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ABSTRACT

Aims. We introduce an optimized data vector of cosmic shear measures (N). This data vector has high information content, is not
sensitive to B-mode contamination, and only shows small correlation between data points of different angular scales.
Methods. We show that a data vector of the two-point correlation function (2PCF), hereafter denoted as ξ, in general contains more
information on cosmological parameters compared to a data vector of the aperture mass dispersion, hereafter referred to as 〈M2

ap〉.
The reason for this is the fact that 〈M2

ap〉 lacks the information of the convergence power spectrum (Pκ) on large angular scales, which
is contained in ξ. Nevertheless, 〈M2

ap〉 has valuable properties (small correlation between data points of different angular scales, not
sensitive to B-mode contamination) that one wants to preserve in an optimized data vector. Therefore we combine ξ and 〈M2

ap〉 to a

new data vector N =
(
〈M2

ap〉(θ1), ..., 〈M2
ap〉(θn), ξ+(θ0)

)
, which retains the advantages of 〈M2

ap〉 and is also sensitive to the large-scale
information of Pκ. We compare the information content of the three data vectors by performing a detailed likelihood analysis and use
ray-tracing simulations to derive the covariance matrices. In the last part of the paper we contaminate all data vectors with B-modes
on small angular scales and examine their robustness against this contamination.
Results. The combined data vector N strongly improves constraints on cosmological parameters compared to 〈M2

ap〉. Although, the
information content of ξ is higher in the case of a pure E-mode signal, in the more realistic case where B-modes are present the 2PCF
data vector is strongly contaminated and yields biased cosmological parameter estimates. The new data vector N shows to be robust
against this contamination. Furthermore the individual data points of N show a much smaller correlation compared to ξ, leading to
an almost diagonal covariance matrix.

Key words. cosmology: theory – gravitational lensing – large-scale structure of Universe – methods: statistical

1. Introduction

Weak gravitational lensing by the large-scale structure (LSS)
called cosmic shear has become a valuable tool in cosmology.
Ever since the first detection of cosmic shear in 2000 (Bacon
et al. 2000; Kaiser et al. 2000; van Waerbeke et al. 2000;
Wittman et al. 2000), several surveys have been carried out with
various depths and widths. The latest results show the ability
of cosmic shear to constrain cosmological parameters, in par-
ticular σ8 (e.g. van Waerbeke et al. 2005; Semboloni et al.
2006; Hoekstra et al. 2006; Schrabback et al. 2007; Hetterscheidt
et al. 2007; Massey et al. 2007). In the near future these con-
straints will improve even more when upcoming surveys like
Pan-STARRS or KIDS enable us to estimate the shear signal
with less than 1% statistical error. This improvement in measur-
ing cosmic shear should go along with an optimization of the
data analysis. It is desirable to extract as much information as
possible from the observational data and to derive constraints
free of any contamination. Currently, most cosmic shear sur-
veys only consider second-order shear statistics, for which all
information is contained in the power spectrum of the conver-
gence (Pκ). Although Pκ is not directly measureable, it is lin-
early related to second-order cosmic shear measures (e.g. the
two-point correlation function and the aperture mass dispersion),
which can be estimated from the distorted ellipticities of the

observed galaxies. More precisely, all second-order measures are
filtered versions ofPκ, and the corresponding filter functions de-
termine how the information content of Pκ is sampled.

It is the intention of this paper to compare several data vec-
tors of cosmic shear measures and to create an optimal data
vector with high information content, largely uncorrelated data
points and only little sensitivity to a possible B-mode contam-
ination. We first compare the information content of the two-
point correlation function (2PCF) and aperture mass disper-
sion (〈M2

ap〉). We prove a general statement that a data vector
consisting of 2PCF data points (ξ) always gives tighter con-
straints on cosmological models compared to a data vector con-
sisting of 〈M2

ap〉 data points (〈M2
ap〉) and we confirm this by a

likelihood analysis of ray-tracing simulations. This result can-
not come as a surprise since the 2PCF integrates over all scales
ofPκ and especially collects information on large angular scales,
scales that are not taken into account by the aperture mass dis-
persion. Nevertheless 〈M2

ap〉 has important advantages. First, it
can be used to separate E-modes and B-modes (Crittenden et al.
2002; Schneider et al. 2002b), more precisely 〈M2

ap〉 is only sen-
sitive to E-modes. Second, thanks to its narrow filter function, it
provides highly localized information on Pκ, implying that two
different 〈M2

ap〉 data points are much less correlated compared to
the 2PCF. Third, 〈M2

ap〉 can be easier extended to higher-order
statistics (Schneider et al. 2005). These advantages are valuable
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and should be maintained, but the information content should
be improved. Hence, we extend the 〈M2

ap〉 data vector by one
data point of ξ+(θ0), which provides the large-scale information
of Pκ and call this new data vectorN . We perform a likelihood
analysis forN , examine its ability to constrain cosmological pa-
rameters, and compare it to the two aforementioned data vectors.

This paper is organized as follows. Section 2 summarizes the
basic theoretical background of 2PCF and 〈M2

ap〉. Next we com-
pare the information content of these two second-order measures
and introduce the improvement to the 〈M2

ap〉 data vector (Sect. 3).
We perform a detailed likelihood analysis for the three data vec-
tors and present the results in Sects. 4 and 5. In Sect. 6 we con-
taminate our shear data vectors with B-modes and again perform
the likelihood analysis to investigate how significantly each data
vector is influenced. Finally in Sect. 7, we discuss the results
and give our conclusions. One final remark should be made on
the notation. Both ξ and 〈M2

ap〉 denote theoretical quantities cal-
culated from a given power spectrum, whereas ξ̂ andM are es-
timators obtained by averaging over many data points inside a
bin. Vectors and matrices are written in bold font.

2. Two-point statistics of cosmic shear

In this section we briefly review the basics of two-point statistics,
definitions of shear estimators and corresponding covariances,
closely following the paper of Schneider et al. (2002a). For more
details on these topics, the reader is referred to Bartelmann &
Schneider (2001) or, more recently, Schneider (2006).

2.1. Two-point correlation function and aperture mass
dispersion

To measure the shear signal we define θ as the connecting vector
of two points and specify tangential and cross-component of the
shear γ as

γt = −Re
(
γe−2iϕ

)
and γ× = −Im

(
γe−2iϕ

)
, (1)

where ϕ is the polar angle of θ. The 2PCFs depend only on the
absolute value of θ and are defined as

ξ±(θ) = 〈γtγt〉(θ) ± 〈γ×γ×〉(θ). (2)

The observed shear field can be decomposed into a gradient
component (called E-mode) and a curl component (B-mode)
(Crittenden et al. 2002; Schneider et al. 2002b). B-modes are
considered to be a contamination of the pure lensing signal, due
to noise or unresolved systematics. The limited validity of the
Born approximation (Jain et al. 2000) or redshift source cluster-
ing (Schneider et al. 2002b) can also create B-modes, although
these effects are small. Intrinsic alignment of source galax-
ies is another possible source of B-modes. Predictions coming
from numerical simulations differ on the impact of these effects
(e.g. Heavens et al. 2000; Crittenden et al. 2001; Jing 2002).
Nevertheless, when photometric redshift information is avail-
able, galaxy pairs with similar redshifts can be ignored in the
analysis. This excludes a contamination of the signal by intrin-
sic galaxy alignment and ensures that a measured correlation
of galaxy ellipicities is only due to lensing (King & Schneider
2003). For the case of a general shear field consisting of E- and
B-modes, the convergence is also complex, κ = κE+ i κB, and can
be related to the shear (Kaiser & Squires 1993) by

κE(θ) + iκB(θ) =
1
π

∫
d2θ′D∗(θ − θ′)γ(θ′) , (3)

with

D∗(θ) = θ
2
2 − θ21 + 2iθ1θ2

|θ|4 · (4)

The power spectra of E-mode and B-mode can be defined
(Schneider et al. 2002b) using the Fourier transform of κ

〈κ̂E(�)κ̂∗E(�′)〉 = (2π)2δ(2)(� − �′)PE(	), (5)

〈κ̂B(�)κ̂∗B(�′)〉 = (2π)2δ(2)(� − �′)PB(	), (6)

〈κ̂E(�)κ̂∗B(�′)〉 = (2π)2δ(2)(� − �′)PEB(	), (7)

with δ(2)(�) as the two-dimensional Dirac delta distribution. The
cross power spectrumPEB is expected to vanish for a statistically
parity-invariant shear field. Note that PE can be related to the
power spectrum of density fluctuationsPδ via Limber’s equation
(Kaiser 1992, 1998)

PE(	) =
9H4

0Ω
2
m

4c4

∫ wh

0

dw
a2(w)

Pδ
(
	

fK(w)
, w

)

×
[∫ wh

w

dw′pw(w′)
fK(w′ − w)

fK(w′)

]2

, (8)

with 	 as the Fourier mode on the sky, and w denotes the co-
moving coordinate, wh the comoving coordinate of the horizon,
fK (w) the comoving angular diameter distance, and pw the red-
shift distribution of source galaxies. The 2PCFs depend on both
power spectra, PE and PB,

ξ+(θ) =
∫ ∞

0

d	 	
2π

J0(	θ) [PE(	) + PB(	)] , (9)

ξ−(θ) =
∫ ∞

0

d	 	
2π

J4(	θ) [PE(	) − PB(	)] , (10)

with Jn denoting the nth order Bessel function.
Another second-order cosmic shear measure, the aperture

mass dispersion, was introduced by Schneider et al. (1998)
and is also related to the power spectrum. In contrast to the
2PCF, 〈M2

ap〉 only depends on the E-mode and 〈M2⊥〉 only on
the B-mode power spectrum, hence the aperture mass statistics
provides a powerful tool to separate E- from B-modes

〈M2
ap〉(θ) =

1
2π

∫ ∞

0
d	 	 PE(	)Wap(θ	), (11)

〈M2
⊥〉(θ) =

1
2π

∫ ∞

0
d	 	 PB(	)Wap(θ	), (12)

with

Wap(θ	) =

(
24J4(	θ)

(	θ)2

)2

· (13)

From (9)−(11) we see that the second-order shear measures are
filtered versions of PE and PB. How the different filter functions
influence the information content of the corresponding measures
will be examined more closely in Sect. 3. In practice the aperture
mass dispersion is difficult to measure due to gaps and holes in
the data field but can be expressed in terms of ξ+ and ξ− as

〈M2
ap〉(θ) =

∫ 2θ

0

dϑϑ
2 θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
+ ξ−(ϑ)T−

(
ϑ

θ

)]
· (14)

The explicit calculation and the filter functions T± are given in
Schneider et al. (2002b).
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2.2. Estimators

Consider a sample of galaxies with angular positions θi. For each
pair of galaxies we define the connecting vector θ = θi − θ j and
determine tangential and cross-components of the ellipticities (εt
and ε×) with respect to this connecting vector. From these ellip-
ticities we estimate the 2PCF in logarithmic bins of ϑ with a log-
arithmic bin width ∆ϑ (Schneider et al. 2002a). If the bin width
is small enough an unbiased estimator for ξ±(ϑ) is given by

ξ̂±(ϑ) =
1

Np(ϑ)

∑
i j

(εitε jt ± εi×ε j×)∆ϑ(|θi − θ j|), (15)

with Np(ϑ) =
∑

i j ∆ϑ(|θi − θ j|) as the number of galaxy pairs
inside a bin, and ∆ϑ(|θi − θ j|) is 1 if |θi − θ j| lies inside bin ϑ,
0 otherwise. An unbiased estimator of 〈M2

ap〉 can be calculated
from ξ̂±(ϑ) using (14),

M(θk) =
I∑

i=1

∆ϑiϑi

2 θ2k

[
ξ̂+(ϑi) T+

(
ϑi

θk

)
+ ξ̂−(ϑi) T−

(
ϑi

θk

)]
, (16)

where I must be chosen such that the upper limit of the Ith bin
equals twice the value of θk.

2.3. Covariances

Important for characterizing the amount of information of a
shear estimator is the corresponding covariance. For the 2PCF
it is defined as

Cξ
(
ϑi, ϑ j

)
:=

〈(
ξ±(ϑi) − ξ̂±(ϑi)

) (
ξ±(ϑ j) − ξ̂±(ϑ j)

)〉
. (17)

Assuming a Gaussian shear field, the covariance of the 2PCF
can be calculated analytically (Schneider et al. 2002a; Joachimi
et al. 2007). As one already sees from (17), the 2PCF has four
different covariances, denoted as C++, C+−, C−+, C−−. Only three
of them are independent since C+−(ϑi, ϑ j) = C−+(ϑ j, ϑi). The
covariance CM (θk, θl) of M is defined analogously. Using (16)
we can express CM in terms of Cξ:

CM(θk, θl)) =
1
4

I∑
i=1

J∑
j=1

∆ϑi∆ϑ j

θ2kθ
2
l

ϑiϑ j

×
⎡⎢⎢⎢⎢⎢⎢⎣

∑
m,n=+,−

Tm

(
ϑi

θk

)
Tn

(
ϑ j

θl

)
Cmn(ϑi, ϑ j)

⎤⎥⎥⎥⎥⎥⎥⎦ . (18)

Similar to (16) I (J) are chosen such that the upper limit of the
Ith (Jth) bin equals twice of θk (θl).

3. The new data vectorN
Consider two data vectors, namely,

ξ =

(
ξ+
ξ−

)
with ξ+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξ+(ϑ1)
...

ξ+(ϑm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ξ− =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ξ−(ϑ1)
...

ξ−(ϑm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (19)

for the 2PCF and

〈M2
ap〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
〈M2

ap〉(θ1)
...

〈M2
ap〉(θn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (20)

for the aperture mass dispersion. The relation (16) can also be
written in terms of data vectors and an n × 2m transfer matrix A

〈M2
ap〉 =

(
A+ A−

)
︸�������︷︷�������︸

A

(
ξ+
ξ−

)
, (21)

with A+ denoting the part of A referring to ξ+ and A− denotes
the corresponding part referring to ξ−. Equation (21) implies that
the information content of 〈M2

ap〉 is less than or equal to ξ. The
amount of information can only be equal if and only if the rank
of A equals the dimension of ξ, hence rank A = 2m. We explic-
itly prove these statements in the Appendix. For the case of ξ
and 〈M2

ap〉, n ≤ m holds, which can be seen from (16). Therefore
the relation (21) is not invertible and the information content of
〈M2

ap〉 is smaller compared to ξ±. That ξ± contains more infor-
mation on cosmological parameters can also be explained when
looking at the filter functions J0, J4, and Wap relating the corre-
sponding second-order shear measures to the underlying power
spectrum. The 2PCF, especially ξ+, probes the power spectrum
over a broad range of Fourier modes and also collects informa-
tion on scales larger than the survey size. In contrast, the aper-
ture mass dispersion provides a highly localized probe ofPE and
does not contain this large-scale information. Hence, due to the
limited field size of a survey, the information content of 〈M2

ap〉 is
smaller compared to ξ±. These considerations lead to the idea of
modifying 〈M2

ap〉 by adding one data point of ξ+(θ0). We define
the new data vectorN as

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈M2
ap〉(θ1)
...

〈M2
ap〉(θn)
ξ+(θ0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

and the corresponding covariance matrix reads

CN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CM11 · · · CM1n C(M1, ξ+)
...

. . .
...

...
CM1n · · · CMnn C(Mn, ξ+)

C(ξ+,M1) · · · C(ξ+,Mn) C(ξ+, ξ+)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (23)

The upper left n × n matrix is exactly CM and the entry for
C(ξ+, ξ+) is taken from the corresponding covariance matrix of
the correlation function. The cross terms can be calculated
using (16) to read

C(M(θk), ξ̂+(θ0)) =
1
2

I∑
i=1

∆ϑi

θ2k
ϑi

[
T+

(
ϑi

θk

)
C++(ϑi, θ0)

+ T−
(
ϑi

θk

)
C−+(ϑi, θ0)

]
. (24)

Similar to CM, CN is almost diagonal, hence data points of dif-
ferent angular scales are hardly correlated. This property van-
ishes in case we add more than one data point of the 2PCF. Due
to their broad filter function J0, two or more 2PCF data points
would be strongly correlated, resulting in high off-diagonal
terms in CN . The main intention, namely to include the infor-
mation of the power spectrum on large angular scales, is already
fulfilled by adding one data point of ξ+. For small 	 the sampling
of the power spectrum by ξ+(θ) hardly depends on θ, therefore
the gain in information on those scales by adding more than one
2PCF data point would be rather small.
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Fig. 1. 〈M2
ap〉 calculated directly from the power spectrum (crosses)

compared to 〈M2
ap〉 calculated from ξ± (circles).

4. Calculating data vectors and covariances

The data vectors ξ, 〈M2
ap〉,N are directly calculated from the

power spectrum of density fluctuations Pδ using (8) to obtain
PE and then applying either (9), (10), or (11) depending on the
desired cosmic shear measure. To derivePδ we assume an initial
Harrison-Zeldovich power spectrum (Pδ(k) ∝ kn with n = 1).
The transition to today’s power spectrum employs the transfer
function described in Bardeen et al. (1986), and we use the fitting
formula of Smith et al. (2003) to calculate the non-linear evolu-
tion. In contrast, the covariances are obtained from ray-tracing
simulations. The N-body simulation used for the ray-tracing
experiment was carried out by the Virgo Consortium (Jenkins
et al. 2001); for details of the ray-tracing algorithm see Ménard
et al. (2003). Then, Cξ is calculated by field-to-field variation
of 36 ray-tracing realizations, where each field has a sidelength
of 4.27 degrees. The intrinsic ellipticity noise is σε = 0.3 and the
number density of source galaxies is given by n = 25/arcmin2.
From Cξ we calculate CM and CN according to (18) and (23).
Our fiducial cosmological model is determined by the cosmol-
ogy of the ray-tracing simulations, i.e. a flat ΛCDM model with
Ωm = 0.3, σ8 = 0.9, h = 0.7, and Γ = 0.172. Furthermore,
the ray-tracing simulations assume all source galaxies to be at
the same redshift, i.e. z0 = 0.98. Using a redshift distribution
instead would not change our results markedly. The data vectors
are calculated from PE, and for a given redshift distribution, one
can find a characteristic z0 such that PE is almost similar inde-
pendent of using the redshift distribution or choosing all sources
to be at z0.

4.1. Difficulties with covariances

4.1.1. Underestimation of CM

Kilbinger et al. (2006) have shown that 〈M2
ap〉(θ) is biased for

small θ when calculated from the 2PCF using (16). This is due to
the lack of 2PCF data points on very small angular scales, which
causes a small-scale cutoff in the integral of (14). In our specific
case the 〈M2

ap〉 data vector is not affected by this bias because we
calculate it directly from the power spectrumPE. However, since
CM and CN are calculated from the covariance of the 2PCF,
they are certainly affected by this problem. In this subsection
we determine the θ-range on which we can calculate CM with
sufficient accuracy; the corresponding data vector of the aperture
mass dispersion will be restricted to this range. Figure 1 shows
〈M2

ap〉 calculated directly from the power spectrum using (11)

compared with 〈M2
ap〉 calculated from ξ± using (16). We assume

that the deviation shown here is a good approximation of the
bias in CM and we require an accuracy of 5% to accept a θ-value
for the 〈M2

ap〉 data vector. This criterion restricts the data vector
to a θ-range of 2.′25−100.′0, whereas the 2PCF data vector is
measured from 0.′2−200.′0.

4.1.2. Inversion of the covariance matrix

A second difficulty in the context of covariance matrices is out-
lined in Hartlap et al. (2007). The fact that an inversion of an esti-
mated unbiased covariance matrix leads to a biased result can be
overcome by applying a correction factor. According to Hartlap
et al. (2007), the correction factor depends on the ratio of num-
ber of bins (B) to number of independent realizations (N) from
which the covariance matrix is estimated. An unbiased estimate
of the inverse covariance matrix is

C−1
unbiased =

N − B − 2
N − 1

C−1 =

[
1 − B + 1

N − 1

]
C−1. (25)

Hartlap et al. (2007) prove the validity of this correction factor
for the case of Gaussian errors and statistically independent data
vectors. These two assumptions are violated when estimating
the covariance matrix from ray-tracing simulations. As a check
of whether the correction factor corrects the error in our ray-
tracing covariance matrices, we perform the following experi-
ment. We add different Gaussian noise to the ellipticities of the
galaxies, which are taken from the 36 independent realizations
of the ray-tracing simulations and thereby increase the number
of independent realizations. We hold the binning of the matrices
constant, calculate covariances for 36, 108, 216, 360, 720, 1080,
1440, 1800 realizations and plot 1/tr C−1 depending on the ratio
B/N (Fig. 2). Note that this method only creates multiple realiza-
tions of Gaussian noise on the galaxy ellipticities and does not
increase the number of realizations that determine the cosmic
variance part of the covariance matrix. Therefore, this method
only partly checks for the non-Gaussianity of the errors in a
ray-tracing covariance matrix; nevertheless, the impact of sta-
tistically dependent data vectors is fully taken into account. We
find the same linear behavior of the bias as Hartlap et al. (2007),
so are confident that the correction factor is able to unbias our
covariance matrices. By using the corrected inverse covariance
matrix we assure that the log-likelihood is also unbiased; never-
theless, any non-linear transformation of the log-likelihood will
again introduce a bias that influences the results and must be
examined.

5. Likelihood analysis

We define the posterior likelihood (PPL) for the case of a 2PCF
data vector as

PPL(π|ξ) = PL(ξ|π)
PE(ξ)

PPrior(π), (26)

where π denotes the parameter vector of the ΛCDM model as-
sumed in our likelihood analysis. Prior knowledge of the pa-
rameter vector coming from other experiments is included in
PPrior. In our case we assume flat priors with cutoffs, which
means PPrior is constant for all parameters inside a fixed interval
and PPrior = 0 for parameters outside the interval. The evidence
PE, is the normalization, obtained by integrating the probability
over the whole parameter space. The likelihood PL is defined as

P(ξ|π) = 1

(2π)n/2
√

det Cξ
exp

[
−1

2
χ2(ξ, π)

]
, (27)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078573&pdf_id=1
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Fig. 2. Illustration of how to correct for the bias occurring in the inverted
covariance matrices. We plot 1/trace (C−1) against the ratio B/N, where
B is the number of bins in the covariance matrix and N the number
of independent realizations of the ray-tracing simulations. From top to
bottom we show the correction for the inverse of Cξ, CN , and CM; each
plot shows the corrected (crosses) and uncorrected (circles) values with
the corresponding linear fits through the data points.

with the χ2-function

χ2 (ξ, π) = (ξ(π) − ξf)t C−1
ξ (ξ(π) − ξf), (28)

where ξf denotes the data vector corresponding to our fiducial
model, whereas ξ(π) varies according to the considered param-
eter space. To compare the information content of ξ, 〈M2

ap〉,N
we calculate the posterior likelihood in several parameter spaces
and illustrate the result by contour plots. Smaller contours cor-
respond to higher information content.

Fig. 3. Dependence of qs calculated for ξ (triangles),N (circles), 〈M2
ap〉

(squares) on the numbers of independent realizations of the ray-tracing
simulation. The values of qs are calculated for the case of varying Ωm

vs. σ8 in parameter space. The lines are a linear fit through data points
(solid for ξ, dashed for N , dotted for 〈M2

ap〉). Note that the deviation
of qs belonging to different numbers of realizations is much smaller
compared to the difference of qs of different data vectors.

5.1. Quadrupole moments

In addition to contour plots, we illustrate the information content
of a data vector by calculating the determinant of the quadrupole
moment of the posterior likelihood (Kilbinger & Schneider
2004)

Qi j ≡
∫

d2π PPL(π1, π2)(πi − πf
i )(π j − πf

j), (29)

with π1 and π2 the varied parameters, and πf
i the parameter of

the fiducial model. The calculation of Qi j assumes a posterior
likelihood in a two-dimensional parameter space; when consid-
ering more than two varied parameters, we calculate the Qi j for
the marginalized posterior likelihood (see Sect. 5.3). The deter-
minant is given by

q =
√

detQi j =

√
Q11Q22 − Q2

12. (30)

Tighter constraints on the parameters correspond to a lower
value of q. Due to its non-linearity in the log-likelihood, q is
biased (Sect. 4.1.2). The amount of bias varies depending on the
number of independent realizations from which the covariance
matrix is estimated, and we examine this effect in the same way
as for the covariance matrices in Sect. 4.1.2. For six different
numbers of independent realizations we performed a likelihood
analysis in a two-parameter space (Ωm vs. σ8) and calculated
q for all three cosmic shear measures. The result is plotted in
Fig. 3. One clearly sees that the q dependence on the number
of realizations is much weaker compared with the difference be-
tween q of different cosmic shear measures. Therefore, the bias
is small and we can confidently use q to compare the relative
information content of the different data vectors.

5.2. Variation of two parameters

The likelihood analysis in this section was performed in a two-
dimensional parameter space; all other cosmological parameters
were fixed to the fiducial values. Before comparing the three data
vectors we optimizedN with respect to the θ0-value of the added
2PCF data point. We added 35 different ξ+(θ0) covering a range

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078573&pdf_id=2
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Fig. 4. Values of q of the combined data vectorN depending on the an-
gular separation (θ0) of the additional ξ+ data point. We consider three
different parameter spaces Γ vs.Ωm (top), σ8 vs.Ωm (middle), and z0 vs.
Ωm (bottom), and for each case we calculated q for 35 different added
ξ+(θ0). The solid lines indicate a polynomial fit through the data; the
minima of these fits and therefore the optimal values for θ0 are 7.′8
(Γ vs. Ωm), 12.′9 (σ8 vs. Ωm), and 7.′0 (z0 vs. Ωm).

θ0 ∈ [0.′2−200.′0] and calculated q. Figure 4 illustrates the re-
sults of this optimization for 3 different pairs of parameters (Γ
vs. Ωm, σ8 vs. Ωm, z0 vs. Ωm). For all parameter combinations
considered, the optimal θ0 is close to 10′. This can be explained
from the behavior of the covariance matrix. For small angular
scales the covariance is dominated by shot noise, whereas the
signal of ξ+ becomes very small for large angular scales. In both
cases the signal-to-noise ratio is lower than on medium angular
scales, where we find the minimum of q. In our later analysis we
always chose the optimal 2PCF data point for the combined data
vector. The results are illustrated by contour plots (Fig. 5) and the

corresponding values of q are summarized in Table 1. Here, we
also list the results for two additional parameter combinations,
σ8 vs. Γ and z0 vs. σ8, not shown in Fig. 5. One clearly sees that
the 2PCF data vector gives the tightest constraints on cosmo-
logical parameters, whereas constraints from the aperture mass
dispersion are weaker. Although not quite matching the amount
of information of ξ, the combined data vector is a substantial
improvement over 〈M2

ap〉. This result is consistent for all param-
eter combinations we examine; nevertheless, the amount of the
improvement varies. We calculated the difference in information
of ξ andN relative to 〈M2

ap〉 and denote these values∆ξ and ∆N
(Table 1). The parameter combination σ8 vs. Ωm shows a rela-
tive improvement of ∆N = 26.4%, whereas the improvement
is much less for the case z0 vs. σ8 (∆N = 4.1%). The amount
of new information contributed by ξ+(θ0) depends on two main
issues. First, ξ+ integrates over a very broad range of the power
spectrum and it can happen that, although PE is sensitive to the
parameters considered, the integral overPκ is much less. For ex-
ample, if one varies Γ, the power spectrum is tilted and looks
significantly different, whereas the corresponding ξ+(θ0) might
be very similar. Second, 〈M2

ap〉 does not contain information on
small Fourier modes, whereasN gains information about these
modes from the data point ξ+(θ0). However, in case these modes
of the power spectrum are not sensitive to the parameters con-
sidered, the information that is contributed by ξ+(θ0) is mainly
redundant, hence ∆N is low. For example, varying σ8 or Ωm
changes PE similarly, i.e. increasing Ωm or σ8 increases the
amplitude of PE on all Fourier modes. Therefore, the integra-
tion over PE is as sensitive to parameter variations as PE itself.
Furthermore, the deviation of power spectra with different values
in σ8 and Ωm becomes much more significant for small Fourier
modes. Information on these scales is not included in 〈M2

ap〉
but is contributed by ξ+(θ0), resulting in a large ∆N(26.4%).
In contrast to this, a variation in z0 changes the power spectum
very little, especially the dependence is weak on low 	-scales.
Accordingly, the gain in information for the cases z0 vs. Ωm
and z0 vs. σ8 is rather small.

5.3. Variation of three and four parameters – marginalization

In this section we perform a likelihood analysis in three- and
four-dimensional parameter space. To illustrate the results in
two-dimensional contour plots, we define the marginalized pos-
terior likelihood

PmPL(π12|ξ±) =
∫

dπ3

∫
dπ4 PPL(π1234|ξ±), (31)

which is obtained by integrating over the posterior likelihood
of the marginalized parameters. The marginalized likelihood is
also biased due to its non-linearity in the log-likelihood. To ex-
amine whether this bias affects our results significantly, we per-
formed the same experiment as for q in two-dimensional param-
eter space. We calculated q for our three different measures de-
pending on the number of realizations. The results are shown in
Fig. 6; again, the bias due to the process of marginalization is
small compared to the difference in q of our three data vectors
showing that in the marginalized case we can also use q to com-
pare the information content. We also optimize the combined
data vector, similar to Sect. 5.2 and summarize the results in
Table 2. For the same reasons as in the previous section, the opti-
mal angular scale of the added ξ+ data point is again around 10′,
and we choose this optimized N for the likelihood analysis in
three- and four-dimensional parameter space. The results of the
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Fig. 5. Likelihood contours when varying only
two parameters, while the others are fixed to the
fiducial values. The contours contain 68.3%,
95.4%, 99.73% of the posterior likelihood. We
consider 3 parameter spaces, from top to bot-
tom: σ8 vs. Ωm, Γ vs. Ωm, z0 vs. Ωm. The con-
straints of ξ are shown on the left,M is plot-
ted in the middle, and the results of 〈M2

ap〉 are
shown on the right.

Table 1. Values of q for ξ,N , and 〈M2
ap〉 considering various parameter

spaces.

Parameter space q (〈M2
ap〉) q (N) q (ξ) ∆q (N) ∆q (ξ)

Γ vs. Ωm 14.7 11.7 9.1 20.4% 38.1%
σ8 vs. Γ 23.1 19.0 14.6 17.8% 36.8%
σ8 vs. Ωm 376.3 286.9 207.1 23.7% 45.0%
z0 vs. Ωm 46.4 41.0 32.9 11.6% 29.1%
z0 vs. σ8 95.3 91.4 73.2 4.1% 23.2%
σ8 vs. Ωm (z0) 416.9 313.4 230.0 25.8% 44.8%
σ8 vs. Ωm (Γ) 780.5 720.9 527.0 7.6% 32.5%
Γ vs. Ωm (σ8) 93.7 77.6 61.6 17.2% 34.3%
σ8 vs. Ωm (Γ, z0) 983.8 850.6 623.5 13.5% 36.6%

Note: Parameters over which we marginalize are mentioned in brack-
ets, the qs are given in units of 10−4, and ∆N (∆ξ) gives the relative
improvement compared to the q of 〈M2

ap〉.

likelihood analysis are comparable to those obtained in two-
dimensional parameter space. The q (see Table 1) are larger and
the contours (see Fig. 7) broader. Again, the relative improve-
ment ∆N depends on the parameter space considered. Forσ8 vs.
Ωm marginalized over z0, the improvement is very high (25.8%)
but becomes much lower for σ8 vs. Ωm marginalized over Γ.
This can be explained by looking how PE changes with respect
to the variation in parameter space. For the combination σ8 vs.
Ωm, we already explained this in Sect. 5.2 and the influence of z0
on PE is quite similar. Increasing z0 also increases PE, although

the effect is not very large. Therefore, the improvement of σ8 vs.
Ωm marginalized over z0 is comparable to the non-marginalized
case. When varying the shape parameter Γ, PE is tilted and this
dependence of PE on Γ is different compared to the other three
parameters. Scales of PE which are most sensitive to Γ differ
from scales sensitive to σ8, Ωm and z0 and the same argument
holds for the scales of the added ξ+(θ0). Therefore, the optimal
θ0 for the case σ8 vs. Ωm marginalized over Γ is a compromise
and the relative improvement is much lower (7.6%) compared to
σ8 vs. Ωm marginalized over z0 (25.8%).

6. Simulation of a B-mode contamination on small
angular scales

In this section we simulate a B-mode contamination of ξ, N ,
and 〈M2

ap〉 on small angular scales. At present there is no model
available to describe B-modes; taking into account that B-modes
most likely occur on small angular scales (e.g. Hoekstra et al.
2002; van Waerbeke et al. 2005; Massey et al. 2007), we use the
following arbitrary model for a B-mode power spectrum

PB(	) = 0.2PE(	) e−	B/	, (32)

where 	B defines a scale beyond which the B-mode contami-
nation decreases quickly. The B-mode contribution to ξ can be
calculated from (9) and (10) by assuming PE = 0. To calculate
the covariance CB, we assume that the probability distribution of
B-modes can be described by a Gaussian random field. This as-
sumption enables us to calculate the covariance directly in terms

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078573&pdf_id=5
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Fig. 6. Dependence of qs calculated for ξ (triangles), N (circles),
and 〈M2

ap〉 (squares) on the numbers of realizations for the case of a
marginalized posterior likelihood. The parameter space is σ8 vs. Ωm

(marginalized over Γ and z0). The lines are a linear fit through data
points (solid for ξ, dashed forN , dotted for 〈M2

ap〉). Similar to Fig. 3, the
deviation of qs belonging to different numbers of realizations is much
smaller compared to the deviation of qs of different measures.

Table 2. The optimal angular separation θ0 of the added ξ+ data point
inN considering three- and four-dimensional parameter space.

Parameter space∗ Optimal value θ0
Γ vs. Ωm (σ8) θ0 = 9.′1
σ8 vs. Ωm (z0) θ0 = 13.′0
σ8 vs. Ωm (Γ and z0) θ0 = 12.′0

∗ We marginalize over the parameters mentioned in parenthesis.

of the power spectrum PB (Joachimi et al. 2007). The covari-
ance of the 2PCF corresponding to the B-mode contribution is
given by

C++B,i j =
1

Aπ

∫
d		J0 (	ϑi) J0

(
	ϑ j

) (
P2

B(	) + PB(	)
σ2
ε

n

)
,

C−−B,i j =
1

Aπ

∫
d		J4 (	ϑi) J4

(
	ϑ j

) (
P2

B(	) + PB(	)
σ2
ε

n

)
,

C+−B,i j = −
1

Aπ

∫
d		J0 (	ϑi) J4

(
	ϑ j

) (
P2

B(	) + PB(	)
σ2
ε

n

)
,

where A defines the solid angle of the data field, σε the intrinsic
ellipticity noise, and n the number density of the source galax-
ies. According to the corresponding values of the ray-tracing
simulations we choose σε = 0.3 and n = 25/arcmin2. Note
that C−+B,i j = C+−B, ji. The pure shot noise term of C±±B is con-
tained in C±±E , but in case of C+−B this term vanishes anyway.
We further assume that the contamination is independent of the
lensing signal, meaning there is no correlation between E- and
B-modes. This assumption does not hold in case the B-mode sig-
nal is caused by insufficient PSF correction or other systematics,
which we will comment on at the end of this section. For the
case that B-modes are created independently from E-modes, we
can define a combined E/B-mode covariance matrix as

Ctot = CE + CB. (33)

Having obtained Cξ as described above, we therefrom calcu-
late CM and CN and perform a likelihood analysis similar to
Sects. 5.2 and 5.3. We only show the results for the Ωm vs. σ8
plane, which are illustrated in Fig. 8 and Table 3. As expected,

〈M2
ap〉 is not affected by the contamination at all. According

to (11), there is no contribution of PB to the individual data
points of 〈M2

ap〉, and the same holds for CM. Therefore, it is
no surprise that q and contour plots of 〈M2

ap〉 are similar to
those in Sect. 5.2. In contrast to this, the 2PCF data vector is
strongly affected by the contamination leading to a q that is
32.8% higher compared to the case when only E-modes are
present. Furthermore, there is a significant deviation between the
best-fit parameter set (σ8 = 0.76, Ωm = 0.39) and the fiducial
cosmological model (σ8 = 0.90 and Ωm = 0.30). Compared
to ξ the combined data vector N is much less contaminated
(9.6%), and its best-fit parameter set still matches the fiducial
model exactly. Considering the qs, one might argue that ξ still
gives tighter constraints on the parameters, but this result is bi-
ased in favor of ξ due to considering a parameter space only
up to Ωm = 1.0. Both measures have different best-fit parame-
ter sets and the likelihood contours are cut off at the limits of
the considered parameter space. In such a case, an extension of
the parameter space might change the result of comparing the
qs qualitatively. Compared to 〈M2

ap〉, the information content of
N is still significantly higher, although the relative improvement
decreases to ∆N = 16.4%, whereas we obtained ∆N = 23.7%
when only E-modes were present (see Sect. 5.2). This decrease,
due to the contaminated ξ+(θ0) data point in N , is another rea-
son not to include more data points of ξ+. In the presence of
B-modes, additional 2PCF data points would bias the parameter
constraints and weaken the results even more, leading to similar
deficits to those obtained from the 2PCF data vector itself. As
already mentioned above, the assumption of B-modes being in-
dependent of the E-mode signal does not always hold. In case
the contamination affects both, E-mode and B-mode signal, the
impact on the parameter constraints of the different measures is
hard to quantify. When one measures a B-modes signal, it is a
common approach to assume that the E-mode signal is contam-
inated in a similar way, hence one correspondingly increases its
error bars. Although this assumption is sensible, there are pos-
sible scenarios where the amount of contamination in E- and B-
mode differs and the E-mode contamination cannot be quantified
at all. Under the assumption that B-modes trace the scales of the
E-mode contamination, it is reasonable to exclude those scales
from the likelihood analysis. This can be done using 〈M2

ap〉 or
N , but ξ cannot avoid the contamination due to its broad filter
functions.

7. Conclusions

Although the 2PCF and the aperture mass dispersion are both
filtered versions of the power spectrum, the first contains more
information on PE than the latter. The reason for this is that
ξ samples the power spectrum over a much broader range and
also collects information on scales that are larger than the size
of the survey. The data vector 〈M2

ap〉 lacks this large-scale
information, but yields highly localized information on PE.
Nevertheless 〈M2

ap〉 has other advantages. First, due to its nar-
row filter function, the data points are much less correlated com-
pared to the 2PCF data points. This leads to a mainly diagonal
covariance matrix, which is numerically stabler during the in-
version process in a likelihood analysis. Second, when consid-
ering higher-order statistics, 〈M3

ap〉 is much easier to handle than
the three-point correlation function (Schneider et al. 2005), and
third, the aperture mass dispersion is only sensitive to E-modes.
Based on these considerations we create the combined data vec-
torN , which preserves the advantages of 〈M2

ap〉 and additionally
provides large-scale information on PE. This data vector can be
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Fig. 7. Likelihood contours of ξ, N , and
〈M2

ap〉 in three- and four-dimensional param-
eter space. From top to bottom we see Γ vs.
Ωm marginalized over σ8, σ8 vs. Ωm marginal-
ized over z0 and σ8 vs. Ωm marginalized over
Γ and z0. The contours contain 68.3%, 95.4%,
99.73% of the marginalized posterior likeli-
hood. The small scatter of the contours in the
last plot is due to a lower resolution of the grid
in four-dimensional parameter space compared
to the grids in two- and three-dimensional pa-
rameter space.

Fig. 8. The likelihood contours for the case that the shear signal is contaminated with B-modes. We only consider a two-dimensional parameter
space (σ8 vs. Ωm) and the contours again contain 68.3%, 95.4%, 99.73% of the posterior likelihood. The black dot in each plot indicates the
fiducial model.

Table 3. The results of the likelihood analysis in case the data vectors are contaminated by B-modes.

Data vector q (with B-modes) q (without B-modes) ∆q∗ Best-fit parameter set

〈M2
ap〉 376.3 376.3 0.0 σ8 = 0.90, Ωm = 0.30

N 314.4 286.9 9.6% σ8 = 0.90, Ωm = 0.30
ξ 275.0 207.1 32.8% σ8 = 0.76, Ωm = 0.39

∗ The relative difference of the qs with and without B-mode contamination.

optimized with respect to the angular scale of the added data
point ξ+(θ0), but this optimization very likely depends on the
survey geometry and must be performed for each survey sepa-
rately. We compared the three data vectors in a detailed likeli-
hood analysis and find that the combined data vector is a strong

improvement over 〈M2
ap〉 in information content. However, the

amout of improvement depends on the parameter space consid-
ered, more precisely, on the dependence of PE on variations
in those parameters. The combined data vector N also main-
tains the other advantages of the aperture mass dispersion. Its

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078573&pdf_id=7
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covariance matrix is almost diagonal, and even the cross terms
C(M(θk), ξ̂+(θ0)) are much smaller compared with the off-
diagonal terms of Cξ. Comparing the information content of ξ
andN , ξ gives tighter constraints if the shear signal only consists
of E-modes. In the more realistic case, when B-modes are also
present, the parameter constraints of ξ are significantly weak-
ened and, even worse, biased. The data vector N is much less
affected by the contamination and still gives tighter constraints
on cosmological parameters than does 〈M2

ap〉.
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Appendix A: Comparison of two measures

We compare the information content of two arbitrary data vec-
tors referring to them as primary data vector p and secondary
data vector s. We further assume that s can be calculated from p
by a transfer matrix A (dimension n×m), with arbitrary n and m

p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
p2
...

pm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
s2
...
sn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with s = Ap. (A.1)

We define the covariance matrices of these data vectors as

Cp =
〈
(p− p̂)(p− p̂)t

〉
, (A.2)

Cs =
〈
(s − ŝ)(s − ŝ)t

〉
, (A.3)

where p̂ (ŝ) denotes the estimated and p (s) the true values of
primary (secondary) measure. Using (A.1) we can relate both
covariances through

Cs = A Cp At. (A.4)

The transformation matrix A has to be of rank A = n, other-
wise the covariance matrix of the secondary data vector Cs =
(A Cp At) is singular and not invertible. Furthermore, as A is of
dimension (n × m), rank A ≤ m implying n ≤ m. We take the
χ2-functions a measure for the information content

χ2
p = ∆

t
p C−1

p ∆p and χ2
s = ∆

t
s C−1

s ∆s, (A.5)

where in our case ∆p = pf − pπ (∆s = sf − sπ) denotes the differ-
ence between the fiducial data vector pf (sf ) and the data vector
pπ (sπ) depending on the parameter vector π. If χ2 is minimal,
the posterior likelihood of the corresponding π being the correct
parameter vector is maximized. The difference between χ2

p and
χ2

s characterizes which probability function has a larger curva-
ture, i.e. which data vector gives tighter constraints in parame-
ter space. Therefore the information content of primary and sec-
ondary data vectors can be compared by calculating

χ2
p − χ2

s = ∆
t
p C−1

p ∆p − ∆t
p At

(
A Cp At

)−1
A ∆p, (A.6)

for arbitrary ∆p. In case this difference is always positive, we can
conclude that the primary data vector gives tighter constraints
on parameters. We can always find transformation matrices V

(dimension m×m) and U (dimension n×n) to rewrite the transfer
matrix A as an n × m matrix(

En 0
)
= S = U A V−1 ←→ A = U−1 S V. (A.7)

We can directly calculate these transformation matrices as a
multiplication of elementary matrices (Fischer 1997a). Inserting
(A.7) into (A.6), and after some lengthy but straightforward cal-
culation we derive,

χ2
p − χ2

s = ∆
′t
p C′−1 ∆′p − ∆′tp St

(
S C′ St

)−1
S ∆′p (A.8)

with

C′ = V Cp Vt and ∆′p = V ∆p. (A.9)

For simpler notation we discard all “ ′” later on. We define

C−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
C1 C2

Ct
2 C3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
D1 D2

Dt
2 D3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (A.10)

with C1 being an n × n matrix and calculate

St
(
S C St

)−1
S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
C−1

1 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (A.11)

Using (A.10) and (A.11) we can rewrite (A.8) as

χ2
p − χ2

s = ∆
t
p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
D1 − C−1

1 D2

Dt
2 D3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∆p. (A.12)

From C D = Em we deduce

C1 D1 + C2 Dt
2 = En −→ D1 − C−1

1 = −C−1
1 C2 Dt

2 (A.13)

and

C1 D2 + C2 D3 = 0 −→ C2 = −C1 D2 D−1
3 . (A.14)

Inserting (A.14) into (A.13) we can rewrite (A.12) as

χ2
p − χ2

s = ∆
t
p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
D2D−1

3 Dt
2 D2

Dt
2 D3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∆p. (A.15)

The matrix C is positive definite and symmetric, therefore D3
as a submatrix is positive definite and symmetric, and the in-
verse D−1

3 also has these favorable properties (Anderson 2003).
Hence, we can decompose D3 = LLt and finish our calculation
as follows

χ2
p − χ2

s = ∆
t
p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ D2(Lt)−1

L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
L−1 Dt

2 L
)

︸��������︷︷��������︸
T

∆p (A.16)

= ∆t
pTt T∆p

= ||T∆p||2
≥ 0. (A.17)

We now examine the case where χ2
p − χ2

s = 0. The information
content of primary and secondary measures is considered to be
equal if and only if this equality holds for all data vectors ∆p. If
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there is only one ∆p for which χ2
p − χ2

s > 0, the primary mea-
sure contains more information. The difference between the two
χ2-values is given by (A.6). In case it is zero for all ∆p,

C−1
p = At

(
A Cp At

)−1
A (A.18)

must hold (Fischer 1997b). The matrix Cp is of rank m, hence
the lefthandside of (A.18) must also have rank m. Then A must
have rank m and is therefore a quadratic m × m matrix, which is
of course invertible. This result is intuitively clear, if one is able
to calculate ∆s from ∆p, and vice versa the information content
should be the same. We can summarize the results of the above
calculation in two statements:

1. If a secondary measure can be calculated from a primary by
a matrix A as described in (A.1), the secondary measure has
less or equal information.

2. The amount of information is equal in case the rank of A
equals the dimension of the primary data vector (m) implying
that A is invertible.
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