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Inhomogeneous extragalactic magnetic fields and the second knee in the cosmic ray spectrum
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Various experiments indicate the existence of a second knee around energy E � 3� 1017 eV in the
cosmic ray spectrum. This feature could be the signature of the end of the galactic component and of the
emergence of the extragalactic one, provided that the latter cuts off at low energies. Recent analytical
calculations have shown that this cutoff could be a consequence of the existence of extragalactic magnetic
fields (Refs. [M. Lemoine, Phys. Rev. D 71, 083007 (2005).][R. Aloisio and V. Berezinsky, Astrophys. J.
625, 249 (2005).]): low energy protons diffuse on extragalactic magnetic fields and cannot reach the
observer within a given time. We study the influence of inhomogeneous magnetic fields on the magnetic
horizon, using a new semianalytical propagation code. Our results indicate that, at a fixed value of the
volume averaged magnetic field hBi, the amplitude of the low energy cutoff is mainly controlled by the
strength of magnetic fields in the voids of the large-scale structure distribution.
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I. INTRODUCTION

Recent developments in our understanding of the origin
of cosmic rays have led to the suggestion that the cosmic
ray spectrum might comprise only two components, one of
galactic origin, dominant in the energy range E & 1017 eV,
and another of extragalactic origin in the energy range E *

1018 eV [1]. In this interpretation, the crossover between
the two components marks the so-called ‘‘second knee’’ in
the all particle cosmic ray spectrum (see Ref. [2] for a
review on cosmic ray data at high energies), while the
‘‘first knee’’ at E� 2� 1015 eV would be associated
with a change of propagation regime or the maximal
energy of protons at the source. The third feature in the
cosmic ray spectrum, i.e., the ‘‘ankle’’ at E� 1019 eV
would be a consequence of pair production losses of ultra-
high energy protons accelerated in sources located at cos-
mological distances [1].

On purely phenomenological grounds, this modern view
is appealing when compared to the more traditional inter-
pretation in which the ankle is associated with the emer-
gence of an extragalactic cosmic ray component out of a
more steeply falling spectrum at energies E & 1019 eV.
One of these major advantages certainly is the ‘‘economy’’
of sources. It is indeed notoriously difficult to accelerate
particles beyond E � 1015 eV in supernovae remnants [3].
Therefore, if the first knee corresponds to the maximal
energy of protons at the source, the falloff of the galactic
component at �1017 eV would naturally be associated
with the maximal energy of the iron component at the
source. On the contrary, if the extragalactic component
appears at the ankle, one needs to postulate the existence
of a third cosmic ray component between �1017 eV and
�1019 eV (see for instance Ref. [4] for a recent proposal),
or to assume that supernovae are able to accelerate parti-
cles up to the ankle (see for instance [5]).

The modern interpretation of a transition between the
galactic and the extragalactic component at the second
knee does not come without flaws, however. In particular,
the smooth matching of the galactic and extragalactic
components at E� 1017 eV bears the unaesthetic look of
fine-tuning. Of course, this problem is generic to the
matching of two distinct components at a point where the
slope steepens; the introduction of a third cosmic ray
component would not help in this respect. As far as the
galactic component is concerned, the falloff at E *

1017 eV arises as a direct consequence of the observation
of the first knee, as mentioned above. However one must
explain why the extragalactic component vanishes at en-
ergies below the second knee. In the original scenario of
Berezinsky et al. [1], this low energy cutoff was attributed
to physics at the source. In Ref. [6], it was suggested to
interpret it as the modulation of the extragalactic flux due
to a galactic magnetized wind, although the calculations of
Ref. [7] bring down this cutoff to a too low energy, E�
1015–1016 eV.

Another possibility, advocated in Refs. [8,9] is to relate
this cutoff with the influence of extragalactic magnetic
fields. As demonstrated in these studies, if the intensity
of extragalactic magnetic fields is rather modest, say hBi �
10�9 G, the diffusion time of particles with energy E &

1017 eV from the closest sources (located at, say
�50–100 Mpc) becomes longer than the age of the
Universe. This produces a low energy cutoff in the propa-
gated spectrum at the required location, which allows to
reproduce a smooth transition at the second knee in agree-
ment with observational data (see [8]).

It has also been argued that if ultrahigh energy cosmic
rays comprised a significant fraction of heavy nuclei ( *

20%), the scenario of a transition at the second knee would
loose its merits as the energy losses would no longer be
able to reproduce the ankle feature [10,11]. However even
a solar type (or galactic cosmic ray type) chemical com-
position, with �10% helium and only traces of heavier
elements, allows to fit the existing data at the ankle with a
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single powerlaw spectrum at injection [1]. Furthermore,
there is no particular reason to expect the source compo-
sition to be enriched in metals. In any case, future mea-
surements of the chemical composition will tell [10,12].

Quantizing the influence of extragalactic magnetic fields
on the spectrum of cosmic rays with energy E� 1017 eV is
not an easy task as the propagation times become of the
order of a Hubble time, hence one must account for the
effects of expansion. For the sake of simplicity, Refs. [8,9]
have thus assumed the magnetic field power to be distrib-
uted homogeneously in space. However, this approxima-
tion deserves to be refined since the magnetic field is most
likely distributed as the charged baryonic plasma. Since the
scale of inhomogeneity of large-scale structure in the
Universe is comparable to the distance to the closest
sources, �50–100 Mpc, the inhomogeneity of the mag-
netic field may affect the conclusions of Refs. [8,9]. The
objective of the present paper is precisely to address this
issue and to study the scenario put forward in these refer-
ences in a more realistic extragalactic magnetic field
configuration.

This immediately brings forward the difficulty of defin-
ing a realistic distribution of large-scale extragalactic mag-
netic fields, including the shape and amplitude of a
turbulent magnetic cascade. From an observational point
of view, one has been able to measure the strength of
extragalactic magnetic fields ‘‘only’’ in the core of clusters
of galaxies [13]; a bridge of synchrotron emission on Mpc
scales has been observed in the Coma cluster [14].
Hopefully the SKA project will enlarge considerably the
data set on extragalactic magnetic fields [15] but it is not
expected to enter operation before 2017. In the meantime,
one thus has to rely on theory. Unfortunately, the very
origin of extragalactic magnetic fields is unknown, see
Ref. [16] for a review. Furthermore, even if one knew
exactly the initial conditions that set the configuration of
magnetic fields at a high redshift, the simulation of their
evolution throughout cosmic history to the present, carry-
ing sufficient accuracy on a large dynamic range of spatial
scales, remains a formidable task for numerical computing.

In regards of all these uncertainties on the origin of
extragalactic magnetic fields, on their distribution in the
present Universe, on the nature and shape of magnetic
turbulence as well as on the transport properties of particles
in chaotic magnetic fields, we adopt a simplified and
parametrized description which allows us to evaluate the
effects of the various sources of uncertainties on the results.
As a by-product of the present study, we thus propose a
simple and new recipe to build semirealistic magnetic field
distributions out of dark matter simulations (which can be
obtained at a lesser cost than MHD numerical simulations)
as well as a new transport scheme which is more efficient
than existing codes in several respects. In particular, it
allows to enlarge artificially the range of scales on which
the magnetic field is distributed, hence to model the influ-

ence of intergalactic magnetized turbulence on particle
transport. These techniques, which are developed in
Sec. II and in Appendix A, allow us to bracket the possible
distributions of extragalactic magnetic fields at the present
time and their impact on the ultrahigh energy cosmic ray
spectrum. Our results indicate that, at a fixed value of the
volume averaged hBi, the amplitude of the low energy
cutoff is controlled by the strength Bvoid of magnetic fields
in the voids of the large structure distribution and the
source distance scale n�1=3

s � 50 Mpc. The fact that our
conclusions depend more weakly on other parameters
characterizing the magnetic field distribution provides an
adequate a posteriori justification for our semianalytic
construction. We also argue that this simulation technique
offers various advantages over existing full-blown MHD
simulations of large-scale structure formation, at least as
far as cosmic ray propagation is concerned.

The paper is organized as follows. In Sec. II, we present
our scheme of inhomogeneous magnetic field simulation
and the numerical technique of cosmic ray transport. We
compare these techniques to existing simulations and dis-
cuss the advantages and drawbacks of each. In Sec. III we
address the issue of the low energy cutoff in various models
of extragalactic magnetic fields distributions, compute the
spectra and compare them to experimental data. Section IV
discusses the limitations of our approach and possible
future avenues of research. Finally, Sec. V summarizes
our findings.

II. PROPAGATION OF HIGH ENERGY COSMIC
RAYS IN EXTRAGALACTIC MAGNETIC FIELDS

The straightforward way to study the influence of extra-
galactic magnetic fields boils down to performing
Monte Carlo simulations of particle propagation in a simu-
lated magnetized universe. This, however, brings in two
major difficulties, which were alluded to earlier but which
are rarely discussed in the literature: (i) an accurate nu-
merical modeling of the transport of charged particles in
magnetic fields; (ii) an accurate numerical modeling of the
magnetized volume, including magnetized turbulence.

Point (i) deals with the theory of cosmic ray diffusion,
which in spite of a long history and recent major progress,
has not yet reached a consensus on the transport of cosmic
rays in MHD turbulence (see Ref. [17] for a recent review).
Actually, the simulation of particle transport in a well-
defined MHD environment is not trivial even from a purely
numerical point of view. For example, Ref. [18] has dem-
onstrated that the interpolation of the magnetic field from a
numerical grid gives an erroneous description of particle
transport if the Larmor radius rL & lmin, where lmin repre-
sents the grid size, i.e., the minimum scale of the turbu-
lence inertial range. Point (ii) deals with the problem of
simulating realistic MHD flows on a large range of spatial
scales, which also constitutes a field of research in its own
right.
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A. Magnetic field modeling

Several pioneering works have studied the propagation
of cosmic rays in so-called ‘‘realistic’’ magnetized envi-
ronments [19–21]. These studies have constructed the
magnetized cube out of a hydrodynamical simulation of
large-scale structure formation, which follows the mag-
netic field in a passive way for Ref. [21], and with feedback
effects on the matter evolution for Ref. [20]. The initial
conditions for this magnetic field have been set at a high
redshift (although Ref. [21] also models the production of
magnetic fields at accretion shock waves) and the overall
amplitude of this field has been rescaled at the end of the
simulation so as to reproduce the observed strength of
magnetic fields in the core of clusters of galaxies. This
ingenious procedure allows one to fix the volume averaged
magnetic field independently of the origin of the magnetic
field, although the volume averaged magnetic field now
depends on the details of the amplification process during
cluster formation.

In Ref. [21], the authors follow the trajectory of cosmic
rays using Monte Carlo methods while the authors of
Ref. [19] derive an upper bound on the typical cosmic
ray deflection using a semianalytic transport scheme.
Their conclusions are radically different: the former au-
thors derive a typical deflection of �10�–20� above
1020 eV while the latter finds a deflection less than a degree
at these energies. This discrepancy illustrates the inherent
complexity of such simulations. The complexity and the
cost of such numerical simulations are such that it has not
been possible to elucidate the precise origin of this dis-
crepancy yet. It is likely that most of this difference is to be
attributed to the modeling of the extragalactic magnetic
field, and to a lesser degree, to the transport scheme.

Figure 1, which presents the volume filling factors of the
magnetic field strength obtained in these numerical simu-
lations is particularly instructive (the model of Ref. [19] is
shown as the dot-dashed line, while the model of Ref. [21]
is given by the long-dashed line). It reveals large differ-
ences in the volume averaged magnetic field as well as in
the spatial distribution of these fields (which translates in
this figure as a difference in the slopes of the volume filling
factor). Again, the origin of this difference is not under-
stood. This figure clearly demonstrates that the simulated
magnetized volumes, despite all the sophistication of the
numerical codes used, cannot truly be deemed as realistic.
It also indicates the need for alternative methods to study
the transport of high energy cosmic rays in extragalactic
magnetic fields, in order to provide new angles of attack on
this difficult problem. This constitutes one major motiva-
tion of the present work, in which we develop one such
method and apply it to the study of the low energy cutoff at
energies close to the second knee.

Our magnetized volume is constructed in a simple way
as compared to Refs. [19,21], this simplicity offering vari-
ous advantages (and admittedly, several drawbacks) as

discussed further below. The core of our method is to
map the magnetic field strength over the gas density using
an analytical relation B��� (to be specified later) and to
distribute randomly the magnetic field orientation in cells
of coherence length lc. The gas density itself is obtained
from a high resolution dark matter numerical simulation of
large-scale structure formation (with standard cosmologi-
cal parameters �� � 0:7, �m � 0:3, and H0 �
70 km=s=Mpc). Once the volume has been set up, cosmic
ray trajectories are simulated as follows. At each step, the
cosmic ray is supposed to enter a spherical cell of coher-
ence of the magnetic field defined by its diameter lc, in
which the magnetic field orientation is random. The time
spent in the cell and the direction of exit of the cosmic ray
are then drawn from semianalytic distributions which
simulate the transport of the particle in MHD turbulence,
according to studies carried out in Refs. [18,22] (see
Appendix A for a detailed discussion). The particle is
then moved to another coherent cell and the next step is
simulated. As we explain in Sec. III B, we finally compute
the propagated spectrum in the low energy region E &

1017 eV in a semianalytic way which allows us to model
the effect of cosmological expansion over the course of
propagation from the source to the detector. In detail, we
use the Monte Carlo simulations of particle propagation in

FIG. 1 (color online). Volume filling factor of the magnetic
field in different scenarios. In dot-dashed line, the magnetic field
simulated by Dolag and coauthors in Ref. [19]; in long-dashed
line, that simulated by Sigl and coauthors [21]. In solid line, the
semianalytic model with B / �2=3, in orange dotted line, B / �.
In (red) dashed lines, the model B / �	1
 ��= ����2�; this model
simulates a volume with unmagnetized voids. In all cases the
proportionality factor B0 � 2 nG.
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the extragalactic magnetic fields at zero redshift in order to
measure the diffusion coefficients, and use existing ana-
lytical formulas in order to calculate the propagated spectra
from the diffusion equation in an expanding space-time.
More details on this latter step are provided in Sec. III B.

Note that the density field of dark matter provides a good
approximation to that of the gas density in the intergalactic
medium (IGM) on scales larger than a few hundred kpc,
corresponding to the baryon Jeans length. Therefore the
overall baryonic gas density field can be obtained by
smoothing the dark matter distribution by a window func-
tion of this size. Our dark matter simulation, run with the
hydrodynamical code RAMSES [23], is 5123, with extent
280 Mpc, hence with a grid size ’ 560 kpc: in this case the
minimum scale of the simulation then plays the role of the
window function and no smoothing is required. Of course,
this treatment does not provide a perfect description of the
gas distribution but we have checked that decreasing the
resolution by a factor 2 does not affect our results.
Moreover the gas density field serves only as a marker of
the magnetic field distribution, so that the above error is
negligible in comparison to the uncertainty surrounding the
strength and configuration of the magnetic field. The es-
sential is rather the law B��� which provides the mapping
between the magnetized volume and the density field.

In the case of isotropic collapse, it is well-known that
B / �2=3 in a plasma of infinite conductivity. This law is
slightly oversimplistic because it ignores the anisotropy of
collapse in large-scale structures, which results in an en-
hanced amplification of the magnetic field by shear and
anisotropic compressive flows [24]. In detail, the equations
of ideal MHD lead to the conservation law:

 

d

dt

�
B
�

�
�

�
B
�
� r

�
v; (1)

which allows to derive the magnification of B from the
deformation of the density field. If the separation �q<

between two points is mapped into �q> �D � �q<

through deformation, where D indicates the deformation
tensor, then B<=�< is mapped into D �B<=�<, so that:

 

B>

B<
�
�>

�<
jD � B<j

B<
: (2)

From Eq. (2), it is then easy to derive the law B / �2=3 for
isotropic collapse, or B / � for anisotropic collapse along
one (i.e., collapse on a wall) or two (i.e., collapse on a
filament) spatial directions. The law B / �0:9 has indeed
been observed in the simulations of Dolag and coauthors
[19].

Viscosity and shear flows during collapse may also
amplify further the magnetic field, leading to departures
from the law B / � between regions of very different
density, in particular, the voids and the structures (filaments
and pancakes). For instance both simulations of
Refs. [19,21] lead to weaker values of the magnetic fields

in the voids than would be expected from an extrapolation
of the law B / � to regions of low density. In order to
bracket these different effects, we consider several rela-
tions B���:

 B / �2=3; (3)

 B / �0:9; (4)

 B / �
�

1

�
�
h�i

�
�2
�
: (5)

The last model is an ad hoc modeling of the suppression of
magnetic fields in the voids of large structure which leaves
unchanged the distribution in the dense intergalactic me-
dium (meaning � > h�i).

B. Why a semianalytical propagation method?

At this stage, one should compare the respective merits
and drawbacks of this new method with other existing
techniques. Concerning the magnetic field distribution,
our method obviously neglects subtle effects such as the
amplification of the magnetic field in the vicinity of accre-
tion shock waves of large-scale structure. However, it
should be clear that no numerical simulation can claim to
simulate with accuracy the magnetic field in the vinicity of
cosmological shock waves due to the intricacy of MHD
physics at play. The amount of amplification, the coher-
ence length and the shape of the turbulence spectrum
remain open questions (see however [25] for a detailed
discussion of the Weibel instability operating at interga-
lactic shocks).

By considering a one-dimensional law B���, our simu-
lation apparently neglects the influence of the velocity field
on the magnetic field amplification. Indeed, B should be a
multidimensional function that depends on � as well as on
the velocity field in order to take into account dynamo and
shear effects. The three models alluded to earlier do ac-
tually account for these effects up to some extent, as they
reproduce the characteristic features obtained in the nu-
merical simulations that include dynamo and shear effects.
The choice of a random orientation of the magnetic field in
each coherence cell also neglects the influence of large-
scale motions. Simulations which follow explicitly the
magnetic field indicate that this latter tends to be aligned
with the principal directions of large-scale structure, i.e.,
the axis of the filament for example [26]. However, one
should note that the simulations of Refs. [19,21,26] assume
an initial magnetic field with infinite coherence length, so
that the final coherence length of the final magnetic field
along the axis of the filament equals the length of the
filament (see Fig. 4 of Ref. [26] for an illustration of this
effect). This of course is unrealistic (unless one assumes an
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acausal origin for B) since the coherence length of the
magnetic field should not exceed �1 Mpc, the typical
turn-around time of an intergalactic eddy of this size being
comparable to the age of the Universe [27,28].

In contrast, our simulation presents the advantage of
simulating this multiple field reversal along the filament.
The alignment of the magnetic field direction along the
filament should take place if the coherence length is larger
than the transverse size of the filament (more exactly the
typical scale height of the density gradient). If, as is more
likely, the coherence length is smaller, then the compres-
sion is similar to planar collapse as far as the magnetic field
in a cell is concerned, hence the field becomes aligned
transversely to the density gradient, and not necessarily
along the filament axis. Our method offers the means to
include this effect but we leave this investigation to future
work for simplicity.

A last point concerning the distribution of the magnetic
field in the intergalactic medium is related to its origin. The
simulations of Refs. [19,21,26] set the initial conditions at
high redshift and ignore other sources of magnetic pollu-
tion of the intergalactic medium (see Ref. [16] for a review
on the origin of cosmic magnetic fields), such as galactic
outflows, active galactic nuclei pollution [29–31], the
amplification of magnetic fields in accretion shocks of
large-scale structure (except Ref. [21] which uses a model
of Biermann battery effects), turbulent amplification in the
IGM [32], etc. These sources should influence the transport
of high energy cosmic rays in two ways: by modifying the
relationship between the volume averaged hBi and the
value observed in cluster cores, and by adding additional
scattering centers which have been omitted in these simu-
lations. Our simulation technique offers the freedom to
include such localized pollution effects in a simple and
efficient way: one could include these highly magnetized
regions in our simulation cube by sampling them according
to the local matter density. For the sake of simplicity, in a
first step we ignore these additional sources and postpone
their study to further work. This choice is conservative in
so far as the inclusion of localized regions of enhanced
magnetic field would tend to amplify the magnitude of the
low energy cutoff, all things being equal.

Finally, our simulation assumes for simplicity that the
coherence length lc is uniform in space, whereas it is likely
to evolve as a function of the density and velocity fields.
However, this brings in additional parameters which en-
large the parameter space. We believe that at this stage, it is
more reasonable to study the influence of lc by performing
different runs with different values of lc and comparing the
results. Furthermore, the actual value lc is intimately re-
lated to the origin of the magnetic field (which sets the
initial lc) as well as to the velocity fields which distort the
field during the evolution, in particular, with the upbring-
ing of MHD turbulence. Here as well, it should be clear
that no simulation can claim to simulate these various
effects with accuracy.

The issue of turbulence in the IGM is delicate, because
the Reynolds number in the intergalactic medium may take
large or moderate values depending on the environment.
For turbulent excitation on a length scale L at velocity v,
this Reynolds number reads [33]:

 R e ’ 105

�
L

1 Mpc

��
v

300 km=s

��
T

105 K

�
�5=2

�
�
h�i

�
: (6)

Turbulence is thus probably fully developed in most of
the IGM, except in the high temperature regions represen-
tative of clusters of galaxies. In these regions of high
kinematic viscosity, the shape and extent of the inertial
range of turbulence is rather complex, and most likely
influenced by the strong magnetic field, see Ref. [34] for
detailed discussions. Turbulence plays a fundamental role
in the transport of charged particles as well as in the
reshaping of the distribution of the magnetic field, but its
incorporation in numerical simulations of the gas density is
extremely complex. As the largest scale of the turbulence
cannot exceed a few hundred kiloparsecs or a megaparsecs,
taking into account just one or two decades of inertial
range necessitates an unrealistically high resolution since
the cube size must remain larger than the inhomogeneity
scale �100 Mpc. In this respect, our simulations provide
more flexibility because our transport scheme in the simu-
lated magnetic field allows to simulate the influence of a
turbulence spectrum down to scales well below rL, see
Appendix A.

The present simulation technique thus combines sim-
plicity, efficiency with flexibility, and the approximations
on which it rests appear reasonable in regards of the
uncertainties surrounding the origin of extragalactic mag-
netic fields, the nature of MHD turbulence, and the prop-
erties of cosmic ray transport in such turbulence. Most
importantly, its parametrized description allows us to test
the influence of the various parameters on the results in
contrast with most other works on this topic.

III. RESULTS

The following results were obtained by computing the
trajectories of 103 protons in inhomogeneous magnetic
fields mapped according to four models, for many sets of
energies E, magnetic field characteristic values B0 and
coherence lengths lc. We will label in what follows ‘‘mod-
els 1–3’’ our modeling of B��� presented in Eqs. (4) and
(5). We add to these models a last one (model 4) for which
B / �2=3 and the level of turbulence � � h�B2i=hB2i  1,
where �B is the inhomogeneous perturbation component
of B (defined such as: B � hBi 
 �B).

Though B0 and hBi have quite similar numerical values,
they are not strictly equal (they differ approximately by a
factor 1.5). hBi represents the volume averaged magnetic
field and B0 is the proportionality factor in models (1–4),
so that B � B0 � f���, where f��� is dimensionless.
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The particles are emitted from 10 different sources
chosen randomly among regions of high baryonic density.
A detailed description of our code is given in Appendix A.

We first spot the existence of a magnetic horizon using
the isotropic collapse magnetic field model [Eq. (4)]. We
then move on to other models, calculate their resulting
propagation spectra and study the influence of our two
main parameters: B0 and lc.

A. Existence of a magnetic horizon

Figure 2 shows two examples of proton trajectories
(solid line: E � 1017 eV, dotted line: E � 1019 eV) in a
slice of simulated universe. The characteristic magnetic
field is taken as B0 � 1 nG and the coherence length as
lc � 100 kpc.

Obviously the particles at E � 1019 eV and E �
1017 eV evolve completely differently: the former travel
in a rectilinear regime without being affected by changes in
density, whereas the latter experience a diffusive propaga-
tion. Taking a closer look at the diffusive trajectory, one
notices the expected intuitive correlation between the fluff-
iness of the trajectory and the clustered regions.

Figure 3 illustrates these comments in a more quantita-
tive way. It shows the root mean square of the distance of
103 particles to their source after one Hubble time
(13.9 Gyr) as a function of their energy, for a characteristic
magnetic field B0 � 2 nG and a coherence length lc �
300 kpc. Our results are no longer valid beyond the dot-

dashed line which represents the threshold energy above
which the energy loss time becomes & tH=2, as our simu-
lations do not compute energy losses.

The first striking remark is that particles of energy below
E� 3� 1017 eV cannot travel farther than a distance of a
hundred megaparsecs from their sources. This corroborates
the scenario of Refs. [8,9] on the existence of a magnetic
horizon, and extends it to the case of a inhomogeneous
magnetic field.

The curve presented in Fig. 3 comprises three distinct
parts: a diffusive part with a slope of�1=6, a semidiffusive
part (slope �1) and a quasirectilinear part with a slope
tending towards zero. These trends can be naturally ex-
plained by analyzing the propagation regimes at different
energies, in homogeneous magnetic fields.

The quantity hr2i1=2 plotted in Fig. 3 can be easily
related to the diffusion coefficient through the equation

 hr2i � 2DtH; (7)

where tH is the Hubble time and D the diffusion coeffi-
cient. This equation follows straightly from the definition
of D � h�x2i=2�t, where �x represents the displacement
during the time interval �t. Thus our computation of D in

FIG. 2 (color online). Trajectories of protons of different en-
ergies (solid line: E � 1017 eV, dotted line: E � 1019 eV) in a
slice of simulated universe. The characteristic magnetic field is
taken as B0 � 1 nG and the coherence length as lc � 100 kpc.
The colorbar on the side indicates the intensity of the magnetic
field (in log).

FIG. 3 (color online). Root mean square of the distance of 103

particles to their source after one Hubble time (tH � 13:9 Gyr)
as a function of their energy, for B0 � 2 nG and lc � 300 kpc.
The solid line represents the root mean square of the distance and
the surrounding color band its variance. The dotted line shows
the values obtained from analytical calculations in a homoge-
neous magnetic field [Eq. (9)] and the dot-dashed line the
threshold energy above which the energy loss time becomes &

tH=2.
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our simulations has a direct influence on the shape of the
curve observed in Fig. 3.

As explained in Appendix A, our diffusion coefficient is
calculated following the results of Casse et al. [18]. It
accounts for both diffusive (rL  lc) and semidiffusive
(rL > lc) regimes. In the case of a diffusive regime,
Eq. (A2) becomes

 D / r1=3
L l2=3

c ; (8)

which corresponds to the standard Kolmogorov diffusion
regime. Besides, when the Larmor radius rL is somewhat
greater than the coherence length of the magnetic field, we
have the well-known dependence

 D / r2
Ll
�1
c : (9)

Knowing that rL / EB
�1, we get from (8) and (9):

hr2i1=2 / E1=6 at low energies and hr2i1=2 / E for higher
energies.

It is quite surprising that these slopes, expected for
homogeneous magnetic fields, are also observed in our
inhomogeneous simulations for the magnetic field model
and the set of parameters presented in Fig. 3. We will show
in the following section that this is not true for other
models and parameters.

When we get to very high energy (E� 1018:5), the slope
of hr2i1=2 versus E gets weaker, as particles enter the
quasirectilinear regime. Equation (7) is no longer valid as
particles never reach the diffusion regime.

Another illustration of the existence of the magnetic
horizon is presented in Fig. 4. The transmission factor is
plotted as a function of particle energy for three distances
to the source (dashed lines: 10 Mpc, solid lines: 100 Mpc,
dotted lines: 300 Mpc). Given an initial source position, we
propagate protons over one Hubble time. At a distance R

from the source, we calculate the transmission factor by
taking the ratio between the number of particles situated
beyond R and the total number of particles that were
emitted.

Figure 4 clearly indicates the presence of a magnetic
horizon: for energies below�2� 1017 eV, only half of the
emitted particles reach a distance of 100 Mpc in a Hubble
time. The cutoff energy is lower than for the case repre-
sented in Fig. 3 due to the lower value of lc, as will be
explained in Sec. III B.

Thin lines represent the analytical transmission factors
calculated in Appendix B using the diffusion coefficient
implemented in our code [Eq. (A2)], for the homogeneous
case. For a given energy with a particular set of parameters,
one can calculate the corresponding Larmor radius rL and
then D using (A2). It is then easy to obtain R̂ and calculate
T using (B3).

For the isotropic collapse model (model 1) and the
represented parameters (B0 � 2 nG, lc � 100 kpc), there
is a noticeable difference between the homogeneous and
the inhomogeneous cases. The cutoff occurs at lower en-
ergy for the inhomogeneous case, probably due to voids
that enable particles to travel farther.

The previous remark does not stand for a travelled
distance of 10 Mpc [(blue) dashed lines]). On the contrary,
the transmission factor in an inhomogeneous magnetic
field is lower than in the homogeneous case. This is due
to the influence of the dense environment of the source
where particles were emitted. On a small scale of 10 Mpc,
low energy particles have just escaped the high density
region surrounding their source and cannot propagate as far
as in the homogeneous case. The influence of the environ-
ment will be discussed in Sec. IV B.

B. Calculated spectra

In order to compare our results with observational data,
we derive spectra from our simulations in the following
way. Reference [8] has shown that the solution to the
diffusion equation in an expanding universe, assuming a
constant comoving distance between scattering centers,
and limiting itself to energy losses by expansion (which
is correct at energies below �1018:3 eV) takes the form

 Jdiff �
c

4�

Z
dt
X
i

e�ri=�4�
2�

�4��2�3=2

dEg�t; E�

dE
Q�Eg�t; E��: (10)

This solution agrees with Ref. [35], which derives the
general diffusion equation in an expanding universe and
presents the solutions for various energy losses.

In Eq. (10) above, ri represents the comoving distance to
source i, Eg�t; E� the required energy at time t in order to
have an energy E at t0 given the energy losses, Q�Eg� the
emission rate per source at energy Eg and � the comoving
‘‘path length.’’ � is defined as

FIG. 4 (color online). Particle transmission factor at various
distances from the source, as a function of particle energy. Thick
lines are results from the simulation run with B0 � 2 nG and
lc � 100 kpc. Thin lines represent the analytical transmission
factor for a homogeneous magnetic field [Eq. (B3)].
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 �2 �
Z t0

te

dt
a�t�

D
�
aeEe
a�t�

�
; (11)

where ae is the scale factor at emission andD the diffusion
coefficient. Physically, � represents the typical distance
travelled by diffusion, accounting for energy losses.

In order to calculate �, we first study the dependence of
D on E, B0, and lc using our simulations. We find that each
set of parameters corresponds to a different function
D�E;B0; lc�. We then parametrize the evolution of the
magnetic configuration as done by Berezinsky and
Gazizov [36], as

 lc�z� � lc�1
 z� and B0�z� � B0�1
 z�2�m; (12)

where m characterizes the MHD amplification of the field.
For simplicity, we set m to 0 in our calculations. This toy
model corresponds to a constant comoving distance be-
tween scattering centers and ignores magnetic field ampli-
fication during structure formation. In this way, we obtain
the required dependence of D over t and thus the function
D	aeEe=a�t��.

The function dEg�t; E�=dE is calculated by integrating
the energy losses, following the calculations of Berezinsky
et al. [1]. The injection spectrum extends from 1016 eV to
Emax � 1020 eV. The function Q�Eg� � K�Eg=Emax�

��

gives the emission rate per source at energy Eg, K being
a normalization factor such that

R
dEEQ�E� � L, with L

the total luminosity, which is assumed to scale as the
cosmic star formation rate from Ref. [37]. We will assume
in our calculation a spectral index of � � 2:6. In any case,
it should be pointed out that the choice of the star formation
rate has little influence on our spectra, since the effects of
the magnetic horizon dominates those of the star formation
history on the low energy part of the spectrum.

At higher energies, when the comoving light cone dis-
tance r�t� �

Rt0
t dt0=a�t0� becomes smaller than ��t; E�, the

propagation is no longer diffusive and enters the rectilinear
regime. In this case, the propagated spectrum is given by:

 Jrect�E� �
c

4�

X
i

1

4�r2
i

1

1
 zi

dEg�ti; E�

dE
Q�Eg�ti; E��;

(13)

where ti is related to ri by ri �
Rt0
t dt0=a�t0�, ri, and zi

denoting the comoving distance and redshift of the ith
source. The factor 1=�1
 zi� was omitted in Ref. [8], but
it has no influence whatsoever as z 1 when the recti-
linear regime is reached.

Figure 5 presents the influence of the B���models and of
parameters B0 and lc on the magnetic cutoff. Only the
diffusive part of the spectra is represented there and the
falloff of the curve around �1018 eV corresponds to the
transition between the diffusive and rectilinear propagation
regimes. We assume continuously emitting sources with
density ns � 10�5 Mpc�3 and plot the median spectrum
obtained over 100 realizations of the source locations. For

each realization, the location of the first hundred sources
were uniformly sampled. For farther sources, the continu-
ous source approximation is valid and it was used
numerically.

The upper panel shows the intuitive result that the
greater the mean magnetic field, the steeper the cutoff.
Of course this law is not restricted to model 1 but is also
valid for models 2– 4.

The middle panel shows interesting features that are in
agreement with Eqs. (8) and (9). For a fixed value of B0, for
low energies, particles are in the diffusive regime [see
Eq. (8)] and hr2i scales with the coherence length as l2=3

c .
For higher energies particles are in the semidiffusive re-
gime [see Eq. (9)] and hr2i / l�1

c . In other words, the
spectrum cuts off more steeply for lower values of lc for
low energies and for greater values of lc for high energies.
This can be seen on Fig. 5: for lc � 300 kpc, the spectrum
cuts off at high energy but the slope is shallow for low
energies, whereas for lc � 30 kpc, the slope is steep at low
energies but the cutoff starts at lower energies.

FIG. 5 (color online). Upper panel: influence of B0 on the
spectra for lc � 100 kpc and model 1. Middle panel: influence
of lc on the spectra for a fixed value of B0 � 2 nG and for
model 1. Lower panel: influence of dependence of B over � on
spectra (models 1– 4), for fixed values of B0 � 2 nG and lc �
100 kpc.
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In view of these trends, one will have to find a good
compromise in order to obtain satisfactory fits to the ob-
servational spectra.

The lower panel illustrates the shape of the cutoff for the
four models previously described. Models 3 and 4 present a
much shallower slope compared to models 1 and 2. The
almost total absence of magnetic field in the large-scale
structure voids for model 3 and the cancellation of turbu-
lence in model 4 can explain this. We also notice that
model 1 which has a higher magnetic field intensity in
the voids cuts off in a steeper way than for model 2.

For a better understanding of the trends seen in the lower
panel of Fig. 5, we plot in Fig. 6 the root mean square of the
distance of 103 particles to their source after one Hubble
time as a function of their energy, as in Fig. 3, for models 1–
4. Variances have the same width for all models; we did not
represent them for clarity. As already mentioned, the func-
tions represented in this figure are closely related to the
diffusion coefficient D [see Eq. (7)], which is required to
calculate the spectra in the diffusive regime.

In Fig. 7 we present the total spectra (galactic

extragalactic) compared to the data, for our parameter fit
for each model. As for Fig. 5, we draw the median spec-
trum (dot-dashed line) obtained over 100 realizations of the
source locations. The upper and lower dotted curves show
the 75th and 25th percentiles around this prediction, mean-
ing that only 25% of spectra are higher or lower, respec-
tively, than indicated by the curves. This uncertainty is
related to the location of the closest sources. As explained
in Ref. [8], we draw a straight dashed line in the region

slightly above 1018 eV, where the propagation is neither
rectilinear nor diffusive (see Ref. [8] for more details on
this transition zone).

The galactic cosmic ray component is modeled as fol-
lows. Supernovae are accepted as standard acceleration
sites, yet it is notoriously difficult to explain acceleration
up to maximal energy 1018 eV. Thus it is assumed that the
knee sets the maximal acceleration energy for galactic
cosmic rays: in this conservative model, the spectrum of
species i with charge Z takes the form jZ�E� ’
�E=EZ���i exp��E=EZ�, with �i � 2:4–2:7, a species de-
pendent spectral index, EZ ’ Z� 2� 1015 eV [38]. The
total galactic component is obtained as the sum of elemen-
tal spectra, each adjusted to KASKADE data as described
in Ref [8].

We use the data of six major experiments that measured
the cosmic ray fluxes in our regions of interest: KASKADE
(2004 data), with an energy range going from 1015

to 1017 eV [38], Akeno from 1015 to 1018:6 eV [39],
AGASA from 1018:5 to 1020:5 eV [40], HiRes I and II
from 1017:3 to 1020 eV [41] and Fly’s Eyes from 1017:3

to 1020 eV [42]. We split these data in two sets in order
to account for the discrepancy between HiRes and
AGASA. This enables us to have two different normal-
izations for the extragalactic flux on the left and right
panels. The normalization of KASKADE data remains
the same for both sets.

Four main points emerge from Fig. 7. (i) The second
knee feature appears more or less clearly in the four
models, but ultimately remains quite robust to model
changes. (ii) However, again, the influence of the magnetic
field intensity in voids is obvious: even with a source
density of ns � 10�6 Mpc�3, the goodness of fit of model 3
with the observed spectra is only marginal. This situation is
clearly improved in the other models, especially if we
consider the uncertainty on the position of the closest
sources. (iii) One might also notice that this last element
has a considerable impact on the cutoff energy, much more
than in the case of the homogeneous magnetic field of
Ref. [8]. This is due to the presence of the diffusive regime
at the low energy tail. One can indeed observe in Fig. 6 the
flat diffusive locus at low energies for models 1 and 4.
Phenomenologically, one understands that for these mod-
els, a slight change in the closest source distance can
influence greatly the flux of low energy particles.
(iv) Finally, comparing our plots for AGASA and HiRes
data, we conclude that the fits are better for the latter. The
higher slope above the second knee break point in the
HiRes data as well as the gap of data between the
KASCADE and HiRes ranges make the fitting easier.

One should emphasize, however, that the above fits were
obtained by hand, not by any optimization procedure due
to the computing time required to compute one spectrum.
Therefore, the spectra shown above does not strictly speak-
ing represent the best fit to the data. Furthermore, one

FIG. 6 (color online). Same as Fig. 3, for B0 � 2 nG and lc �
100 kpc, for models 1– 4. Variances are not represented.
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should also exert some caution when comparing data sets
from different experiments. In Fig. 7, we chose to plot
separately the AGASA and HiRes data because of the well-
known discrepancy, but one cannot exclude a discrepancy
between the energy scales of KASCADE and HiRes for
instance, which would shift one data set with respect to the
other. Given all these uncertainties, the fits shown in Fig. 7
appear satisfactory, except maybe that of model 3 in which
the cutoff always appears too mild.

IV. DISCUSSION

A. Current limitations

As already discussed in Sec. II, our simulations do not
take into account several different features of extragalactic
magnetic fields, both for the sake of simplicity and because
they are in any case poorly understood and poorly con-
strained. We thus mentioned that our fields are related to
the gas distribution according to three models [Eqs. (4) and
(5)], which are one dimensional, that no magnetic source is

included, and that the coherence length is assumed to be
uniform in space.

Another point that should be underlined is that we
propagate our particles in a static universe, represented
by the final output (at z � 0) of a cosmological simulation.
In other words, the magnetic fields do not evolve in time
during our simulations. The Universe being more dilute at
higher redshifts, the effects of inhomogeneous magnetic
fields may be less important. A way of improving our
results could be to propagate directly particles in an evolv-
ing magnetic field. Such a method would however be very
time consuming and as explained in Sec. II, subject to too
many uncertainties. One could also apply our semianalyt-
ical propagation method to a series of snapshots of the
density of the Universe at various z. But again, one stum-
bles over our lack of knowledge about extragalactic mag-
netic fields: we have no hint of the evolution in time of the
relation B���. Considering all these uncertainties, our re-
striction to a simple static universe thus appears
reasonable.

FIG. 7 (color online). Total spectra (galactic
 extragalactic) compared to data. Each row corresponds to a model and a set of
parameters. Caution: ns � 10�6 Mpc�3 for the third row. The left panels show KASKADE, Akeno, and AGASA data. The right
panels show KASKADE, HiRes-1, HiRes-2, and Fly’s Eyes data. Solid lines represents the median values of the total flux, dot-dashed
lines the separate galactic and extragalactic components, and the dotted lines the upper 75th and lower 25th percentiles for the
magnetic cutoff of the extragalactic flux.
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Finally, we did not account for energy losses during the
simulations which serve us to ‘‘measure’’ the diffusion
coefficient, but included them in the calculation of the
spectra presented in Sec. III B. For energies below E�
1018 eV that are of interest to us in this paper, only expan-
sion losses play a noticeable role (see [1]), at least at low
redshift (z < 1). Above�1018 eV and for greater redshifts,
energy losses by photopion and pair production are no
longer negligible. Accounting for these energy losses
should soften the low energy part of Fig. 3 if the magnetic
field does not evolve strongly with redshift. Indeed, some
of the particles at E� 1016–17 eV actually result from
higher energy particles that lost their energy. The greater
distance travelled by these particles before losing their
energy would tend to raise the rms of the distance to the
source for low energy particles. Let us stress again that in
order to model this effect, one would need to follow as well
the evolution of the magnetic field with redshift.

B. Signatures

Firstly, we showed in Sec. III B that only some particular
types of magnetic fields were able to reproduce the data, in
the context of our study. Namely, for a source density of
ns � 10�5 Mpc�3, the voids of large-scale structures
should have a certain level of magnetization, and hBi
should be roughly comprised between 0.3 and 10 nG,
2 nG being an overall satisfactory average intensity.
These numbers should be taken cautiously, remembering
all the limitations and unknowns that affect these kind of
simulations, as stated in the first two sections.

We calculated the Faraday rotation measure (RM) for
our four magnetic field models with a characteristic mag-
netic field ofB0 � 2 nG. Having sampled 104 lines of sight
in our simulation cube, we calculated the median of the
RMs along them. For our models, the power laws of
median (RM) versus the distance are steeper (slope �1)
than that expected for a homogeneous magnetic field, for
which the integration of RM is equivalent to a simple
random walk (slope �1=2).

We find that at a cosmological distance of 1 Gpc, the
median of our RMs is of order �0:03 rad=m2 for model 1
and of �0:1 rad=m2 for models 2 and 3. These values are
consistent with the current observations of RMs that pre-
dict an upper limit of 5 rad=m2 [13]. It should be remarked
however that the RMs calculated here are subject to high
variations according to the concentration of matter along
the line of sight. Though the distribution of the RMs is
sharply peaked around 0, with most of the RMs in the
narrow interval of 	�0:5; 0:5� rad=m2, we still find some
punctual cases where the RM can diverge from 20 up to
2000 rad=m2.

The use of a median value of RM enables us to get rid of
the undesirable lines of sight that cross high density clus-
ters and that induce these divergences. These few lines of
sight have a dominant contribution especially if we calcu-

late the variance or the root mean square of RM, leading to
very high artificial values.

Note that our rotation measures are again calculated for
magnetic fields that do not evolve in time. Hence our
median values can be considered as upper limits, as far
as relatively low density regions are observed.

Mean particle deflection angles induced by the magnetic
fields of model 1 are presented in Fig. 8. At a given distance
from the source, we calculate the deflection angle between
the arrival direction and the line of sight to the source. We
stop computing the angles when the energy loss distance
becomes greater than the linear travelled distance.

Our curves compare quite well to the analytical deflec-
tion angles calculated by Waxman and Miralda-Escudé
[43] (dashed lines)

 h�i ’ 0:8�
�

E

1020 eV

�
�1
�

lc
1 Mpc

�
1=2
�

r
10 Mpc

�
1=2

�

�
B

10�9 G

�
; (14)

where r is the distance to the source. For all distances, the
curves deviate from the analytical model at low energies,
when diffusion becomes important, and saturate at 90�.

The deflections obtained for cosmological distances at
high energy are quite moderate for model 1. We calculated
that it is also the case for models 2 and 4 (deflections are
slightly amplified in model 3). For a particle energy of 5�
1019 eV and a magnetic field of B0 � 2 nG and lc �
300 kpc, we find that the deflection is of order �3�–5�

at 100 Mpc for models 1 and 2, and of �8� for model 3.
These results are consistent with the observations of dou-

FIG. 8 (color online). Mean deflection angles at various dis-
tances from the source, as a function of particle energy, for
model 1. Solid lines are the results of our simulation with B0 �
2 nG, lc � 300 kpc and using model 1 [Eq. (4)]. Dashed lines
are the analytical values calculated in Ref. [43] [Eq. (14)].
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blets and triplets of events by recent experiments and leave
room for doing cosmic ray astronomy. Our models would
thus be in agreement with the detection of counterparts at
energies around the Greisen-Zatsepin-Kuzmin cutoff.

Recently, a study related to the present work appeared,
claiming that partial confinement in magnetic fields sur-
rounding the source plays an important role in the cutoff at
low energy [44]. This possibility had been put forward in
Ref. [8], where it was further shown that the time of escape
from the dense source environment could be non-
negligible only in a rather contrived situation, since it
requires B * 1 �G�lc=10 kpc�1=2�L=100 kpc��1, with L
the characteristic scale of the magnetic field spread around
the source.

We do not find such a strong effect in our present
simulations, where the time of confinement remains of
order �1 Gyr for a particle of energy 1016 eV, or
�300 Myr for a particle of energy 1017 eV. This effect
obviously depends largely on the source environment, and
on the location of the source. Ref. [44] samples the source
locations according to the baryon density and therefore
tends to favor high density (cluster) regions. Since the
magnetic field in the simulations of Ref. [44] is already
quite strong (see Fig. 1), this explains the magnitude of the
effect. As noted in Ref. [8], the search for counterparts will
allow to confirm or exclude this effect by studying the
environment of the sources.

Ref. [44] also calculates spectra for inhomogeneous
magnetic fields. However, unlike in our work, Ref. [44]
does not account for the evolution of the magnetic field due
to expansion during the propagation.

Nevertheless it is interesting that Ref. [44] finds the
spectrum to maintain its ‘‘universal’’ shape in the region
of moderate energies, where the transition between the
diffusive and the rectilinear regimes occurs. This is one
region which we cannot probe using the semianalytical
technique of spectrum reconstruction used in the present
work; the results of Ref. [44] justify our interpolation of the
spectrum in this region.

V. CONCLUSION

We developed a new method combining an efficient
propagation scheme and a simple recipe to build semi-
realistic magnetic field distributions. We map the magnetic
field following the baryon density distribution according to
three different models and propagate particles from cell to
cell, taking into account the inner turbulence of each cell,
as well as its global magnetic intensity. This method is
much faster than classical trajectory integrations.

Under the assumption that the emergence of the extra-
galactic component occurs at the second knee, we demon-
strated that it was possible to give rough limits for some
key parameters �hBi; lc�, by studying their effects on the
magnetic horizon.

For our models assuming isotropic or anisotropic col-
lapse, with or without turbulence (models 1, 2, and 4
described in Secs. II and III), we find that our calculated
spectra fit the data satisfactorily. Numerically, for a source
density of ns � 10�5 cm�3 we find that an average mag-
netic field hBi � 2 nG is a reasonable value for the three
models cited above, and coherence lengths of 100 kpc (for
models 2 and 4) up to 300 kpc (model 1) provide a good
agreement with the data. These numbers should still be
taken cautiously, remembering the limitations discussed
throughout this paper.

We showed that the validity of this scenario depends on
other parameters (relative normalization of data sets,
source density) but eventually, the strongest constraint
comes from the rate of magnetic enrichment of the low
density intergalactic medium (voids). We saw indeed that
model 3, which simulates a volume with unmagnetized
voids has a marginal goodness of fit with the observed
spectra, even with a low source density.

Ultimately, therefore, the success of this scenario for the
transition between the galactic and extragalactic cosmic
ray components depends on the very origin of intergalactic
magnetic fields, and on whether the voids of large-scale
structures have remained pristine or not. Interestingly, this
question is related to the ongoing debate on the enrichment
of the underdense intergalactic medium in metals, since
galactic winds carrying metals also carry significant mag-
netic fields. Detailed studies of the intergalactic medium as
well as progress on extragalactic magnetic fields in the
coming decade will shed light on this issue.
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APPENDIX A: NUMERICAL TECHNIQUES

1. Setting up the magnetic field

Our basic assumption is that the magnetic field and the
matter density have a similar spatial distribution at large
scales. For the reasons detailed in Sec. II, we map the
magnetic field following four models [Eqs. (4) and (5)].
The parameter B0 mentioned along this paper refers to the
proportionality factor of Eqs. (4) and (5) and indicates the
characteristic intensity of the field.

We calculate our magnetic field by applying these for-
mulas to a three dimensional dark matter overdensity map
(at redshift z � 0) generated by the hydrodynamical code
RAMSES [23]. This cosmological simulation was based on a
the �CDM model that assumes a flat, low density universe,
with �m � 0:3, �� � 0:7, and Hubble constant h �
H0=�100 km=s=Mpc� � 0:7. It models a 200 Mpc=h co-
moving periodic cube split in 5123 cells, where the dark
matter overdensity is computed. We do not resolve struc-
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tures below Jeans length, which implies that we can iden-
tify the computed dark matter distribution to a gas
distribution.

While propagating our particles, the magnetic field at a
given position is computed using the overdensity of the
nearest grid point.

2. Particle propagation

For each set of parameters, we propagate 103 protons
emitted from 10 different sources. The positions of the
sources are chosen as follows: we first select the grid points
in our cube that have an overdensity ~� > 10. Smoothed
over our grid of 5123 cells for 2003 Mpc3, overdensities of
�103 (minimum density of galaxies) would indeed corre-
spond to overdensities of �10. Thus the selected regions
have a good probability of belonging to massive halos. We
randomly choose ten grid points among this subset and
label them as the initial positions of our particles. The
initial direction of the impulsion of a particle is also drawn
randomly.

a. Computing the trajectory

Solving the equation of motion for each particle during
an entire Hubble time using a Runge-Kutta method can be
very time consuming. An alternative method consists in
assuming that a proton travels through adjacent spheres of
diameter lc, in which the magnetic field has a certain level
of turbulence (see Fig. 9). We calculate analytically the
time of escape from each sphere and sample the deflection

angle of the particle after each sphere from a normal law
where the mean deflection m and its variance s depend on
the Larmor radius of the particle. This sphere-crossing
method is much faster than a direct integration of the
trajectory. It also enables us to take into account the low
level turbulence for scales smaller than lc.

A particle can cross a sphere in two extreme ways: either
p � rL=lc � 1 and the particle goes nearly straight
through the sphere, or p 1 and it wanders in the sphere
for some time. In this latter case, the time spent in the
sphere 	1 ’ lc=c.

In the Kolmogorov regime in which the diffusion length
lscatt � r

1=3
L l2=3

c with rL  lc, one always has lscatt � lc
hence the particle enters the diffusive regime in the sphere
before exiting. The time spent in the sphere then depends
on the diffusion coefficient D.

On average, a particle diffusing through the sphere
travels a linear distance lc=

���
2
p

, so that the time of escape
reads

 	2 �
l2c

4D
: (A1)

D is computed according to the results of Casse et al.
[18], who performed Monte Carlo simulations of particle
propagation in stochastic magnetic fields to measure the
spatial diffusion coefficients. Their data for full turbulence
can be fit by the approximate relation

 D � 1:2rLc
�
rL
lc

 0:1

�
rL
lc

�
�2=3

�
: (A2)

We use this formula in our code to calculate 	.

b. Deflection angle calculation

Our spheres are located so that the particle always enters
radially. The deflection angle due to the crossing of a
sphere is calculated with respect to this entering direction
(see Fig. 9).

The cosine of the deflection angle cos� varies according
to the rigidity p � rL=lc. For p 1 the particle is in a
diffusive regime, which implies that cos� has a uniform
distribution over [� 1, 1]. For the other extreme case,
namely p� 1, cos� can be sampled from a normal law
of mean m and variance s.

In order to identify the functions m � m�p� and s �
s�p� in the quasirectilinear regime, we integrated the tra-
jectories of 104 particles in a sphere, using a Runge-Kutta
method, for values of p ranging from 2 to 100. This gives
us a trend for the mean deflection angle h�i and its variance
��.

Then, in our simulations, we use the calculated proba-
bility law given by m�p� and s�p� in order to draw the
direction of exit, and we move the clock forward by the
time spent in the sphere.

cl

B

B2

1

θ

B

B3

4

3

θ4

FIG. 9 (color online). Sketch of particle propagation in mag-
netic fields as modeled in our simulations. Particles enter spheres
of diameter lc along a radial direction and escape at calculated
positions (marked with red dots). A global magnetic field inten-
sity, that can be related to the largest scale of turbulence, is
associated to each sphere (labeled Bi, with B3 >B4). Turbulence
is taken in account inside each sphere through the calculation of
the escape time and position. In this figure, cos�3 is sampled
from a normal law with a large variance and cos�4 with a smaller
variance.
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c. Checking the validity of our code in a homogeneous
case

Our code was checked on a broad range of parameters in
the analytically calculable homogeneous case, i.e., we
compared the numerical simulations using the above
sphere-crossing trajectories and a magnetic field strength
equal in each sphere with the analytical results for full

turbulence and homogeneous magnetic power. We did
obtain through the numerical calculations the expected
slopes of 1=6 and 1 for Fig. 3 as predicted by the analytical
calculations. The transmission factors also fit nearly ex-
actly those calculated in Eq. (B3), see Fig. 10.

APPENDIX B: TRANSMISSION FACTOR FOR
DIFFUSION IN HOMOGENEOUS SPACE

We calculate in this section the fraction of particles that
are located at a linear distance greater than R at a given
time t, in a diffusive propagation regime and in a homoge-
neous space. The density of particles at a position r and at
time t can be written

 n�r; t� �
1

�4�Dt�3=2
exp

�
�

r2

4Dt

�
; (B1)

where D is the diffusion coefficient. The fraction of parti-
cles beyond R at t can thus be obtained by the following
integral:

 T �
Z 1
R

4�r2dr
1

�4�Dt�3=2
exp

�
�

r2

4Dt

�
: (B2)

Integrating by parts, we obtain

 T �

����
2

�

s
R̂eR̂

2=2 
 erfc
�
R̂���
2
p

�
; (B3)

where

 erfc �x� �
2����
�
p

Z 1
x

e�u
2
du and R̂ �

R���������
4Dt
p : (B4)

[1] V. Berezinsky, A. Gazizov, and S. Grigorieva, Phys. Rev.
D 74, 043005 (2006).

[2] M. Nagano and A. Watson, Rev. Mod. Phys. 72, 689
(2000).

[3] P.-O. Lagage and C. Cesarsky, Astron. Astrophys. 125,
L249 (1983).

[4] R. Budnik, B. Katz, A. MacFadyen, and E. Waxman,
arXiv:astro-ph/0705.0041.

[5] A. R. Bell and S. G. Lucek, Mon. Not. R. Astron. Soc. 321,
433 (2001).

[6] H. J. Völk and V. N. Zikashvilii, Astron. Astrophys. 417,
807 (2004).

[7] H. Muraishi, S. Yanagita, and T. Yoshida, Prog. Theor.
Phys. 113, 721 (2005).

[8] M. Lemoine, Phys. Rev. D 71, 083007 (2005).
[9] R. Aloisio and V. Berezinsky, Astrophys. J. 625, 249

(2005).
[10] V. S. Berezinsky, S. I. Grigorieva, and B. I. Hnatyk,

Astropart. Phys. 21, 617 (2004).
[11] D. Allard, E. Parizot, A. V. Olinto, E. Khan, and S.

Goriely, Astron. Astrophys. 443, L29 (2005).
[12] D. Allard, E. Parizot, and A. V. Olinto, arXiv:astro-ph/

0703633.
[13] P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994).
[14] K. T. Kim, P. P. Kronberg, G. Giovannini, and T. Venturi,

Nature (London) 341, 720 (1989).
[15] B. M. Gaensler, R. Beck, and L. Feretti, New Astron. Rev.

48, 1003 (2004).
[16] L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002).
[17] A. Lazarian, J. Cho, and H. Yan, arXiv:astro-ph/0211031.
[18] F. Casse, M. Lemoine, and G. Pelletier, Phys. Rev. D 65,

023002 (2001).
[19] K. Dolag, D. Grasso, V. Springel, and I. Tkachev, J.

Korean Astron. Soc. 37, 427 (2004).
[20] K. Dolag, D. Grasso, V. Springel, and I. Tkachev, J.

Cosmol. Astropart. Phys. 1 (2005) 9.
[21] G. Sigl, F. Miniati, and T. A. Enßlin, Phys. Rev. D 70,

043007 (2004).
[22] J. Candia and E. Roulet, J. Cosmol. Astropart. Phys. 10

(2004) 007.

FIG. 10 (color online). Fraction of particles located at a linear
distance greater than R after one Hubble time in a homogeneous
magnetic field, as a function of R̂ � R=

���������
4Dt
p

as defined in (B4),
for various rigidities p � rL=lc. Solid lines are results from our
simulations and dotted lines the analytical expression calculated
in Appendix B.

KUMIKO KOTERA AND MARTIN LEMOINE PHYSICAL REVIEW D 77, 023005 (2008)

023005-14



[23] R. Teyssier, Astron. Astrophys. 385, 337 (2002).
[24] M. Bruni, R. Maarteens, and C. G. Tsagas, Mon. Not. R.

Astron. Soc. 338, 785 (2003).
[25] R. Schlickeiser and P. K. Shukla, Astrophys. J. 599, L57

(2003).
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