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ABSTRACT
The principles of measuring the shapes of galaxies by a model-fitting approach are discussed

in the context of shape measurement for surveys of weak gravitational lensing. It is argued

that such an approach should be optimal, allowing measurement with maximal signal-to-noise

ratio, coupled with estimation of measurement errors. The distinction between likelihood-

based and Bayesian methods is discussed. Systematic biases in the Bayesian method may be

evaluated as part of the fitting process, and overall such an approach should yield unbiased shear

estimation without requiring external calibration from simulations. The principal disadvantage

of model fitting for large surveys is the computational time required, but here an algorithm is

presented that enables large surveys to be analysed in feasible computation times. The method

and algorithm is tested on simulated galaxies from the Shear TEsting Programme (STEP).

Key words: gravitational lensing – methods: data analysis – methods: statistical – techniques:

miscellaneous.

1 I N T RO D U C T I O N

Measurement of the effects of weak gravitational lensing has be-

come a key technique in the arsenal of methods used to measure

the distribution of matter, both associated with individual objects

such as galaxy clusters or individual galaxies, and on large scales

through the measurement of ‘cosmic shear’. A key advantage of

such measurement is that it directly measures the total matter distri-

bution, generally dominated by the dark matter component, which

may then be related directly to theory without needing to understand

the uncertain effects of the physics of baryons in galaxies, provided

one avoids the highly non-linear regime (White 2004; Zhan & Knox

2004; Jing et al. 2006). Through the use of photometric redshifts,

3D analyses (Hu 1999; Bacon & Taylor 2003; Heavens 2003) can be

used to further measure both the cosmological growth of structure

and the values of cosmological parameters (Heavens, Kitching &

Taylor 2006; Kitching et al. 2007; Massey et al. 2007a; Taylor et al.

2007). Until recently such surveys have been of limited size, but

even so the results obtained provided useful constraints on cosmo-

logical parameters and an important test of the values deduced from

other methods. One long-standing puzzle has been that the range of

values for the power-spectrum normalization parameter σ 8 found by

weak lensing analyses has tended to be higher than found by some

other methods (see the discussion in Spergel et al. 2007), an effect

�E-mail: l.miller1@physics.oxford.ac.uk

†The Scottish Universities Physics Alliance.

that persists at some level in the latest studies. For the best-fitting

3-yr Wilkinson Microwave Anisotropy Probe (WMAP) value of the

matter density parameter �0 = 0.24, the 3D analysis of Massey

et al. (2007b) finds the value σ 8 = 0.96+.09
−.07 and the 2D analysis of

Benjamin et al. (2007) finds σ 8 = 0.84 ± 0.07. These results can

be compared with the 3-yr WMAP value σ 8 = 0.76 ± 0.05 (Spergel

et al. 2007).

Measurement of the effect of weak gravitational lensing requires

the statistical analysis of large samples and is sensitive to any sys-

tematic errors in measured quantities. Possible systematic errors in

lensing signals introduced by uncertainty in photometric redshifts

has been discussed by Edmondson, Miller & Wolf (2006). Another

fundamental concern with the method is whether the shapes of galax-

ies, which are used to deduce the signal, may be measured in an

unbiased manner. The problem of shape measurement in optical

imaging data is that galaxy images are convolved with a possibly

varying point spread function (PSF) which must be accurately cor-

rected for when deducing galaxy shape. Convolution with the PSF

tends to make galaxy images appear rounder (for reasonably circu-

larly symmetric PSFs) whereas addition of photon shot noise has

the systematic effect of tending to make round galaxies appear less

round. These two observational effects thus tend to work in oppo-

site senses, and are independent of each other, so that both accurate

PSF correction and calibration to remove the effects of noise on

shape are required. Following the seminal paper by Kaiser, Squires

& Broadhurst (1995) there have been many suggestions for possi-

ble measurement processes, which are discussed by Heymans et al.

(2006) and Massey et al. (2007b) as part of the ‘Shear TEsting
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Programme’ (STEP). Those papers discuss 18 published methods

for shear measurement. The existence of so many suggested meth-

ods implies that no consensus has yet emerged on the best way to

measure weak lensing signals, and therefore naturally leads us to

ask whether there might in fact be one method that may be regarded

as being optimal. In this paper we investigate whether a model-

fitting approach to galaxy shape measurement can both achieve this

aim of optimal measurement and also be constructed such that it is

computationally feasible for large surveys.

In the following we shall suppose that galaxies may be character-

ized by a measurement of their ellipticity (e) and that a weak lensing

signal, such as cosmic shear, may be inferred either from the mean

ellipticity or from some form of cross-correlation of the ellipticities

of different galaxies.

We can stipulate a number of requirements that a weak lensing

measurement technique should satisfy.

(i) Optimal measurement of lensing signal, in the sense of max-

imum signal-to-noise ratio (S/N).

(ii) Unbiased measurement of lensing signal.

(iii) Ability to calculate the statistical uncertainties of the mea-

surement.

A standard approach that in principle allows us to meet these criteria

is that of model fitting, which is the method discussed in this pa-

per. We first discuss some general principles, including whether we

should use a frequentist or Bayesian approach and how shear may

be measured in an unbiased way from a Bayesian posterior proba-

bility distribution. However, the principal disadvantage of a model-

fitting approach is that it might be computationally prohibitive for

very large surveys. In Section 3 we discuss a novel galaxy shape

model-fitting algorithm that allows good estimation of the likeli-

hood surface in a usefully short computational time. We also discuss

the evaluation of shear sensitivity within the Bayesian framework,

which allows individual galaxy contributions to be assessed and un-

biased estimation of shear to be made, fulfilling the second criterion

above. Some initial results and further considerations are then dis-

cussed. More detailed results from applying the algorithm to the

STEP simulations are given in a companion paper (Kitching et al.,

in preparation).

2 A M O D E L - F I T T I N G A P P ROAC H TO S H A P E
M E A S U R E M E N T

2.1 General considerations

The basic rationale for fitting a model of a galaxy’s surface bright-

ness distribution is that, if the family of models is a good repre-

sentation of the true surface brightness profile, the highest possible

S/N of the resulting parameters should be obtained. When model

and data agree the model encapsulates the full information content

of the data. Although this has been recognized previously in weak

lensing shape measurement (Bernstein & Jarvis 2002), no imple-

mentation of weak lensing shape measurement methods published

to date has this property, because the methods usually adopt some

simplification of the surface brightness profile, such as assuming

that second moments entirely characterize the profile (e.g. Tyson,

Wenk & Valdes 1990; Kaiser et al. 1995) or equivalently assuming

Gaussian profiles or weights (e.g. Kuijken 1999; Bernstein & Jarvis

2002; Bridle et al. 2002; Bardeau et al. 2005). Model fitting has

been used for some time for detailed determination of galaxy sur-

face brightness profiles and shapes (e.g. Peng et al. 2003). Kuijken

(1999) proposed model fitting to averaged galaxy images specifi-

cally for weak lensing measurement, and Bridle et al. (2002) pro-

posed a method of measuring shear by fitting galaxies and PSFs with

multiple Gaussian components. The latter method has been applied

to surveys of weak lensing around galaxy clusters by Bardeau et al.

(2005, 2007) and Kneib et al. (2003), among others. A Monte Carlo

method is used to find best-fitting galaxy model parameters for each

individual galaxy, where Gaussian surface brightness profiles, or

combinations of two Gaussian profiles, are assumed for both galaxy

and PSF. Shear measurement and the computational time required

for that model-fitting method has been evaluated by Heymans et al.

(2006). Recently, sets of basis functions known as ‘shapelets’ have

been used to describe surface brightness profiles (Refregier 2003;

Refregier & Bacon 2003 and the related work of Bernstein & Jarvis

2002) but there is no requirement for the individual shapelet func-

tions to match real galaxy profiles. Moving to a pure model-fitting

approach allows us to choose whichever brightness profiles we like,

and for galaxies it clearly makes most sense to choose either ex-

ponential or de Vaucouleurs surface brightness profiles. Naturally,

the above statements are qualitative, we do not know how much im-

provement one obtains by fitting a profile that is closer to the actual

profile, but the principle at least is a sound one, which we expect to

satisfy the first of our criteria from the Introduction.

Either frequentist model fitting, based on determining the likeli-

hood function, or Bayesian model fitting that determines the poste-

rior probability distribution of model parameters, allow error esti-

mates to be made, satisfying the third of our criteria. This is not the

case for early versions of weak lensing shear estimators, although

error estimates have been made in some recent methods (Bernstein

& Jarvis 2002; Bridle et al. 2002; Bardeau et al. 2005; Kuijken

2006).

Finally, we should address the question of whether a method can

be determined to be unbiased. This is a serious issue for weak lensing

studies, where the signal is so small that even a small systematic

bias can have a devastating effect. Evaluation of existing methods

by STEP demonstrate that they are indeed biased, with significant

magnitude-dependent biases that need to be corrected empirically

from comparison with simulations (Heymans et al. 2006; Massey

et al. 2007b). We discuss in the next section why in principle a

Bayesian method should be unbiased provided a correct choice of

prior is made, but note that realistic implementations result in a

quantifiable bias that may be corrected for.

2.2 Bayesian estimation of the sample ellipticity distribution

We have previously mentioned the problem of shape measurement,

which not only is the shape changed by convolution with the PSF, but

also noise-biases the measured shape, and in general tends to make

nearly circular objects systematically appear more elliptical. We

discuss in this section how a Bayesian method may be formulated

that precisely corrects for this phenomenon, provided we make a

correct choice of prior.

Consider a set of observations of N galaxies that yields the surface

brightness distribution for each galaxy denoted by a vector of pixel

values y. The shape of each galaxy may be characterized by its two-

component ellipticity e: the particular definition we choose for e in

this paper is given in Section 2.4 but what follows below applies to

any shape estimator that we may choose. If the sample of galaxies

has a probability distribution of intrinsic ellipticities (i.e. the value

of ellipticity that would be measured by the observer in the absence

of degradation by the PSF or by noise) f(e), then the probability
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distribution of y is

n(y) =
∫

f (e)ε(y |e)de,

where ε(y|e) is the probability distribution for y given e.

For each of these galaxies we can generate a Bayesian posterior

probability distribution for its ellipticity

pi (e | yi ) = P(e)L(yi |e)∫
P(e′)L(yi |e′) de′ ,

where P(e) is the ellipticity prior probability distribution and

L(yi|e) is the likelihood of obtaining the ith set of data values yi

given an intrinsic ellipticity e.

We would hope that the true distribution of intrinsic ellipticities

can be obtained from the data by considering the summation over

the data:〈
1

N

∑
i

pi (e | yi )

〉
=

∫
dy

P(e)L(y |e)∫
P(e′)L(y |e′)de′

∫
f (e′′)ε(y |e′′) de′′,

where on the right-hand side we are integrating over the probability

distributions to obtain the expectation value of the summed posterior

probability distribution for the sample. We can see that this will be

achieved if both ε(y | e) = L(y | e) and P(e) = f (e), assuming the

likelihood is normalized,
∫
L(y |e)dy = 1, from which we obtain〈

1

N

∑
i

pi (e | y)

〉
= P(e) = f (e).

The strength of this result is that we can in principle recover sta-

tistically knowledge of the intrinsic distribution of shapes indepen-

dently of assumptions about the shapes of the likelihood surfaces: in

particular the likelihood surfaces for ellipticity measurement must

be non-Gaussian, being bounded at |e| < 1, but this has no effect

on the results we expect. This result parallels the analogous result

discussed by Edmondson et al. (2006) for the case of Bayesian pho-

tometric redshift estimation. It says that we must know the mech-

anism by which data values are generated in order to construct the

likelihood function, and that we must know the expected distribution

of intrinsic ellipticities, in which case the summed posterior prob-

ability distribution will recover that intrinsic distribution. It might

be thought that a Bayesian approach then has a non-useful require-

ment that we need to know the answer before we start, but the point

of course is that with the correct choice of prior we then expect

the posterior probability distribution for each individual galaxy to

yield an unbiased estimate of ellipticity, and those sets of individual

posterior probability distributions may then be used to infer the spa-

tially varying shear arising from gravitational lensing. We discuss

in Section 5.1 one possible method for creating the correct prior.

2.3 Frequentist or Bayesian measurement?

So far the framework has been described in a purely Bayesian con-

text, but we can also ask whether there is a frequentist equivalent

of the above formalism: can weak lensing shear be measured using

likelihood functions alone? Conversely, are there any disadvantages

to using a Bayesian method?

It is important to recognize that likelihood and Bayesian estima-

tors measure different things. We can illustrate this by consider-

ing a sample of galaxies (say) with some intrinsic property x that

Figure 1. Illustration of the properties of an ideal likelihood estimator x̂L
(left-hand panels) and ideal Bayesian estimator x̂B (right-hand panels) for

the Gaussian example described in the text. The top pair of graphs shows the

correlation between the input and deduced values. Two regression lines are

shown on each, one being the regression of input on estimated value, the other

being the regression of estimated on input value. The next two pairs show the

distribution of the difference between input and estimated values compared

with either the estimated values (centre) or the input values (bottom). Note

the graph x-axes differ between the centre and bottom panels. For a given

input value, the likelihood estimator yields an unbiased estimate (regression

slope unity) whereas the Bayesian estimator appears biased (regression slope

2.75). However, for a given estimated value, the likelihood estimator is biased

(regression slope 0.36) and the Bayesian estimator is unbiased. The Bayesian

estimator returns the best estimate of the input value for a given measurement.

we wish to determine from fitting to some measurements y. We

shall look at the results obtained with either a Bayesian estimator,

x̂B = ∫
xp(x |y)dx , or a likelihood estimator, x̂L = ∫

xL(y| x)dx
(the general considerations discussed here apply also to maximum

likelihood estimators). Suppose the intrinsic distribution of x has a

normal distribution of variance a2, and that for each x drawn from

this distribution the measurement process causes a normally dis-

tributed uncertainty of variance b2. Fig. 1 shows the results obtained

in a Monte Carlo realization for the illustrative case a = 0.3, b =
0.4.

The likelihood estimator is based on the function L(y|x) and in

Fig. 1 is unbiased in the regression of input on estimated values. The

Bayesian estimator is based on the function p(x|y) and is unbiased

in the regression of estimated on input values: i.e. for a given set

of measurements the Bayesian estimator yields the best estimate of

the input values. The likelihood estimator yields a distribution of

measured values that is broader than the intrinsic distribution. Note,

however, that the Bayesian estimator yields a distribution that is
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narrower, despite the result of Section 2.2 that the summed posterior

probability distribution yields the intrinsic distribution if the correct

prior is chosen. This apparent paradox is resolved by realizing that

each of the individual estimated values is associated with its own

posterior probability distribution, so that the sum of the distributions

is broader than the distribution of expectation values. While this

might seem undesirable, i.e. inevitable in any noisy measurement

process.

In the case of ellipticity shape measurement, we expect there

to be other reasons why a likelihood estimator might be biased,

in particular at large e values or for low S/N, where the boundary

|e| < 1 renders the likelihood function asymmetric and highly non-

Gaussian. With no prior, the strong degeneracy between size and

ellipticity in the likelihood fitting can create regions of high like-

lihood at extreme values of ellipticity, and given the hard bound

|e| < 1 such an estimator cannot be unbiased.

In the frequentist approach, it is also possible to estimate errors

for the individual galaxies, and this is important to establish the

contribution to the signal from each galaxy. As in the Bayesian

approach, we expect the information on shear to decrease as the S/N

decreases: even with an unbiased estimator ê it would be important

to quantify this effect and allow for it in the shear estimation.

A final consideration is that in weak lensing surveys we are not

simply interested in measuring the shapes of individual galaxies,

but rather in measuring the systematic lensing shear in a sample.

Usually this is measured from the mean ellipticity: thus it may be

possible to have an ellipticity estimator that is biased but where

the shear estimate from a sample is unbiased, or vice versa. If any

bias were isotropic, corresponding to a bias in the value of |e| but

not in orientation, then we might hope that the bias would aver-

age out. However, even in this case we should not assume that the

shear estimator 〈e〉 is unbiased, since the likelihood functions for

e measurement must be non-Gaussian and e dependent, any shift g
in the distribution of e caused by lensing would lead to bias in the

estimated shear.

However, even the Bayesian method is not immune to the problem

of bias, particularly in a realistic implementation of the Bayesian

method where we are forced to assume a zero-shear prior, as dis-

cussed below. But the bias can be quantified and the method provides

a self-contained framework within which we can work out all the

required quantities. This is the framework that we return to in the

remainder of this paper.

2.4 Bayesian shear estimation and the shear sensitivity

Following Heymans et al. (2006) we assume observed galaxy el-

lipticity e is related to the intrinsic galaxy ellipticity es in the weak

lensing regime via

e = es + g
1 + g�es

from Schramm & Kayser (1995), Seitz & Schneider (1997), where

e is represented as a complex variable and g, g∗ are the reduced

shear and its complex conjugate, respectively. e is defined in terms

of the major and minor axes and orientation a, b, θ , respectively, as

e = (a − b)/(a + b) exp(2iθ ). In this formalism, we expect

〈e〉 = g (1)

for an unbiased sample where 〈es〉 = 0, and so 〈e〉 for a sample

of galaxies is adopted as our estimator of g. Note that this result

differs from the other commonly used formalism where ellipticity

is instead defined as e = (a2 − b2)/(a2 + b2) exp(2iθ ).

For a population of galaxies, 〈e〉 = ∫
e f (e)de where f(e) is the

ellipticity probability distribution for the sample. But in the Bayesian

formalism we can write a similar expression for an individual galaxy

if we know its Bayesian posterior probability distribution, 〈e〉i =∫
e p(e|yi )de. Hence for a sample of N galaxies we can evaluate the

sample mean as

〈e〉 = 1

N

∑
i

∫
e pi (e|yi )de = 1

N

∫
e
∑

i

pi (e|yi ) de.

In practice we shall use the first of these expressions, as estimation of

ellipticities for individual galaxies allows error estimates to be made

for each galaxy, and its contribution to the signal to be evaluated.

However, in measuring shear we cannot know in advance the cor-

rect prior to apply, even if we know the intrinsic unsheared ellipticity

prior distribution, because the amount of shear varies over the sky

in a way that we are attempting to measure. We must therefore use

a prior that contains zero shear. The effect of this is that as S/N

decreases, the measured ellipticity distribution tends to the prior,

and in the limit of zero S/N no shear signal is recoverable. This is

precisely what we should expect of course: no measurement method

can extract a measured shear value from data with zero S/N, and a

Bayesian method is no different in that respect. A Bayesian method

does however allow us to estimate the magnitude of this effect for

each individual galaxy. Consider the Bayesian estimate of elliptic-

ity 〈e〉i, defined above, which is measured for the ith galaxy, and

express its dependence on each component of shear g as a Taylor

series. For component e1,

〈e1〉i � es
1i + g1∂〈e1〉i/∂g1 + g2∂〈e1〉i/∂g2 + · · · (2)

and similarly for component e2, where numeric subscripts indicate

the components of e and g. In the weak lensing limit the cross-terms

vanish. If we sum over N galaxies in an unbiased sample we find

N∑
i

〈e1〉i � g1

N∑
i

∂〈e1〉i/∂g1.

We may optionally multiply both sides in equation (2) by a statistical

weight for each galaxy, wi. Provided wi is uncorrelated with es
i we

may then define a weighted estimate of shear for the sample:

ĝμ ≡
∑N

i wi 〈eμ〉i∑N
i wi∂〈eμ〉i/∂gμ

(3)

for μ = 1, 2. We shall call ∂〈eμ〉i/∂gμ the shear sensitivity. It

is a measure of how much each Bayesian estimate is biased by

the use of the zero-shear prior, and it takes values in the range

0 < ∂〈eμ〉i/∂gμ � 1, where the lower bound is expected in the limit

of zero S/N. The upper bound would be attained in the case of ideal

measurement at high S/N, where we expect no bias: in this case the

Bayesian measure is a good measure of the true ellipticity, regardless

of which prior is assumed, and differentiating equation (1) yields

unity for the shear sensitivity. The weights wi could in principle be

tuned for optimal S/N in the measurement(s) being made, such as

the values of cosmological parameters. Care should be taken that

any weights that are a function of ellipticity do not introduce bias

into shear measurement. Since the shear sensitivity is effectively a

measure of how much information about the effect of lensing is car-

ried by each galaxy, the weights should themselves also include a

dependence on ∂〈eμ〉i/∂gμ, as well as on the measurement error and

on the redshift-dependent cosmological effect of lensing on each

galaxy.

The shear sensitivity may be estimated for each galaxy and for

the survey as a whole without recourse to external calibration from
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simulations, as described below. Kaiser et al. (1995), Luppino &

Kaiser (1997), Kaiser (2000) and Bernstein & Jarvis (2002) have

emphasized the utility of knowing the shear ‘polarizability’ or ‘re-

sponsivity’ for individual galaxies, as this not only allows accurate

optimized shear measurement but also allows future surveys to be

planned and optimized.

The estimator ĝμ is appropriate for a survey where the shear is

uniform over some region (and this is assumed in the STEP simu-

lations discussed below), but in the more general case we instead

infer the shear correlation function or some related quantity such as

shear variance from a measurement such as 〈eiej〉. In this case we

can compute the analogous estimator

〈ĝμgμ〉 =
∑

i, j wiw j 〈eμ〉i 〈eμ〉 j∑
i, j wiw j (∂〈eμ〉i/∂gμ)(∂〈eμ〉 j/∂gμ)

.

We now discuss possible approaches to calculating the shear sen-

sitivity, first for normal prior and likelihood distributions, then for

the more general case where the shear sensitivity may be evaluated

numerically from the measured likelihood surfaces of individual

galaxies.

2.5 Calculation of shear sensitivity

As an illustration of the calculation of shear sensitivity, suppose the

prior is described by a normal distribution P(e) of variance a2 and

〈e〉 = 0, and that the likelihood L(e) for a particular galaxy also has

a normal distribution of variance b2 centred on some value e0. It is

straightforward then to show that the Bayesian posterior probability

p(e|y) also has a normal distribution of variance a2b2/(a2 + b2) and

expectation value 〈e〉 = e0a2/(a2 + b2). For perfect measurement

of ellipticity (b2 � a2) we expect equation (1) to hold, so for this

galaxy ∂〈eμ〉i/∂gμ = ∂e0μ/∂ gμ = 1. For more noisy measurement,

we expect

∂〈eμ〉i

∂gμ

= a2

a2 + b2

∂e0μ

∂gμ

= a2

a2 + b2
.

The shear sensitivity decreases as the measurement error increases.

The value of the shear sensitivity is also given by the inverse of

the slope of the regression of the intrinsic ellipticity on estimated

ellipticity illustrated in Fig. 1.

The above illustration indicates that it is straightforward to calcu-

late the shear sensitivity; however, in general it would not be safe to

assume normal distributions: not least because e is defined such that

|e| < 1, so when the measurement error becomes large L(e) cannot

be normally distributed. We discuss here one method of calculating

the shear sensitivity numerically. We should emphasize that this can

be done entirely internally to the fitting process, with no need to

calibrate shear sensitivity externally from simulations.

Consider first the response of the posterior probability distribution

to a small amount of shear. The prior probability does not depend

on the shear in our implementation. Let us assume that applying

a weak lensing shear shifts the likelihood function by some small

amount, L(e − es) → L(e − es − g) and expand as a Taylor series:

L(e − es − gμ) � L(e − es) − gμ

∂L
∂eμ

+ · · · .

Then, substituting into

〈e〉 =
∫

eP(e)L(e)de∫
P(e)L(e)de

and differentiating with respect to g we find

∂〈eμ〉
∂gμ

�
∫

(〈e〉 − e)P(e)(∂L/∂eμ)de∫
P(e)L(e)de

as an estimate of weak lensing shear sensitivity. This expression is

cast in terms of the derivatives of the likelihood surface multiplied

by the prior: it may also be expressed in terms of derivatives of the

prior multiplied by the likelihood

∂〈eμ〉
∂gμ

� 1 −
[∫

(〈e〉 − e)L(e)(∂P/∂eμ)de∫
P(e)L(e)de

]
.

This may be evaluated numerically from the posterior probability

surface for each galaxy, and is preferred over the preceding expres-

sion in the case where the derivative of the prior is known analyt-

ically. For the case of normal distributions of P(e) and L(e) the

expression yields the analytic result above.

3 FA S T S H A P E M E A S U R E M E N T

3.1 The algorithm

The technique we adopt for measuring 〈e〉 and its uncertainty is to

fit model galaxy surface brightness profiles to the data for individual

galaxy images. The simplest galaxy model has six free parameters

if the form of the surface brightness profile is fixed: central surface

brightness, size, ellipticity and celestial position. The problem of fit-

ting six parameters to large samples of galaxies is that this could be

a time-consuming task, probably prohibitively so. However, we can

greatly speed up the process if we can marginalize over any parame-

ters that are not of interest to the weak lensing measurement. It turns

out that for isolated galaxies it is straightforward to marginalize over

three of the parameters, central surface brightness and position, if

the model fitting is treated in Fourier space, as described below. And

because there exist fast Fourier transform algorithms this approach

can be done in a short amount of computational time.

We can start by writing the statistic

χ 2 =
∑

i

(
yi − Cym

i

σi

)2

=
∑

i

y2
i

σ 2
i

+ A(C − B)2 − AB2,

where yi is the data value in pixel i, σ i is the statistical uncertainty

of that data value, ym
i is a model value for that pixel, C is the model

amplitude and where

A =
∑

i

(
ym

i

σi

)2

, B =
∑

i

yi ym
i

σ 2
i

/∑
i

(
ym

i

σi

)2

.

We assume the pixel noise is stationary and uncorrelated, which

is appropriate for shot noise in CCD detectors in the sky noise

limit. Bright galaxies may make a significant contribution to photon

shot noise, but in this case the non-stationarity of the noise makes

it not possible to work in Fourier space. Hence this algorithm is

appropriate for model fitting to faint galaxies in the sky-limited

regime. The method can be generalized to the case where the noise

is stationary but correlated between pixels, and the example of radio

interferometer observations is discussed qualitatively in Section 5.4.

Then if we adopt a prior P(C) for the model amplitude we can

marginalize the likelihood L = e−χ2/2 over C:

L = e
−
∑

y2
i /2σ 2

eAB2/2

∫ Cmax

Cmin

e−A(C−B)2/2P(C) dC .
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We shall adopt a uniform prior for P(C) in the range Cmin � C �
Cmax. We expect C > 0, but if the galaxy is significantly detected

the Gaussian form of the likelihood causes the value of the prior to

become unimportant at both large and small C, and we can simplify

the calculation by allowing Cmin → −∞ and Cmax → ∞, so that

L �
√

2π

A
e
−
∑

y2
i /2σ 2

i eAB2/2.

However, although we have eliminated the amplitude C,L still de-

pends on the model second moment, A = ∑
(ym

i /σi )
2. Thus we

need to introduce the model constraint A = constant, achieved by

renormalizing each model appropriately. Since for a given data set∑
y2

i /σ
2
i is also fixed, we can write L ∝ eAB2/2 when maximizing.

We can also rapidly calculate the marginalization over galaxy

celestial position if we work in Fourier space, writing

yi =
∑

k

yke−ik·xi , ym
i =

∑
ym

k e−ik·xi .

We can simplify the various summations by assuming that we are

dealing with faint galaxies in weak lensing measurement, such that

σ i is dominated by the background photon shot noise and is con-

stant for all pixels. And since the model ym
i is real, ym

k = ym∗
k and∑

i yi ym
i = ∑

k yk ym
k

�. If we introduce a shift X into the model

position, the new model becomes

ym
i

′ =
∑

k

ym
k e−ik·xi e−ik·X

and∑
i

yi ym
i

′ =
∑

k

yk ym
k

�e−ik·X = h(X)

where h(X) is the cross-correlation of the data yi with the model ym
i .

So the likelihood becomes

L ∝ exp

[ |h(X)|2
2σ 2

∑
ym

i
2

]
.

To marginalize over X we need to adopt a prior P(X), but in this

case it cannot be uniform as L → constant as |X| → ∞ and the

marginalized likelihood would not be finite. This problem arises

because, no matter how large a pixel value, it always has a finite

chance of being due to random noise, with the true galaxy being

positioned elsewhere. We shall adopt a prior which is centred on

some assumed galaxy position that has been previously estimated

and which falls off to zero at large distances: this is equivalent

to assuming that a galaxy does indeed exist somewhere near the

location we have chosen. We shall assume a prior which is symmetric

and centred on the nominal galaxy position, which for convenience

is at the coordinate origin, such as

P(X)d2 X = 1

2πb2
e−|X|2/2b2

d2 X.

The process of model fitting is seen from the above to be one of cross-

correlating the data with a model. Galaxies generally have smooth

centrally concentrated surface brightness distributions which are

convolved with near-Gaussian PSFs in an observed image. The

model is also smooth, centrally concentrated and convolved with the

same PSF. From the central limit theorem such a cross-correlation

should be well represented by a 2D Gaussian distribution,

h(X) = h0 exp
[−(X − X0)C−1(X − X0)T

]
,

where C−1 is the inverse covariance matrix and some shift X0 of

the maximum from the origin is allowed. In what follows we as-

sume circular symmetry for simplicity, although this assumption

may be removed without affecting the final result (a 2D Gaussian

distribution may always be transformed to a circularly symmetric

distribution by a coordinate transformation). If the cross-correlation

function has the form h = h0 exp [− |X −X0|2/s2] then

L ∝ 1

2πb2

∫ ∞

0

exp

[
βe−|X−X0|2/s2

]
e−|X|2/2b2

d2 X,

where

β = h2
0

2σ 2
∑

ym
i

2
.

We could evaluate this by, for example, expanding the first expo-

nential as a Taylor series and hence obtaining a series solution for

the marginalized likelihood. We could also evaluate it purely nu-

merically, but this would require evaluation of the cross-correlation

function on an extremely fine grid in order to achieve adequate

accuracy. Either of these approaches would be computationally ex-

pensive, and an alternative is to find an approximate value of the

integral by writing

L ∝ 1

2πb2

∫ ∞

0

{
exp

[
βe−|X−X0|2/s2

]
− 1 + 1

}
e−|X|2/2b2

d2 X.

If b 
 s,

L ∝ 1 + 1

2πb2
e−|X0|2/2b2

∫ ∞

0

{
exp

[
βe−|X−X0|2/s2

]
− 1

}
d2 X

and changing variables to a polar system centred on X0,

L ∝ 1 + s2

b2
e−|X0|2/2b2

∫ ∞

0

[
exp

(
βe−r2

)
− 1

]
rdr

∝ s2eβ

2βb2
e−|X0|2/2b2

β 
 1 (4)

approximately, where the constant of proportionality has no model

dependency provided A is held invariant (we could obtain a similar

result more exactly if we were to adopt a top-hat prior for the galaxy

position). If the width s, amplitude h0 and centroid X0 of the cross-

correlation function can be measured, the marginalized likelihood

may be estimated from equation (4).1 In the more general case,

where the cross-correlation function is approximated by a bivariate

Gaussian with widths s1 and s2 in the two principal directions, then

equation (4) is modified by s2 → s1s2.

3.2 Implementation

Using the above, the likelihood may be estimated for a given set

of model parameters, marginalized over the ‘uninteresting’ position

and brightness of the galaxy. If we choose either an exponential

disc or a de Vaucouleurs model for the surface brightness, the free

parameters are the scalelength and two ellipticity values e, or equiv-

alently the scalelength, the axial ratio and the orientation. The values

of e are restricted to lie in the range |e| < 1, and for faint galax-

ies the probability p(e) is broad, making a grid search in e an easy

and not-too-expensive approach. The resulting likelihood may be

numerically marginalized over the galaxy scalelength, which is also

‘uninteresting’ for weak lensing measurement, to obtain a likelihood

surface, which is a function of ellipticity alone.

To evaluate the cross-correlation function h(X) (returning now to

the general case where we do not assume circular symmetry) we can

use the fast Fourier transform method, which proceeds as follows.

1 It may seem that the requirement for a prior on position may be removed by

allowing b → ∞. However, this is an artefact of the approximation. There

is no clear way of identifying a value for b, but it should be set sufficiently

small that confusion from other nearby galaxies is eliminated.
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(i) Generate a series of 2D galaxy surface brightness models on

a 3D grid in parameter space of scalelength and ellipticity. These

models can be discrete Fourier transformed and those transforms

stored for use with all the galaxies. The choice of a grid of models

allows a considerable multiplex gain to be realized: the models can

be pre-generated on that grid and the same set used for fitting to

every galaxy.

(ii) Estimate the surface brightness profile of the PSF on the same

pixel scale as the models. Usually this would be done by stacking

images of stars from the region of an image as the galaxies being

measured. The PSF can also be Fourier transformed and stored. If

the PSF varies over an image or between images, the image may be

divided into zones over which the PSF is approximately invariant,

and the Fourier transform of the PSF for each zone stored separately.

If a mathematical model for the varying PSF is known this may also

be used to generate a smoothly varying PSF (e.g. Rhodes et al.

2007).

(iii) Estimate the rms noise in each pixel from the entire image.

(iv) Identify a set of nominal galaxy positions to be measured,

most likely from a separate image analysis tool such as SE XTRACTOR

(Bertin & Arnouts 1996).

(v) In turn for each galaxy, extract a subimage centred on that

galaxy, Fourier transform it, and temporarily store the result.

(vi) For this galaxy, take each possible model in turn, multi-

ply by the transposed PSF and model transforms to carry out the

cross-correlation, measure the amplitude, width and position of

the maximum of the resulting cross-correlation, and hence eval-

uate the likelihood for this model and galaxy. Repeat for all

models on the grid (or for a subset of models if a more intel-

ligent maximum likelihood or MCMC search algorithm is being

employed).

(vii) Numerically marginalize over the scalelength parameter. In

the implementation described here we adopt a uniform prior for the

distribution of galaxy scalelength. This could be replaced by a prior

close to the actual distribution of galaxy sizes, although such a prior

would need to be magnitude dependent.

(viii) Discard the extracted data when all models have been ex-

plored, and repeat for the next galaxy.

The result is a grid of likelihood values in ellipticity parameter

space which thus defines the probability surface p(e). The reduced

shear may then be directly estimated from 〈e〉, and the uncertainty in

individual e values may be estimated from the width of the likelihood

surface.

There is a significant multiplex gain obtained by Fourier trans-

forming the models, the PSFs and the data and storing the results.

The time-consuming step then is the cross-correlation, which com-

prises some multiplications and a single inverse Fourier transform to

obtain the cross-correlation function. It is this multiplex gain, com-

bined with the elimination of three parameters by marginalization,

which yields a fast-fitting algorithm.

The algorithm is approximate, in the sense that we require the

cross-correlation amplitude to be high enough that β 
 s2/2b2, and

also in that we assume the core of the cross-correlation function

can be adequately modelled as a Gaussian, and we have assumed

that the pixel noise is invariant. This latter constraint may impose

a maximum brightness limit on galaxies that may be fitted, as the

pixel noise is not invariant in the case where the galaxy itself makes

a significant contribution to the noise. For a fixed size of extracted

region around each galaxy, there is also a maximum galaxy size

that can be adequately measured. Larger sizes are possible at the

expense of greater computation time.

We note that, in this method, the final PSF used is itself a convo-

lution of PSF components arising from the atmosphere, telescope

and the pixel response of the detector. We do not need to distinguish

the origin of the final PSF that is used, the method takes a galaxy

model and convolves that with an estimate of the final PSF in order

to cross-correlate with the data. Ultimately however this, and all

shape measurement methods, are limited by the extent to which the

sampled data fully encapsulate the information in the sky: the effect

of sampling is to alias spatial frequencies higher than the Nyquist

sampling frequency. This affects both the creation of the stacked PSF

and the model fitting itself. If astronomical observations were band

limited this would not be a problem, but in reality some aliasing is

inevitable. Poorly sampled observations should ideally be ‘dithered’

in order to reduce such aliasing effects.

4 R E S U LT S

4.1 Tests on simulated galaxy images

The algorithm has been implemented and tested on simulations pro-

vided for the STEP (Heymans et al. 2006; Massey et al. 2007b).

Images of galaxies were simulated for the Canada–France–Hawaii

Telescope with pixel scale 0.206 arcsec. The simulations used here

to demonstrate basic shape measurement are those with an isotropic

PSF of FWHM 0.9 arcsec and zero lensing shear (tests of shear

measurement in the companion paper will cover all the simulated

PSF shapes and shear values). Simulated galaxies with a mixture of

bulge/disc components were used but all were fitted with a single

exponential surface brightness profile.

As here we are testing the Bayesian method, and not our ability

to locate galaxies, we use as input galaxy positions those that were

used when making the simulations. We also adopt as the prior P(e)

the input ellipticity distribution used in the simulations.

For these tests the size of each subimage was 32 pixels. The

choice of subimage size is a compromise between (i) having the

subimage large enough that the galaxy surface brightness distribu-

tion is not unduly truncated and (ii) not allowing the computation

time to become excessively long. In our initial implementation we

have also required that only a single galaxy should occupy each

subimage, thereby eliminating close pairs. The choice of 32 pixels

for the STEP galaxies ensured that the subimage was larger than

the half-light diameter in every case. In principle, the subimage size

could be a function of galaxy size or brightness, but this sophisti-

cation would introduce some complexity into the code and has not

been tested here.

The likelihood was evaluated on a Cartesian grid in e, sampling

at intervals of 0.1 out to a maximum axial ratio a/b = 10. The

resulting galaxy shapes were found to be consistent for ellipticity

grid intervals less than 0.1 for these STEP galaxies. The choice of

grid interval may need to be adjusted for different surveys.

The PSF was created by stacking stars from the simulation, al-

lowing subpixel registration using sinc-function interpolation. Ul-

timately any shear measurement survey will be limited by the ac-

curacy to which the PSF is known. Systematic PSF errors will of

course cause a systematic error in estimated shear, and if the PSF

varies on some angular scale within a survey this will imprint a

signal on that scale on the shear power spectrum. This concern is

common to all methods of shape and shear measurement, and we

do not specifically address this problem here.

An assumption of the fast-fitting algorithm is that we are fitting

to individual galaxies, and hence close pairs of galaxies cannot be

fitted with this algorithm. In practice one could identify such close
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Figure 2. Comparison of Bayesian posterior probability p(e) (left-hand

panels) and likelihood L(e) (right-hand panels) surfaces for two individ-

ual galaxies. The grey-scale is logarithmic showing a range of 5 in 	 logL
below the maximum value (shown as white) in each case. The upper panel

shows results from fitting to a magnitude 24.17 simulated STEP galaxy, the

lower panel a magnitude 23.15 galaxy. Solid lines show the two parameter

1σ and 2σ contours. The cross shows the input ellipticity value.

pairs in the data at the galaxy-detection stage, and on those galaxies

we could use a fitting algorithm that fits multiple components. In

this case the full six parameters per galaxy would need to be fitted,

with marginalization over uninteresting parameters being carried

out post-fitting. There would still be a significant speed advantage

to be gained by using the fast-fitting algorithm on the more isolated

galaxies however. In this paper we focus on testing the Bayesian

method and the fast-fitting algorithm, and hence in the results pre-

sented here we exclude cases where multiple objects are identified

within a single galaxy subimage. This procedure excludes 13 per

cent of galaxies in the STEP simulations. Some rejection of close

pairs is required in most other methods of shape estimation also: in

future, development of a fast multiple-component fitting algorithm

might allow this constraint to be relaxed. We also test the fit returned

by the fast-fitting algorithm to determine whether the fitted centroid

of a galaxy is within a reasonable range of the nominal position,

given the prior on the galaxy position: this would identify some of

the cases of multiple galaxies. The criterion adopted is that the fitted

galaxy position should lie within 3σ of the nominal position, where

σ 2 is the prior position variance, and this excludes 9 per cent of the

initial simulated galaxy sample but no others that are excluded by

the ‘close pairs’ criterion.

Fig. 2 shows the posterior probability surfaces that result from

fitting to two of the simulated galaxies. For completeness we also

show the likelihood surfaces, which are broader and more biased

away from the nominal value of ellipticity.

Fig. 3 shows the results for each galaxy in the simulations (only

the first component of ellipticity, e1, is shown, similar results are

obtained for e2). At bright magnitudes there is good correspondence

between input and measured ellipticity values. The slope appears

slightly steeper than unity, but with a value for the slope of 1.04 ±
0.08 the departure from unity is not very significant.

At fainter magnitudes, as the S/N decreases, an increasing frac-

tion of galaxies with a given value of the Bayesian measure are

Figure 3. Tests on the STEP 1 simulated galaxy sample, as a function of

galaxy apparent magnitude. Each graph shows the expectation value of the

Bayesian estimate of component e1 (x-axis) plotted against the input value

(y-axis). Results for component e2 are similar and are not shown. Left-hand

panels show individual simulated galaxies, right-hand panels show results

binned in intervals of the measured ellipticity. Two magnitude ranges are

shown, m > 22 (upper panels) and m � 22 (lower panels). The solid lines

have a slope of unity, the dashed lines on the left-hand panels show the least-

squares regression of input values on estimated values. The mean error on

individual measured ellipticities is shown on the left-hand panels. Vertical

error bars on the right-hand panels indicate the error in the mean input values

in each interval of measured values.

Figure 4. The summed posterior probability distribution of measured ellip-

ticity values e1 (top) and e2 (bottom) as a function of apparent magnitude.

The prior P(e) is also shown for comparison as a dashed line. The mag-

nitude ranges of the simulated galaxies are m � 22 (left-hand panels) and

m > 22 (right-hand panels).

drawn from a wider range of input ellipticities, as expected from the

earlier discussion. The slope of the relation between input and mea-

sured values is again close to unity, with value 0.93 ± 0.11. At all

magnitudes the summed posterior probability distribution is a faith-

ful reproduction of the distribution of the input prior distribution

(Fig. 4) as expected from Section 2.2. There is also no detectable
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correlation between estimated values of e1 and e2 in this simulated

galaxy sample.

We can also investigate the effect of measurement uncertainty in

the prior positions of the galaxies. A random position uncertainty

drawn from a normal distribution was introduced to each galaxy and

the shapes remeasured. The prior assumed in the fitting was a normal

distribution of rms 3 pixels throughout. In the results, no change was

found in the slope of Fig. 3 for rms position uncertainties as large as

10 pixel. The scatter about the mean relation did not change for rms

uncertainties less than 3 pixels and increased by 4 per cent for rms

uncertainties as large as 10 pixels. This test indicates that the results

are not sensitive to uncertainties in galaxy position measurement.

We would recommend that the position prior that is chosen should

match the actual position uncertainty for the faintest galaxies that

are reliably fitted.

Tests of the algorithm, again using the full suite of STEP simula-

tions specifically to measure the shear values recovered, are made

in the companion paper (Kitching et al., in preparation).

4.2 Speed

The algorithm has been implemented in the C programming lan-

guage2 for use on desktop computing systems, with discrete fast

Fourier transforms being supplied by the FFTW library (Frigo &

Stevens 2005).3 The computational speed per galaxy obviously de-

pends on the computing system being used as well as on issues

such as the extent to which the multiplex advantage of having many

galaxies per PSF function can be exploited. In the simulations de-

scribed above, using readily available 2-GHz desktop PCs in 2007

and evaluating the likelihood surfaces on a grid of sampling inter-

val 0.1 in e, we found computation times around 1.0 s per galaxy,

implying that a survey of 107 galaxies could be analysed in a few

months on a single standard desktop PC. The computation time-

scales inversely with the square of the sampling in ellipticity and

increases approximately as m2 log m for subimages of size m × m.

5 F U RT H E R C O N S I D E R AT I O N S

5.1 The ellipticity prior

A number of studies have been made of the distribution of galaxy el-

lipticities (e.g. Lambas, Maddox & Loveday 1992; Brainerd, Bland-

ford & Smail 1996; Ebbels, Kneib & Ellis 1999; Bernstein & Jarvis

2002). These studies find a wide variation in distribution of axial

ratios, which appears strongly dependent on apparent magnitude,

presumably largely as a result of the changing mix of galaxies with

brightness and redshift. The distribution of ellipticities at the faint

magnitudes probed by ongoing and future weak lensing surveys is

even less well known, and the best estimate would come from the

lensing data itself. For a sufficiently large survey the prior estimate

could also be allowed to be a function of galaxy brightness, redshift

or colour, if that information were available. One way to estimate

the ellipticity prior may be to adopt an iterative approach: evaluate

the summed posterior probability distribution starting from an initial

guess of the prior distribution; then iteratively adjust the assumed

prior until the summed posterior and prior distributions agree. We

would expect this to be a stable iteration in the absence of sampling

2 The code LENSFIT is available on request from the authors: modification to

the data input stages is likely to be required for any particular survey.
3 http://www.fftw.org.

noise, because if the prior is initially assumed distributed to values

that are smaller than are required to explain the data, the next it-

eration will adjust the prior to be distributed to large values, and

vice versa. Such an approach might however be unstable with small

surveys where sampling noise might be important.

In the case of lensing shear estimation, the ellipticity prior should

also include the shear effect, and should not just be the intrinsic pre-

sheared distribution. As the shear varies on relatively small scales,

and we are unlikely to have sufficient number of galaxies to measure

accurately the ellipticity distribution in small regions, we suggest

that correct generation of the prior should be to force the prior to be

circularly symmetric, centred on 〈e〉 = 0, and to be obtained from

the large numbers of galaxies that comprise the full survey. In this

way ‘false’ shear variation arising from noise on the prior would be

avoided, but the resulting shear values would be slightly biased to

low values, in a magnitude-dependent way. This bias has already

been discussed in Section 2.4 and a method of correcting for the

bias using the shear sensitivity has been described.

5.2 Choice of model surface brightness profile

A key advantage of the model-fitting approach over other methods is

that a surface brightness profile may be chosen that accurately repre-

sents the actual profiles of galaxies. Two obvious choices of profile

are exponential or de Vaucouleurs. In fact, it is notoriously difficult

to choose between these profiles when fitting to faint galaxies, so

we do not expect the accuracy of the weak lensing measurement to

depend strongly on which of these profiles is chosen. Some greater

freedom in profile could be allowed by adding the Sérsic index as

a free parameter, allowing exponential and de Vaucouleurs models

to be treated as special cases of this generalized profile (e.g. Dun-

lop et al. 2003); however, it is unlikely that the addition of an extra

parameter can be justified on evidence grounds. A similar consid-

eration is that galaxies generally are composed of bulge and disc

components, which when viewed at an inclined angle may present

differing ellipticities: accurate modelling of galaxies requires both

components to be fitted, but again, for generic shape measurement

of faint galaxies where information at this level of sophistication is

not present in the data, this seems unwarranted.

5.3 Addition of multiple images or wavebands

It may be that a weak lensing survey comprises multiple images

of the same region of sky, but taken at different times and hence

with differing PSFs, and possibly in different wavebands. The lat-

ter is likely if broad-band optical photometric redshifts are also

being estimated from the same data that are being used for shape

measurement. Clearly one would like to optimally estimate galaxy

shape from the combination of all these data, but it would not be

optimal simply to co-add the data, because of the differing PSFs in

each image. The model-fitting algorithm described above allows a

natural way to optimally include all the data, since all we need do

is add the likelihoods for the models fitted to each galaxy. In doing

this, we should take care that the nominal galaxy positions are the

same in each image, so the optimal way to proceed would be to

co-add images for the purpose of detecting and measuring nominal

galaxy positions only, and then fitting each individual image with

models convolved with the appropriate PSF and adding the result-

ing likelihoods. Images with a mixture of seeing qualities are thus

optimally combined for the shape measurement.
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5.4 Weak lensing from radio interferometer data

It is clear that in large future optical surveys systematic uncertain-

ties in PSF correction will be a dominating concern, indeed this is

a significant factor in the case for space-based weak lensing mis-

sions. Ground-based optical PSFs vary temporally and very often

on spatial scales comparable to those on which the cosmic shear

signal is detectable. Even HST lensing studies suffer significantly

from PSF variation (Rhodes et al. 2007; Schrabback et al. 2007). In

principle radio interferometers have precisely known PSFs, being

determined by the antenna positions (note that full 3D knowledge of

antenna positions is required, to allow for curvature of the Earth and

natural height variations). The PSF varies with hour angle and decli-

nation, but in a completely deterministic way. Other effects such as

bandwidth and sampling-time smearing can also be precisely com-

puted and incorporated into the shape measurement process (Chang,

Refregier & Helfand 2004). Because interferometer measurement

are made in the Fourier domain, and because the noise also origi-

nates in that domain (being associated with individual antennas) it

makes sense to measure galaxy shapes in Fourier space (in the im-

age plane the noise is correlated between pixels, effectively being

also convolved with the PSF). Chang & Refregier (2002) and Chang

et al. (2004) have already shown how a shapelets (Refregier 2003;

Refregier & Bacon 2003) based approach can be extended to the

Fourier domain. The Bayesian algorithm presented in this paper al-

ready operates in the Fourier domain, so it should be easily adapted

for radio interferometer data, which will be particularly relevant for

future deep radio surveys such as those proposed for the Square

Kilometre Array.

6 C O N C L U S I O N S

We have argued that a model-fitting approach to galaxy shape mea-

surement should provide an optimum approach to shape measure-

ment for large weak lensing surveys, with the advantages that the

S/N of the shape measurement should be optimized and random

measurement errors can be estimated. We have further argued that

a Bayesian estimation process allows unbiased shape estimation to

be made, although even in a realistic implementation of a Bayesian

method there is a bias in recovered shear values introduced by the

presence of the prior probability distribution. This bias may be cal-

culated from the measured likelihood surfaces, however, and in

this paper we have spent some time discussing the calculation of

the ‘shear sensitivity’. Overall this approach to shape measurement

should provide a framework for shear measurement that does not

need external calibration by comparison with simulations.

A traditional disadvantage of model fitting is that it may be com-

putationally time consuming, and in this paper we present a fast

algorithm for measuring the shapes of individual galaxies. The algo-

rithm makes use of analytic marginalization over surface brightness

amplitude, and by working in Fourier space enables rapid marginal-

ization over galaxy position. The algorithm has been tested and has

an adequate speed on current generations of computers for use with

large ongoing and planned weak lensing surveys. Close pairs of

galaxies are not treated by the algorithm, but provided such close

pairs can be identified in the data a separate fitting process may be

applied to those.

The Bayesian method and fast-fitting algorithm have been tested

on simulated galaxies created for the STEP (Heymans et al. 2006;

Massey et al. 2007b) and promising results on the measurement

of individual galaxy ellipticities have been obtained. A companion

paper (Kitching et al., in preparation) will test the measurement of

weak lensing shear in the STEP simulations.
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