environments would be consistent
with the measurements in simulations and will allow us to easily
embed simulated galaxies or haloes in realistic environments as a
function of time.

The expression given in equation (36) has one important draw-
back: it is not of the form of equation (12), i.e. it would require a
reprojection over a linear expansion for a dynamical propagation.
Nevertheless, its capacity makes it easier to compute than the full set
of coefficients and the associated strategy would be (i) to measure
the flux densities from the simulation, (ii) to build a source term
from e.g. equation (36) and (iii) to project over an appropriate 5D
basis when needed, i.e. when the source is used as an input to the
analytic description of the haloes’ dynamics.

The following sections will make intensive use of the coefficients
described by equations (34) and (35). In particular, it will show how
the manipulation of these coefficients allows us to recover relevant
physical quantities. In the current paper, only the first moment of
the source, the flux density of mass �ρ , together with the exter-
nal potential, will be fully assessed. The kinematical properties of
the accreted material will in particular be investigated. The com-
plete characterization of the c(t) coefficients is beyond the scope
of the current paper and will be completed in Paper III. The full
measurements of these 11 fields required by equation (36) and the
comparisons between the two expressions of the source will also
be assessed in the future paper as well. Appendices G1 and G2 de-
scribe how the other moments, the flux density of momentum �ρv

or the flux density of energy �ρσ 2 may be recovered from the source
expansion.

3.4 A template halo

As an illustration, let us first apply the whole machinery to one
typical halo. At z = 0, this ‘template’ halo has a mass M of 3.4 ×
1013 M�, with a virial radius R200 of 800 h−1 kpc. The correspond-
ing circular velocity is Vc0 = 600 km s−1. Its accretion history is
shown in Fig. 5 for z < 1. Each point on the azimuth–time diagram
represents one particle of the simulation passing through the virial
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Figure 5. An example of accretion history. Top: azimuth–time diagram.
Each point in the diagram represents one particle passing through the virial
sphere at a given azimuth (y-axis) at a given time measured from the big bang
(x-axis). Bottom: the distribution of crossing instances of particles (in black).
Time increases from left to right. The infalling (respectively outflowing)
particles distribution is shown in red (respectively blue).

sphere at a given azimuth and at a given time. Temporal space has
been sampled using 15 equally spaced bins between z = 1 and 0 (see
bottom panel in Fig. 5). For each time-step, the expansion coeffi-
cients cm′

α,m(t) are computed from equation (34). The Gaussian basis
gα(v) involved 25 functions with mean μα equally distributed from
v = 0 to 1.5 in Vc0 units and with a rms σ = 0.03. The harmonic
expansions were carried up to � = 50 in position space and �′ = 25
in velocity space.

3.4.1 Advected mass: angular space (�ρ)

The template halo accretes an object at ts = 11 Gyr (where t =
14 Gyr stands for z = 0) adding 7.5 × 1012 M� to the system
during a ∼1-Gyr interval. The corresponding spherical flux density
field, �ρ(Ω, ts), is shown in Fig. 6. It represents the distribution
of accreted particles as seen from a halocentric point of view. The
field �ρ(Ω, ts) has been reconstructed from the coefficients (see
equation 34). It reads

�ρ(Ω, t) =
∫

dΓdvv2se(v,Ω,Γ, t) =
∑

m

am(t)Ym(Ω). (39)

Since∫
dΓ Y�′,m′ =

√
4πδ�′0δm′0 , and

∫
dvv2gα(v) = μ2

α + σ 2. (40)

It follows that

am(t) =
√

4π
∑

α

(μ2
α + σ 2)cm

α,0(t), (41)

allowing us to recover �ρ(Ω, ts). Also shown is the same field, but
computed this time using directly the angular distribution of parti-
cles as described in Aubert et al. (2004) (see below). All the major
features are well reproduced by the expansion coefficients (equa-
tions 34–41). Clearly, an object is ‘falling’ through the virial sphere.
It is straightforward to obtain the angular power spectrum C�ρ

� from
the cm

α,m′ coefficients via the definition of a�m in equation (41):

C�ρ

� = 1

4π

1

2� + 1

∑
m

|a�m |2. (42)
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SGP

SGP

Figure 6. An example of a flux density reconstructed from the coefficients
cm′α,m: the mass flux density, ρvr(Ω). It represents the angular distribution
of incoming mass as seen from a halocentric point of view. Here ts ∼
11 Gyr. Light regions correspond to strong infall, while darker regions stand
for low accretion and outflows. Top: the spherical field obtained directly from
the spatial distribution of particles. Bottom: the reconstructed spherical field
from the coefficients (equation 34).

The angular power spectrum of �ρ(Ω, ts), derived from the ex-
pansion (equation 34), is shown in Fig. 7. From the positions and
velocities of particles, it is also possible to evaluate �ρ(Ω, ts) on an
angular grid and recover the angular power spectrum ‘directly’. The
agreement between the two C�ρ

� is good, though for the smallest
scales (� � 30), the power spectrum computed from the coefficients
is slightly larger than the one derived directly from the particles.

10.0 20.5. 50.
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Figure 7. The angular power spectrum, C�/C1 (equation 42), of the distri-
bution of incoming matter, �ρ (Ω) (shown in Fig. 6) at t∼ 11 Gyr, for our
template halo. For a given �, the corresponding angular scale is π/�. The his-
togram corresponds to the power spectrum derived directly from the angular
distribution of particles. The solid line is the power spectrum reconstructed
from the coefficients.

This may be explained by the fact that a grid sampling tends to
smooth the actual �ρ field. As a consequence, the amplitude of
small-scale fluctuations is decreased, leading to a smaller C�ρ

� . A
more complete discussion on harmonic convergence can be found
in Appendix A. For a given �, the corresponding angular scale is
π/� in radians.

Note that the coefficients a00 are closely related to the accretion
field averaged over all directions, �M(t), defined by

�M(t) ≡ �ρ = 1

4π

∫
dΩρvr(Ω, t) = a00√

4π
. (43)

Measuring a00(t) amounts to measuring the accretion flux density,
i.e. the quantity of dark matter accreted per unit surface and per unit
time.

3.4.2 Advected mass: velocity space

Integration over the sphere leads us to the distribution of accreted
matter in velocity space:

ρvr(Γ, v, t) =
∫

dΩse(v,Ω,Γ, t), (44)

=
√

4π
∑
α,m′

c0
α,m′ gα(v)Ym′ (Γ). (45)

Projections over �2 and v give the probability distribution of the
incidence angle �1, ϑ(�1, t), defined as

ϑ(�1, t) =
∫

d�2dvv2ρvr(Γ, v, t),

= 2π
√

4π
∑
α,�′

c0
α,{�′,0}

(
μ2

α + σ 2
)

Y�′,0(Γ).
(46)

The impact parameter b of an incoming particle (measured in units
of the virial radius) is related to �1 by

b
R200

= sin(�1), (47)

therefore the probability distribution of impact parameters, ϑ(b), is
easily deduced from equation (46). At t ∼ 11 Gyr, the ϑ(b) computed
from the source coefficients is compared to that derived directly from
the velocities of particles in Fig. 8. Note that for pure geometrical
reasons small impact parameter b is less likely since there is only one
trajectory passing through the centre, while there is a whole cone
of trajectories with b �= 0. As a consequence, errors are intrinsically
larger for small values of b. The reconstruction from the source
coefficients is clearly adequate. In this example, the high probability
for infalling particles to have a small impact parameter (b < 0.5)
implies that velocities are strongly radial. The object ‘dives’ into
the halo’s potential well.

Projection over �1 leads to the probability distribution of particle
velocities, ϕ(v, ts), as they pass through the virial sphere. The PDF
ϕ(v, t) is defined as

ϕ(v, t) ≡ v2

∫
dΩ dΓse(v, �,Γ, t). (48)

Here the v2 weighting accounts for the fact that the probability
distribution of measuring a velocity, v, within dv is of interest here.
Using coefficients, it follows that

ϕ(v, t) = 4π
∑

α

v2gα(v)c0
α,0. (49)
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Dynamical flows through – II 887

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

b/R200

q
(b

/R
2
0
0
) 

[1
e
-5

]

outflow

infall

0.0 0.5 1.0 1.5

0.

1.

2.

3.

4.

V/Vc(z=0)

f(
V

/V
c
(z

=
0

))
 [

1
e

-6
]

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

b/R200

V
/V

c(
z=

0
)

Figure 8. Top: excess probability distribution of impact parameters b and
ϑ(b), derived from the cm

α,m′ (t) source coefficients (equation 34) of our
template halo at ts ∼ 11 Gyr (line). The histogram corresponds to the
same distribution derived directly from the positions and velocities of par-
ticles. Error bars stand for 3σ errors. The impact parameters are given in
units of R200. The unit in y-axis is 5 × 109 M� kpc−2 Myr−1. Infall is
mainly radial. Middle: the velocity distribution of particles, ϕ(v), accreted at
ts ∼ 11 Gyr, for our template halo. Velocities are expressed in terms of the
circular velocity at z = 0. The unit in y-axis is 5 × 109 M� kpc−2 Myr−1.
The histogram corresponds to the velocity distribution obtained directly from
the velocities of the particles. The solid line is the reconstructed distribution
from the source coefficients. Bottom: the probability distribution, ℘(b, v),
of particles in the b − v subspace. Units are the same as above. Red/blue
stands for high/low densities. No correlation is found between b and v for
this specific example.

The reconstructed velocity distribution is also shown in Fig. 8. It
reproduces well the actual velocity distribution. For this specific
halo, the satellite is being accreted with a velocity of 0.75 Vc0.

The correlation between the incidence angle �1 and the velocity’s
amplitude v may be studied by integrating ρvr(�, v, t) over �2 only.
The DF, ℘(�1, v), of particles in the (�1, v) subspace is defined by

℘(�1, v) ≡
∫

d�2dvv2ρvr(Γ, v, t) ,

= 2π
√

4π
∑
α,�′

c0
α,{�′,0}gα(v)Y�′,0(�1,0). (50)

Given the relation (equation 47), the correlation ℘(b, v) between the
impact parameter and the velocity’s amplitude is easily obtained.
The ℘(b, v) distribution is shown in Fig. 8. Again, note that ℘(b, v)
represents an excess probability of finding an impact parameter b
(with a velocity v) compared to isotropy. In this specific example, no
real correlation may be found between the two quantities. Finally,
the integration of ℘(b, v), ϕ(v, t) and ϑ(�1) over their respective
space leads to the same quantity, namely the integrated flux �M(t).

3.4.3 External potential

The final field needed on the virial sphere is the external tidal field
created by the dark matter distribution around the halo.

Using equation (35), the external potential ψ e(Ω, t) is easily com-
puted from the positions of external particles, having restricted the
sampling to particles within a 4 Mpc (physical) sphere centred on
the halo. The position of external particles is linearly interpolated at
a given measurement of time. The coefficients bm for the template
halo are computed at ts ∼ 7 Gyr (measured from the big bang). The
reconstructed field ψ e(Ω, t) is shown in Fig. 9 along with the mod-
ulus of the advected mass |ρvr(Ω)|. The two reconstructions were
restricted to harmonics � � 20.

The two spherical fields show the same main features. However,
almost no small-scale feature is seen in the map of the external po-
tential even though they have the same resolution. Since the gravita-
tional potential is known to be smoother than the associated density
and is dominated by the global tidal field, it is not surprising that
ψ e(Ω, t) appears smoother than the advected mass field |�ρ(Ω)|.

The potential’s angular power spectrum may also be computed
by replacing a�m by b�m in equation (42) (see Fig. 10). The power
spectrum of the potential, C�ρ

� , sharply decreases with �, while C�ρ

�

has a gentler slope. Large scales are clearly more important for the
potential than for the advected mass. Furthermore, Cψ

� systemati-
cally peaks for even � values, reflecting the ‘even’ symmetry of the
potential measured on the sphere.

4 S I M U L AT I O N S A M P L E A N D S TAT I S T I C A L

B I A S E S

Section 3.4 details the measurement strategy for a given typical
halo. It is now possible to reproduce the above measurements for
all the haloes of the simulation sample. Let us first describe in turn
the construction of our sample, and the corresponding biases, which
constrain our ability to convert a large set of simulations into the
statistics of the source.

4.1 Simulations

In order to achieve a sufficient sample and ensure a convergence
of the measurements, a set of ∼500 simulations was produced
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888 D. Aubert and C. Pichon

SGP

SGP

Figure 9. A comparison between the external potential, ψe(Ω) and the
modulus of the flux density of matter, |ρvr(Ω)|. The measurement is made
at t ∼ 7 Gyr (measured from the big bang) on our template halo. The two
fields were, respectively, reconstructed from cm

α,m′ and bn coefficients with
�max � 20. Even though the two fields are similar and exhibit a strong
quadrupolar component, ψe(Ω) is smoother than ρvr(Ω). It is expected that
the corresponding expansion coefficients be statistically correlated.
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Figure 10. A comparison between the angular power spectrum of ρvr(Ω)
and ψe(Ω) for our template halo (the two fields are shown in Fig. 9). The two
power spectra C� are normalized by C2, i.e. the quadrupole contribution. The
slope of the potential’s power spectrum is clearly stronger. Large scales (i.e.
small-� values) dominate the angular distribution of ψe(Ω), as expected.

as discussed in Aubert et al. (2004). Each of them consists of a
50 h−1 Mpc3 box containing 1283 particles. The mass resolution is
5 × 109 M�. A �CDM cosmogony (�m = 0.3, �� = 0.7, h = 0.7
and σ 8 = 0.928) is implemented with different initial conditions.
These initial conditions were produced with GRAFIC (Bertschinger
2001), where a BBKS (Bardeen–Bond–Kaiser–Szalay; Bardeen
et al. 1986) transfer function was chosen to compute the initial

10−18 10−16 10−14 10−12
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10+0

10+2

10+4

a00
2

C
4

Figure 11. Scatter plot of C
�ρ

4 versus a2
00 measured at lookback times

t = 7.8 (red), 5.6 (green), 4.0 (yellow) and 2.9 (blue) Gyr. The quantity
a00 scales as the average accretion rate of the haloes while C

�ρ

4 scales as
the contribution of � = 4 structures in the flux density of mass measured on
the sphere. This plot illustrates how a threshold on the accretion rate affects
in a non-trivial way the typical clustering measured for �ρ . In particular,
one should note how C

�ρ

4 remains constant at recent times for low accretion
rates.

power spectrum. The initial conditions were used as inputs to the
parallel version of the tree code GADGET (Springel, Yoshida & White
2001). The softening length was set to 19 h−1 kpc.3 The halo de-
tection was performed using the halo finder HOP (Eisenstein & Hut
1998). The density thresholds suggested by the authors (δouter = 80,
δsaddle = 2.5δouter, δpeak = 3.δouter) were used.

4.2 Selection criteria

As shown in Aubert et al. (2004), the completion range in mass of the
simulations spans from 3 × 1012 to 3 × 1014 M�. Since the empha-
sis is on L� galaxies, the survey is focused mainly on galactic haloes
and light clusters, only haloes with a mass smaller than 1014 M� at
z = 0 were considered. The interest is for haloes already ‘formed’,
i.e. which will not experience major fusions anymore. To satisfy
these requirements, the focus is on the last 8 Gyr (redshifts z < 1 in
a �CDM cosmogony). Since the history of a given halo is followed
by finding its most massive progenitor, it is required not to accrete
more than half its mass in a two-body fusion. As a final safeguard,
a halo is rejected if it accretes more than 5 × 1012 M� between
two time-steps (i.e. per 500 Myr, see the next section). This mass
corresponds approximately to the smallest haloes considered at z =
0. The final range of mass of haloes which satisfy these criteria is
∼5 × 1012–1014 M�, the fraction of rejected haloes being ∼20 per
cent. Clearly, such a priori selection criteria will modify the distri-
butions of measured values and the related biases may be difficult
to predict. For instance, Fig. 11 shows the scatter plot of the con-
tribution of π/(� = 4) = 45◦ fluctuations to �ρ field versus a00,
i.e. the accretion rate. It appears from this plot that modifying the
threshold for the accretion will modify the average angular scale of
�ρ in a non-trivial way. Since only a small fraction of haloes are
rejected, the biases are expected to be moderate, but as for now their

3 A second set of simulations with a resolution increase by a factor of 23

(respectively 26) was carried in order to investigate the convergence of some
measurements (see Section 6.2.2).
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Dynamical flows through – II 889

impact cannot be estimated accurately on the average source or its
moments.

Let us emphasize that the above selection criteria should be added
to those corresponding to the simulations themselves. Aside from
the fact that a 50 Mpc3 h−1 box size implies a limited range of mass,
the universe described in these simulations is more homogeneous
than it should be, since each box must satisfy a given mean density.
In other words, the probability of rare events is reduced. This effect
should not influence the number of haloes with high accretion rate,
since strong accretions are rejected a priori. On the other hand, it
should influence the number of objects which experience low accre-
tion history, which are probably less numerous in our simulations
than in larger simulated volumes since voids are less likely. Fur-
thermore, the intrinsic mass resolution sets a minimum accretion
rate equals to one particle mass (5 × 109 M�) per time interval.
One could imagine an object with a mass smaller than the parti-
cle’s mass which would not be included in the simulation at the
current resolution. Furthermore, an object with a mass equals to a
few times the minimum mass is to be considered as diffuse accre-
tion. Finally, this mass resolution is related to the spatial resolu-
tion, which limits intrinsically the angular description of fluxes on
the virial sphere. For a given type of simulation, all these effects
cannot be avoided and reduce the representability of the following
measurements.

In short, this strategy involves a bias in mass, redshift, resolution
and strength of a merging event. However, these biases should only
influence somewhat extreme realizations (related to e.g. very low
accretion or equal mass mergers) of the source or the external poten-
tial and since the focus is on the typical scales, presumably related to
moderate interactions, hopefully they should not significantly affect
the measurements.

4.3 Reduction procedure

In the following discussion, most of the distances (respectively ve-
locities) will be expressed as functions of the virial radius R200

(respectively the circular velocity Vc) measured at z = 0. These
quantities are related to the halo’s virial mass by

Vc =
√

G M200

R200
. (51)

Here M200 = M(r < R200). The mass dependence of R200 and Vc is
given in Fig. 12 and may be fitted by

R200 = 537M1/3 , Vc = 400M1/3, (52)

where R200 is expressed in (h−1 kpc), Vc in km s−1 and M in units
of 1013 M�. Here M stands for the total mass of the halo, returned
by the halo finder HOP. In equation (52), R200 and Vc appear to be
strongly correlated to the final masses of haloes, the few outliers be-
ing related to external subhaloes or peculiar halo geometries. Since
the selection criteria are quite restrictive, most of the haloes experi-
ence the same relatively quiet history of accretion and account for
the lack of scatter.

The simulations in that redshift interval involved 15 snapshots
sampled with �(log z) = cst for z � 1 down to z = 0.1 plus a snap-
shot at z = 0. The gap between the last snapshot and the second
to the last is nearly 1.4 Gyr. As a consequence, the assumption of
ballistic trajectories is not valid anymore (see the Appendix). Sim-
ulations were resampled in 15 bins distributed regularly in time (i.e.
not in redshift) using the procedure described in Section 3.2: the
corresponding time-step is ∼500 Myr. To take into account the
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Figure 12. Virial radii (R200) and circular velocities (Vc) as functions of
haloes final masses. The quantities have been measured at redshift z = 0.
Scaling relations between R200 or Vc and the final mass are also given.

last gap, results obtained from the last three ‘new’ bins (which
cover the last 1.4 Gyr) were averaged into a single bin centred on
0.8 Gyr.

The source coefficients, cm
α,m′ (t), were computed following the

procedure described in Section 3.4. Maximum harmonic orders
were set to �max = 50 for the position–angular description. For a
typical halo with R200 = 500 kpc, �max = 50 corresponds to a spa-
tial scale of 30 kpc, i.e. equals to 1.5 times the spatial resolution of
the simulation. The harmonic description of the velocities angular
dependence is restricted to �′

max = 15. The velocity amplitude is
projected on a Gaussian basis which involves 25 functions regularly
spaced from v/vc = 0 to 1.5 with a rms of 0.03. These parame-
ters allow a satisfying reproduction of distributions computed from
particles.

The external potential coefficients, bm(t), were computed follow-
ing the procedure described in Section 3.4. Only particles within a
4-Mpc physical sphere centred on the halo are taken into account.
Maximum harmonic orders were set to �max = 20.

A set of 100 simulations have been fully reduced allowing us to
compute cm

α,m′ (t) and bm(t) for 15 000 haloes. Since a well-defined
(if only biased) sample of histories of haloes was constructed in our
simulations, it may be projected on our basis, to compute the external
potential and the flux density of mass, following Section 3.4. Let
us now characterize the corresponding coefficients, via one-point
(Section 5) and two-point (Section 5) statistics.

5 O N E - P O I N T S TAT I S T I C S

In this section, let us first describe the evolution and the statistical
distributions of the global properties (i.e. integrated over the sphere)
of the source and the potential. Let us discuss the evolution of the
mean potential, of the mass flux�M(t) and the kinematical properties
of se via the velocity distribution φ(v) and the impact parameter
distribution ϑ(b).

Let us then describe in turn the statistical PDF, mean and vari-
ance of the integrated fluxes, their corresponding flux densities
and finally their mean kinematical features, following the steps of
Section 3.4.

5.1 Mean external potential

The mean external potential on the sphere is actually somewhat
meaningless but is being used as a normalization value for potential
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Figure 13. The time evolution of the monopole component of the external
potential, b00(t). The time evolution is fitted by a second-order polynomial −
b00(t) = 35 948 ∗ t2 − 61 480.7 ∗ t + 793 067. Lookback time t is expressed
in Gyr, while b00 coefficients are expressed in units of GM/R. M is expressed
in 1010 M�, R in kpc h−1 and G = 43 007 in internal units.

fluctuations (see Section 6.1). Because of isotropy, the mean poten-
tial is seen as a monopole and only the b00(t) coefficient is statisti-
cally different from zero. Furthermore, following equation (24), the
three-dimensional potential component induced by the monopole
is a constant potential throughout the sphere volume. As a conse-
quence, it influences the halo’s dynamics only through its temporal
variation.

The time evolution of the 〈〈b00〉〉 coefficient is given in Fig. 13.
The b00(t) distribution exhibits a tail due to large − b00 values and
is better fitted with a lognormal distribution than with a normal
distribution (see Fig. C1). Hence, 〈〈b00〉〉 stands for the most probable
value of the lognormal fitting distribution.4 The evolution shown in
Fig. 13 reflects the measurement procedure. Given that the potential
is computed from all the particles contained within a fixed physical
volume, the overall expansion implies that particles tend to exit the
measurement volume with time. In other words, the average density
in the measurement volume decreases with time. This effect leads
naturally to the decline of the average potential within the virial
sphere due to external material.

5.2 Mass flux: ΦM(t)

At each time-step, the a0,0 distribution is fitted by a Gaussian func-
tion with mean 〈a0,0〉 (see also Fig. C3). This Gaussian hypothesis
is clearly verified for low redshifts while strong accretion events
give rise to a tail in the a0,0 distribution at high z. At these epochs
(lookback time t > 7 Gyr), the Gaussian fit tends to slightly over-
estimate the mode position. Yet the Gaussian hypothesis remains a
good approximation of the distribution, while the time evolution of
the Gaussian mean value 〈a0,0〉 (t) represents well the evolution of
the mode of a0,0.

The time evolution of the average flux of matter through the
sphere, �M(t) = �ρ , is directly derived from the evolution of the

4 Since the measured distribution is quite peaked, fits made with a normal
distribution (not shown here) return a very similar time evolution of the mode
position.
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Figure 14. Top: the time evolution of the average flux density of matter
through the virial sphere, 〈�M(t)〉 = 〈�ρ〉(t) (symbols). Bars stand for
3σ errors. Here �M (t) is computed directly from a00 coefficients follow-
ing equation (56). Its time evolution is fitted by a third-order polynomial
(solid line). Bottom: the MAH log M(z)/M(z = 0) for three different classes
of masses. Masses are expressed in solar masses. Symbols represent the
median value of log M(z)/M(z = 0) within each classes. Lines represent the
fitting function suggested by van den Bosch (2002b). Even though the global
behaviour is reproduced by the fitting functions, the measured accretion rate
is systematically smaller. This discrepancy has already been noted by van
den Bosch (2002b).

monopole (see equation 43) and is shown in Fig. 14. It can be fitted
by

�M(t) ≡ 〈�ρ〉(t) = −0.81t3 + 10.7t2 − 19.3t + 17.57, (53)

where �M(t) is in units of M� Myr−1 kpc−2 and lookback time t
is expressed in Gyr. As expected, the average quantity of material
accreted by haloes decreases with time. For z < 1, a large fraction
of the objects of interest are already ‘formed’ and only gain matter
through the accretion of small objects or diffuse material. In a hier-
archical scenario, such a source of matter becomes scarcer, inducing
a decrease in the accretion rate. Furthermore, recall that �M(t) is
measured as a net flux, i.e. the outflowing material may cancel a
fraction of the infalling flux. Therefore, the decrease with time may
also be the consequence of an increasing contribution of outflows:
the measurement radius R200(z = 0) becomes the actual virial radius
of the halo as time goes by, i.e. the radius where the inner material
is reprocessed and where outflows are susceptible to be detected.
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Dynamical flows through – II 891

As a check, the average mass accretion history (hereafter MAH)
of the haloes was computed. The MAH �(t) is defined as

�(t) ≡ M(t)
M(z = 0)

, (54)

where M(z) is the halo’s mass at a given instant. Using the extended
Press–Schechter formalism, van den Bosch (2002b) showed that
haloes have an universal MAH, fitted by the following formula:

log[�(M(z = 0), t)] = −0.301

[
log(1 + z)

log(1 + z f )

]ν

, (55)

where zf and ν are two parameters which depend on the considered
class of mass only. These two parameters are found to be correlated
and for instance Wechsler et al. (2002) found a similar relation
using a single parameter. For each halo, its mass evolution M(t) was
computed from its final mass M(z = 0) and its integrated flux of
matter �M (t):

M(t) = M(t = 0) − 4πR2
200

∫ t

t=0

dt�M(t). (56)

From equation (54), �(t) was computed for each halo. The median
value of �(t) for three classes of mass was compared to the fit sug-
gested by van den Bosch (2002b) (see Fig. 14). For the three classes,
the agreement with the fitting formula is qualitatively satisfying: the
three measurements evolve in the expected manner while their rela-
tive positions are the same as the relative positions of the three fits.
However, our measurements are quantitatively inconsistent with the
three curves. At low redshift, �(t) is systematically larger than the
expected value (i.e. the accretion rate is smaller). The median mass
at z = 1 is well recovered even though the two methods disagree
slightly quantitatively. In other words, our measurements overesti-
mate the accretion at high redshift and underestimates at low red-
shift. This may be related to the measurement procedure through the
sphere: at higher redshift, accreted material is assumed to be added
to the biggest progenitor, even though it has not yet reached the
central object and its mass is overestimated. Still, this material ends
up in the most massive progenitor and the final mass is recovered.
Note that since specific selection criteria were applied, these haloes
may not be completely representative of the whole halo population.
Finally, recall that the median value of �(t) was represented here
because of strong outliers, while the fitting formula is given for the
average MAH (extracted from merger trees). A similar discrepancy
between the extended Press–Schechter theory and the results ob-
tained from numerical simulations had already been noticed by van
den Bosch (2002b) and Wechsler et al. (2002). In particular, van
den Bosch (2002b) found that the Press–Schechter models tend to
underestimate the formation time haloes compared to simulations.
Clearly, our measurements seem to confirm this discrepancy. Since
the global behaviour of MAHs is recovered and since the median
mass at z = 1 is recovered, it is concluded that the measure of
�M(t) through the virial sphere reproduces the accretion history of
haloes.

5.3 Mean kinematics

Let us now turn to the kinematical properties of the flow, while
averaging the source over the virial sphere.

5.3.1 probability distribution of the modulus of velocities

Given the source coefficients cm
α,m′ , the average velocity distribution

〈ϕ(v, t)〉 (defined by equation 19) is easily computed since it only

involves 〈c0
α,0(t)〉. The ensemble average of 〈c0

α,0〉 and the related
ensemble dispersion σ (c0

α,0)(t) ≡ 〈(c0
α,0 − 〈c0

α,0〉)2〉 are derived by
fitting the c0

α,0(t) distribution by a Gaussian function. From these
two quantities, it follows

〈ϕ(v, t)〉 = 4πv2
∑

α

gα(v)
〈

c0
α,0

〉
, (57)

and

σ [ϕ(v, t)] = 4πv2

√∑
α

gα(v)2σ
(

c0
α,0

)2
, (58)

which are, respectively, the ensemble average and rms of the velocity
distribution. The time evolution of 〈ϕ(v, t)〉 is given in Figs 15 and
16. Errors on 〈ϕ(v, t)〉 are computed as

�[〈ϕ(v, t)〉] = 3
σ [ϕ(v, t)]√

Nhaloes
. (59)

At ‘early times’ (t > 5 Gyr), the distribution is unimodal with a
maximum around 0.7Vc (z = 0). No outflows can be detected at
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Figure 15. The time evolution of the average velocity distribution, 〈ϕ(v,
t)〉, defined in equation (19), for z < 1 (symbols). Ages are expressed as
lookback times (i.e. t = 0 for z = 0). Velocities are given relative to the
halo’s circular velocity at z = 0. The unit in y-axis is 5 × 109 M� kpc−2

2 Myr−1/Vc. Error bars stand for 3σ errors. Here ϕ(v) is fitted by the sum of
two Gaussians with opposite signs (solid line). Each Gaussian contribution
is also shown (dashed lines).
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Figure 16. The time evolution of the average velocity distribution in the t–
V/Vc plane. Red (online) colours stand for positive values of the distribution
(i.e. infall), while blue (online) colours stand for negative ones (i.e. outflows).
Each of these components is fitted by a Gaussian function in the V/Vc space.
The time evolutions of the mean of the Gaussians are given by the two lines
(solid for infall, dashed for outflows). The rms of Gaussians are also shown
as bars.

any velocity and the infalling dark matter dominates. At later times,
〈ϕ(v, t)〉 drops below zero for velocities around 0.4Vc (z = 0). Out-
flows dominate at ‘low’ velocities. Meanwhile, the amplitude of the
previous peak decreases and shifts to higher velocities. The fraction
of infall relative to the total amount of material passing through the
sphere drops from 1. to 0.6 between t = 8 and 0.8 Gyr.

This behaviour is likely to be due to our measurement at a fixed ra-
dius, R200(z = 0). At ‘early times’, this measurement radius is bigger
than the actual virial radius of haloes. Thus no sign of ‘virialization’
(outflows consecutive to accretion) is detected. Later, the actual R200

gets closer to the measurement radius. Outflows pass through the
measurement radius as a sign of internal dynamical reorganization.
The fact that accretion intrinsically decreases with time would pro-
vide another explanation of this trend. This decrease can actually be
traced in Figs 15, 16 and D1.

The global behaviour of 〈ϕ(v, t)〉 can be modelled by sum-
ming two Gaussians representing the infalling and outflowing
components:

〈ϕ(v, t)〉 = qı,3(t)

qı,2(t)
√

2π
exp

{
− [v − qı,1(t)]2

2qı,2(t)2

}
+ qo,3(t)

qo,2(t)
√

2π
exp

{
− [v − qo,1(t)]2

2qo,2(t)2

}
. (60)

Subscripts ı and o stand for infall and outflow. Note that qı,3(t) �
0 and qo,3(t) � 0. The coefficient time evolution is given in
Fig. D1, where t can be expressed in Gyr and ϕ(v, t) in 5 ×
109 M� kpc−2 Myr−1/Vc. Examples of fits are shown as solid lines
in Fig. 15. Note that all the six coefficients evolve roughly linearly
with time (see Fig. D1). Their linear fitting parameters are given
in Table D1. Using equation (60) and the linear parametrization of
the Gaussian coefficients, 〈ϕ(v, t)〉 is reproduced accurately. The
only restriction concerns the negative amplitude of the Gaussian
(qo,3) which should not be greater than 0. Since this condition is not
naturally satisfied by a linear fit, it should be set manually.

The evolution of the relative positions of two Gaussians is given
in Fig. 16. For t > 5 Gyr, it is consistent with the ‘no outflow’
hypothesis, the amplitude of the negative Gaussian being close to

zero at this epoch. Both Gaussians mean values seem to drift to
higher velocities as a function of time. Even though the relative
velocity of accreted material is determined by the initial conditions
(namely large-scale clustering), the velocity of an infalling satellite
should partly reflect the properties of the accreting body. A dense
massive halo will not accrete like a fluffy light one. In other words,
the velocity of infalling material should reflect the actual circular
velocity of the accreting body. As a consequence, it is expected that
accretion velocity drifts with time towards Vc (z = 0).

Furthermore, the mean values of both Gaussians evolve roughly
linearly over the whole time range with comparable rate of change
(see Fig. D1 and the following discussion). As a consequence, their
relative positions remain roughly constant (see Fig. 16). This indi-
cates that these two components may be physically related, outflows
being the consequence of a past accretion. Mamon et al. (2004) men-
tion the existence of a backsplash population, rebounding through
the virial radius and this population is known to have a different
velocity (e.g. Gill et al. 2004). The outflows detected via our de-
scription of the source are consistent with this backsplash com-
ponent. The difference in velocity may be explained if outflows
are representative of an earlier accretion with a velocity typical
of earlier times. Also past accreted material is influenced by the
halo’s internal dynamics. Its velocity distribution would be ‘repro-
cessed’ (e.g. via dynamical friction, tidal stripping or phase mixing)
to lower velocities as the material exits through the measurement
radius.

However, recall that the distribution shown here is a ‘net’ dis-
tribution. In other words, it is quite plausible that an outflowing
component may be completely cancelled by an infalling component
which has an exact opposite distribution. This effect is illustrated
in Fig. 17, where the velocity distribution of infall and outflows is
being shown separately. This distribution has been computed from
300 haloes at t = 2.3 Gyr. This distribution is quite representative
of the average ones, except a few high velocities events which skew
the distribution of the infalling component and which are induced
by outliers. If the Gaussian fits are removed from these two sepa-
rate distributions, two almost identical distributions appear for the
two components, centred on V/Vc ∼ 0.6. These two identical dis-
tributions are related to the virialized component of infall, which
already interacted with the inner region of the halo. The overall
shape of these two distributions may provide insights on the typical
dynamical state in the haloes’ inner regions.

5.3.2 Impact parameters and incidence angles

The average distribution of incidence angle, 〈ϑ(�1, t)〉 has been
computed following the same procedure described above for 〈ϕ(v,
t)〉. Defining c̃�′ (t) as

c̃�′ (t) = 2π
√

4π
∑

α

cα,0,{�′,0}
(
μ2

α + σ 2
)
, (61)

yields

〈ϑ(�1, t)〉 =
∑

�′
Y�′,0(Γ)〈c̃�′ (t)〉 (62)

and

σ (ϑ(�1, t)) =
√∑

�′
Y�′,0(Γ)2σ (c̃�′ (t))2, (63)

where 〈ϑ(�1, t)〉 and σ (ϑ(�1, t)) are derived by fitting the c̃�′ (t) dis-
tribution by a Gaussian function. Errors on 〈ϑ(�1, t)〉 are computed
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Figure 17. Top: the net velocities distribution (histogram) measured from
300 haloes at t = 3.4 Gyr. This distribution is the representative of the
distribution computed from coefficients and averaged over 15 000 haloes.
Velocities are given in circular velocity units, while units in y-axis are ar-
bitrary. The two components are fitted by two Gaussians (dashed lines).
Bottom: the separate velocities distribution of accretion (red histogram) and
outflows (black histogram). The dashed curves represent the difference be-
tween these two distributions and their respective fits shown above. It results
in two residual distributions, centred on the same velocity and displaying
nearly the same shape. These two residual distributions describe the material
which already experienced one passage through the virial sphere.

similarly to errors on 〈ϕ(v, t)〉 (see equation 59). The time evolution
of 〈ϑ(�1, t)〉 is shown in Fig. 18. Since the impact parameter and
the incidence angle are simply related by b/R200 = sin (�1), 〈ϑ(b,
t)〉 is also easily computed (Fig. 19).

The infall (�1 > π/2 or the upper branch in 〈ϑ(b, t)〉 diagrams)
is clearly mostly radial. The infalling part of the distribution peaks
for �1 ∼ π instead of having a uniform behaviour and this trend
can be observed for all redshifts below 1. The distribution slightly
widens with but remains skewed towards large values of �1. In the
〈ϑ(b, t)〉 representation, the higher branch becomes flatter with time.
The outflows (�1 < π/2 or lower branch in 〈ϑ(b, t)〉 diagrams)
are mainly undetectable at early times, as mentioned earlier. As
time increases, the outflow contribution becomes stronger and radial
orbits (�1 ∼ 0) also appear to be dominant. However, the behaviour
of the ‘outflowing’ part of the 〈ϑ(�1, t)〉 distribution is almost linear
and does not peak. Tangential orbits cannot be neglected for this
component.
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Figure 18. The time evolution (symbols) of the distribution of the aver-
age incidence angle �1 〈ϑ(�1)〉 is defined by equation (46). Ages are ex-
pressed as lookback time. Bars stand for 3σ errors. The unit in y-axis is 5
× 109 M� kpc−2 Myr−1. Outflows are counted negatively, leading to neg-
ative values of 〈ϑ(�1)〉 for �1 < π/2. The result of the model described in
equation (64) is also shown (red line).

The evolution of 〈ϑ(�1, t)〉 can be fitted by the following
parametrization:

〈ϑ(�1, t)〉 = p0√
2πp1(t)

exp

[
− (�1 − π)2

2p1(t)2

]
+ p2(t)�1 + p3(t),

(64)

where p0 = 2 × 10−6 in our units. The ‘infalling’ part is modelled
as a Gaussian, while the ‘outflowing’ part is fitted linearly. The time
evolution of the three parameters pk(t), k = 1, 2, 3, can be fitted
by a linear evolution and the related linear parameters are given in
Table D2. The evolution of p1(t) confirms that the ‘infalling’ part of
the distribution, 〈ϑ(�1, t)〉 widens with time.

This result implies that the material experiences a circularization
as it interacts with the halo. Consequently, orbits are more tangential
as particles exit and re-enter the halo’s sphere. Such an effect has
already been measured by e.g. Gill et al. (2004). Dynamical friction
would provide a natural explanation for this evolution of the orbits,
but this argument is refuted by e.g. Colpi, Mayer & Governato (1999)
or Hashimoto, Funato & Makino (2003). Gill et al. (2004) mention
the secular evolution of haloes to explain this circularization: the
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894 D. Aubert and C. Pichon

time evolution of the potential well induced by the halo would affect
the orbits of infalling material and satellites. Other processes, such
as tidal stripping or satellite–satellite interactions, may also modify
the orbital parameters of dark matter fluxes. Clearly, the interactions
between the infall and the halo drive this circularization, but the
detailed process still has to be understood.

This dynamical circularization could also explain why the ‘out-
flowing’ part of the 〈ϑ(�1)〉 (or 〈ϑ(b)〉) is flatter than the infalling
one: by definition this component interacted with the halo in the
past, unlike most of the infall. Finally, the �1 or b representation
explicitly separates infall and outflows. It implies that virialized par-
ticles which pass through the sphere do not ‘cancel’ each other and
do contribute to the distributions. Such a ‘relaxed’ material is likely
to have a non-zero tangential motion, flattening the distributions as
its contribution becomes important. Since the actual size of the halo
gets closer to the measurement radius as time advances, this com-
ponent contributes more with time and its flattening effect on the
incidence angle (or impact parameter) distributions should increase
as well.

Fig. 20 presents a correlation between the velocity amplitude
v and the impact parameter b, at four different instances and for
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Figure 19. The time evolution (symbols) of the impact parameter b dis-
tribution 〈ϑ(b, t)〉 is defined by equation (46). Ages are expressed as
lookback time. Bars stand for 3σ errors. The unit in y-axis is 5 × 109

M� kpc−2 Myr−1. The lower (respectively higher) branch is the 〈ϑ(b, t)〉
distribution for outflows (respectively infall). The result of the model de-
scribed in equation (64) is also shown (red line).
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Figure 20. Top: the distribution, 〈℘(b, v)〉, of particles in the (b, v) subspace
at lookback time t = 1.8, 3.4, 5.1 and 6.7 Gyr; the infall (contour plot)
and outflow (density plot) are represented separately. Beyond the bimodal
feature, no residual correlation appears.

both the infall and the outflow components. Considering these two
components separately, no correlation can be found: the incidence
does not depend on the amplitude of the first approximation. The
only notable result comes from the fact that accreted material has
systematically a higher velocity than outflows, which confirms the
results obtained from the distribution of velocities only. Again, this
effect is related to the separate origin of these two fluxes, accretion,
being dominated by newly accreted material, and outflows, which
were processed by the inner dynamics of haloes.

6 T WO - P O I N T S TAT I S T I C S

Let us now focus on the second-order statistics, through the corre-
lations on the virial sphere. The two-point correlations are assessed
through the angular power spectrum and the angulo-temporal cor-
relation function for both the external potential, ψ e and the first
moment of the source term, i.e. the flux density of mass, �ρ .

6.1 External potential

6.1.1 Angular power spectrum

The potential’s angular power spectrum Cψe

� is computed for each
halo from the b̃�,m coefficients (Aubert et al. 2004),

b̃�,m ≡
√

4π

(
b�,m

〈b00〉 − δ�0
b0,0

〈b00〉

)
, (65)

related to the potential contrast

δ[ψe](Ω) ≡ ψ e(Ω) − ψ e

〈ψ e〉 =
∑
�,m

b̃�,mY�,m(Ω). (66)

The probability distribution of Cψe

� (t) was weighted as described in
Appendix A. For each time-step and each harmonic �, Cψe

� was fitted
by a lognormal distribution (see Fig. C2). Let us define 〈〈Cψe

� 〉〉(t) as
the mode of the fitting distribution. The time evolution of the external
potential’s power spectrum is shown in Fig. 21. Globally, the power
spectrum is dominated by large scales and is quite insensitive to
time evolution. However, two regimes may be distinguished. For
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Figure 21. The angular power spectrum of the external gravitational poten-

tial ψe(Ω, t). Symbols represent the mode of the Cψe

�
distribution for each

harmonic � and each time-step. Times are lookback times. Bars stand for 3σ

errors on the mode value. The large-scale contribution remains constant with
time, while the small-scale contribution smoothly increases with time. The
bump for the 〈C2〉 component indicates a strong quadrupolar configuration
for ψe(Ω, t).

low-order harmonics, 〈〈Cψe

� 〉〉(t) remains mostly constant. For smaller
scales (� > 5), 〈〈Cψe

� 〉〉(t) increases along time. As a consequence, the
power spectrum’s amplitude does not change but its shape evolves
while smaller scales become more important relative to larger scales.

These two regimes reflect the two-fold nature of tidal interac-
tions of a halo with its environment. Small angular variations of
the potential relate to small spatial scales and presumably track the
presence of objects which are getting closer or going through the
virial sphere. Since small-scale contribution increases, it suggests
that these objects tend to get smaller with time. It would be con-
sistent with the global decrease of the accretion rate, as long as the
merger rate does not increase strongly during this epoch. However,
the rise of small scales may also be related to an increasing con-
tribution of weak and poorly resolved accretion events. In such a
case, the isolated particles’ contribution to the potential should be
measured. This possibility is investigated in Section 6.2.

Meanwhile, large-scale fluctuations of potential (� � 4) may re-
flect the ‘cosmic tidal field’ resulting from the distribution of matter
around the halo on scales larger than the radius of the halo. The
amplitude of such a tidal field should remain fairly constant, as in-
deed measured. Furthermore, the peripheral distribution of matter is
not spherically distributed but is rather elongated along some direc-
tion: haloes tend to be triaxial with their ellipsoid aligned with the
surrounding distribution of satellites. The intersection of an elon-
gated distribution of matter with the virial sphere would induce a
quadrupolar component, as detected in our measurements. These
two effects cannot be easily disentangled, since they actually are
two sides of the same effect. Large-scale distribution of matter is
responsible for both the ‘cosmic tidal field’ and the halo triaxial-
ity (via the distribution of satellites). In other words, it is not clear
whether the large-scale behaviour of 〈〈Cψe

� 〉〉(t) reflects the tidal field
or the reaction of the halo to this tidal field.

6.1.2 Angulo-temporal correlation

6.1.2.1 Correlations and coherence time. To further investigate
these two regimes of tidal interactions, let us compute the angulo-

Figure 22. The angulo-temporal correlation function,we(θ ,�t)=〈δ[ψe](Ω,
t)δ[ψe](Ω + �Ω, t + �t)〉. Blue (respectively red) colours stand for low
(respectively high) values of the correlation. Isocontours are also shown.
Large angular scale isocontours (θ ∼ π/2) have large temporal extent, due
to the quadrupole dominance over the potential seen in the virial sphere.

temporal correlation function of the external potential contrast, de-
fined as

〈〈we(θ, t, t + �t)〉〉 = 〈〈δ[ψe](Ω, t)δ[ψe](Ω + �Ω, t + �t)〉〉, (67)

which is related to Tψe

� (t, t + �t) coefficients by

we(θ, t, t + �t) =
∑

�

T ψe

� (t, t + �t)(2� + 1)P�[cos(θ )], (68)

where

T ψe

� (t, t + �t) ≡ 1

4π

1

2� + 1

∑
m

b̃�m(t)b̃∗
�m(t + �t). (69)

Here, θ stands for the angular distance between two points on the
sphere located at Ω and Ω + �Ω. The Tψe

� (t, t + �t) coefficients
were computed for each halo and each pair of time-step, for each
harmonic. The Tψe

� (t, t + �t) distributions were fitted by a lognor-
mal distribution and 〈〈Tψe

� (t, t + �t)〉〉 was deduced from it. The
corresponding 〈〈we(θ , t, t + �t)〉〉 are shown in Fig. 22.

For large angular scales (>45◦), isocontours remain open during
the whole time range. Large scales have a long coherence time
(∼5 Gyr) and are consistent with a ‘cosmic tidal field’ resulting from
the large-scale distribution of matter. The latter is not expected to
evolve significantly with time at our redshifts and the triaxiality of
the halo is also a fairly constant feature. The innermost isocontours
are closed around the measurement time t1. Small angular scales
(<45◦) have shorter coherence time (∼1.5 Gyr). This is consistent
with a contribution to the potential due to objects, where satellites
pass by or dive into the halo and apply a tidal field only for a short
period.

This difference between large and small scales can also be inves-
tigated through the time matrices of the Tψe

� (t, t + �t) coefficients
(see Fig. 23). The diagonal terms describe the time evolution of the
angular power spectrum, Tψe

� (t, t) = Cψe

� (t). A smooth (respectively
peaked) distribution of values around the diagonal indicates a long
(respectively short) coherence time. Clearly, different scales have
different characteristic time-scales. The non-diagonal elements of
the quadrupole matrix (� = 2) decrease slowly with the distance
to the diagonal while the T20 matrix is almost diagonal. Not sur-
prisingly, the smaller the angular scale, the smaller is the coherence
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Figure 23. The time matrices of the Tψe

�
(t, t + �t) coefficients. Blue (re-

spectively red) colours stand for low (respectively high) values of the co-
efficients. The diagonal terms are equal to the angular power spectrum, i.e.

Tψe

�
(t, t) = Cψe

�
(t). As can be seen from Fig. 21, fluctuations observed for T1

are within the error bars. A smooth (respectively sharp) decrease of Tψe

�
(t,

t + �t) with the distance to the diagonal implies a long (respectively short)
coherence time. Here, coherence time decreases with angular scale.

time: a small 3D object passing through the sphere is likely to have
a small angular size on the sphere.

For a given � and a given t, the correlation coefficients Tψe

� can
be fitted by a Lorentzian function defined by

T�(t, t + �t) = qTe
3 (t)
2/π

qTe
2 (t)[

�t − qTe
1 (t)

]2 + [
qTe

2 (t)/2
]2 + qTe

4 (t),
(70)

where the characteristic time-scale, �TT e
�
, is given by qTe

2 (t) and the
reference time t is equal to qTe

1 (t). Examples of fits are shown in
Fig. 24.

For example, the time evolution of �TT e
�

= qTe
2 (t) is given in

Fig. 24 for different � values. Given the error bars, the characteris-
tic time-scales are constant over time (except for the � = 4 mode).
In the prospect of the regeneration of the potential, the stationary
hypothesis can then be considered as valid for most of the angular
scales. Meanwhile, the � = 4 potential fluctuations display a de-
creasing �TT e

�
with time. The same effect exists at a 1σ level for

� = 5. One interpretation would be that satellites achieve higher ve-
locities along time: for a given typical size, a faster satellite would
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Figure 24. Top and middle: the time evolution of the characteristic time-

scale �TT e
�

, obtained by fitting Tψe

�
(t, t + �t) with equation (70). Symbols

are the measurements while bars stand for 3σ fitting error bars. The second-

order fit of the time evolution of each Tψe

�
is also shown. Except for the

� = 4 and (marginally) for the � = 5 modes, no time evolution is observed.

The time resolution is 0.53 Gyr. Bottom: examples of Tψe

�
(t, t + �t) fitted

by Lorentzian functions.
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spend less time to be accreted and the associated potential would be
detected on a smaller time-scale. This picture is supported by the
results shown in Section 5.3.1, where the mean velocity of infalling
material increases along time. Another possibility would be that
� = 4 fluctuations had a longer radial extent in the past. Since there
is no reason for potential fluctuations to have such a property, one
could imagine successive potential fluctuations which overlapped,
leading to an apparent longer radial extent. This possibility is further
investigated in the following paragraphs, by comparing the coher-
ence time variation of the potential fluctuations to the evolution of
the typical velocity of the infall.

6.1.2.2 Correlations without the dipole and the quadrupole. In or-
der to focus on the coherence time of small angular scales, the
correlation function 〈〈we(θ , t, �t)〉〉 was also computed without the
dipole (� = 1) and the quadrupole (� = 2) component of the potential
(see also equation 68). The angulo-temporal correlation function is
shown in Fig. 25. Again, the isocontours of the correlation func-
tion are closed around �t = 0. This shows that the potential on the

Figure 25. Top: the angulo-temporal correlation function, we(θ , �t) =
〈δ[ψe](Ω, t)δ[ψe](Ω + �Ω, t + �t)〉. The dipole (� = 1) and the quadrupole
(� = 2) components were removed. Blue (respectively red) colours stand
for low (respectively high) values of the correlation. Isocontours are also
shown. The main axes of the ‘ellipses’ centred on (�Ω = 0, �t = 0) give
indications on the characteristic time and angular scales of ψe(Ω, t). Bottom:
comparison between the measured 2D correlation function (solid lines) and
the fit obtained using equation (71) (dashed lines).

sphere has a finite coherence time. In contrast to coherence times
measured on the Tψe

� coefficients, all the angular scales are mixed
and the typical time-scales are those of structures as they are ‘re-
ally’ seen from a halocentric point of view, where ‘potential blobs’
appear and disappear on the sphere. To evaluate the related typical
time-scale �Tψe , 〈〈we(��, t, �t)〉〉 was fitted with a 2D function for
different values of t. The model used is given by

〈〈we(θ, t, �t)〉〉 = qwe
6 (t) + qwe

5 (t)
2π

qwe
4 (t)[

�t − qwe
3 (t)

]2 +
[

qwe
4 (t)

2

]2

× sin
{

2π
[
�� − qwe

1 (t)
]
/qwe

2 (t)
}

�Ω
, (71)

where the angular dependence is fitted by a cardinal sine function
while the time dependence is fitted by a Lorentzian function. Ex-
amples of 2D fits are shown in Fig. 25. The correlation function
was also computed using only harmonics with � � 4, 5, 6, 7 and
the same fitting procedure is applied. The evolution of the resulting
characteristic time-scales �Twe = qwe

4 (t) is shown in Fig. 26. Bars
stand for 3σ fitting errors.

Note that �Twe tends to decrease with time for every truncation
order. The � � 3 and 4 correlation function displays a rise of �Twe

before it drops to lower values. Furthermore, �Twe tends to decrease
with �min, suggesting that the �min contribution dominates each we

reconstruction. Correlation functions with �min � 5 show marginal
�Twe variation but recall that our time resolution is 0.53 Gyr, hence
any fluctuations on smaller scales should be taken in caution. Still,
the 0.81-Gyr variation observed for � � 3 between t = 5.1 and
0.8 Gyr is significant and so is the variation observed for � � 4
(1.3 Gyr).

6.1.2.3 A longer coherence length. As mentioned above, the vari-
ation of the characteristic time-scale can be explained by the mea-
sured increase in mean velocity. Conversely, the decrease of coher-
ence time may be the consequence of smaller potential blobs as
time passes: a ‘large’ (three-dimensional) potential takes longer to
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Figure 26. The cosmic evolution of the potential’s coherence time. This
characteristic time-scale is obtained by fitting the 2D correlation function we

(θ , �t) with the function given in equation (71). The correlation function is
computed using harmonics coefficients with � �3 (crosses), � �4 (squares),
� � 5 (triangle), � � 6 (circle) and � � 7 (diamonds). Bars stand for 3σ

fitting errors. The time resolution is 0.53 Gyr.
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disappear than a smaller one. One crude approximation could be

L1

L2
= V1�T1

V2�T2
, (72)

where L is the radial size, V is the radial velocity and �T is the
coherence time of the potential blob. It is assumed that the � �
4 truncation is the representative of the potential due to infalling
objects, i.e. �T1/�T2 ∼ 1.95. Let us also consider that the radial
velocity variation is equal to the one measured for the mean velocity
of infall (see Section 5.3.1): V1/V2 = 0.77. Following equation (72),
it suggests that L1 ∼ 1.5L2, i.e. the radial size decreases with time.
The same calculation with � � 3 leads us to L1 ∼ 1.1L2: the results
remain qualitatively the same. In other words, the coherence length
was longer in the past and the velocity variation cannot explain
the variation of coherence time. The only other way to explain a
longer coherence length involves potential blobs falling successively
through the sphere, coming from roughly the same direction. To
induce a decreasing coherence time, these blobs would have to be
either bigger before or more numerous. Such a crude picture is
coherent with the measured decrease of accretion with time and the
anisotropic nature of accretion by haloes (see e.g. Aubert et al. 2004;
Knebe et al. 2004; Zentner et al. 2005).

6.2 Flux density of mass:�ρ≡ρvr

The mode 〈〈C�ρ

� 〉〉 of the distribution of the �ρ angular power spec-
trum is computed using equations (41) and (42). In order to deal with
adimensional quantities, the reduced harmonic coefficients, ã�,m , are
defined as

ã�,m ≡
√

4π

(
a�,m

〈a00〉 − δ�0
a0,0

〈a00〉

)
. (73)

The accretion contrast, δ[�ρ ], and the ã�,m coefficients are linked by

δ[�ρ ](Ω) ≡ �ρ(Ω) − �ρ

〈�ρ〉 =
∑
�,m

ã�,mY�,m(Ω). (74)

6.2.1 Angular power spectrum

Given 〈a00〉(t), the angular power spectrum C�ρ

� (t) is computed
for each halo. At each time-step and for each harmonic order �,
the C�ρ

� (t) distribution was fitted by a lognormal distribution (see
Fig. C4). The probability distribution of C�ρ

� (t) is weighted as de-
scribed in Appendix A.

The evolution of 〈〈C�ρ

� (t)〉〉 with time is shown in Fig. 27. The
shape of 〈〈C�ρ

� (t)〉〉 remains mostly the same with time and is fitted
by a simple function

〈〈C�ρ

� 〉〉(t) = q�ρ

1 (t) + q�ρ

2 (t)[
� + q�ρ

3 (t)
]2 . (75)

The time evolutions of q�ρ

1 , q�ρ

2 and q�ρ

3 are shown in Fig. D2 and
can be fitted by decreasing the exponential

q�ρ (t) = h + k exp
(
− t

u2

)
. (76)

Only the dipole (� = 1) harmonic does not fit with the previous
functional form and is systematically lower than the contribution
of the other harmonics. If particle velocities were measured in an
absolute referential, the dipole strength would reflect the motion of
the halo in the surrounding matter. Also strong mergers may cover a
180◦ angle on the sphere and would contribute to the dipole. Since
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Figure 27. The average angular power spectrum, 〈〈C�ρ

�
〉〉 (t), at t = 0.8, 3.5,

5.7, 7.8 Gyr (symbols). 〈〈C�ρ

�
〉〉 (t) is taken as the mode of the lognormal

function used to fit the C� distribution. Bars stand for 3σ errors. For a given
�, the corresponding angular scale is π/�. 〈〈C�ρ

�
〉〉 (t) may be fitted by a

generic model given by equation (75) (solid line).

velocities are measured in the rest frame of the halo and strong
mergers are excluded, the dipole strength is substantially lowered,
as is measured.

The values for h, k and u are given in Table D3. The offset q�ρ

1 of
〈〈C�ρ

� (t)〉〉 increases with time. From equation (73), one can see that
〈〈C�ρ

� (t)〉〉 is proportional to the square of the accretion contrast. If
the power spectrum experiences a global shift towards higher values
with time, it implies that the accretion contrast increases with time.
Since the average velocity does not vary strongly with time, this
suggests that objects are getting denser with time. This effect is
similar to the global increase of the 3D power spectrum P(k) with
time due to the density growth. Also, the q�ρ

2 coefficient is found to
evolve as q�ρ

1 . This illustrates the fact that the amplitude of 〈〈C�ρ

� (t)〉〉
remains mainly constant. The q�ρ

3 coefficient should be seen as a
typical scale and varies slightly from q�ρ

3 = 6 at z = 1 to q�ρ

3 =
11 at z = 0.1. 〈〈C�ρ

� (t)〉〉 becomes marginally ‘flatter’ as time passes,
implying that small scales contribute more to the spatial distribution
of �ρ(Ω, t), consistently with the evolution of 〈〈C�(t)ψ

e 〉〉. The flat
power spectrum measured for �ρ on small scales suggests that
isolated particles contribute significantly and increasingly with time.
In other words, the accretion becomes low enough to be poorly
resolved in terms of particles.

6.2.2 Resolution in mass and particle number

In order to assess these environments/resolution effects, 〈〈C�ρ

� (t)〉〉
was computed for three different classes of mass (see Fig. 28) at
a lookback time of 800 Myr. For the heaviest haloes, the power
spectrum is peaked towards low-� values. The contribution of large
scales is quite important. For smaller masses, the power spectrum
gets flatter and all scales almost contribute equally for the lightest
class of mass. Recall that the harmonic decomposition of a Dirac
function leads to C� = constant, thus a flat power spectrum indicates
that isolated particles contribute significantly to the distribution of
matter on the sphere. The relative behaviour of the three 〈〈C�ρ

� (t)〉〉
confirms that larger haloes still experience important mergers (i.e.
on large scales) while small ones are in quiet environments at our
simulation resolution. The effect of the mass resolution on the
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Figure 28. The average angular power spectrum, 〈〈C�ρ

�
〉〉 (t), at t = 0.8

Gyr (symbols) for three different classes of masses. 〈〈C�ρ

�
〉〉 (t) is taken as

the mode of the lognormal function used to fit the C
�ρ

�
distribution. Bars

stand for 3σ errors. Masses are expressed in solar masses. For a given �, the
corresponding angular scale is π/�. The three measurements are fitted by
equation (75) (solid line). The power spectrum gets flatter for small haloes.
Accretion by small haloes is dominated by small objects or even isolated
particles.
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Figure 29. The average angular power spectrum, 〈〈C�ρ

�
〉〉 (t), at t = 0.8 Gyr

for three different mass resolutions in the simulations. 〈〈C�ρ

�
〉〉 (t) is taken

as the mode of the lognormal function used to fit the C
�ρ

�
distribution. For

a given �, the corresponding angular scale is π/�. Circles stand for the
measurements performed on the main set of simulations (50 Mpc h−1, 1283

particles), while error bars stand for 3σ errors. Square and triangles stand
for measurements performed on simulation with higher mass resolution,
respectively, 50 Mpc h−1 for 2563 particles (1532 haloes analysed) and 20
Mpc h−1 for 2563 particles (545 haloes analysed). In these two cases, error
bars stand for 1σ errors.

angular structure of accretion was also investigated with two smaller
sets of simulations: the first one involves 10 simulations with 2563

particles in 50 Mpc h−1 boxes and the second in five simulations with
the 2563 particles in 20 Mpc h−1 boxes. The related 〈〈C�ρ

� 〉〉 measured
at a lookback time of 800 Myr are shown in Fig. 29. Here, 1532 and
545 haloes satisfying the conditions described in Section 4.2 were
detected in these two additional sets of simulations. For clarity,
1σ error bars are shown for the two high-resolution measurements,
while the ‘larger statistics’ power spectrum is still represented with

3σ bars. For large scales (� < 10), the three power spectra are
consistent, thus suggesting that convergence was achieved there.
On smaller scales, the two higher resolution spectra differ signifi-
cantly from the one measured using the other set of simulations (50
Mpc/1283 particles): high-� holds significantly less power. This con-
firms that the lack of resolution tends to overestimate the importance
of small scales and implies that the study of �ρ requires simula-
tions at higher resolution in order to understand, e.g., the detailed
statistics of small infalling objects. Interestingly, the two higher res-
olution simulations have identical 〈〈C�ρ

� 〉〉, given the admittedly large
error bars. This suggests that statistical convergence at scales � <

50 does not require extremely resolved simulations and simulation
boxes with a mass resolution only 8–10 times greater than that used
in this paper should suffice.

Finally, it clearly appears from Figs 27 and D2 that the angulo-
temporal correlation function related to 〈〈C�ρ

� 〉〉(t) is dominated by
the overall shift of the angular power spectrum towards higher val-
ues and consequently no coherence time should be detectable. It
is shown in Appendix E that how the evolution of 〈〈C�ρ

� 〉〉(t) is re-
lated to mass biases and possible resolution effects. The previous
measurements on the potential were not sensitive to these effects
because of the smoother nature of the field.

In Appendix E, the measured secular evolution is avoided by using
an alternative definition of 〈〈C�ρ

� 〉〉(t). It is found that the angular
power spectrum of �ρ can be fitted by a simple power law (see
Fig. E1) at every time:〈〈

C
′�ρ

�

〉〉
(t) ∼ �−1.15. (77)

The corresponding angulo-temporal correlation function is given in
Fig. E3. As expected, there is a shorter coherence time for the �ρ

field than that for the potential, because of the ‘sharper’ nature of the
former. Overall, these results strongly suggest that the class of mass
and resolution biases should be systematically investigated beyond
what was shown here.

7 A S C E NA R I O F O R T H E AC C R E T I O N O F A

T Y P I C A L H A L O AT z � 1

Let us draw a summary of the previous results, in order to get a
synthetic picture of the flux properties at the virial radius. A typi-
cal halo in our sample has a mass of 1013 M� and a radius R200 ∼
500 kpc at z = 0. It is embedded in a quasi-stationary gravitational
potential, ψ e. Such a potential is highly quadrupolar and is likely
to be induced by the large-scale distribution of matter around the
halo. The halo accretes material between z = 1 and 0 at a rate which
declines with time. At high redshift, only accretion is detected at
R200. It is mainly radial and occurs at a velocity close to 75 per cent
times the circular velocity. As time advances, accretion of new ma-
terial decreases, while outflows become significant. Outflows occur
at lower velocities and on more circular orbits. A fraction of the out-
flowing component is due to a backsplash population made of mate-
rial which already passed through the virial sphere. Another fraction
of outflows corresponds to ‘virialized’ material of the halo which
goes further than R200 and is being ‘cancelled’ by its infalling coun-
terpart. The clustering on the sphere of the gravitational potential
drifts towards smaller scales, while the clustering of matter follows
marginally the same trend at our level of resolution. It reflects the
increasing contribution with time of weak/diffuse accretion, poorly
sampled at our resolution. In parallel, the coherence time of potential
fluctuations is found to be decreasing with time by the halocentric
observer. This decrease may be related with the accretion of satel-
lites, where objects were numerous enough to ‘overlap’ in the past,
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900 D. Aubert and C. Pichon

which implies that accretion occurs mainly in the same direction on
the virial sphere.

This scenario seems consistent with most of the past studies
made on the subject using the full 3D information contained in
simulations. The decline of accretion rate has been already mea-
sured by e.g. van den Bosch (2002a) even though our measure-
ments are in a slight quantitative disagreement. The ‘rebound’ of
matter through the virial sphere has already been measured by e.g.
Mamon et al. (2004) or Gill et al. (2004). Furthermore, the velocity
bimodality is recovered together with the circularization of orbits
measured by Gill et al. (2004) in high-resolution simulations. Fi-
nally, the variation of the coherence time of the potential is found
to be related to the anisotropy of accretion, already demonstrated
by e.g. Aubert et al. (2004), Knebe et al. (2004) or Zentner et al.
(2005).

8 S U M M A RY A N D D I S C U S S I O N

This paper, the second in a series of three, presents measurements
of the detailed statistical properties of dark matter flows on small
scales (� 500 kpc) in the near environment of haloes using a large
set of �CDM cosmological simulations. The purpose of this in-
vestigation was two-fold: (i) characterize statistically (via one- and
two-point statistics) the detailed (angular and kinematic) incoming
fluxes of dark matter entering the virial sphere of a biased (described
in Section 4.2) sample of haloes undergoing minor mergers for the
broader interest of astronomers concerned with the environment of
galaxies; (ii) compute the first two moments of the linear coeffi-
cients, cn (respectively bn), of the source term (respectively external
potential) entering equations (13) and (14) (Paper I).

We concentrated on flows at the haloes’ virial radius while de-
scribing the infalling matter via flux densities through a spherical
shell. In parallel, we measured the statistical properties of the tidal
potential reprojected back on to the boundary. The statistical one-
and two-point expectations of the inflow were tabulated both kine-
matically and angularly on the R200 virtual sphere. All measurements
were carried for 15 000 haloes undergoing minor (as defined) merg-
ers between redshifts z = 1 and 0. The two-point correlations are
carried both angularly and temporally for the flux densities and the
tidal field. We also provided a method to regenerate realization of
the field, via equations (37) and (F6).

We briefly demonstrated how a perturbative description of the
dynamics of haloes could propagate the statistical properties of en-
vironments down to the statistical properties of the halo’s response.
The description of the environment involved the projection of the
potential and the source on a basis of functions. This basis allowed
us to decouple the time evolution from the angular and velocity de-
pendence of these two quantities. Hence, the accretion and the tidal
potential were completely described by the projection coefficients
and their statistical properties, which depend on time only. We also
discussed how the flux densities of matter, momentum and energy
could be related to the source and its expansion coefficients. We
restricted ourselves to the one- and two-statistical descriptions of
the tidal field ψ e and the flux density of mass �ρ and postponed to
Paper III (Aubert & Pichon, in preparation), the full description of
the higher moments. Since these measurements will be used as an
entry to a perturbative description of the inner dynamics of haloes,
only objects with quiet accretion history were selected as discussed
in Section 4.2. Throughout this biased sample of haloes, we made
statistical measurements of the kinematic properties of accretion
and derived results on the following quantities.

(i) The evolution of the accretion rate at the virial sphere: the net
accretion is found to decrease with time, probing both the increasing
contribution of outflows and the decline of strong interactions.

(ii) The evolution of the net velocity distribution of the accretion:
infall exhibits a typical velocity of 0.75Vc. A backsplash component
is detected at recent times with a significant outflowing component
at a lower velocity (∼0.6Vc).

(iii) The evolution of the impact parameters/incidence angle dis-
tribution of the infall. The infall is found to be mainly radial while
outflows are on more circular orbits.

(iv) The angulo-temporal two-point correlation of the external
potential on virial sphere. The potential appears to be mainly dom-
inated by a strong and constant quadrupole. The coherence time of
smaller angular scales provides hints of an anisotropic accretion.

(v) The angular power spectrum of accreted matter. The cluster-
ing is dominated by small angular scales, possibly at the resolution
limit.

(vi) The angulo-temporal correlation of the flux density of mass.
The coherence time appears shorter than that for potential fluctua-
tions, as expected.

These results can be interpreted in terms of properties of ac-
creted objects or of smooth accretion and are coherent with previ-
ous studies (e.g. Ghigna et al. 1998; van den Bosch 2002a; Aubert
et al. 2004; Gill et al. 2004; Knebe et al. 2004; Mamon et al. 2004;
Benson 2005). These studies were mainly focused on to the prop-
erties of accreted satellites. Properties of accreted subhaloes could
also be directly derived from these results, once a clear definition
allows us to distinguish structures within the general flow of matter.
Substructures are expected to form a distinct ‘phase’ of the accreted
fluid: for instance, the velocity dispersion is expected to be quite dif-
ferent in compact objects than in the smooth accreting component.
This phase separation will be assessed in Paper III where a system-
atic comparison of the current approach with an analysis in terms of
pre-identified satellites will be carried, in the spirit of Aubert et al.
(2004). The contribution of outflows, the lack of a standard defi-
nition for subhaloes, resolution issues and the fact that properties
are measured at one radius (which could be statistically propagated
towards inner regions) are all issues which must be assessed before
a complete and rigorous comparison can be performed. Yet, the cur-
rent agreement between a fluid description of the environment and
these above mentioned published results is clearly encouraging hits
for the reliability of the method presented here.

These kinematic signatures provide insights in the processes
which occur in the inner regions of haloes. In particular, the kine-
matic discrepancies between the different components of the mass
flux should be understood in terms of dynamical friction, tidal strip-
ping or even satellite–satellite interactions within the halo. The kine-
matical properties of accreted matter may be transposed to the kine-
matical properties of satellites observed around galaxies. Newly
accreted material exhibits kinematic signatures (radial, high-
velocity trajectories) different from the ones measured for matter
which already interacted with the halo (tangential, low-velocity or-
bits). Admittedly, it is not straightforward to apply directly these
results to the luminous component (see Paper I, for a discussion of
thresholding), and to see how projection effects may affect the dis-
tributions. Nevertheless, the corresponding observational measure-
ments on satellites should provide information on the past history
of these objects.

As discussed in Paper I, these measurements can be used as an
entry to the perturbative theory of the response of the open halo.
Phenomena related to accretion can be consistently assessed via
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this framework: dynamical friction, tidal stripping and phase mix-
ing. With the statistical description of the tidal field presented in this
paper only, we may already implement the theory presented in Pa-
per I in the regime of pure tidal excitation. The complete knowledge
of the source (which will be completed in Paper III) should con-
siderably extend the realm of application provided by this theory.
Specifically, we have shown in Paper I that the internal dynam-
ics of substructures within galactic haloes (distortion, clumps as
traced by X-ray emissivity, weak lensing, dark matter annihilation,
tidal streams, etc.) and the implication for the disc (spiral structure,
warp, etc.) could be predicted within this framework. Conversely,
the knowledge of the observed properties of a statistical sample of
galactic haloes could be used to (i) constrain observationally the sta-
tistical nature of the infall (ii) predict the observed distribution and
correlations of upcoming surveys, (iii) time reverse the observed
distribution of clumps, and finally (iv) weight the relative impor-
tance of the intrinsic (via the unperturbed DF) and external (tidal
and/or infall) influence of the environment in determining the fate
of galaxies.

The current measurements reduce the degree of freedom that still
exists in the setting of numerical experiments in a galactic context.
For instance, given that the structure of the external tidal field is
found to be simple, it can easily be modelled as an external com-
ponent in numerical simulations (or even in analytical studies). It
would provide a simple but statistically relevant contribution of the
large-scale structure to the dynamical states of haloes. The tempo-
ral coherence of the first � > 2 angular harmonics of the tidal field
should allow one to draw more accurate representations of external
contribution to the field that would include the fluctuations due to
smaller structures. The kinematics of accretion is not random as well
and the distribution of velocities at R200 follows a Gaussian-shaped
curve which characteristics evolve with time and exhibit a certain
distribution of the impact parameter. These results put prescrip-
tions that could be used to generate encounters between satellites
and galactic discs that follow the ones measured in cosmological
simulations at large radii. We also presented first constrains on the
angulo-temporal correlation function of the accretion. Even though
it is not completely clear yet how resolution will eventually affect
these results, such functions contain some glimpses of informa-
tion regarding the angular distribution of encounters with external
systems but also regarding the frequency of accretion events. This
frequency can also be probed by the temporal coherence of the
fluctuations in the tidal field. The apparent contradiction that exists
between the observed number of discs and the predicted large num-
ber of mergers may be solved by a better knowledge of the frequency
of the latter: it may be low enough to solve this contradiction. In
this context, simulations of successive mergers between a galaxy
and satellites should be consistent with large-scale simulations and
we provide first constrains on the rate of minor encounters at the
outer boundary of the halo.

As argued in Paper I, we emphasize that an a priori discrimination
between ‘objects’ and diffuse matter may not constitute the best way
to describe accretion: it is not clear that luminous matter is always
attached to dark matter overdensities, there is no unambiguous def-
inition of substructures and their state change with time under the
influence of tidal shocks or dynamical friction. The generation of
objects that follow the current results is admittedly the easiest way
to proceed but should be followed by a more general description of
matter in terms of ‘fluid approach’, where ‘objects’ only constitute
a specific phase of such a fluid. The statistical measurements on
both ψ e and �ρ allow the regeneration of synthetic environments.
Knowing the average evolution and the angular power spectra of

these quantities, the generation of spherical maps in the Gaussian
regime is straightforward. We describe such a regeneration proce-
dure in Appendix F. Such maps would efficiently provide realistic
environments of haloes, consistent (up to two-point statistics) with
those measured in cosmological simulations and could be ‘embed-
ded’ into simulation of galaxies. Again, virialized structures would
be naturally included (since they have their own statistical signature
on the virial sphere) without relying on any ad hoc prescription on
their nature.

Extensions to non-Gaussian fields are also possible (following
e.g. Contaldi & Magueijo 2001) but would rely on higher order
correlations. It was assumed throughout these investigations that
fields could be approximated as Gaussian fields, fully described
by their two-point statistics. Yet a simple visual inspection of �ρ

maps reveals that they are not strictly Gaussian, a finding confirmed
by preliminary analysis of their bispectrum. Furthermore, Paper I
demonstrated that a dynamical description which takes into account
non-linear effects, such as dynamical friction, requires higher order
correlations. Therefore, extensions to non-Gaussian fields are in
order in the long run.

It should again be emphasized that some aspects of the
present work are exploratory only, in that the resolution achieved
(Mhalo > 5 × 1012 M�) is somewhat high for L� galaxies. In fact,
it will be interesting to confirm that the properties of infall do not
asymptote for lower mass (Mhalo < 5 × 1012 M�) together with the
intrinsic properties of galaxies. In addition, a systematic study of
biases induced by our estimators of angular correlations should be
conducted. For a fixed halo mass, our lack of resolution implies that
we overestimate the clumsiness of the infall.

As demonstrated in Section 6.2.2, the limited resolution (both
spatially and in mass) of our simulations appeared to be an issue for
some of the results presented here (e.g. the angular power spectrum
of �ρ). The systematic use of higher resolution simulations (in the
spirit of Section 6) will be required to fully assess these limitations.
In particular, a fraction of the accretion detected as a weak/diffuse
component may be associated with unresolved objects; the influ-
ence of small-mass satellites should therefore be explored. With the
prospect of deducing the properties of galaxy from haloes environ-
ments, lower mass haloes are more likely to host only one galaxy,
making them more suitable for such a study. Cosmological simu-
lation of small volumes also tends to prevent the formation of rare
events which may be relevant for the representativity of the study:
for example, some discs seem to indicate that they were formed
in ‘very quiet’ environments. The right balance between resolution
and volume should be found. Aside from these biases induced by
simulations, we also introduced selection criteria on both the mass
or the accretion history of haloes and the influence of these arbitrary
choices on our statistical distribution should be assessed precisely.

Eventually using hydrodynamical codes which include baryonic
effects in simulations and introducing the physics of gas in our
model, we would construct a complete semi-analytic tool to study
the detailed inner dynamics of galaxies.
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A P P E N D I X A : H A R M O N I C C O N V E R G E N C E

As explained in Section 3.1, the angular dependence of the source
function is expanded over a basis of spherical harmonics Y�m(Ω). In
order to set the maximal order of this expansion, �max, we compared
the two-point correlation function of the spherical field ρvr(Ω) to the
one inferred from harmonic coefficients, a�m , and power spectrum
C� (see equations 41 and 42). Within a set of randomly distributed
particles, let dpoisson(θ ) be the probability of finding two particles
with an angular separation θ . If d(θ ) is the same probability for a
given distribution of particles then its two-point correlation function
ξ (θ ) is defined as

ξ (θ ) ≡ d(θ )

dpoisson(θ )
− 1. (A1)

The correlation function ξ (θ ) and the a�m coefficients are related by
(e.g. Peacock 1999)

ξ (θ ) =
�max∑
�=0

C�(2� + 1)P�(cos θ ), (A2)

0.1 0.20.05 0.5

0.1

1.0

10.0

100.0

lmax=10
lmax=30
lmax=50
lmax=60

θ

ξ(
θ)

200 halos

Figure A1. The average angular two-point correlation function, 〈〈ξ (θ )〉〉, of
the advected mass spherical field ρvr(Ω). The correlation function is shown
as a function of the angular distance on the sphere θ given in radians. Using
the positions of accreted particles around 200 haloes at z = 1, the average
correlation function can be computed (dots). Lines represent the correlation
function deduced from the harmonic coefficients of the ρvr(Ω) fields around
the same 200 haloes, with �max = 10, 30, 50, 60. The convergence is ensured
for �max � 50.
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Dynamical flows through – II 903

where θ is an angular distance of the sphere and P�(x) is a Legen-
dre function. The average angular correlation function 〈〈ξ (θ )〉〉pair is
defined as

〈〈ξ (θ )〉〉pair ≡ 1∑
p n2

p

∑
p

n2
pξp(θ ), (A3)

where ξ p(θ ) is the two-point correlation function of the pth halo
computed using np particles passing through the virial sphere. From
a set of 200 haloes extracted from a simulation, we computed 〈〈ξ (θ )〉〉
using different values for �max (see Fig. A1). From the same set of
haloes, we also computed the average two-point correlation function
directly from the particles’ positions using equation (A1).

From Fig. A1, it clearly appears that 〈〈ξ (θ )〉〉pair has not converged
for �max � 30. For �max � 50, the actual two-point correlation func-
tion is well reproduced. Since no real difference can be distinguished
between �max = 50 and 60, we chose to limit the harmonic expansion
of the source term to � � 50. Note that the truncation in �max defines
an effective resolution beyond which the distribution is effectively
coarse grained.

A P P E N D I X B : A N G U L O - T E M P O R A L

C O R R E L AT I O N

Let us consider a spherical field X(Ω, t) which can be expanded over
the spherical harmonic basis

X (Ω, t) =
∑
�m

x�m(t)Y�m(Ω). (B1)

The correlation wX between two successive realizations of X is de-
fined as

wX (Ω,Ω′, t, t ′) ≡ 〈X (Ω, t)X (Ω′, t ′)〉, (B2)

where 〈·〉 stands for the statistical average. If X(Ω, t) is isotropic, the
correlation should not depend on Ω or Ω ′ but only on the distance
θ between the two points. It implies that wX can be expanded on the
basis of Legendre polynomials, PL(y),

wX (Ω,Ω′, t, t ′) = wX (θ, t, t ′) =
∑

L

(2L + 1)TL PL[cos(θ )]. (B3)

How are TL and x�m related? Rewriting equation (B2) as

wX (θ, t, t ′) =
∑
�m

∑
�′m′

〈x�m(t)x∗
�′m′ (t ′)〉Y�m(Ω)Y ∗

�′m′ (Ω′), (B4)

one can write∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)wX = 〈

x�1m1 (t)x∗
�2m2

(t ′)
〉
. (B5)

Meanwhile, assuming isotropy, one can also write∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)wX

=
∑

L

(2L + 1)TL

∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)PL[cos(θ )]

=
∑
LM

(4π)TL

∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)YLM(Ω)Y ∗

LM(Ω′)

=
∑
LM

(4π)TLδL�1δL�2δMm1δMm2 , (B6)

where PL is expressed in terms of spherical harmonics using the
spherical harmonics addition theorem. In the end, we get

T� = 1

4π

〈
x�m(t)x∗

�m(t ′)
〉
. (B7)

For a given realization of X(Ω, t), T� can be estimated by

T� = 1

4π

1

2� + 1

∑
m

x�m(t)x∗
�m(t ′). (B8)

A P P E N D I X C : D I S T R I BU T I O N S

In this appendix, we present the various distributions fitted either by
normal or by lognormal PDF. For each quantity, the mode (or most
probable value) of the distribution has been obtained from these fits.
The Gaussian distribution is defined by

N(x) = A

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
, (C1)
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Figure C1. The probability distribution of b00 at four different times. This
coefficient is proportional to the external potential averaged on the sphere.
The lognormal fit is also shown.
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Figure C2. The probability distribution of Cψe

�
for � = 2, 5, 10, 20 at the

lookback time t = 1.9 Gyr. Note that x-axis is sampled logarithmically; the
corresponding lognormal fit of the mode is also shown.
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Figure C3. The probability distribution of the mean flux �M (t) for four
different times. The normal fit is also shown.
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Figure C4. The probability distribution of the C� for � = 3, 10, 25, 40 at
the lookback time t = 1.9 Gyr. Note that x-axis is sampled logarithmically;
the corresponding lognormal fit of the mode is also shown.

while the mode is equivalent to the mean μ. The lognormal distri-
bution is given by

LN(x) = A

σ
√

2π
exp

{
− [log(x/μ)]2

2σ 2

}
, (C2)

while the mode is given by μ exp (−σ 2). The different fits mentioned
in the main text are described in the following figures.

(i) Fig. C1 shows the distributions of the harmonic coefficient
b00(t) which is proportional to the potential averaged on the sphere.
It is expressed in units of GM/R, where M is expressed in 1010 M�,
R in kpc h−1 and G = 43 007 in internal units.

(ii) Fig. C2 shows the distributions of the external potential’s
power spectrum for four different harmonics � = 2, 5, 10, 20 at t =
1.3 Gyr. The distribution has been fitted by a lognormal function.

(iii) Fig. C3 shows the distributions of the mean flux �M(t). The
mean flux is proportional to the harmonic coefficient a00. The dis-
tribution is fitted by a normal distribution. The normal model agrees
well with the measured distribution at recent times but fails to re-
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lookback time t = 1.9 Gyr. Note that x-axis is sampled logarithmically; the
corresponding lognormal fit of the mode is also shown.
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Figure C6. The probability distribution of the c0,0
12,0,0 for the lookback times

t = 1.9, 3.5, 4.5 and 5.7 Gyr. Note that x-axis is sampled linearly; the corre-
sponding fit of the mode is also shown.

produce the outliers’ tail at high redshift. Consequently, the mode
position is underestimated at these times.

(iv) Fig. C6 shows the distributions of one of the coefficients
involved in the computation of the velocity distribution φ(v). Four
different times are being represented. The coefficient distribution
has been fitted by a Gaussian distribution.

(v) Fig. C4 shows the distributions of the power spectrum values
C�ρ

� for four different harmonic orders, �. The fits were made at t =
1.9 Gyr. This distribution has been fitted by a lognormal distribution.

(vi) Fig. C5 shows the distributions of the power spectrum val-
ues C

�ρ′
� for four different harmonic orders, �. The fits were made

at t = 2.95 Gyr. This distribution has been fitted by a lognormal
distribution.

A P P E N D I X D : F I T S A N D TA B L E S

In the main text, some statistics are fitted by simple laws and the time
evolution of these statistics can be described by the time evolution of
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Figure D1. Time evolution of the fitted coefficients (given in Table D1) of
the PDF 〈ϕ(v, t)〉 for the parametrization suggested in equation (60) (sym-
bols). Bars stand for the 3σ errors on the determination of the coefficients.
qı,k , k = 1, 2, 3, are, respectively, the mean, the rms and the amplitude of the
positive Gaussian (i.e. infalling component). qo,k , k = 1, 2, 3 are the corre-
sponding values for the negative Gaussian (i.e. outflowing component). The
trend is accurately fitted by a linear relation (red dashed line).

Table D1. Fitting parameters for the time evolution of Gaus-
sian coefficients, q(t) = m × t (Gyr) + n. These coefficients,
together with equation (60), allow us to compute the time
evolution of 〈ϕ(v, t)〉. (*) By definition, qo,3 � 0.

m n

qı,1 −0.028 0.912
qı,2 0.0059 0.084
qı,3 2.1 × 10−8 9.03 × 10−8

qo,1 −0.026 0.54
qo,2 −0.028 0.23
q(∗)

o,3 1.79 × 10−8 −1.22 × 10−7

Table D2. Fitting parameters for the time evolution of pk (t),
k = 1, 2, 3 parameters. p(t) = m × t (Gyr) + n. Together with
equation (64), these coefficients allow us to predict the time
evolution of 〈ϑ(�1, t)〉.

m n

p1 −0.038 0.83
p2 −3.12 × 10−8 2.29 × 10−7

p3 8.59 × 10−8 −6.64 × 10−7

the fitting parameters. In this appendix, we present the time evolution
of these parameters.

(i) Fig. D1 and Table D1 present the time evolution of the velocity
distribution of accretion. It can be fitted by two Gaussians drifting
towards higher velocities with time.

(ii) Table D2 summarizes the time evolution of the distribution
of incidence angles. This distribution can be fitted by a Gaussian
(for the inflows) and a linear relation (for the outflows). The fitting
parameters present a linear evolution with time.

1 2 3 4 5 6 7

0.1

1.0

10.0

100.0

1000.

Lookback time (Gyr)

p1

p2

p3

Figure D2. Time evolution of the coefficients for the 〈〈C�ρ

�
〉〉 (t) model

(see equation 75) (symbols). The three time evolutions may be described
accurately by decreasing exponentials (see equation 76) (solid lines).

Table D3. Fitting parameters for the time evolution of
〈〈C�〉〉�ρ model’s coefficients (see equation 75). q

�ρ

3 (t) =
h + ke

− t
u2 with lookback time t expressed in Gyr.

h k u

q
�ρ

1 0.0242 17.86 0.867

q
�ρ

2 3.153 2699.0 0.8933

q
�ρ

3 5.4105 9.44 1.55

(iii) Fig. D2 and Table D3 summarize the time evolution of the
angular power spectrum of �ρ . The power spectrum can be fitted
by equation (75), where fitting parameters decrease exponentially
with time.

A P P E N D I X E : A LT E R NAT I V E C O N T R A S T

A N D A N G U L O - T E M P O R A L C O R R E L AT I O N

It appears clearly from the time evolution of 〈〈C�ρ

� 〉〉 (t) presented in
the main text, that no angulo-temporal correlation can be computed,
since it would be completely dominated by the secular evolution of
the power spectrum. For this reason, an alternative definition of the
flux density contrast has been used

δ′
[�ρ ](Ω) ≡ �ρ(Ω) − �ρ

�ρ

=
∑
�,m

ã′
�,mY�,m(Ω), (E1)

or in terms of harmonic coefficients

ã′
�,m ≡

√
4π

(
a�,m

a00
− δ�0

)
. (E2)

Using this new definition, the fluctuations of �ρ on the sphere are
measured relative to the mass flux of each individual halo. The main
drawback of such a definition is that it couples the a00 and the a�m

coefficients from the beginning. For example, the resimulation of
such fields would require the knowledge of conditional probabilities,
i.e. what is the distribution of a�m for a given value of a00, while the
previous definition (given by equation 73) only acted as specific
choice of (non-constant) units. Furthermore, this new definition is
more sensitive to outliers with low a00 values.
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Figure E1. The angular power spectrum of the external potential, 〈〈C′�ρ

�
〉〉

(t), at four different lookback times (symbols). Harmonics coefficients were
normalized using equation (E2), halo by halo. 〈〈C′�ρ

�
〉〉 (t) is taken as the

mode of the lognormal function used to fit the C′�ρ

�
distribution. Bars stand

for 3σ errors. For a given �, the corresponding angular scale is π/�. The
power spectra maybe fitted by a generic model given by equation (E3) (solid
line). Unlike 〈〈C′�ρ

�
〉〉 (t), 〈〈C′�ρ

�
〉〉 (t) remains the same with time because of

a different normalization.

Still, the angular power spectrum 〈〈C′�ρ

� 〉〉 (t) of δ′
[�ρ ](Ω) is much

more regular than the one obtained from the previous definition.
Its overall amplitude remains constant over the last 8 Gyr, while its
shape seems to be less dominated by small-scale contributions. This
alternative power spectrum is well fitted by a single power law

〈〈C ′�ρ

� 〉〉(t) = 0.75�−1.15, (E3)

for the whole time range covered by the current measurements. This
constant shape suggests that harmonic coefficients scale like a00, i.e.
the mass flux. Such a scaling is not obvious, since a strongly clus-
tered �ρ field may coexist with a nil net flux (i.e. a00 ∼ 0). It also
implies that the evolution measured on the previous definition of the
power spectrum, 〈〈C�ρ

� 〉〉(t), is more related to the evolution of the
average flux (traced by a00) than to the modification of the fluctu-
ations amplitude (traced by the others a�m). Still, the evolution of
〈a00〉 spans over one magnitude, while the evolution of 〈〈C�ρ

� 〉〉(t)
spans over several order of magnitudes: this strongly suggests that
two different populations of haloes contribute to the two types of
power spectrum. In Fig. E2, the scatter plot of C40 and C′

40 as a func-
tion of a00 shows that the haloes which experience strong accretion
dominate the peak of the C′

40 distribution, while haloes with low
accretion dominate the peak of the C40. Furthermore, C40 does not
scale anymore like a00 as it drops below some level, providing hints
of resolution and isolated particles’ effects. To conclude, δ′

[�ρ ](Ω)
appears as better way to rescale the fluctuations’ amplitude since
it provides a more regular behaviour of the power spectrum, but it
is a more complex quantity to manipulate. Meanwhile, δ[�ρ ](Ω) is
probably the correct way to proceed but is clearly more sensitive to
resolution effects, which should be assessed with bigger simulations
in the future.

Since the behaviour of δ′
[�ρ ](Ω) is more regular than the previous

contrast definition, the angulo-temporal correlation function of the
flux density of mass has been computed from this new definition.
Since this definition is different from that used for the potential, we
restrict ourselves to a qualitative description. The correlations are
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Figure E2. Scatter plots of the power spectra C
�ρ

40 (top) and C′�ρ

40 (bottom)
as a function of a2

00. The four colours stand for different lookback times:
t = 7.8 (red), 5.6 (green), 4.0 (yellow) and 2.8 Gyr (blue). The monopole
a00 scales like the integrated flux of matter. The quantities C

�ρ

40 and C′�ρ

40
differ by the normalization applied to the harmonic coefficients a�m . See the
main text for more details.

Figure E3. The angulo-temporal correlation function, w′� (θ , �t) =
〈δ[� ](Ω, t)δ[� ](Ω + �Ω, t + �t)〉. Blue (respectively red) colours stand
for low (respectively high) values of the correlation. Isocontours are also
shown. Large angular scale isocontours (�Ω ∼ π/2) have large temporal
extent, due to the quadrupole dominance over the potential seen in the virial
sphere.
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given in Fig. E3. Clearly, the correlation is more peaked around �t
= 0 and more generally w�ρ is sharper than wψ . Note that no multi-
pole � has been removed during the computation of w�ρ , implying
that the quadrupole effect measured in the potential correlation is
simply not detected for this field. This strongly suggests a large-
scale ‘cosmic’ origin for the quadrupolar tidal field rather than an
artefact of the spherical intersection of an ellipse. Furthermore, the
correlation time is smaller than the one measured for the potential,
even compared to the correlation time of the potential without the
� = 2 component. This is coherent with the fact that density blobs
should be ‘sharper’ than potential blobs as they pass through the
sphere.

A P P E N D I X F : R E G E N E R AT I N G G A L AC T I C

T I M E L I N E S

Given the measurements in Sections 5 and 6, let us describe here
how to regenerate realizations of the history of the environment of
haloes, first for the tidal field only, and then for the full accretion
history.

F1 Regenerating tidal fields

Let us first focus on the generation of the potential tidal field gener-
ated by fly bys, hence neglecting the influence of the infall through
the virial sphere.5

First, we consider two time variables: T (the ‘slow time’) which
describes the secular evolution of the field and tf (the ‘fast time’)
which describes the temporal evolution around a given value of T,
hence describing high-frequency variations. We assume that cor-
relations exist only on small time-scales, while variations on the
‘slow time’ scale describe secular drifts. Therefore, the field’s re-
generation should include both correlations on short time-scales and
long-term evolution.

Let us call Ψ̂ = ψ̂m,ω(T ) the temporal (with respect to the fast
time) and angular Fourier transforms of the potential, at fixed slow
time, T. The probability distribution of Ψ̂, p(Ψ̂) is given by

p(Ψ̂) = exp
[ − 1

2 (Ψ̂ − 〈Ψ̂〉)� · C−1
�̂

· (Ψ̂ − 〈Ψ̂〉)]
(2π)1/2 det

1/2 |CΨ̂|
, (F1)

where the variance reads

CΨ(T ) = 〈(�̂m,ω − 〈�̂m,ω〉).(�̂m,ω − 〈�̂m,ω〉)〉, (F2)

and the mean field obeys

〈Ψ̂〉(T ) = 〈
�̂m,ω

〉
. (F3)

Since the potential is isotropic, 〈Ψ̂〉(T ) is essentially zero (see also
Fig. F1), while C� stands for the angular power spectrum described
in Section 6.1. Let us call {Ψ̂m,ω(Ti )}i�N , the set of sampled Ψ̂ a
fixed slow time, Ti . Relying on a linear interpolation between two
such realizations, the corresponding external potential reads in real
space

ψ e(t,Ω) =
∑

i

∑
m

∫
dω exp (ım · Ω + ıωt)Km

i (t, ω), (F4)

5 Note that this assumption is not coherent with the way the measurements
are carried, since it implies that the infalling material somehow disappears
after crossing R200.
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Figure F1. Probing the Gaussianity of the harmonic expansions a�m , de-
scribing the flux density of mass (top) and b�m , describing the potential
ψe (bottom). Units are arbitrary. Only the real part of the coefficients is
shown here, but the imaginary parts have similar distributions. Clearly, the
distributions are quasi-Gaussians.

where the kernel, Km
i (t, ω), reads

Km
i (t, ω) =

[
�̂m,ω(Ti+1)

t − Ti

Ti+1 − Ti
+ �̂m,ω(Ti )

Ti+1 − t
Ti+1 − Ti

]
× �(Ti+1 − t)�(t − Ti ), (F5)

recalling that �(x) is the Heaviside function.
To sum up, the computation of �̂m,ω following F1 and F3 ensures

that correlations on short periods are reproduced, while the inter-
polation procedure allows us to take into account the long-period
evolution of the field. This procedure can be repeated for an arbitrary
number of virtual tidal histories.

F2 Regenerating tidal fields and infall history

Let us assume briefly that the fields are stationary both in time and
angle, and that their statistics is Gaussian. As shown in Fig. F1, this
assumption is essentially valid for the expansions of the potential
and the flux density of mass. Let us call the 11-dimensional vector
Π(t) ≡ (�ρ , �ρv, �ρσσ , ψ e); and Π̂m,ω the temporal and angular
Fourier transforms of the fields. The joint probability of the field,
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p(Π̂m,ω), reads

p(Π̂m,ω) = exp
[ − 1

2 (Π̂ − 〈Π̂〉)� · C−1
�̂

· (Π̂ − 〈Π̂〉)]
(2π)11/2 det

1/2 |CΠ̂|
, (F6)

where

C� = [〈
(�̂i

m,ω − 〈�̂i
m,ω〉) · (�̂ j

m,ω − 〈
�̂ j

m,ω

〉)〉]
i, j�11

(F7)

and

〈Π̂〉 = [〈
�̂i

m,ω

〉]
i�11

. (F8)

Since these fields are mostly isotropic, their expansion coefficients
are nil on average. Hence, the quantity C� stands for the angular
power spectrum of the 11 fields. For, respectively, the potential and
the flux density of mass, its temporal evolution is described in Sec-
tions 6.1 and 6.2. These measured power spectra are sufficient to
generate environments restricted to the flux density of mass and the
potential. We emphasize that these two fields would not be coherent
if no cross-correlations is specified. These cross-correlations and
the power spectra for higher moments of the source are postponed
to Paper III.

Assuming the full knowledge of these 11 fields and their cross-
correlation, it is therefore straightforward to generate for each (m,
ω) a 11-dimensional vector which satisfies equation (F6), and re-
peat the draw for all modes (both ω and m). Inverse Fourier trans-
form yields �(t). Once �(t) is known, we can regenerate the whole
five-dimensional phase-space source as a function of time via equa-
tion (37). This process can also be repeated for an arbitrary number
of virtual halo histories. The assumption of stationarity in time can
be lifted following the same route as that sketched in Section F1
(see equation F5).

A P P E N D I X G : F RO M E X PA N S I O N

C O E F F I C I E N T S TO F L U X D E N S I T I E S

G1 From expansion coefficients to advected momentum

The phase-space distribution of advected momentum is given by

�ρv(Ω, v,Γ, t) ≡ se(Ω, v,Γ, t)v (G1)

=
∑

α,m,m′
cm

αm′ (t)gα(v)Ym(Ω)Ym′ (Γ)v, (G2)

where the velocity vector may be written as a function of spherical
harmonics

v = −v

√
2π

3

[ − Y ∗
1−1(Γ) + Y ∗

11(Γ)
]
eθ

−iv

√
2π

3

[
Y ∗

1−1(Γ) + Y ∗
11(Γ)

]
eφ

v

√
π

3
Y ∗

10(Γ)er. (G3)

Then, one can write

�ρv(Ω, t) ≡
∫

dvdΓv2se(Ω, v,Γ, t)v (G4)

=
∑

α,m,m′
[�ρv]m(t)Ym(Ω), (G5)

where

[�ρv]m(t) =
∑

α

(
3σ 2μα + μ3

α

)
Tm(t), (G6)

and

Tm(t) =
√

2π

3

[
cm

α,1,−1(t) − cm
α,1,1t

]
eθ

+ i

√
2π

3

[ − cm
α,1,−1(t) − cm

α,1,1t
]
eφ

+ 2

√
π

3
cm
α,1,0(t)er. (G7)

G2 From coefficients to advected velocity dispersion

The distribution of advected velocity dispersion is given by

�ρσi σ j (Ω, v,Γ, t) = se(Ω, v,Γ, t)[v− V(Ω, t)]I [v− V(Ω, t)] j ,

(G8)

where the subscripts i and j stand for r, θ , φ and

V i (Ω, t) ≡
∫

dv dΓv2se(Ω, v,Γ, t)vi∫
dv dΓv2se(Ω, v,Γ, t)

= �ρvi (Ω, t)
�ρ(Ω, t)

. (G9)

Using equations (G8) and (G9), we find

�ρσi σ j (Ω, t) + �ρvi (Ω, t)�ρv j (Ω, t)

�ρ(Ω, t)

=
∫

dvdΓv2se(Ω, v,Γ, t)viv j (G10)

=
∑

m

[q i j (t)]mYm(Ω). (G11)

The six independent elements of the symmetric tensor q(t) can be
computed from cm

αm′ (t) coefficients using equation (G3) and recalling
that∫

dΩY�1,m1 Y�2,m2 Y�3,m3 =
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

×
(

�1 �2 �3

0 0 0

)(
�1 �2 �3

m1 m2 m3

)
,

(G12)

where

(
�1 �2 �3

m1 m2 m3

)
= W �1,�2,�3

m1,m2,m3
is the Wigner 3j symbol. One

can find

[qrr (t)]m =
∑
αm′

Hm
αm′ (t)2W 11�′

000 W 11�′
00m′

[qrφ(t)]m =
∑
αm′

Hm
αm′ (t)i

√
2W 11�′

000

(
W 11�′

1−1m′ + W 11�′
11m′

)
[qrθ (t)]m =

∑
αm′

Hm
αm′ (t)

√
2W 11�′

000

(
W 11�′

1−1m′ − W 11�′
11m′

)
[qφφ(t)]m =

∑
αm′

Hm
αm′ (t)(−1)W 11�′

000

(
W 11�′

11m′ + 2W 11�′
1−1m′ + W 11�′

−1−1m′
)

[qφθ (t)]m =
∑
αm′

Hm
αm′ (t)iW 11�′

000

(
W 11�′

−1−1m′ − W 11�′
11m′

)
[qθθ (t)]m =

∑
αm′

Hm
αm′ (t)W 11�′

000

(
W 11�′

11m′ − W 11�′
−1−1m′ − 2W 11�′

1−1m′
)
,

(G13)

where Hm
αm′ (t) = √

4π(2�′ + 1)(6σ 2μ2
α + μ4

α)cm
αm′ (t).
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A P P E N D I X H : N OTAT I O N S

Table H1. A summary of the notations used throughout the paper.

Symbol Meaning

(r , v) Position and velocity
t, τ Lookback time variables
R200 Virial radius measured at z = 0
Vc Circular velocity measured at R200

F The phase-space DF of the halo
ψ The self-gravitating potential
ψe The external potential, induced by external perturbations
se The source function in phase space
�x The flux density of x
�ρ The flux density of mass
�ρv The flux density of momentum
�ρσσ The flux density of velocity dispersion
ψ [n](r ) 3D projection basis of the potential
φ[n](r ) 6D projection basis of the source term
a(t) Expansion coefficients of the potential/density response
b(t) Expansion coefficients of the external potential perturbation
c(t) Expansion coefficients of the source perturbation
Ω Angular position on the virial sphere (two angles)
Γ Angular orientation of the velocity vector on the virial sphere (two angles)
v Velocity’s amplitude
X̄ Angular average of X
X Temporal average of X
〈X〉 Statistical expectation (or average value) of X
〈〈X〉〉 Most probable value (or mode) of X
δ[X](Ω) Contrast density of X measured on the virial sphere
m = (�, m) Harmonic coefficients related to 0
m′ = (�′, m′) Harmonic coefficients related to Γ
a�,m (t) Harmonic expansion coefficients of δ[�ρ ]

b�,m (t) Harmonic expansion coefficients of δ[ψe]

C�(t) Angular power spectrum
T�(t, t + �t) Angular-temporal power spectrum
w(θ , t, t + �t) Angulo-temporal correlation function measured on the sphere for an angulo-temporal separation θ and �t
�M (t) Accretion rate measured at the virial radius (averaged over all directions)
ϑ(�1, t) PDF of the velocity’s incidence angle
b Impact parameter
ϕ(v, t) PDF of the velocity’s amplitude
℘(v, t) Joint PDF of the velocity’s incidence angle and amplitude

This paper has been typeset from a TEX/LATEX file prepared by the author.
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