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We show that a contracting universe which bounces due to quantum cosmological effects and connects
to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations
provided the perturbations are produced during an almost matter dominated era in the contraction phase.
This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both
the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum
(nS � 1> 0). Taking into account the spectral index constraint as well as the cosmic microwave
background normalization measure yields an equation of state that should be less than ! & 8� 10�4,
implying nS � 1�O�10�4�, and that the characteristic curvature scale of the Universe at the bounce is
L0 � 103‘Pl, a region where one expects that the Wheeler-DeWitt equation should be valid without being
spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between
the tensor-to-scalar ratio T=S and the scalar spectral index as T=S� 4:6� 10�2

��������������
nS � 1
p

, leading to
potentially measurable differences with inflationary predictions.

DOI: 10.1103/PhysRevD.75.023516 PACS numbers: 98.80.Cq

I. INTRODUCTION

When the theory of cosmological perturbations [1] is
applied to a background cosmological model and their
initial spectra can be justified in physical terms, as is the
case of inflationary and nonsingular models where the
horizon problem is solved, one obtains definite predictions
concerning the spectrum of primordial scalar and tensor
perturbations in this background, establishing the initial
conditions for structure formation and the angular power
spectrum of the anisotropies of the cosmic microwave
background (CMB) radiation. Since the release of the first
data obtained from observations of these anisotropies in
1992 [2], primordial cosmological models have been con-
fronted with new observational facts [3], bringing them
definitely out of the arena of speculations based almost
uniquely on theoretical and aesthetical arguments. In fact,
many interesting cosmological backgrounds have been
falsified since then [4], while the inflationary paradigm
[5] has, on the contrary, been widely confirmed and is
now accepted as part of the ‘‘standard’’ model of
cosmology.

Some of the primordial cosmological backgrounds pro-
posed in the literature are quantum cosmological models
which share the attractive properties of exhibiting neither
singularities nor horizons [6–8], leading the Universe
evolution through a bouncing phase due to quantum ef-
fects, and a contracting phase before the bounce. They
constitute an example of a bouncing model, a possibility

that has attracted the attention of many authors [9], without
the presence of any phantom field. These features of the
background introduce a new picture for the evolution of
cosmological perturbations: vacuum initial conditions may
now be imposed when the Universe was very big and
almost flat, and effects due to the contracting and bouncing
phases, which are not present in the standard background
cosmological model, may change the subsequent evolution
of perturbations in the expanding phase. Hence, it is quite
important to study the evolution of perturbations in these
quantum backgrounds to confront them with the data.

The present paper is the fourth of a series [10–12] where
the theory of cosmological perturbations is obtained and
simplified without assuming any dynamics satisfied by the
background. This is a necessary prerequisite if one wants to
study the propagation of perturbations on a quantized
background. The usual theory of cosmological perturba-
tions with their simple equations [1] relies essentially on
the assumptions that the background is described by pure
classical general relativity (GR), while the perturbations
thereof stem from quantum fluctuations. It is a semiclassi-
cal approach, where the background is classical and the
perturbations are quantized. A full quantum treatment of
both background and perturbations has already been con-
structed in Ref. [13], but rather complicated equations
were obtained, even at first order, due to the fact that the
background does not satisfy classical Einstein’s equations.
In Refs. [10,12], we have managed to put these compli-
cated equations in simple forms, very similar to the equa-
tions obtained in Ref. [1], through the implementation of
canonical transformations and redefinitions of the lapse
function without ever using the background classical equa-
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tions. These expressions happen to become identical to
those of Ref. [1] when the background behaves as a pre-
determined function of time, which is perfectly consistent
with the idea of quantization if we work with an ontolog-
ical interpretation of quantum mechanics [14]. In Ref. [11],
these results have been applied to obtain the possible power
spectra of tensor perturbations in different quantum cos-
mological models using a hydrodynamical description.
The aim of this paper is to apply the results of Ref. [12]
to obtain the power spectra of scalar perturbations in such
quantum models and confront the results with observatio-
nal data [3].

The paper is organized as follows. In Sec. II we sum-
marize the results of Refs. [12] obtaining the simple equa-
tions which govern the dynamics of quantum perturbations
in the quantum backgrounds of Refs. [6,8]. In Sec. III we
obtain the spectral index for long wavelengths of scalar
perturbations in these quantum backgrounds, and in
Sec. IV we confirm these results numerically, also obtain-
ing their amplitude and constraining the free parameters of
the theory with observational data. For an equation of state
! close to pure dust (0<!� 1), we obtained a slightly
blue spectrum, in agreement with Refs. [15,16], and pre-
dict a tensor-to-scalar ratio scaling as the square root of the
spectral index. Such a prediction should potentially permit
to experimentally distinguish between this category of
models from those in which the scale invariant perturbation
stems from an inflationary epoch.

We end in Sec. V with conclusions and discussions.

II. QUANTIZATION OF THE BACKGROUND AND
PERTURBATIONS

The action we shall begin with is that of GR with a
perfect fluid, the latter being described as in Ref. [1],1 i.e.

 S � SGR � Sfluid

� �
1

6‘2
Pl

Z �������
�g
p

Rd4x�
Z �������
�g
p

�d4x; (1)

where ‘Pl � �8�GN=3�1=2 is the Planck length in natural
units (@ � c � 1) and � is the perfect fluid energy density
whose pressure p is provided by the relation p � !�, !
being a nonvanishing constant.

Let the geometry of spacetime be given by

 g�� � g�0��� � h��; (2)

where g�0��� represents a homogeneous and isotropic cos-
mological background

 d s2 � g�0���dx�dx� � N2�t�dt2 � a2�t��ijdx
idxj; (3)

where we are restricted to a flat spatial metric, and the h��

represents linear scalar perturbations around it which we
decompose into

 h00 � 2N2�; h0i � �NaB;i;

hij � 2a2� �ij � E;ij�:
(4)

Substituting Eqs. (3) and (4) into the Einstein-Hilbert
action (1), performing Legendre and canonical transforma-
tions, and redefining N with terms which do not alter the
equations of motion up to first order; all this without ever
using the background equations of motion, the
Hamiltonian up to second order is simplified to (see
Ref. [12] for details)

 H � N	H�0�0 �H
�2�
0 
 ��NPN �

Z
d3x�� 

�
Z

d3x����; (5)

where

 H�0�0 � �
‘2

PlP
2
a

4aV
�
PT
a3! ; (6)

and

 H�2�0 �
1

2a3

Z
d3x�2 �

a!
2

Z
d3xv;iv;i: (7)

The quantities N,�, �N , and �� play the role of Lagrange

multipliers of the constraints H�0�0 �H
�2�
0 � 0, � � 0,

PN � 0, and �� � 0, respectively. The momenta Pa,
��, � , PN , and PT are conjugate, respectively, to a, �,
 ,N, T, this last variable playing the role of time. Note that
in going from Eq. (4) to Eq. (5), the perturbation � has
been rescaled as in Ref. [12].

The variable v is related with the gauge invariant
Bardeen potential � i.e. � in the longitudinal gauge [1]
(see Ref. [12]) through

 �;i
;i � �

3‘2
Pl

���������������������
�!� 1��0

p
2
����
!
p a

�
v
a

�
0

; (8)

which coincides with Eq. (12.8) of Ref. [1] relating v and
�

 �;i
;i � �

���
3

2

s
‘PlH�

c2
s

�
v
z

�
0
; (9)

where

 � � 1�
H 0

H 2
; z �

a
cs

����
�
p

; (10)

and cs (c2
s � dp0=d�0 � p00=�

0
0) is the velocity at which

density perturbations propagate, and when the classical
equations of motion, that can be recast in the form

1One can also use the formalism due to Schutz [17], obtaining
the same results.
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 �0 � p0 � �0�1�!� �
2H 2�

3‘2
Pla

2 ;

are used.
The above quantities have been redefined in order to be

dimensionless. For instance, the physical scale factor aphys

can be obtained from the dimensionless a present in (6)
through aphys � ‘Pla=

����
V
p

, where V is the comoving vol-
ume of the background spacelike hypersurfaces, which we
suppose to be compact. The constraint H�0�0 �H

�2�
0 is the

one which generates the dynamics, yielding the correct
Einstein equations both at zeroth and first order in the
perturbations, as can be checked explicitly. The others
imply that N, �, and  are not relevant. The unique
perturbed degree of freedom is v, as obtained in Ref. [1].
We would like to emphasize again that in order to obtain
the above results, no assumption has been made about the
background dynamics: Hamiltonian (5) is ready to be
applied in the quantization procedure.

In the Dirac quantization procedure, the first class con-
straints must annihilate the wave functional
�	N; a;��xi�;  �xi�; v�xi�; T
, yielding

 

@
@N

� �
�
��

� �
�
� 

� � H� � 0: (11)

The first three equations impose that the wave functional
does not depend on N, �, and  : as mentioned above, N
and � are, respectively, the homogeneous and inhomoge-
neous parts of the total lapse function, which are just
Lagrange multipliers of constraints, and  has been sub-
stituted by v�xi�, the unique degree of freedom of scalar
perturbations, as expected.

As PT appears linearly in H, and making the gauge
choice N � a3!, one can interpret the T variable as a
time parameter. Hence, the equation

 H� � 0 (12)

assumes the Schrödinger form

 i
@
@T

� �
1

4

�
a�3!�1�=2 @

@a

�
a�3!�1�=2 @

@a

��
��

a3!�1

2

�
Z

d3x
�2

�v2 ��
a3!�1!

2

Z
d3xv;iv;i�;

(13)

where we have chosen the factor ordering in a in order to
yield a covariant Schrödinger equation under field
redefinitions.

If one makes the ansatz

 �	a; v; T
 � ��0��a; T���2�	a; v; T
; (14)

where ��0��a; T� satisfies the equation

 i
@
@T

��0��a; T� �
a�3!�1�=2

4

@
@a

�
a�3!�1�=2 @

@a

�
��0��a; T�;

(15)

then we obtain for ��2�	a; v; T
 the equation

 i
@
@T

��2��a; v; T� � �
a�3!�1�

2

Z
d3x

�2

�v2 ��2��a; v; T�

�
!a�3!�1�

2

Z
d3xv;iv;i��2��a; v; T�:

(16)

Terms involving ��2��a; v; T� can be neglected in Eq. (15),
either through a judicious choice of the a dependence of
��2� [11], or because quantum perturbations initiated in a
vacuum quantum state should not contribute to it [13]. In
another perspective, using the Bohmian approach [14], one
can write �	a; v; T
 � ��0��a; T���2�	v; T
 and consider
a�T� appearing in the equation for ��2�	v; T
 as a pre-
scribed function of time, the quantum Bohmian trajectory,
obtained from the zeroth order equation for ��0��a; T�.

Going on with the ontological Bohm-de Broglie inter-
pretation of quantum mechanics, where quantum trajecto-
ries can be defined, Eq. (16) can be further simplified if one
uses Eq. (15) to obtain background quantum Bohmian
trajectories a�T� as in Refs. [6–8]. This can be done as
follows: we change variables to

 � � 2
3�1�!�

�1a3�1�!�=2;

obtaining the simple equation

 i
@��0��a; T�

@T
�

1

4

@2��0��a; T�

@�2 : (17)

This is just the time reversed Schrödinger equation for a
one-dimensional free particle constrained to the positive
axis. As a and � are positive, solutions which have unitary
evolution must satisfy the condition

 �?
�0�

@��0�
@�

���0�
@�?

�0�

@�

����������0
� 0 (18)

(see Ref. [8] for details). We will choose the initial nor-
malized wave function

 ��init�
�0� ��� �

�
8

T0�

�
1=4

exp
�
�
�2

T0

�
; (19)

where T0 is an arbitrary constant. The Gaussian ��init�
�0�

satisfies condition (18).
Using the propagator procedure of Refs. [6,8], we obtain

the wave solution for all times in terms of a:
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��0��a; T� �
�

8T0

��T2 � T2
0�

�
1=4

exp
�

�4T0a3�1�!�

9�T2 � T2
0��1�!�

2

�

� exp
�
�i
�

4Ta3�1�!�

9�T2 � T2
0��1�!�

2

�
1

2
arctan

�
T0

T

�
�
�
4

��
: (20)

Because of the chosen factor ordering, the probability
density 	�a; T� has a nontrivial measure and it is given by
	�a; T� � a�1�3!�=2j��0��a; T�j2. Its continuity equation
coming from Eq. (17) reads

 

@	
@T
�

@
@a

�
a�3!�1�

2

@S
@a
	
�
� 0; (21)

which implies in the Bohm interpretation that

 _a � �
a�3!�1�

2

@S
@a
; (22)

in accordance with the classical relations _a � fa;Hg �
�a�3!�1�Pa=2 and Pa � @S=@a.

Inserting the phase of (20) into Eq. (22), we obtain the
Bohmian quantum trajectory for the scale factor:

 a�T� � a0

�
1�

�
T
T0

�
2
�

1=	3�1�!�

: (23)

Note that this solution has no singularities and tends to the
classical solution when T ! 1. Remember that we are
in the gauge N � a3!, and T is related to conformal time
through

 NdT � ad
) d
 � 	a�T�
3!�1dT: (24)

The solution (23) can be obtained for other initial wave
functions (see Ref. [8]).

The Bohmian quantum trajectory a�T� can be used in
Eq. (16). Indeed, since one can view a�T� as a function of
T, it is possible to implement the time dependent canonical
transformation generated by the unitary operator

 U � exp
�
i
�Z

d3x
_av2

2a

��
� (25)

 exp
�
i
�Z

d3x
�
v�� �v

2

�
ln
�

1

a

���
: (26)

As a�T� is a given quantum trajectory coming from
Eqs. (17) and (25), it must be viewed as the generator of
a time dependent canonical transformation to Eq. (17). It
yields, in terms of conformal time, the equation for
��2�	v; a�
�; 



 i
@��2�
@


�
Z

d3x
�
�

1

2

�2

�v2 �
!
2
v;iv;i �

a00

2a
v2

�
��2�:

(27)

This is the most simple form of the Schrödinger equation
which governs scalar perturbations in a quantum minisu-
perspace model with fluid matter source. The correspond-
ing time evolution equation for the operator v in the
Heisenberg picture is given by

 v00 �!v;i;i �
a00

a
v � 0; (28)

where a prime means derivative with respect to conformal
time. In terms of the normal modes vk, the above equation
reads

 v00k �
�
!k2 �

a00

a

�
vk � 0: (29)

These equations have the same form as the equations for
scalar perturbations obtained in Ref. [1]. This is quite
natural since for a single fluid with constant equation of
state !, the pump function z00=z obtained in Ref. [1] is
exactly equal to a00=a obtained here. The difference is that
the function a�
� is no longer a classical solution of the
background equations but a quantum Bohmian trajectory
of the quantized background, which may lead to different
power spectra.

III. SPECTRUM OF SCALAR PERTURBATIONS IN
QUANTUM COSMOLOGICAL MODELS

Having obtained in the previous section the propagation
equation for the full quantum scalar modes, namely,
Eq. (29), in the Bohmian picture with the scale factor
assuming the form (23), it is our goal now to solve this
equation in order to obtain the scalar perturbation power
spectrum as predicted by such models. In this section we
obtain the analytical result for long wavelength perturba-
tions through a matching procedure, while in the following
we confirm our current findings by getting numerical
solutions.

We shall begin with the asymptotic behaviors. When
jTj � jT0j, far from the bounce, one can write Eq. (29) as

 v00 �
�
!k2 �

2�3!� 1�

�1� 3!�2
2

�
� � 0; (30)

whose solution is

 v �
����


p
	c1�k�H

�1�
� � �k
� � c2�k�H

�2�
� � �k
�
; (31)

with

 � �
3�1�!�
2�3!� 1�

;

c1 and c2 being two constants depending on the wave-
length, H�1;2� being Hankel functions, and �k �

����
!
p

k.
This solution applies asymptotically, where one can

impose vacuum initial conditions as in [1]
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 vini �
ei

�k
���
�k
p ; (32)

which implies that

 c1 � 0 and c2 � ‘Pl

�������
3�
2

s
e�i��=2�����1=2��:

The solution can also be expanded in powers of k2

according to the formal solution [1]
 

v
a
’ A1�k�

�
1�!k2

Z t d �


a2� �
�

Z �

a2� ��
�d ��


�
� A2�k�

�

�Z 
 d �


a2 �!k
2
Z 
 d �


a2

Z �

a2d ��


Z ��
 d ���


a2

�
; (33)

up to order O�kj�4� terms. In Eq. (33), the coefficients A1

and A2 are two constants depending only on the wave
number k through the initial conditions. Although this
form is particularly valid as long as !k2 � a00=a, i.e.
when the mode is below its potential, Eq. (33) should
formally apply for all times. In the matching region!k2 �
a00=a, the O�k2� terms may give contributions to the am-
plitude, but they do not alter the k-dependence of the power
spectrum.

For the solution (23), the leading order of the solution
(33) reads
 

v
a
� A1 � A2T0a

3�!�1�
0

�
arctanx�

�
2

�

� A1 � A2T0a
3�!�1�
0

1

x
; (34)

where

 x �
T
T0
:

In the last step we have taken the limit x! �1, and the
constant �=2 was introduced in order for A1 to represent
the constant mode when it enters the potential.

Propagating this solution to the other side of the bounce,
in the expanding epoch, i.e. the limit for x! �1, yields

 

v
a
� A1 �

�
��

1

x

�
a3�!�1�

0 T0A2

� �A1 � �a
3�!�1�
0 T0A2� �

1

x
a3�!�1�

0 T0A2: (35)

Note that there is a mixing in the constant part of the mode

when it passes through the bounce. Hence, in these types of
bouncing models, the bounce has important consequences
for the final power spectrum.

In order to find the k-dependence of A1 and A2, we match
v and v0 in Eqs. (31) and (34), obtaining, to leading order,
 

A1 �

�
3!� 1

3��!� 1�
~C� a3!�1

0 T0� ~D
�� �k
k0

�
3�1�!�=	2�3!�1�


;

(36)

 

A2 � �

�
2a1�3!

0

3��1�!�T0

~C� � ~D
�� �k
k0

�
3�!�1�=	2�3!�1�


; (37)

from which stem the spectral behaviors

 A1 / k
3�1�!�=	2�3!�1�
; A2 / k

3�!�1�=	2�3!�1�
; (38)

with

 � �
�

9�1�!�2

2j1� 3!j

�
�1=�1�3!�

;

� �
�

9�1�!�2

2j1� 3!j

�
�1�3!�=	2�1�3!�


;

~C �
�����
T0

p
a�3!�1�=2

0 c2

����������
�k
M

q
H�2�� � �k
M�;

(39)

and
 

~D � a�1�3!�=2
0 T�1=2

0

c2

2

8<:H
�2�
� � �k
M�����������

�k
M

q �
����������
�k
M

q
	H�2���1�

�k
M�

�H�2���1�
�k
M�


9=;; (40)

with

 

�k
M �

���������������������
2j1� 3!j

p
1� 3!

and

 k�1
0 � T0a

3!�1
0 : (41)

The coefficients A1 and A2 each contain a power law
behavior in k. Because 0<!< 1, the power in A2

[Eq. (37)] is negative definite and that in A1 [Eq. (36)] is
positive definite. Therefore, A2 is the dominant mode,
while A1 provides the subdominant mode.

The relation between the Bardeen potential � and v is
given by Eq. (8). Using Eqs. (23), (24), and (33), in order to
change variables to x, Eq. (8) leads to

 

�a�1�3!�=2 /

�
v
a

�
0

� �!k2 A1�k�

a2

Z x
T0a

1�3!� �x�d�x�
A2�k�

a2

�
1�!k2

Z x
d�xa1�3!

Z �x a3�!�1�
0 T2

0

�1� ��x2�
d��x
�
�O�k4�

’ �!k2 A1�k�

a2

Z x
T0a

1�3!
0 �1� �x2��1�3!�=	3�1�!�
d�x

�
A2�k�

a2

�
1�!k2T2

0a
2�3!�1�
0 �

Z x
d�x�1� �x2��1�3!�=	3�1�!�


�
arctan �x�

�
2

��
; (42)
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where the constant �=2 was introduced when performing
the last integral in order for A1 to represent the constant
mode at large negative values of x when vk is entering the
potential, as before. At large positive values of x, when vk
is leaving the potential and x / 
3�1�!�=�1�3!�, the constant
mode of �, like v, mixes A1 with A2. In this region, taking
into account that A2 dominates over A1, we obtain:

 � / k3�!�1�=	2�3!�1�


�
const:�

1


�5�3!�=�1�3!�

�
: (43)

The power spectrum

 P � �
2k3

�2 j�j
2; (44)

then reads

 P � / k
nS�1; (45)

and we get

 nS � 1�
12!

1� 3!
: (46)

For gravitational waves (see Ref. [11] for details), the
equation for the modes � � h=a reads

 �00 �
�
k2 �

a00

a

�
� � 0; (47)

yielding the power spectrum for long wavelengths:

 P h �
2k3

�2

���������a
��������2
: (48)

In Ref. [11], we have obtained

 P h / k
nT ; (49)

with, as for the scalar modes,

 nT �
12!

1� 3!
: (50)

Note that in the limit !! 0 (dust) we obtain a scale
invariant spectrum for both tensor and scalar perturbations.
This result will be confirmed in the next section through
numerical calculations which will also give the amplitudes.
However, it is not necessary that the fluid that dominates
during the bounce be dust. The dependencies on k of A1

and A2 are obtained far from the bounce, and they should
not change in a transition, say, from matter to radiation
domination in the contraction phase, or during the bounce.
The effect of the bounce is essentially to mix these two
coefficients in order for the constant mode to acquire the
scale invariant piece. Hence, the bounce may be dominated
by another fluid, like radiation. If while entering the po-
tential the fluid that dominates is dustlike, then the spec-
trum should be almost scale invariant. Note also that since
we assume an ordinary matter fluid, the equation of state is
positive definite, being, in the most pressureless case,

obtained as a result of the quantum nonvanishing mean
square velocity. Thus, we do expect a blue spectrum.

IV. NUMERICAL RESULTS

In this section we will confirm the spectral indices of
scalar perturbations obtained above, and obtain the ampli-
tude of the scale invariant mode. The dynamical mode
equation is expressible in terms of the function S �
a�1=2��1�3!�v=

�����
T0

p
(the constant

�����
T0

p
being introduced in

order for S to be dimensionless), namely [11]

 

�S�
�

~k2�1� x2�2�3!�1�=	3�1�!�
 �
1

�1� x2�2

�
S � 0;

(51)

with, in this latter case, x � T=T0 and ~k � cskT0=a
1�3!
0 �

�k=k0. We can apply the vacuum initial conditions

 vini �
eicsk
�������
csk
p ; (52)

with the sound velocity cs �
����
!
p

a constant. It is clear here
that one must insist upon not having ! � 0 in order to be
able to put these initial conditions. Again, anyway, the
sound velocity, even in a matter dominated phase, is not
expected to be vanishing identically. The functions S�x�
and v�x� are plotted versus the rescaled time coordinate x
in Fig. 1.

Defining

 L0 � T0a
3!
0 ; (53)

the curvature scale at the bounce (the characteristic bounce
length scale), namely, L0 / 1=

������
R0

p
where R0 is the scalar

curvature at the bounce, from which one can write

 

~k � cs
k
a0
L0 � cs

L0

bounce
phys

; (54)

one obtains the scalar perturbation density spectrum as a
function of time through

 P � �
2�!� 1�

�2 ����
!
p
�1�!�2 ~k

jf�x�j2
�
‘Pl

L0

�
2
; (55)

where
 

f�x� � �1� x2���1�3!�=	3�1�!�
 dS
dx

� x�1� x2��4=	3�1�!�
S; (56)

while the tensor power spectrum is

 P h �
2~k3

�2

j �vj2

1� x2

�
‘Pl

L0

�
2
; (57)

in which the rescaled function �v, defined through [11]

 �v �
a�1=2��1�3!��
‘Pl

�����
T0

p ; (58)
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satisfies the same dynamical equation (51) with cs ! 1,
with � subject to initial condition

 �ini �

���
3

k

s
‘Ple

�ik
: (59)

From the above defined spectra, one reads the ampli-
tudes

 A2
S �

4
25P � (60)

and

 A2
T �

1
100P h; (61)

where we assume the classical relation between � and the
curvature perturbation � through

 � �
5� 3!

3�1�!�
�! P � �

�
5� 3!

3�1�!�

�
2
P�; (62)

to obtain the observed spectrum. Since both spectra are
identical power laws, and indeed almost scale invariant
power laws, the tensor-to-scalar (T=S) ratio, defined by the
CMB multipoles C‘ at ‘ � 10 as

 

T
S
�
C�T�10

C�S�10

� F ��; � � ��
A2

T

A2
S

; (63)

can easily be computed (see, e.g., [18] and references
therein). In Eq. (63), the function F depends entirely on
the background quantities such as the total energy density
relative to the critical density, i.e. �, among others. It does
not depend on primordial physics parameters, supposed to
be included in the amplitudes of the spectra; in other
words, it propagates the predicted primordial spectra
through the different epochs (radiation, matter, and cos-
mological constant dominated) whose characteristics are
fixed by observational data. For Eq. (63) to hold true, both

scalar and tensor spectra ought to be power laws, as they
are in our model.

Equation (63) permits to compare primordial cosmo-
logical effects such as the ones derived here with current
observations. This means that our model must somehow be
connected with the observed universe, which we take to be
the so-called concordance model (the one having a cosmo-
logical constant accounting for �� ’ 0:7 of the total den-
sity). The relevant value of the function F can be obtained
from the slow-roll result: in this case, one finds [18]
A2

T=A
2
S � 16�, with � the usual slow-roll parameter,

whereas the consistency equation demands that
C�T�10 =C

�S�
10 ’ 10�. For the concordance model, one thus

has F � 10=16 ’ 0:62. This is the value we shall use to
compare our models with observations.

We have solved these equations numerically, as shown
in Figs. 2 and 3, and obtained the values of the free
parameters which best fit the data. First, we assume a
spectral index limited by nS & 1:01, an admittedly con-
servative constraint, which, given Eq. (46), provides the
already severe bound on the equation of state ! & 8�
10�4. Constraining A2

S � 2:08� 10�10 then implies the
characteristic bounce length scale L0 to be

 L0 * 1500‘Pl;

a value consistent with our use of quantum cosmology: it is
indeed in the kind of distance scale ranges that one expects
quantum effects to be of some relevance, while at the same
time the Wheeler-DeWitt equation to be valid without
being possibly spoiled by some discrete nature of geometry
coming from loop quantum gravity, and/or stringy effects.
The tensor-to-scalar ratio is, in this case, much lower than
the current WMAP3 constraint [19] T=S < 0:21 as we
obtained T=S ’ 5:2� 10�3. It is interesting to note that
when the T=S constraint is almost reached, this gives a
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FIG. 1 (color online). Time evolution of the scalar mode function for the equation of state ! � 0:1 in the one-fluid model of the
bounce. The left panel shows the full time evolution which was computed, i.e., the function S�x�, while the right panel shows v�x�
itself, both plots having ~k � 10�3. For x < 0, there are oscillations only in the real and imaginary parts of the mode, so the amplitude
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numerical estimate for ! which is ! ’ 8:5� 10�2, and
hence a spectral index nS ’ 1:81, i.e. much larger than the
current constraint. In this case also, one finds L0 ’ 350‘Pl.
Hence, it is not necessary to explore these possibilities.

An extremely important point in all models of primor-
dial perturbations is that of comparison with other models.
In particular, one wants to devise tests allowing to dis-
criminate among them. One such test, often discussed in
the literature for inflation, is the relation between tensor-to-
scalar ratio T=S and the spectral index. Almost all infla-

tionary models predict that this relation should be linear,
and the coefficient is very well known. B-modes in the
CMB will then provide a very stringent test as they will
have the ability to provide a measure of T=S up to values of
order 10�3 [20].

Simply plugging Eqs. (53) and (55) into (63) yields, for
almost scale invariant spectra (!� 1), and assuming the
dimensionless functions f�x� and �v�x� of Eqs. (56) and (58)
to be essentially independent of !, one immediately ob-
tains that T=S /

����
w
p

. Comparing with Eq. (46), this leads
to a completely different consistency relation: T=S /��������������
nS � 1
p

. The coefficient is however not so easily obtained
and one must resort to numerics to find it. Normalizing to
CMB data for the spectrum amplitude, we get

 

T
S
’ 4:637� 10�2

��������������
nS � 1

p
; (64)

as illustrated on Fig. 4. It is amusing to note that the values
obtained are not so low, even for spectral indices very close
to scale invariance. This is due to the fact that the square
root helps limiting the decrease.

Let us briefly discuss the validity of the model during the
bounce epoch. It is indeed not enough that the Wheeler-
DeWitt equation applies in the regime one considers, but
we should also make clear that the backreaction is not
going to dominate at the bounce. That would for instance
be the case if the Bardeen potential grows large enough. In
other words, we must ensure that j��x�j � 1 at all times, a
condition which, in view of Fig. 2, might not be easily
satisfied. Indeed, in a way almost independent of !, one
finds that the spectrum P�, once normalized to the CMB
for late times, is of order unity (depending only very little
on the values of k and !) at its maximum, close to the
bounce. This is not so much of a problem since what needs
to be small is the Bardeen potential itself, and its Fourier
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mode reads

 �k �
f�x�
~k2

���������������������
!�!� 1�

p
1�!

�
‘PlL

1=2
0

a3=2
0

�
; (65)

having an explicit dependence in a0. As this latter parame-
ter is not constrained [in fact, it must be such that large
physical scales now must be much greater than L0 at the
bounce in order for our approximation ~k� 1 to be valid all
along, see Eq. (54)], one can assume it is sufficiently large
to yield �k � 1 at all time and for all ~k of cosmological
relevance. Note that a0 could in principle be fixed by the
normalization of the scale factor at the bounce in terms of,
say, the Hubble constant today, to fix the scales  � a=k to
be in the observable range now. This will be done when we
examine in a future publication a more elaborated model
containing not only dust but also radiation, as discussed in
the end of Sec. III, in such a way that it can be connected to
a radiation dominated expansion phase before
nucleosynthesis.

V. CONCLUSIONS

Using quantum cosmology and the Bohm interpretation,
thanks to which one can define trajectories and a scale
factor evolution with time, we have obtained a simple
model whose scalar and tensor perturbations can be made
arbitrary close to scale invariance. The model consists of a

classically contracting single dust perfect fluid in which the
big crunch is avoided through quantum effects in the
geometry described by the Wheeler-DeWitt equation, turn-
ing the Universe evolution to an expanding phase, which
soon becomes classical again. This transition is smoothly
described by a Bohmian quantum trajectory containing a
bounce. Perturbations begin in a vacuum state during the
contraction epoch, when the Universe was very large and
almost flat, and are subsequently evolved in a fully quan-
tum way through its all history. Hence, we have presented a
nonsingular model without horizons where perturbations
of quantum mechanical origin can be described all along
and generate structures in the Universe. Note that if one
had used other interpretations of quantum mechanics in-
stead of Bohm’s, e.g. the many world, where the notion of
trajectories is not immediate, the implementation of the
calculations for the perturbations could have been much
more involved. However, as the mean value of the scale
factor, which can be defined in all interpretations, has the
same time dependence as the individual Bohmian trajecto-
ries we considered, we expect that the final result will not
be different. Indeed, in all the fields in which they are
testable, all the known interpretations of quantum mechan-
ics, including Bohm’s, always led to exactly the same
experimental predictions and results. One is thus tempted
to conclude that the use of the Bohm interpretation in these
calculations is essentially a matter of convenience.

In order to match the CMB normalization, we find that
the characteristic length at the bounce must be of the order
of a few thousands Planck lengths, thereby making the
model fully consistent. Indeed, we would like to emphasize
that one would expect precisely the Wheeler-DeWitt equa-
tion to be valid and important in this regime (a sufficiently
low scale for quantum gravity effects is important, but not
so low in order to not be affected by string and/or loop
quantum gravity effects). Moreover, it predicts a slightly
blue spectrum, which may be seen as a drawback of the
model, although this point still deserves further experimen-
tal clarification, say by the Planck mission. However, in
more realistic and elaborated models, other fluids must be
considered, like radiation and dark energy. It seems that
adding these fluids will not spoil our results as long as only
a single fluid dominates at the bounce, and that dust
dominates when the scales of cosmological interest be-
come greater than the curvature scale in the classical con-
tracting phase. If in that period dark energy has some effect
imposing a slightly negative effective w, then one could
even obtain a slightly red spectrum instead of the blue one
derived here. Besides, ironically coming back to one of the
original motivations for inflation [21], we remark on Fig. 3
that the gravitational potential shows a net increase for
large values of ~k after the bounce has taken place. That
could initiate nonlinear growth of the primordial perturba-
tions at very small scales (provided the values of T0 and a0

are chosen conveniently). In turn, these would lead to the
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formation of a primordial black hole whose decay could
initiate a radiation dominated phase, as needed. These
elaborations should also consider other classical cosmo-
logical puzzles, namely, the flatness and remnants (e.g.
monopoles) problems, and baryogenesis. These issues
will be considered in future works.

Finally, we have obtained that once the constraint on the
scalar index is taken into account, the tensor-to-scalar ratio
which follows is predicted to be small and varying with the
square root of the spectral index. Thus, this category of
model is falsifiable and comparable with inflationary pre-
dictions for which the relation is linear.
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