
HAL Id: hal-03646468
https://hal.science/hal-03646468

Preprint submitted on 19 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Branch and Price for Sub-modular Bin Packing
Liding Xu, Claudia d’Ambrosio, Sonia Vanier, Emiliano Traversi

To cite this version:
Liding Xu, Claudia d’Ambrosio, Sonia Vanier, Emiliano Traversi. Branch and Price for Sub-modular
Bin Packing. 2022. �hal-03646468�

https://hal.science/hal-03646468
https://hal.archives-ouvertes.fr

Branch and Price for Sub-modular Bin Packing

Liding Xu, Claudia D’Ambrosio, Sonia Vanier
LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France, liding.xu@polytechnique.edu, 5

dambrosio@lix.polytechnique.fr, sonia.vanier@polytechnique.edu

Emiliano Traversi
LIPN CNRS, Université Sorbonne Paris Nord, 93430 Villetaneuse, France, emiliano.traversi@lipn.univ-paris13.fr

The submodular bin packing (SMBP) problem aims to pack items into a minimal number of bins for which

the capacity utilization function is submodular. The SMBP is equivalent to the random-constrained and

robust bin packing problem under various conditions. However, due to the combinatorial and nonlinear

nature of the underlying optimization problem, it is difficult to solve the SMBP. In this paper, we propose a

branch-and-price algorithm to solve this problem. The resulting price subproblems are submodular Knapsack

problems, and we propose a tailored exact branch-and-cut algorithm based on piecewise linear relaxation

to solve them. To speed up column generation, we develop a hybrid pricing strategy that can replace the

exact pricing algorithm with a fast heuristic pricing algorithm. We test our algorithms on instances from the

literature. The computational results show the efficiency of our branch-and-price algorithm and the proposed

pricing techniques. .

Key words : branch and price; sub-modular bin packing; sub-modular knapsack; piece-wise linear function

10

1. Introduction

Bin packing (BP) is an important combinatorial optimization problem with applications in

various fields, including call centers, healthcare, container shipping, and cloud computing.

These applications are typically modeled as BP problems that aim to pack items into a 15

minimum number of bins, with a capacity constraint on each bin. Submodular Bin Packing

(SMBP) is a nonlinear variant of the classical linear BP. The SMBP differs from the classical

linear BP in the expression of the capacity utilization functions: The capacity utilization

function in the classical linear BP is linear with respect to the items, while the capacity

1

Branch and Price for Sub-modular Bin Packing
2

utilization function in SMBP is a linear term plus a square root term, and this function is20

submodular with respect to the set of items (see Atamtürk and Narayanan (2008)).

In many practical applications of BPs, item sizes are not known before the packaging

decision is made. Therefore, uncertainty must be considered in the modeling. We will show

that the SMBP formulates BPs with uncertainty under various conditions. Recently, Cohen

et al. (2019) sstudied the resource allocation problem for cloud services. The authors model25

this problem as an SMBP problem and solve it using approximation algorithms. In this paper,

we study exact algorithms to solve the SMBP via the Dantzig-Wolfe decomposition approach

and exact algorithms to solve the pricing submodular Knapsack problems. Heterogeneous

optimization approaches have been used in the literature to model BPs under uncertainty,

including stochastic optimization, chance-constrained optimization, robust optimization,30

and nonlinear optimization models. The SMBP is a nonlinear optimization model with

connections to the other three optimization models. In the stochastic optimization model,

the objective function is an expected value function. The stochastic BP (SBP) models

item sizes as random variables. If capacity constraint violations can be accounted for as a

penalty cost, the optimization objective is to minimize the number of utilized bins plus35

the expected penalty cost (Denton et al. (2010)). In SBP, the two costs must be weighted

in a balanced manner to form a single objective. The chance constrained and robust

optimization approaches model uncertainty in the problem constraints directly, so capacity

constraints are not violated in these models. The chance constraint is a well-known tool

for modeling constraints on random variables (Charnes and Cooper (1963)). The BP with40

chance constraints (BPCC) (Shylo et al. (2013)) considers the BP problem, where the item

sizes follow a multivariate distribution and the items in each bin must satisfy the capacity

constraint with a certain probability. Robust optimization, in particular distributionally

robust optimization, considers the worst case of chance constraints within a given family

of distributions (see Ghaoui et al. (2003)). More generally than BPCC, distributionally45

robust BP (DRBP) allows item sizes to belong to a family of distributions with common

properties. Capacity constraints are robustly satisfied with respect to the entire family of

distributions (Zhang et al. (2020), Cohen et al. (2019)).

TThe sample-based average approximation method (SAA) is a common approach to solve

stochastic, chance constrained and robust optimization problems (Luedtke and Ahmed50

(2008), Bertsimas et al. (2018)). It approximates the problem as a two- or multi-stage

3

mixed-integer linear program and computes approximate solutions that converge to an

optimal solution in a probabilistic sense. The scalability and accuracy of this approach

depend on the number of samples. Some BPCC and DRBP problems are actually equivalent

to SMBPs under various conditions, so these problems can be solved using deterministic 55

methods.

In Cohen et al. (2019) it is shown that BPCC is equivalent to SMBP when the item sizes

follow independent Gaussian distributions. Furthermore, if the distributions of the item

sizes have the same mean values and the same diagonal covariance matrix, then DRBP is

equivalent to SMBP. If only the first two moments of the distribution are known, then the 60

BPCC can be reformulated as an SMBP problem according to Zhang et al. (2018). The

SMBP is also valuable from a practical point of view, as it provides an upper bound for

general independent distributions over bounded intervals (note that the SMBP becomes a

relaxation, see Cohen et al. (2019)).

The SMBP is a binary nonlinear optimization problem due to the nonlinear submodular 65

capacity utilization function. Zhang et al. (2018) show that any SMBP can be reformu-

lated as a binary second-order conic program (BSOCP), and the reformulation can be

strengthened by the extended polymatroid inequalities of Atamtürk and Narayanan (2008).

The authors use a branch-and-cut algorithm to solve the SMBP. As with linear BPs, it is

challenging to scale the branch-and-cut algorithm for SMBPs. The Dantzig-Wolfe (DW) 70

decomposition is a well-known approach to solving large linear BPs: a linear BP is refor-

mulated into a set-cover formulation based on enumerating all feasible packing patterns;

then its continuous relaxation is solved using a column generation approach (Gilmore and

Gomory (1961)).The branch-and-price algorithm integrates column generation with the

branch-and-bound algorithm and is the state-of-the-art exact method for solving linear 75

BPs (Wei et al. (2020b), Delorme et al. (2016)). TTo solve the SMBP efficiently, we use the

DW decomposition and develop a branch-and-price algorithm. In our DW decomposition

of the SMBP, we use the classical set-cover reformulation for the linear BP (Gilmore and

Gomory (1961)), but with nonlinear pricing problems. The submodular Knapsack problems

have linear objective functions, but the capacity utilisation functions are submodular. As 80

with the linear BP, solving the pricing problems involves the most computational effort

of the branch-and-price solvers, so many efforts have been made in the past to develop

algorithms (Sadykov and Vanderbeck (2013), Wei et al. (2020a)). The pricing problem is

4

more difficult for SMBPs because there is still no pseudopolynomial algorithm (such as

dynamic programming) to solve the submodular Knapsack problems. Therefore, solving85

pricing problems is crucial to the performance of our branch-and-price algorithm. There are

several papers in the literature on exact algorithms for variants of the classical Knapsack

problem (Cacchiani et al. (2022)), e.g., the quadratic Knapsack (Caprara et al. (1999),

Furini and Traversi (2019)), the multidimensional Knapsack (Puchinger et al. (2010)), the

quadratic multi-knapsack (Bergman (2019), Olivier et al. (2021)). The quadratic Knapsack90

has a nonlinear objective function, while the submodular Knapsack has a nonlinear submod-

ular function in the constraint. As far as we know, there is no tailored exact algorithmic

framework and implementation for the submodular Knapsack problem either. Moreover,

the submodular Knapsack problem is important in its own right as it models the chance-

constrained Knapsack problem (Goyal and Ravi (2010)).95

We propose a non-convex Mixed Binary Quadratically Constrained Programming

(MBQCP) formulation for the submodular Knapsack problem. Based on this formulation, we

construct the Piece-Wise Linear (PWL) relaxation and combine the relaxation with cutting

planes to form an exact PWL relaxation-based Branch-and-Cut (PWL-BC) algorithm.

PWL functions have been used to approximate or relax non-convex mixed-integer nonlinear100

programming (MINLP) problems (Geißler et al. (2012)). A PWL function is linear in

each partition of its domain and can be modeled by a Mixed Integer Linear Programming

(MILP) formulation (Vielma et al. (2010)). In our experiments, the PWL-BC algorithm is

faster than the commercial solver CPLEX and it optimally solves most pricing problems

where CPLEX still has a large dual gap. To further speed up the PWL-BC algorithm,105

we also investigate adaptive PWL relaxation in our experiments. We also propose several

strategies to accelerate the convergence of the branch-and-price algorithm, i.e., improve

primal and dual bounds. Wei et al. (2020b) and Gleixner et al. (2020) incorporate the Farley

bound (see Farley (1990), Vance et al. (1994)) into their algorithms to obtain an early

valid dual bound before the termination of the column generation procedure. Namely, the110

formula for the Farley bound imposes a condition on whether an exact pricing algorithm can

improve the current dual bound. If the condition is not satisfied, we do not need an exact

pricing algorithm, but can use a fast heuristic pricing algorithm. Therefore, a hybrid pricing

strategy is used to speed up column generation in our branch- and-price algorithms. We

also adapt a primary column selection primal heuristic from Lübbecke and Puchert (2012).115

5

This heuristic checks whether each new column can be combined with other generated

columns to form a feasible solution. There are few publicly available instances for the

SMBP problem. Cohen et al. (2019) test their approximation algorithms on real instances

from data centers that are not available to the public due to confidentiality constraints.

To compare the proposed algorithms, we generate instances according to their description. 120

Finally, by combining the proposed techniques, our branch-and-price algorithm solves more

instances and closes more dual gaps than CPLEX. In summary, our contribution in this

work is threefold. First, we apply the DW decom- position for the SMBP and develop

several techniques for the branch-and-price algorithm (including primal heuristics and

the hybrid pricing strategy). Second, for the submodular Knapsack problem, we propose 125

the MBQCP formulation and PWL relaxation and compare them with the formulation

and relaxation used by existing solution programs. We then develop an adapted PWL-BC

algorithm. Finally, we perform computational experiments on a large number of instances

to evaluate the proposed algorithms. The source code and benchmark will be published on

our project website. 130

1.1. Literature Review

his work refers to different areas of literature. We can mention: (i) solution methods for

SBPs, BPCCs and DRBPs; (ii) applications of branch-and-price algorithms for MINLPs;

(iii) primal heuristics specialized for column generation; (iv) existing approximations and

polyhedral results for the submodular Knapsack problem; (v) the outer approximation 135

and the PWL approximation. The surgery scheduling problem (also known as operating

room scheduling) is a common application of the SBP problem in healthcare, where the

surgery duration (item size) is assumed to be stochastic. A number of works (Denton

et al. (2010), Batun et al. (2011)) model stochastic surgery scheduling as a stochastic

two-stage mixed-integer programming problem: the objective is to minimize the fix and 140

the expected penalty for overtime. In some works (Cardoen et al. (2010), Deng et al.

(2019)), only the expected penalty is considered in the models. Shylo et al. (2013) appear

to be the first to consider BPCC in surgery scheduling. Assuming that the operation

duration follows a multivariate normal distribution, the authors reformulate the problem

as a semidefinite program. Decomposition methods are already used together with the SSA 145

method to solve SBPs/BPCCs, focusing either on two/multi-level structures of stochastic

programs or on BP problem structure. Denton et al. (2010), Batun et al. (2011)use Bender

6

decomposition to solve SBPs. Zhang et al. (2020) apply DW decomposition to scenario-based

subproblems of BPCC (obtained using the SAA method) and solve the subproblems using

the branch-and-price algorithm. In addition, Zhang et al. (2020) consider the DRBP where150

the distributions of item sizes are ambiguous, i.e., the family of distributions is unknown or

at best partially known. The authors approximate the problem by an MILP and solve it

using the branch-and-price algorithm. As far as we know, the DW decomposition is still

applied to MILPs coming from the approximation or relaxation of BPs with uncertainty,

but not yet for an exact nonlinear programming model. Recently, DW decomposition and155

the branch-and-price algorithm have been used to solve MINLPs (see Allman and Zhang

(2021)), such as recursive circle packing (RCP) problems (Gleixner et al. (2020)), binary

quadratic problems (Ceselli et al. (2022)),nd facility location with general nonlinear facility

cost functions (Ni et al. (2021)). There may be several ways to divide a MINLP into

main and subproblems, so that a MINLP may admit different DW decompositions. Ceselli160

et al. (2022) study the strengths of different DW decompositions for binary quadratic

problems. In most cases, after applying the DW decomposition to the compact MINLP

formulation, the master problem is a MILP and the pricing problems are MINLPs. Allman

and Zhang (2021) directly use a commercial MINLP solver, i.e., BARON (Tawarmalani

and Sahinidis (2005)), to solve the pricing problems. In our experiments, we also try to165

solve the pricing problems using a commercial solver, i.e., CPLEX. However, commercial

solvers may not explore the structures of MINLPs. Since pricing problems can be solved in

thousands of iterations, Gleixner et al. (2020)shows that any improvement in the pricing

algorithm can speed up the convergence of column generation. There are several ways to

improve the performance of the branch-and-price algorithm, such as fast primal heuristics170

during column generation and fast pricing algorithms. Primal heuristics improve the primal

bounds of the branch-and-price algorithms. Joncour et al. (2010) propose a constructive

approach to create feasible solutions from scratch (namely, column selection) using only

knowledge of previously generated columns. Column selection heuristics include greedy or

relaxation-based approaches. The greedy heuristic is so fast that it can be invoked during175

column generation. Column selection heuristics are implemented in the generic branch-

and-price solver GCG (Gamrath and Lübbecke (2010), Lübbecke and Puchert (2012)).

Our implementation is similar to the greedy column selection approach, but we enforce

the last column in the feasible solution. The submodular Knapsack problem is studied in

7

several ways, we refer to Goyal and Ravi (2010) for approximation algorithms Atamtürk 180

and Narayanan (2009) for polyhedral analysis. The submodular Knapsack problem can be

reformulated as a binary second-order conic program (BSOCP) (Atamtürk and Narayanan

(2008)), which can be solved by general-purpose solvers. Most solvers implement the LP

outer approximation-based branch-and-cut LP-B&C) algorithm (Coey et al. (2020)) to

solve the BSOCP or general mixed integer second order conic programming (MISOCP) 185

problems, such as CPLEX (Bliek et al. (2014)) and SCIP (Berthold et al. (2012)). The

LP outer approximation is sometimes referred to as the polyhedral outer approximation.

Ben-Tal and Nemirovski (2001) prove that any second-order conic program (SOCP) is

polynomially reducible to a linear program, and their result justifies the error analysis of the

polyhedral outer approximation for SOC -representable sets. Moreover, this result implies 190

the convergence rate of the LP -BC algorithm based on the polyhedral outer approximation

for MISOCPs/BSOCPs.

D’Ambrosio et al. (2012), Geißler et al. (2012) propose exact approaches to solve some

nonconvex MINLPs using PWL relaxations. For example, D’Ambrosio et al. (2012) obtain

a convex MINLP relaxation for nonconvex MINLPs with separable nonconvex functions. 195

The authors distinguish between convex and concave parts and then convexify the con-

cave parts by PWL functions. Moreover, D’Ambrosio et al. (2019) propose perspective

reformulations/cuts to strengthen the resulting convex MINLP relaxation. In this study,

the original formulation for the submodular Knapsack problem is a convex MINLP and

its nonlinear function includes all problem variables, which is difficult to approximate in 200

high-dimensional problems. We reformulate this formulation into a nonconvex MINLP.

This nonconvex MINLP has a concave quadratic constraint and the nonlinear term is just

a univariate quadratic function on a relaxed variable. We relax the quadratic function

into a PWL function (Vielma et al. (2010)), and obtain a MILP relaxation. The resulting

relaxation leads to an algorithm with better performance. Our approach is counterintuitive 205

because it is generally assumed that convex MINLP formulations perform better than

non-convex MINLP formulations. In our case, we will show that the quadratic function

can be approximated in a ”dimension-free” way, since the nonlinearity is concentrated on a

single variable.

8

1.2. Outline210

This paper is organized as follows. In 2, we describe the SMBP and give its BSOCP

and set-cover formulations. In 3, we introduce the key components of our branch-and-

price algorithm: the branching rule, column generation, dual bound computing, initial

columns, and primal heuristic. 4, we focus on solving the pricing problem: the heuristic

pricing algorithm, reformulations of the pricing problem, PWL relaxation, the exact pricing215

algorithm, and the hybrid pricing strategy. In 5, we show the computational results of

the proposed algorithms for instances generated from the literature and analyze their

performance. In 6, we conclude this paper with a conclusion and future research directions.

2. Problem Description and Formulations

In this section, we present existing formulations for the SMBP and propose a new formulation.220

The SMBP problem considers a finite set N of items and a finite setM of potential bins,

each of which has identical capacity. The problem is to (i) determine a minimum number

of bins to pack all items; (ii) allocate items to bins such that all submodular capacity

constraints are satisfied.

2.1. Compact Formulations225

We begin by describing two compact formulations for the SMBP. To facilitate the description,

we first define the following notation:

Set notation

• N := {1, . . . , n}: the index set of items;

• M := {1, . . . ,m}: the index set of potential bins.230

Now we can set the model parameters and define the submodular capacity utilisation

function.

Sub-modular capacity usage function

Given a ground set N , a set function f : 2N →R is sub-modular, if235

γi(T1)≥ γi(T2), ∀T1 ⊂ T2 ⊂N \{i},∀i∈N ,

where γi(T) := f(T ∪{i})− f(T) is the incremental function of f on T ⊂N .

Every subset of N can be indicated by a binary vector x ∈ {0,1}N . The sub-modular

capacity usage function f in the SMBP is defined as follows (Cohen et al. (2019)):

9

f(x) :=
∑
i∈N

aixi +σ

√∑
i∈N

bixi, (1)

where ai, bi ∈R+ (i∈N) and σ ∈R+. The function f becomes a linear function by setting

σ= 0. 240

The following variables are used to model the SMBP:

Decision variables

• yj =

1, if bin j is used

0, otherwise
, for j ∈M; 245

• vij =

1, if item i is assigned to bin j

0, otherwise
, for i∈N , j ∈M.

Using the above notation, the SMBP has the following compact and non-convex MINLP

formulation:

min
∑
j∈M

yj, (2a)

s. t.
∑
i∈N

aivij +σ

√∑
i∈N

bivij ≤ cyj, ∀j ∈M, (2b)

∑
j∈M

vij = 1, ∀i∈N , (2c)

vij ∈ {0,1}, ∀i∈N , j ∈M, (2d)

yj ∈ {0,1}, ∀j ∈M. (2e)

Regarding the continuous relaxation of the above formulation, constraint (2b) is non- 250

convex, so formulation (2) is a non-convex MINLP.

Zhang et al. (2018) gives a convex MINLP, more precisely, BSOCP reformulation for (2)

by replacing (2b) with an equivalent constraint:

∑
i∈N

aivij +σ

√∑
i∈N

biv2ij ≤ cyj, ∀j ∈M, (3)

10

for which the continuous relaxation is representable by second order cones and thus

convex. For any feasible solution vij ∈ {0,1} we have v2ij = vij, so the constraints (3) and255

(2b) are equivalent.

Then, the compact and convex BSOCP formulation is

min
∑
j∈M

yj, (4a)

s. t. (3), (2c), (2d), (2e). (4b)

The BSOCP formulation can be solved with commercially available solvers, such as

CPLEX 1 (Bonami and Tramontani (2015)) and SCIP (Gamrath et al. (2020)). When σ= 0,

the BSOCP formulation becomes the conventional compact formulation for the linear BP.260

Indeed, CPLEX and SCIP solve the BSOCP problem in a non-compact way, since they use

the LP -B&C algorithm, which linearizes the BSOCP problem into a MILP model with

numerous cutting planes. As in the linear BP case, we find in experiments (Section 5) that

the compact BSOCP formulation is not scalable for large models.

2.2. Set Cover Formulation265

In this section, we propose a new set-cover formulation for the SMBP. The formulation is

derived in a similar way as the DW decomposition of the classical linear BP (Delorme et al.

(2016)). This formulation can be solved efficiently by a branch-and-price algorithm.

A column p is defined by a binary vector as (d1p, d2p, . . . , dnp), where dip = 1 if item i is

contained in the column p. A column is called feasible if the combination of its items can270

fit into a bin, i.e., satisfies the submodular capacity constraint (2b). The quantity coverage

formulation is based on enumerating all feasible columns, the number of which can be

exponential to the number of items. Next, we define the following notation:

Set notation

• P: the set of all feasible columns.275

Decision variables

1 From version 12.6.2, CPLEX can solve the SOCP problems represented in certain special forms, i.e., second-order
cones and twisted second-order cones. The algorithm uses the outer approximation of the BSOCP problem, which is a
LP -B&C algorithm. The constraint (3) can be translated into these forms

11

• λp =

1, if column p is used by the solution

0, otherwise
for p∈P.

280

We obtain the following set cover formulation for the SMBP:

min
∑
p∈P

λp, (5a)

s. t.
∑
p∈P

dipλp ≥ 1, ∀i∈N , (5b)

λp ∈ {0,1}, ∀p∈P. (5c)

The set cover constraint (5b) specifies that each item i (i∈N) is contained in at least

one bin. As far as we know, the set cover formulation for the SMBP has not yet been

proposed and solved in the literature.

The two compact formulations (2) and (4) are MINLPs, but the set-cover formulation 285

(5) is an MILP. Moreover, the number of nonlinear constraints in the compact formulations

is equal to the number of potential bins. The nonlinearity of the set-cover formulation is de

facto ’hidden’ in the pricing subproblems (Section 3.2), and each pricing subproblem has

only one nonlinear constraint.

The following theorem shows that the set-cover formulation is stronger than the BSOCP 290

formulation:

Proposition 1. The linear relaxation of the set cover formulation is tighter than the

continuous SOCP relaxation of the BSOCP formulation.

The proof can be found in Section A of the appendices.

3. Branch and Price 295

It is challenging to solve the set cover formulation with an exponential number of binary

variables. In this section, we present an exact branch-and-price algorithm to solve the

set-cover 315 formulation for the SMBP. The branch-and-price algorithm integrates column

generation with the branch-and-bound algorithm to efficiently solve the LP relaxation.

In the following subsections, we describe the important steps of our branch-and-price 300

algorithm: the branch rule, column generation, initial columns, dual bound computation,

and primal heuristics.

12

3.1. Branching Rule

Our branch-and-price algorithm uses the Ryan/Foster branching rule (Foster and Ryan

(1976)).305

The branching rule selects a pair of items i1 ∈N and i2 ∈N that must either be packed

together or not packed together.

We denote by

• S: the set of item pairs that are forced to be packed together such that if a column p

respects S, then for i1, i2 ∈ S, di1p = di2p;310

• D: the set of item pairs that are not allowed to be packed together such that if a

column p respects D, then for i1, i2 ∈D, di1p + di2p ≤ 1.

Indeed, (S,D) exactly describes the branching decisions made for each node of the search

tree. We denote by

PS,D := {p∈P |∀(i1, i2)∈ S di1p = di2p ∧∀(i1, i2)∈D di1p + di2p ≤ 1}

the set of feasible columns respecting branching constraints induced by (S,D). We refer to315

PS,D as the (S,D)-feasible columns.

At each node of the search tree, the set cover problem (5) is restricted to the branching

decision set (S,D), i.e., it follows as

min
∑

p∈PS,D

λp, (6a)

s. t.
∑

p∈PS,D

dipλp ≥ 1, ∀i∈N , (6b)

λp ∈ {0,1}, ∀p∈PS,D. (6c)

The above problem (6) is called the master problem, and its LP relaxation is called the

master LP problem.320

3.2. Column Generation

We present a column generation method to solve the master problem LP.

The column generation procedure starts with a subset of (S,D)-realisable columns of

the master problem LP, adds columns, and solves the constrained LP iteratively. Given

13

a subset P ′
S,D of PS,D, the corresponding restricted LP problem, namely the Restricted 325

Master LP (RMLP) problem, is

min
∑

p∈P ′
S,D

λp, (7a)

s. t.
∑

p∈P ′
S,D

dipλp ≥ 1, ∀i∈N , (7b)

λp ≥ 0, ∀p∈P ′
S,D. (7c)

After solving the RMLP, let πi be the dual variable associated with the i-th constraint

(7b). The reduced cost for a column p∈PS,D is rp := 1−
∑

i∈N πidip. If there is a column

p∈PS,D \P ′
S,D whose reduced cost rp is negative, then adding p to P ′

S,D could reduce the

target value of the RMLP. Otherwise, the solution for the RMLP is also optimal for the 330

master problem LP. The column with the most negative reduced cost is determined by

solving a pricing problem. The details of the pricing algorithms can be found in Section 4.

Before the column generation procedure is applied to the current node, the items that

can only be packed together are combined into the set S using a preprocessing process. Let

the new item set be N ′, a′, b′ be the merged parameters, and the new conflict relation be

D′. Preprocessing leads to a smaller pricing problem, which can be formulated as follows:

sub-modular knapsack problem with conflicts:

max
∑
i∈N ′

π′
ixi, (8a)

s. t.
∑
i∈N ′

a′ixi+σ

√∑
i∈N ′

b′ixi ≤ c, (8b)

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′, (8c)

xi ∈ {0,1}, ∀i∈N ′. (8d)

If the optimal value
∑

i∈N ′ π′
ixi > 1, then the corresponding column has negative reduced

cost and is added to the RMLP. Otherwise, the solution of the RMLP is an optimal solution

of the master LP, and the current node is solved. 335

14

3.3. Initial Columns

We initialize the branch-and-price algorithm with a set P ′ of feasible columns. These feasible

columns are computed by an approximation algorithm that also provides the number of

feasible bins and a warm start for the compact formulation (5). The approximate solution

guarantees that the number is at most equal to a fixed ratio to the optimal number of bins.340

The approximate algorithm, namely the greedy min-utilization algorithm, greedily allo-

cates items to bins so that the capacity is used as little as possible.

The algorithm manages the following quantities:

• L: a list of existing bins, which is initially empty;

• Γ: a set of unpacked items, which is initially N .345

For each existing bin p∈L, its load is expressed by a binary array (d1p, d2p, . . . , dnp). If

dip = 1 (i ∈N), then the item i is packed by p. Therefore, we also treat p as a subset of

items in N .

The algorithm updates the load of the existing bins and adds new bins one by one. At

each iteration, the algorithm goes through the following steps:350

1. for each existing bin p∈L, computes the sum of a and b of packed items respectively,

i.e., Ap :=
∑

i∈N dipai and Bp :=
∑

i∈N dipai;

2. for each existing bin p∈L and each unpacked item i∈ Γ, if the bin p can accommodate

the item i, then computes the incremental capacity usage γi(p) := (Ap + ai +σ
√

Bp + bi)−

(Ap+σ
√

Bp), otherwise, sets γi(p) :=∞;355

3. for each unpacked item i∈ Γ, let pi := argminp∈L γi(p) be the bin with the minimum

increment capacity usage with respect to i;

4. among the unpacked items Γ, let i⋆ := argmini∈Γ γi(p
i) be the item that has the least

increment capacity usage;

5. adds the item i⋆ to the corresponding bin pi
∗
by setting di⋆pi∗ = 1;360

6. if step 4 fails, i.e., existing bins cannot accommodate any unpacked item, adds a new

empty bin p′ to L, sets dip′ = 0 for i∈N , and goes to step 1.

The greedy min-use algorithm can find a solution that uses at most 8
3
times the number

of bins of the optimal solution.

Proposition 2 (Cohen et al. (2019)). The greedy min-usage algorithm is a 8
3
-ratio365

approximation algorithm.

15

3.4. Dual Bound Computing

For an optimization problem, a dual bound certifies the optimality of a solution. In the

branch-and-price environment, a local dual bound at each node of the search tree is a lower

bound on the optimum of the master problem (6). The local dual bound is used by the 370

algorithm to fathom the node or select branch nodes.

The optimum of the master problem LP is a local dual bound. However, to converge to

this optimum, the column generation procedure usually needs to solve a large number of

pricing problems. Namely, at each iteration of the column generation procedure, another

local dual bound is available. This bound is referred to in the literature as Farley bound. 375

The following lemma illustrates how this bound can be computed.

Lemma 1 (Farley (1990), Vance et al. (1994)). Let vMP be the optimum of the

master LP, let vRMLP be the optimum of the RMLP, let vprice be a dual bound for the pricing

problem (8), and let vF :=
vRMLP

vprice
be the Farley bound. Then, vF ≤ vMP, and thus vF is a local

dual bound. 380

The computation of the Farley bound requires a dual bound on the pricing problem,

obtained using an exact pricing algorithm. The branch-and-price algorithm holds a local

lower bound vld at each node of the search tree. After solving each pricing problem, the

branch-and-price algorithm updates vld according to the following rule:

vld =max{vF, vld}.

3.5. Primal Heuristic 385

For some difficult SMBP instances, the branch-and-price algorithm may be too compu-

tationally intensive, since in the worst case an exponential number of columns could be

generated. In this case, the root node RMLP would not converge to an optimum in a

reasonable time.

On the other hand, each generated column could be included in a feasible main solution, 390

Therefore, a tailored heuristic is needed to help find primal solutions as soon as a new

column is generated.

We propose a primary column selection heuristic similar to the greedy column selection

heuristic in Joncour et al. (2010), Lübbecke and Puchert (2012). The column selection is

invoked as soon as a column is created. 395

16

Unlike the random rounding heuristic, this heuristic uses the coverage constraint structure

in (5).

We consider the case of the root knot, the other cases are similar. Similar to the greedy

minimal consumption algorithm, the heuristic preserves the following sets:

• L: a list of existing bins, which is initially empty;400

• Γ: a set of unpacked items, which is initially N .

Let P ′ be the set of generated columns. When a column p is generated, the heuristic has

the following steps:

1. adds p to L, and, for each i with dip = 1, removes i from Γ;

2. finds a generated column p′ ∈P ′ such that it packs a maximal number of items in Γ,405

and adds p′ to L;
3. if all items are packed, i.e., Γ = ∅, outputs the solution L, otherwise goes to step 2.

Our column selection heuristic does not require the LP information, but the information

of the generated columns. It also differs from classical column selection because classical

column selection does not force a column p in the solution.410

The remainder of this paper is devoted to efficient methods for solving pricing subproblems,

since pricing requires the most computational effort in column generation.

4. Pricing Algorithms

In this section we present solution methods for the pricing problem. The proposed algorithms

can be implemented as a stand-alone solver for the submodular Knapsack problem.415

We first present a fast heuristic pricing algorithm. We then present two formulations of

the submodular Knapsack problem (with conflicts): a convex BSOCP formulation and a non-

convex MBQCP formulation. The convex BSOCP formulation is solved in our experiments

for a comparative study. The PWL method is a way to relax/approximate a nonlinear

function by linear functions in its subdomain. We derive a PWL relaxation of the MBQCP420

formulation and develop an exact PWL-based branch-and-cut algorithm (PWL-B&C) for

the pricing problem.

To speed up column generation, we also present a hybrid pricing strategy that can replace

the exact pricing algorithm with a fast heuristic pricing algorithm.

4.1. Heuristic Algorithm425

We propose a fast heuristic, the fixing-greedy heuristic. This heuristic is used by the hybrid

pricing strategy to speed up the column generation procedure.

17

The fixing-greedy heuristic is based on the best-fit-greedy algorithm. The best-fit-greedy

algorithm adds an item per iteration only if it does not conflict with the previously added

items, as long as the capacity is not exceeded. The heuristic keeps 430

• ∆: the set of items added to the bin, which is initially empty.

At each iteration, the best-fit greedy heuristic has the following steps:

1. computes the sum of a′i and the sum of b′i of added items, i.e., A :=
∑

i∈∆ a′i and

B :=
∑

i∈∆ b′i;

2. for each unadded item i∈N ′ \∆, computes the incremental capacity usage γi(∆) := 435

(A+ a′i+σ
√
B+ b′i)− (A+σ

√
B);

3. for each unadded item i, computes the profit-over-usage ratio ri :=
c′i

γi(∆)
;

4. adds the item with the maximum ri until none of the items can be added anymore.

The fixing-greedy heuristic enforces, for each time, a item in N ′ to be in the solution,

runs the best-fit greedy algorithm, and outputs the best solution. 440

4.2. BSOCP Formulation

The Binary Second Order Conic Programming (BSOCP) formulation for the pricing problem

(8) is similar to the BSOCP formulation for the SMBP in (2).

The BSOCP formulation is:

max
∑
i∈N ′

π′
ixi, (9a)

s. t.
∑
i∈N ′

a′ixi +σ

√∑
i∈N ′

b′ix
2
i ≤ c, (9b)

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′, (9c)

xi ∈ {0,1}, ∀i∈N ′. (9d)

Where (9b) can be represented by second order conic constraints. The BSOCP formulation

is a convex MINLP formulation. 445

In this section, we analyze the polyhedral outer approximation of the BSOCP formulation

and show that a finite number of cutting planes is sufficient to define an exact MILP

reformulation of the BSOCP formulation.

To simplify the presentation, we use the following notation:

• the left-hand side of (9b):

f(x) :=
∑
i∈N ′

a′ixi +σ

√∑
i∈N ′

b′ix
2
i ;

18

• the binary set defined by (9b):

C := {x∈ {0,1}N ′
: f(x)≤ c};

• the continuous relaxation of C:

C := {x∈ [0,1]N ′
: f(x)≤ c}.

Since f is convex, C is convex. We also note that the convex hull of C is a polytope.450

A set O is said to be a polyhedral outer approximation of C, if O is a polyhedron and

C ⊂O.

A polyhedral outer approximation can be constructed as follows. Define a linearization of

f at some x̂ in the domain of f by Lf
x̂(x) := f(x̂)+∇f(x̂)⊤(x− x̂). Since f is convex, Lf

x̂ is

an under-estimator of f , i.e., Lf
x̂(x)≤ f(x) for any x. Hence, Lf

x̂(x)≤ c is a linear inequality455

valid for f(x)≤ c.

The following theorem indicates that it suffices to describe C with a finite number of

valid inequalities and binary constraints.

Theorem 1. Given a point x̂∈ {0,1}N ′
, the following inequality is valid for C and C:

∑
i∈N ′

a′ixi +
σ√∑

i∈N ′ b′ix̂i

∑
i∈N ′

b′ix̂ixi ≤ c. (10)

Moreover,460

1. if x̂ /∈ C, the valid inequality is violated by x̂;

2. Let

O=

{
x∈ [0,1]N :

∑
i∈N ′

a′ixi +
σ√∑

i∈N ′ b′ix̂i

∑
i∈N ′

b′ix̂ixi ≤ c, ∀x̂∈ {0,1}N ′ \ C

}
.

Then, C =O∩{0,1}N ′
.

Proof. Since function f is sub-modular and hence convex, it follows that

Lf
x̂(x)≤ f(x)≤ c.

19

Moreover,

Lf
x̂(x)

=f(x̂)+∇f(x̂)⊤(x− x̂)

=
∑
i∈N ′

a′ixi +σ

√∑
i∈N ′

b′ix̂
2
i +

σ√∑
i∈N ′ b′ix̂

2
i

∑
i∈N ′

b′ix̂i(xi− x̂i)

=
∑
i∈N ′

a′ixi +σ

√∑
i∈N ′

b′ix̂
2
i +

σ√∑
i∈N ′ b′ix̂

2
i

∑
i∈N ′

b′ix̂ixi−
σ√∑

i∈N ′ b′ix̂
2
i

∑
i∈N ′

b′ix̂ix̂i

=
∑
i∈N ′

a′ixi +
σ√∑

i∈N ′ b′ix̂i

∑
i∈N ′

b′ix̂ixi

where the last equation follows from the fact that x̂ is binary.

Therefore, inequality (10) in the statement is valid for C.

The left hand side of inequality (10) evaluated at x̂ is
∑

i∈N ′ a′ix̂i +σ
√∑

i∈N ′ b′ix̂i which 465

is by hypothesis is at least c, so x̂ violates the inequality.

Assume x∗ ∈ {0,1}N ′
.

If x∗ /∈ C, then x∗ violates the Lf
x∗(x)≤ c which is a facet defining inequality of O, then

x∗ /∈O. Hence, x∗ ∈O implies that x∗ ∈ C.

If x∗ ∈ C, since O is a polyhedral outer approximation of C, x∗ must be in O. Therefore, 470

C =O∩{0,1}N ′
. □

Define the generating set of the cuts in Theorem 1 by

X := {x̂∈ {0,1}N ′
: x̂ /∈ C}, (11)

and define the following cut coefficient set generated by X

Θ :=

{
θ ∈RN ′

: ∃x̂∈X ∀i∈N θi = a′i +
σ√∑

i∈N ′ b′ix̂i

b′ix̂i

}
. (12)

The BSOCP formulation is equivalent to the following MILP formulation

max
∑
i∈N ′

π′
ixi, (13a)

s. t. θ⊤x≤ c, ∀θ ∈Θ (13b)

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′, (13c)

xi ∈ {0,1}, ∀i∈N ′. (13d)

20

However, X (and hence Θ) is unknown before the search space is explored, and its

cardinality may be exponential. In practice, the cuts corresponding to Θ can only be475

separated lazily, i.e., a cut is added until a point x̂foundinX . This finite family of cuts

cannot be used by a standard solver, but it is a key component for constructing our

PWL-B&C algorithm in Section 4.5.

The following lemma explains the approximation error of the polyhedral outer approxi-

mation O w.r.t. C.480

Lemma 2 (Ben-Tal and Nemirovski (2001)). Let ϵ > 0, then there exists a method

to construct a polyhedral outer approximation O of C with additional O(1)|N ′| log(1
ϵ
) vari-

ables and constraints, such that the relative ℓ∞ approximation error maxx∈O |
∑

i∈N ′ a′ixi+

σ
√∑

i∈N ′ b′ix
2
i − c|/c is at most ϵ.

Note that the approximation error of the polyhedral outer approximation depends on485

the number of variables.

4.3. MBQCP Formulation

We present a non-convex Mixed Binary Quadratically Constrained Programming (MBQCP)

formulation for the submodular Knapsack problem (with conflicts). Although we do not use

this formulation to solve the price subproblems, this formulation inspires PWL relaxation

and the PWL-B&C algorithm. Here, we introduce a slack variable w to define the sum∑
i∈N ′ a′ixi. Then our MBQCP formulation becomes the following non-convex MINLP

program:

max
∑
i∈N ′

π′
ixi, (14a)

s. t.
∑
i∈N ′

a′ixi =w, (14b)

σ2
∑
i∈N ′

b′ixi ≤ (c−w)2, (14c)

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′, (14d)

xi ∈ {0,1}, ∀i∈N ′, (14e)

w ∈ [0, c]. (14f)

Although the program contains a concave quadratic constraint (14c), the nonlinearity is

only a univariate quadratic function compared to the |N ′|-dimensional nonlinear SOC

function f in (9b).490

21

0 1 2
0

1

2

3

4

w

q
q̄B

Figure 1 Graphs of the quadratic and its PWL over-estimator

4.4. PWL Relaxation

A Piece-Wise Linear (PWL) function is linear on each element of a given partition of its

domain. We derive an MILP relaxation of the MBQCP formulation (14) based on PWL

functions and refer to this new MILP relaxation as the PWL relaxation. The approximation

error of the optimal PWL relaxation is discussed in this section. Denote by q(w) := (c−w)2

the univariate quadratic function. We denote a value of the slack variable w in the constraint

(14c) as a breakpoint. Given an ordered set of breakpoints B= (w1,w2, . . . ,wh) such that

wk ∈ [w,w] (k ∈ [h]), w1 =w and wh =w, the following function is a PWL approximation

of q over the domain [w,w]:

q̄B(w) :=
q(wk)− q(wk−1)

wk−wk−1

(w−wk−1)+ q(wk−1), for wk−1 ≤w≤wk,2≤ k≤ h.

Note that q̄B is an over-estimator of q due to the convexity of q.

We call B a breakpoint set in [w,w], and q̄B its induced PWL function. Note that we

consider the two bounds w and w as breakpoints here.

Figure 1 shows the graphs of a quadratic function and its PWL over-estimator, where 495

w= 0.1, w= 1.9, c= 2 and B= {0.1,0.4,0.8,1.2,1.6,1.9}.

Replacing σ2
∑

i∈N ′ b′ixi ≤ q(w) with σ2
∑

i∈N ′ b′ixi ≤ q̄B(w) in the constraint (14c), we

obtain the following PWL relaxation of the MBQCP formulation (14):

22

max
∑
i∈N ′

π′
ixi, (15a)

s. t.
∑
i∈N ′

a′ixi =w, (15b)

σ2
∑
i∈N ′

b′ixi ≤ q̄B(w), (15c)

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′, (15d)

xi ∈ {0,1}, ∀i∈N ′, (15e)

w ∈ [0, c]. (15f)

Modeling PWL functions The graphs of PWL functions have several MILP formulations,

see Vielma et al. (2010). In this paper we consider the logarithmic model. We denote by500

z the auxiliary binary variables introduced in the MILP formulation of q̄B. MILP solvers

such as CPLEX can automatically formulate q̄B and add auxiliary variables z in the internal

data structure.

With a fixed cardinality of B, we aim to minimize the approximation error of the PWL

relaxation, and the approximation error is expressed as p−norm of the difference between505

the approximation function and the objective function.

Definition 1. Given a set B ⊂ [w,w] of breakpoints, the ℓp approximation error of q̄B

with respect to q over [w,w] is defined as ℓp(q̄B, q) := (
∫ w

w
|q̄B(w)− q(w)|p dw)

1
p .

Given an integer h, denote by Bh the family of breakpoint sets of cardinality h in [w,w],

the breakpoint selection problem aims to find a set B ∈Bh to minimize the ℓp error:510

min
B∈Bh

ℓp(q̄B, q) (16)

Geißler et al. (2012) Use a convex program to compute the ℓ∞-approximation error for

general nonconvex functions. Berjón et al. (2015) develop an error analysis that yields

asymptotically tight bounds to quantify the ℓ2-approximation error.

An optimal solution to the breakpoint selection problem under the ℓ∞-approximation

error is an equidistant partition of [w,w].515

23

Theorem 2. 2 Given B ∈Bh,

ℓ∞(q̄B, q) = max
w∈[w,w]

|q̄B(w)− q(w)|= max
2≤k≤h

(wk−wk−1)
2

4
.

Furthermore, let wk = w + k−1
h−1

(w − w) for 1 ≤ k ≤ h, which yields the minimum ℓ∞-

approximation error (w−w)2

4(h−1)2
for the break point selection problem (16).

The proof can be found in Section B of the appendices. The approximation error decreases

with the quadratic rate with respect to h. The relative ℓ∞-approximation error is defined as

ℓ∞(q̄B, q)

(w−w)2
.

We have the following result on the relative approximation error of the PWL relaxation.

Corollary 1. Let ϵ > 0, then there exists an MILP formulation of PWL function

q̄B induced by B with O(1) log(1
ϵ
) binary variables and O(1) 1√

ϵ
continuous variables and 520

constraints, such that the relative ℓ∞-approximation error is at most ϵ.

Proof. For the logarithmic model of PWL function, given h breakpoints from the

equidistant partition, the relative ℓ∞-approximation error is (w−w)2

4(h−1)2(w−w)2
= 1

4(h−1)2
with

log(h− 1) binary variables and h− 1 continuous variables and constraints (Vielma et al.

(2010)), the result follows. □ 525

Next, we summarize the approximation errors of all the proposed relaxations to their

corresponding formulations. Note that we do not consider the integrality of the binary

variable x′. Comparing Lemma 2 and Corollary 1, the approximation error of the PWL

relaxation (15) to the MBQCP formulation (14) is independent of the number of variables,

while the approximation error of the polyhedral outer approximation to the BSOCP 530

formulation (9) depends on this number.

For a large (possibly exponential) number of breakpoints, the PWL relaxation can also

be transformed into an exact reformulation of the MBQCP formulation.

Corollary 2. Let B∗ = {w ∈ [0, c] : ∃x ∈ {0,1}N ′
,w =

∑
i∈N ′ a′ixi}. Then, the PWL

relaxation (15) derived from B∗ is an exact reformulation of the MBQCP formulation (15). 535

2 After the revision process, the authors were made aware of essentially the same result appearing as Lemma 3 in
Bärmann et al. (2021) – the two lemmas were proved independently of one another.

24

Proof. It suffices to prove that given a binary point (x,w) satisfying the PWL relaxation,

it is also feasible for the MBQCP formulation.

It is obvious that w ∈ B∗. Note that for any w′ ∈ B∗ we have q̄B∗(w′) = q(w′). Hence,

q̄B∗(w) = q(w).

Since (x,w) satisfies the constraint (15c) in the PWL relaxation, we have σ2
∑

i∈N ′ b′ixi ≤540

q̄B∗(w) = q(w). Hence, (x,w) satisfies the corresponding constraint (14c) in the MBQCP

formulation. □

4.5. Exact PWL-B&C Algorithm

The approximation error of the PWL relaxation is dimensionless, but only for a small

number of breakpoints it is not exact. Instead of adding many breakpoints, the finite545

number of cuts induced by the set Θ in (12) suffices to make the PWL relaxation exact.

We propose a combined formulation and a branch-and-cut algorithm based on the PWL

relaxation (PWL-B&C) to solve it.

max
∑
i∈N ′

π′
ixi, (17a)

s. t.
∑
i∈N ′

a′ixi =w, (17b)

σ2
∑
i∈N ′

b′ixi ≤ q̄B(w), (17c)

θ⊤x≤ c, ∀θ ∈Θ (17d)

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′, (17e)

xi ∈ {0,1}, ∀i∈N ′, (17f)

w ∈ [0, c]. (17g)

IThe combined formulation (17) combines the MILP formulation (13) with the (redundant)

PWL relaxation, so this formulation is an exact formulation for submodular Knapsack550

problems with conflicts.

We show in experiments that this formulation with redundant constraints (17b) and

(17c) can be solved much faster than the standard BSOCP formulation (9). In practice,

only a few cuts in (17d) are required to separate.

Our algorithm consists of three main steps: tightening the bounds, constructing the555

PWL relaxation (breakpoints), and the PWL B&C algorithm. First, bound tightening

25

is an upstream procedure used to tighten the bounds on the breakpoints for all pricing

problems. Then, the PWL relaxation (breakpoints) is constructed for all pricing problems,

and this is also a pre-solving procedure. The construction depends on the number of items,

the size of the items, and the capacity. Finally, based on the PWL relaxation, the PWL 560

-B&C algorithm is adapted to the LP -B&C algorithm (Coey et al. (2020)).

Bound tightening The bound tightening procedure is called before the branch-and-price

algorithm to reduce the boundaries of the breakpoints B into [0, c].

Considering a pricing problem at a node of the search tree, we find that if w=
∑

i∈N ′ a′ixi 565

is small, q(w) = (c−w)2 is larger than σ2
∑

i∈N ′ b′ixi, so the capacity constraint (14c) is not

active. Thus, there is no need to overestimate q when w is small. More precisely, there is a

w ∈ [0, c] such that for any binary solution x∈ {0,1}N ′
, let w=

∑
i∈N ′ a′ixi, if w≤w, then

σ2
∑

i∈N ′ b′ixi ≤ q(w). Since q is not increasing, q(w)≥ q(w)≥ σ2
∑

i∈N ′ b′ixi. The point w

is called lower breakpoint, the submodular capacity constraint (14c) is never violated for 570

w ∈ [0,w]. We can start by overestimating q starting from the maximum lower breakpoint

computed from the following convex MBQCP problem:

w :=max w,

s. t.
∑
i∈N ′

a′ixi =w,

σ2
∑
i∈N ′

b′ixi ≥ (c−w)2,

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′,

xi ∈ {0,1}, ∀i∈N ′.

(18)

Similarly, we can define the upper breakpoint. There exists some upper breakpoint

w ∈ [0, c], such that for any binary solution x∈ {0,1}N ′
, if
∑

i∈N ′ a′ixi +σ
√∑

i∈N ′ b′ix
2
i ≤ c,

then
∑

i∈N ′ a′ixi ≤w. The minimum upper breakpoint can be computed from the following 575

BSOCP problem:

26

w :=max
∑
i∈N ′

a′ixi,

s. t.
∑
i∈N ′

a′ixi +σ

√∑
i∈N ′

b′ix
2
i ≤ c,

xi1 +xi2 ≤ 1, ∀(i1, i2)∈D′,

xi ∈ {0,1}, ∀i∈N ′.

(19)

We solve the above two programs at the root node and obtain the bound [wr,wr] for

breakpoints. Since the feasible sets of the other nodes are a subset of the set of the root

node, the above programs at other nodes are more strict than those at the root node. It

follows for w,w of any other node that wr ≤w and w≤wr. We then set w=wr and w=wr580

for all nodes.

construction of breakpoints To determine the number of breakpoints B, we run a greedy

heuristic algorithm that tries to maximize the number of elements in a bin. We take h as

the solution value given by the heuristic algorithm and assign breakpoints h equidistantly

in [w,w]. Note that for a fixed number of breakpoints, the equidistant partition gives the585

best approximation error according to Theorem 2. We also add a breakpoint corresponding

to w= 0.

PWL-B&C algorithm The main steps of the PWL-B&C algorithm are described in

Algorithm 1. Recall that the problem (8) is a maximization problem. Algorithm 1 maintains

a lower bound L (initially −∞), a set of active nodes N of the search tree, a pool of cuts590

C , and an established solution x∗.

A node (l, u,U) is characterized by the finite variable boundary vectors l and u and

the upper bound U of the node. The upper bound U is firstly inherited from its parent

node and secondly computed via the LP relaxation. We use a MILP solver, i.e. CPLEX, to

construct the MILP formulation of the PWL function qB, and denote z as the additional595

binary variables to model q̄B (see Section 4.4). The variables z are constructed internally by

the MILP solver, and we assume that the PWL function is forced when z is set to binary.

We denote by MB(C , l, u,U) the MILP relaxation restricted to finite bounds (l, u) for

(x, z) at a node of the search tree. The MILP relaxation MB(C , l, u,U) consists of the PWL

relaxation (15), cuts from C , and other cuts added by the MILP solver.600

27

Algorithm 1: PWL-B&C algorithm

1 Input: a sub-modular knapsack with conflicts in the formulation (17), and the set B

of breakpoints;

2 Output: a primal solution x∗ and a dual upper bound (dual gap);

3 initialize MILP MB(C , l0, u0,∞) as the PWL relaxation (15);

4 initialize cut pool C to ∅;

5 initialize node list N of MB(C , l0, u0,∞) with root node (l0, u0);

6 initialize incumbent solution x∗ = 0, lower bound L to −∞;

7 while N contains nodes do

8 remove a node (l, u) from N ;

9 solve LP relaxation of MB(C , l, u,U);

10 if LP is infeasible then

11 continue ; ▷ fathomed by infeasibility

12 get an LP optimal solution (x̂, ẑ);

13 set U to
∑

i∈N ′ πix̂i;

14 if upper bound U ≤L then

15 continue ; ▷ fathomed by bound

16 end

17 if (x̂, ẑ) is binary then

18 if x̂ satisfies capacity constraint (8b) then

19 update L to U ;

20 set x∗ to x̂;

21 continue ; ▷ fathomed by integrality

22 else

23 add separation cut to C by Theorem 1;

24 add the node MB(C , l, u,U) to N ;

25 continue ; ▷ reoptimization after cut added

26 end

27 end

28 add branch nodes to N using (x̂, ẑ) (fractional) and U ;

29 end

28

The node set N initially contains the root node (l0, u0), where l0, u0 ∈RI are the finite

initial global bounds on variables (x, z). On Line 8 of Algorithm 1, the main loop removes

a node (l, u,U) from N . Line 9 solves the LP relaxation of MB(C , l, u,U) by the MILP

solver.

If the LP -relaxation MB(C , l, u,U) is infeasible, Line 11 immediately fathoms the node605

by infeasibility; otherwise, the upper bound U of a node is set to the optimal value of LP on

Line 13. The upper bound U of the node means that any feasible solution to the combined

formulation (17) that satisfies the bounds of the node for (x, z) has a target value of at

most U . Since LP is a relaxation of the combined formulation (17), any feasible solution

to the combined formulation (17) that satisfies the bounds of the node for x has a target610

value of at most U .

Line 15 fathoms the node by Bound if U is not better than the established value L. If x̂

is binary and feasible, its solution value U should be at least the lower bound L. Line 19

updates the lower bound L to U , Line 20 stores the new established solution x̂, and Line 21

fathoms the node since x̂ is an optimal binary solution with respect to the bounds (l, u). If615

ẑ is binary and feasible, then the PWL function is implicitly enforced by the integrality of

ẑ. The condition (17d) is a lazy condition that is disconnected if x̂ is binary. Line 23 adds

this condition to the cut pool C , Line 24 adds the current node for re-optimization, and

Line 25 discards x̂ by the cut in the next optimization iteration. Finally, (x̂, ẑ) must be

fractional on Line 28, the algorithm branches using the information from fractionality and620

U .

4.6. Hybrid Pricing Strategy

The heuristic pricing algorithm in Section 4.1 is fast, but it cannot guarantee the dual

upper bound that yields the Farley bound in Lemma 1. The exact pricing algorithm is

slow but yields the dual upper bound for pricing. The hybrid pricing strategy first calls625

the heuristic pricing algorithm to decide whether calling the exact pricing algorithm can

improve the local dual bound of the master problem.

In fact, for a heuristic solution, the exact algorithm is required only under a certain

condition. The condition is given by the following theorem.

Proposition 3. Let vheur be the solution value of the heuristic pricing algorithm, let630

vRMLP be the optimum of RMLP (7), and let vld be the current local dual bound for the

29

master problem. If vRMLP

vheur
≤ vld, the exact algorithm cannot yield a better local dual bound

than vld.

Proof. Let vpopt be the optimum for the pricing problem (8), then vheur ≤ vpopt. It follows

that vRMLP

vpopt
≤ vRMLP

vheur
≤ vld. However, vpopt is the smallest pricing dual bound vprice, so

vRMLP

vpopt
635

is the greatest Farley bound according to Lemma 1. Therefore even if the pricing algorithm

is solved to optimality, we cannot obtain a better bound than vld. □

If the condition vRMLP

vheur
≤ vld holds, one can get rid of the exact pricing algorithm, and use

the solution from the fixing-greedy heuristic in Section 4.1. The hybrid pricing strategy is

outlined in Algorithm 2. 640

Algorithm 2: Hybrid pricing strategy

1 Input: a pricing problem (8) with the objective coefficients π′, vRMLP the optimum

of RMLP (7), vld the local dual bound of the master problem;

2 Output: a generated column x∗, and the updated local dual bound vld;

3 call the heuristic pricing algorithm with the objective coefficients π′ ; ▷ run heuristic

first

4 let x, vheur be the heuristic solution and its value;

5 if vRMLP

vheur
≤ vld and 1−

∑
i∈N ′ π′

ix̄i < 0 then

6 x∗← x ; ▷ heuristic solution

7 else

8 call the exact pricing Algorithm 1 ; ▷ exact pricing

9 let x̃, vprice be the primal solution and the dual bound;

10 x∗← x̃;

11 vld =max{vld, vRMLP

vprice
} ; ▷ update the local dual bound

12 end

In Line 3, the heuristic algorithm is called first. If vRMLP

vheur
≤ vld, the exact pricing is not

needed. If the heuristic solution x has a negative reduced cost, the strategy outputs it in

Line 6. Otherwise, the strategy calls the exact algorithm in Line 8.

30

5. Computational Experiments

In this section, we present the computational experiments we use to test the effectiveness of645

our branch-and-price algorithms for the SMBP. In particular, we test different configurations

of branch-and-price algorithms to evaluate the proposed techniques. The source code and

benchmarks are publicly available on the project website https://github.com/lidingxu/cbp.

There we also provide a bash file that you can use to reproduce the experiments on Linux

systems.650

5.1. Benchmarks

We produce benchmarks as described in Cohen et al. (2019). The authors test their

approximation algorithms on benchmarks from real cloud datacenters of Google, which

are not accessible due to confidentiality. We therefore create new instances using the same

generation method.655

The authors generate SMBPs to model BPs with the chance constraint

P(
∑
i∈N

µixij ≤ cyj)≥ α, (20)

or BPs with the distributionally robust constraint

inf
µ∼D

P(
∑
i∈N

µixij ≤ cyj)≥ α, (21)

where D is a family of distributions, and µi (i ∈ N) is the nominal size of item i. For

different risk levels α, they propose three data generation methods (cases) to construct the

data a, b, σ in the SMBP (4), i.e., the Gaussian case,the Hoeffding inequality case, and the660

distributionally robust approximation case.

As for them, we set the capacity of each bin to 72 (the number of cores of the servers),

the risk level α∈ {0.6,0.7,0.8,0.9,0.95,0.99}.

We set the number of items (i.e., jobs) |N | ∈ {100,400,1000} to obtain three bench-

marks with different sizes: CloudSmall, CloudMedium and CloudBig. There are three665

generation methods and six risk levels. For each combination of generation methods and

risk levels, we generate six instances with different random seeds. As a result, we have

108 = 6 times6 times3 instances in a benchmark. The interested reader can find the detailed

generation method in Section C of the appendices.

https://github.com/lidingxu/cbp

31

5.2. Experimental Setups 670

In this section we describe the setup of the experiments, including the development

environment, the implementation of the algorithms, and the solution statistics.

Development environment The experiments are conducted on a computer with Intel

Core i7-6700K CPU @ 4.00GHZ and 16GB main memory. We use SCIP 7.0.3 (Gamrath 675

et al. (2020)) as a branch-and-price (B&P) framework to solve the set cover formulation

(5). We use ILOG CPLEX 20.1 as:

• an LP solver to solve the LP relaxation of RMLP (7);

• a BSOCP solver to solve BSOCP formulations of the SMBP (2) and the submodular

knapsack problem with conflicts (9); 680

• an MILP solver used by the PWL-B&C Algorithm 1;

CPLEX’s parameters are set by default, except that we disable its parallelism.

Solver implementation We implement five solvers for the SMBP in this work according

to the proposed techniques. Four of them are branch-and-price solvers. 685

These solvers are as follows:

1. a CPLEX-based solver for solving the compact BSOCP formulation (2), abbreviated as

CPLEX-BSOCP.

2. a CPLEX-based solver for solving the BSOCP formulation (9) of the pricing problem,

abbreviated as B&P-BSOCP. 690

3. a branch-and-price solver that uses the PWL-B&C algorithm to solve the combined

formulation (17) of the pricing problem, abbreviated as B&P-PWL. The PWL-B&C

algorithm calls CPLEX to formulate PWL functions and solve the resulting MILP, and cuts

are added as lazy constraints.

4. a branch-and-price solver that uses the hybrid pricing strategy in Algorithm 2, abbre- 695

viated as B&P-hybrid. The hybrid pricing strategy uses the PWL-B&C algorithm as an

exact pricing subroutine.

5. a branch-and-price solver that uses the hybrid pricing strategy in Algorithm 2 and

the column selection heuristic in Section 3.5, abbreviated as B&P-hybrid*.

We use the approximation algorithm in Section 3.3 to find an initial feasible solution that 700

serves as a warm start for all solvers. The time limit for each solver is 3600 CPU seconds.

32

If the column generation procedure at the root node does not finish after 3500 CPU

seconds, it is halted, giving SCIP 100 CPU seconds to invoke its own primary heuristic.

For the pricing problems, we set the same time limit for the exact algorithms

(|N | times0.015 CPU seconds) and the same tolerance for relative gaps (the default of705

CPLEX).

Performance metrics and statistical tests In order to evaluate the solver performance

in different instances, we compare shifted geometric means (SGMs) (see Achterberg et al.

(2008)) of performance metrics.710

The SGM of values v1, ..., vN ≥ 0 with shift s≥ 0 is defined as(
N∏
i=1

(vi + s)

)1/N

− s.

Given an SMBP problem instance, let v be a dual lower bound and v be a primal upper

bound found by a solver. The relative dual gap in percentage is defined as:

δd :=
v− v

v
× 100.

A smaller relative dual gap indicates better performance.

Let va be the value of the solution found by the greedy minimal algorithm, which is

communicated to all solvers as a warm start. The closed primary bound is defined as:

δp :=
va− v

max(v− v∗,1e−6)
maxequationv100,

where v∗ is the largest dual bound found among all solvers. A larger closed primary gap

means better performance.

We plot the following performance metrics for each instance tested by each solver and

compute the SGMs of the benchmarks:715

1. t: the total running time in CPU seconds, with a shifted value set to 1;

2. δd%: the relative dual gap in percentage, with a shifted value set to 1%;

3. δp%: the closed primal bound in percentage, with a shifted value set to 1%;

4. #N: the number of nodes of the search tree, with a shifted value set to 1;

5. #C: the number of columns generated, with a shifted value set to 1;720

6. E%: the percentage of columns generated by the exact pricing algorithm, with a

shifted value set to 1%;

33

7. τ%: the relative dual gap in percentage of a pricing problem solved by an exact

algorithm, with a shifted value set to 1%;

8. tp%: the ratio between pricing time and total solving time in percentage, with a shifted 725

value set to 1%.

Metrics (1)-(4) refer to master problems and are available to all solvers. Metrics (5)-(8)

refer to pricing problems and are not available for the CPLEX-BSOCP, while metric (6) is

100% for the B&P-PWL and B&P-BSOCP.

We will discuss the computational results, which are divided into two parts. In the first 730

part, we compare five solvers: the CPLEX-BSOCP, B&P-BSOCP, B&P-PWL, B&P-Hybrid,

and B&P-Hybrid*. The second part is based on the observations and analysis of the first

part, in which we test whether non-equidistant (adaptive) breakpoints can improve the

performance of the B&P-Hybrid* solver.

5.3. Comparative Analysis of Main Results 735

The main computational results are summarized in Table 1, for detailed results we refer

to Section D in the appendices. For each benchmark, we report the SGM statistics of the

performance metrics, the number of instances solved (#S) and the number of instances

with improved primary bounds (#I).

Next, we analyze the main computational results by comparing the solvers. 740

Compact formulation vs. set cover formulation For all benchmarks, the B&P

hybrid is the best B&P solver in terms of dual gap, total time, and number of instances

solved. Therefore, we compare the B&P hybrid with the CPLEX-BSOCP.

We first analyze the results for the small benchmark. The average total time and average

dual gap of the CPLEX-BSOCP are 4.34 and 7.86 times that of the B&P hybrid, respectively. 745

The CPLEX-BSOCP solves 18 instances, and this performance is the worst among all

solvers. In contrast, the B&C hybrid solves 65 instances. However, the closed primary bound

of the CPLEX-BSOCP is 1.93 times larger than that of the B&P hybrid. CPLEX-BSOCP

improves the initial approximate solutions for 13 more instances than the B&P hybrid.

We analyze the performance of the compact BSOCP formulation (2) and the set-cover 750

formulation (5). We focus on the performance statistics of the master problems.

The CPLEX-BSOCP outperforms all other solvers in terms of finding good primal

solutions because CPLEX has powerful internal heuristic algorithms.

34

Benchmarks Solvers
Master statistics Pricing statistics

t δd% δp% #N #S #I #C E% τ% tp%

CloudSmall
(|N |= 100)

CPLEX-BSOCP 1452 15.8 0.0 26601 18 0 - - - -

B&P-BSOCP 2129 11.4 0.9 21 20 17 1373 100 3.56 99

B&P-PWL 633 2.4 2.7 66 61 32 1869 100 0.01 99

B&P-Hybrid 330 2.0 3.4 127 65 36 3485 18 0.01 96

B&P-Hybrid* 335 2.1 4.1 114 63 41 3204 18 0.01 84

CloudMedium
(|N |= 400)

CPLEX-BSOCP 3600 100.0 0.0 0 0 0 - - - -

B&P-BSOCP 3600 39.0 0.1 2 0 4 861 100 0.39 98

B&P-PWL 3600 17.2 0.4 1 0 10 3372 100 0.01 91

B&P-Hybrid 3600 11.8 0.6 12 0 15 6879 9 0.04 73

B&P-Hybrid* 3600 11.2 3.0 12 0 49 6797 9 0.03 71

CloudBig

(|N |= 1000)

CPLEX-BSOCP 3600 100.0 0.0 0 0 0 - - - -

B&P-BSOCP 3600 59.6 0.0 2 0 0 741 100 0.04 89

B&P-PWL 3600 43.1 0.2 1 0 6 2105 100 0.01 63

B&P-Hybrid 3600 34.2 0.4 1 0 11 4257 4 0.01 8

B&P-Hybrid* 3600 35.3 0.6 1 0 25 4088 4 0.01 7

Table 1 Aggregated statistics of the main computational results

In the medium and big benchmarks, none of the instances are solved. Note that 400 and

1000 items are very large for the classical linear BPs.755

The average number of nodes and the average dual gap of the CPLEX-BSOCP are 0

and 100 %, and the CPLEX-BSOCP even cannot finish the root node procedure. Because

by default CPLEX adds SOC cuts for nonlinear constraints (2b) and reoptimizes the LP

relaxation iteratively, the resulting size of LP relaxation is too large to solve efficiently. The

B&P-Hybrid (or the B&P-Hybrid*) is still able to prove a dual gap for the approximation760

solution or find better primal solutions.

The set-covering formulation is more scalable than the compact formulation.

LP -B&C vs. PWL-B&C As for the exact pricing algorithms, we compare the LP

-B&C algorithm implemented by CPLEX and our PWL-B&C algorithm. The comparisons765

35

are mainly related to the ability of the pricing algorithms to prove the dual bounds in

limited time. We focus on the problem statistics of the B&P-BSOCP and the B&P-PWL.

For the small, medium, and large benchmarks, the average dual gaps of the B&P-BSOCP

are 4.17, 2.26, and 1.38 times as large as those of the B&P-PWL, respectively. For the

small benchmark, the average total time and average number of solved instances of the 770

B&P-BSOCP are 3.35 and 0.33 times as large as those of the B&P-PWL.

Most time is spent on pricing problems. For the small, medium, and large benchmarks,

the average number of generated columns of the B&P-PWL is 1.36, 3.91, and 2.83 times

that of the B&P-BSOCP, respectively; the average double gap of pricing problems of the

B&P-BSOCP is 445.36, 48.875, and 5.25 times that of the B&P-PWL, respectively. 775

CPLEX can solve ”simple” pricing problems, but when ”difficult” pricing problems occur

after generating many columns, it cannot prove tight dual bounds. We find that for the

B&P-BSOCP, the average dual gap in pricing decreases when the instance size increases.

This is because for the large instance, only a small number of columns are generated before

the time limit and the ”hard” pricing problems do not arise. 780

In contrast, the B&P-PWL solves almost all pricing problems up to optimality (about

0.01%) in a finite time.

Exact pricing vs. hybrid pricing We compare the exact pricing strategy (B&P-PWL)

with the hybrid pricing strategy (B&P-Hybrid). 785

For the small benchmark, the average total time of the B&P-PWL is 1.92 times that of

the B&P-Hybrid, and the B&P-Hybrid solves 4 instances more. For the small, medium, and

large benchmarks, the average dual gaps of the B&P-PWL are 1.2, 1.46, and 1.26 times

as large as those of the B&P-Hybrid, respectively. This is because most of the slow exact

pricing procedures are replaced by the fast heuristic pricing procedures in the B&P hybrid. 790

Therefore, more columns can be generated.

For the small, medium, and large benchmarks, the average number of columns generated

by the B&P hybrid is 1.86, 2.04, and 2.02 times that of the B&P PWL, respectively; the

average percentage of exact columns generated by the B&P hybrid is 18.92%, 9.19%, and

4.747%, respectively. Note that the price-dual gap of the B&P hybrid is slightly larger than 795

that of the B&P-PWL because more ”hard” columns are generated.

36

The results show that the hybrid pricing strategy is a scalable approach for large instances.

The B&P hybrid also has better performance in terms of the closed primary bound and the

number of improved instances. This is because the B&P hybrid generates more columns

and the SCIP heuristics have more chances to improve the primary solutions.800

Effects of column selection heuristics We analyze the effects of the column selection

heuristic, for which we compare the B&P hybrid and the B&P hybrid*.

In terms of dual task and total time for the small benchmark, the B&P hybrid performs

slightly better than the B&P hybrid*. We focus on the quality of the primary solution

in the statistics of the main problem. For the small benchmark, the B&P hybrid and the805

B&P hybrid* improve 36 and 41 instances, respectively. The CPLEX-BSOCP improves 49

instances, and the average closed primary bound of the CPLEX-BSOCP is 1.57 times that

of the B&P hybrid*. The CPLEX-BSOCP is the best solver in the primary tasks for the

small benchmark.

For the medium and large benchmarks, the B&P hybrid* improves 49 and 21 instances,810

and the B&P hybrid improves 15 and 11 instances. For the medium and large benchmarks,

the average closed primary barriers of the B&P hybrid* are 4.75 and 1.61 times greater

than those of the B&P hybrid, respectively.

The column selection heuristic is useful for finding better primary solutions.

Summary of the analysis The B&P hybrid is the best solver in the dual tasks. For the815

exact pricing algorithms, PWL-B&C outperforms CPLEX in all instances, and consequently

PWL-B&C yields a substantial improvement on the dual tasks for the B&P algorithms.

This result suggests that PWL-B&C can also be an independent solver for submodular

Knapsack problems. The hybrid pricing strategy speeds up column generation. The column

selection heuristic can find better solutions than the approximate solutions.820

As for benchmarks, CloudSmall is a suitable testbed for comparing solvers, CloudMedium

is suitable for testing the pricing algorithms, and CloudBig is still too big to handle.

5.4. Non-equidistant Breakpoints

According to Theorem 2 in Section 4.4, the optimal breakpoints under the error ℓ∞ form

an equidistant partition of [w,w]. In this section, we investigate whether adaptive non-825

equidistant breakpoints can improve the B&P hybrid*. There are many possibilities for

non-equidistant breakpoints, and we propose a simple approach below.

37

From the previous experiments, we first made the following observations. When the

PWL-B&C algorithm solves a pricing problem by generating many cuts, the problem

appears to be a ”hard” pricing problem. As a result, exact pricing is slow and numerically 830

unstable, so that CPLEX sometimes issues the warning ”Advanced basis is not built”. This

phenomenon usually occurs at the end of column generation.

Therefore, the number of cuts generated should be reduced. This can be achieved by

adjusting the breakpoints, as the following example shows.

When a pricing problem is solved by the PWL-B&C algorithm, let X0 be the set of all x̂ 835

in line 23 of Algorithm 1 that generate cuts. We note that X0 is a subset of the generating

set X in (11), and we denote X0 as the sub generating set. We change the breakpoints of the

PWL relaxation to B0 := {w ∈R :w=
∑

i∈N ′ aix̂i, x̂∈X0}. Since the PWL relaxation is now

exactly in B0 (i.e., q̄B0(w) = q(w) for wB0), when the PWL-B&C algorithm is re-executed,

the submodular capacity constraint (9b) is satisfied for xX0. Therefore, the cuts generated 840

by X0 are not added to line 23 of Algorithm 1.

Then we note that the hybrid pricing strategy uses many heuristic pricing iterations

between two exact pricing iterations. For such two pricing iterations, let X1 and X2 be

the respective subsets, and B1 := {w ∈R :w=
∑

i∈N ′ aix̂i, x̂ ∈X1} and B2 := {w ∈R :w=∑
i∈N ′ aix̂2, x̂∈X2}. We note that the points of B1 and B2 can be very far apart. 845

From the second observation, it is difficult to reuse the information from the previous

exact iterations and predict the correct breakpoints of the current iteration.

Finally, we also note that the partial generation set will converge to a midpoint during

the one run of the PWL-B&C algorithm.

We use the following non-equidistant breakpoint strategy. We compute the midpoint of 850

B from a ”warm-up” PWL-B&C algorithm with the equidistant breakpoints.

In the “warm-up” stage, we record the sub generating set X ′ as an ordered list, and

assign each element of X ′ an order according to the time that this element is added to X ′.

Let w−1 =
∑

i∈N ′ aix̂i, where x̂ is the last element in X ′. Once Line 23 of Algorithm 1 is

executed, let w=
∑

i∈N ′ aix̂i. If
wc−w−1

w−w
≤ 0.1 (the convergence criteria is satisfied), then the 855

“warm-up” PWL-B&C algorithm terminates and outputs wc :=w. Otherwise, we add x̂ to

X ′ and continue the algorithm.

In the “restart” stage, we rerun the PWL-B&C algorithm with the following non-

equidistant breakpoints. The number of new breakpoints is the same as the number of old

38

breakpoints. Let ic := ⌈w−w
w−w

h⌉, Sl :=
∑

1≤j≤ic−1 j, and Su :=
∑

1≤j≤h−ic
j, we generate the

non-equidistant breakpoints centered at wc as follows:

wi :=

wc−

∑
1≤j≤ic−i j

Sl
(wc−w), 1≤ i < ic,

wc, i= ic,

wc +
∑

1≤j≤i−ic
j

Su
(w−wc), h≥ i > ic.

The set B= {wi} is centered at wc with high-density.

Next, we implement a solver, namely B&P-Hybrid**, which modifies B&P-Hybrid* by

using the two-stage PWL-B&C algorithm for exact pricing. The two solvers are tested on860

the CloudMedium benchmark, since none of the instances in this benchmark can be solved

by any solver and the time to solve RMLPs in Section 3.2 is not very long.

For a detailed comparison, the results in Table 2 show the average SGM statistics of

instances with the same risk level and generation method. As for the notation of the

instances, ”G” denotes the instances of the Gaussian distribution, ”H” denotes the instances865

of the Hoeffding inequality, and ”D” denotes the instances of the distributionally robust

case.

We first focus on the price statistics. The average number of columns of the B&P hybrid**

is 1.08 times that of the B&P hybrid*; the average double pricing gap and the average exact

pricing time of the B&P hybrid* are 3 times and 1.04 times that of the B&P hybrid**,870

respectively. Although the two-stage PWL-B&C algorithm takes more time, the time to

solve difficult price instances is reduced due to the refined non-equidistant breakpoints.

The two-stage PWL-B&C algorithms solve all pricing problems up to optimality (0.01%),

except for the distributionally robust case and α= 0.99.

Next, we focus on the master statistics. The average number of improved instances and875

the closed primary bound of the B&P hybrid** are 1.1 and 1.2 times larger than those of

the B&P hybrid*, respectively. This is because more columns are generated and therefore

the primary heuristic has more chances to find better solutions. The average dual gap of

the B&P hybrid* is 1.02 times larger than that of the B&P hybrid**.

We conclude that the non-equidistant breakpoints lead to a more efficient solution of the880

pricing problems and a marginal improvement of the master problems.

39

Case α

B&P-Hybrid* B&P-Hybrid**

Master Pricing Master Pricing

δd% δp% #N #S #I #C E% τ% tp% δd% δp% #N #S #I #C E% τ% tp%

G

0.6 8.6 0.0 32 0 0 8054 5 0.06 55 8.5 0.0 34 0 0 7783 5 0.01 54

0.7 10.9 0.0 100 0 0 12105 4 0.01 50 10.9 0.0 106 0 0 12577 3 0.01 47

0.8 9.7 4.4 42 0 3 9597 5 0.02 55 9.3 8.4 64 0 4 10685 5 0.01 52

0.9 11.2 11.0 24 0 5 7190 9 0.01 73 11.2 11.0 26 0 5 7553 9 0.01 72

0.95 13.7 15.0 8 0 6 6150 11 0.01 81 12.5 18.9 8 0 6 6084 14 0.01 80

0.99 13.3 2.9 2 0 3 6786 9 0.01 74 12.7 5.0 4 0 4 7454 11 0.01 70

H

0.6 10.5 0.0 21 0 0 6258 8 0.1 70 10.3 0.0 42 0 0 7592 7 0.01 64

0.7 10.6 0.0 32 0 0 7005 7 0.07 64 10.4 0.0 37 0 0 8120 7 0.01 57

0.8 11.6 0.0 10 0 0 5715 10 0.09 75 11.4 0.0 33 0 0 7446 8 0.01 65

0.9 10.8 0.0 9 0 0 6275 9 0.05 73 10.6 0.0 17 0 0 7071 10 0.01 69

0.95 10.7 0.0 23 0 0 6570 9 0.02 71 10.6 0.0 30 0 0 7360 9 0.01 68

0.99 12.7 0.0 27 0 0 7067 9 0.02 72 12.3 0.7 42 0 1 8074 8 0.01 67

D

0.6 10.3 21.8 13 0 6 6962 9 0.01 70 10.3 21.8 20 0 6 8015 8 0.01 67

0.7 13.6 15.1 19 0 6 6991 10 0.01 78 13.6 15.1 25 0 6 7261 10 0.01 77

0.8 14.8 7.5 2 0 5 5848 11 0.01 80 14.0 9.1 2 0 5 6292 14 0.01 77

0.9 14.8 2.3 2 0 3 6844 8 0.02 78 14.2 6.7 2 0 5 6584 8 0.01 78

0.95 16.5 17.6 2 0 6 5817 14 0.01 87 17.1 14.8 2 0 6 5698 13 0.01 87

0.99 3.9 77.4 2 0 6 4126 18 0.09 95 4.2 76.2 3 0 6 4060 17 0.07 95

All 11.2 3.0 12 0 49 6797 9 0.03 71 11.0 3.6 17 0 54 7343 9 0.01 68

Table 2 Master and pricing problem statistics of the B&P-Hybrid* and B&P-Hybrid** for CloudMedium

6. Conclusion

In this work, we study exact branch-and-price algorithms for SMBPs. We develop the

PWL-B&C algorithm for pricing submodular Knapsack problems. We find that the branch-

and-price algorithm is a promising method for solving SMBPs, as in linear BPs. Our 885

branch-and-price algorithms can solve more instances than CPLEX.

The proposed PWL-B&C algorithm is more efficient than CPLEX for sub-modular Knap-

sack problems. The PWL-B&C algorithm can also be extended to solve the multiple

sub-modular Knapsack problems. For general MINLP problems, if a nonlinear constraint

can be reformulated into a linear part and a univariate nonlinear part, then the univariate 890

nonlinear part can be convexified by the PWL relaxation. Our hybrid pricing strategy is

applicable to the column generation procedure, where the main problems are in set-cover

formulations, as long as there are fast pricing heuristics. This pricing strategy is useful for

large instances. For example, consider the high capacity vehicle routing problem, for which

an exact pricing algorithm is difficult. 895

We compare the equidistant and non-equidistant breakpoints for the PWL-B&C algorithm,

and the non-equidistant breakpoints can speed up the PWL-B&C algorithm given a suitable

40

partition. The future study can investigate a more accurate partition than the one created

by the ”warm-up” phase of the PWL-B&C algorithm.

ACKNOWLEDGMENT The authors would like to thank Leo Liberti and and Sandra900

Ulrich Ngueveu for discussion with the authors.

Appendix A: Proof of Proposition 1

Proof. Let

Fj := {(v1j , · · · , vnj , yj)∈ {0,1}n×{0,1} :
∑
i∈N

aivij +σ

√∑
i∈N

bivij ≤ cyj}

be the feasible set of the j−th constraint in the BSOCP formulation. Therefore, the feasible set of the BSCOP

formulation is F =
∏

j∈MFj .

Let F j be the continuous relaxation of Fj , and

F j = {(v1j , · · · , vnj , yj)∈ [0,1]n× [0,1] :
∑
i∈N

aivij +σ

√∑
i∈N

bivij ≤ cyj}.

Therefore, the feasible set of the continuous relaxation of the BSCOP formulation is F =
∏

j∈MF j .905

On the other hand, the points of Fj are zero vector and (p,1) (p∈P). Therefore, its convex hull is

conv(Fj) = {(v1j , · · · , vnj , yj)∈ [0,1]n× [0,1] : ∃λp ∈ [0,1]P ,
∑
p∈P

λp = yj , v=
∑
p∈P

dpλp}.

We note that F j is also a convex relaxation of Fj , hence Fj ⊂ conv(Fj)⊂ F j .

The optimum of the continuous relaxation of the BSOCP formulation is min
(v,y)∈F,v satisfies (2c)

∑
j∈M

yj .

An optimal solution of the LP relaxation of the set cover formulation satisfies
∑

p∈P dipλp = 1 (i∈N), and

the optimal value is exactly the same as min
(v,y)∈

∏
j∈M conv(Fj),v satisfies (2c)

∑
j∈M

yj . Since
∏

j∈M conv(Fj)⊂ F , the

result follows. □910

Appendix B: Proof of Theorem 2

Proof. Since q̄B and q have the same value at w ∈ {w1, . . . ,wh}, it follows that the ℓ∞-norm is the maximum

value of ℓ∞-norms over individual sub intervals:

ℓ∞(q̄B, q) = max
w∈[w,w]

|q̄B(w)− q(w)|= max
2≤k≤h

max
w∈[wk−1,wk]

|q̄B(w)− q(w)|.

Let w ∈ [wk−1,wk], then

|q̄B(w)− q(w)|

=
q(wk)− q(wk−1)

wk−wk−1

(w−wk−1)+ q(wk−1)− (c−w)2

=(w−wk−1)(wk−w).

We have

max
w∈[wk−1,wk]

|q̄B(w)− q(w)|

= max
w∈[wk−1,wk]

(w−wk−1)(wk−w)

=
(wk−wk−1)

2

4
.

41

The maximum value is at w=
wk−1+wk

2
.

It follows that (16) is equivalent to:

min
w=w1≤...≤wh=w

max
2≤k≤h

(wk−wk−1)
2

4
.

Therefore, the optimal solution is an equidistant partition of [w,w], and the results follow. □

Appendix C: Benchmark Generation

Next, we briefly review the method to generate an instance. We call the distribution of µi the target distribution 915

for item i. We assume that every µi follows the same target distribution. This target distribution is unknown

in Cohen et al. (2019) except for its quantiles in Table 3.

Given α and N , we generate an SMBP instance as follows:

1. sample µi (i∈N) according to Table 3;

2. sample a and b from µ and σ, using one of the following cases: 920

• Gaussian case;

• Hoeffding’s inequality case;

• distributionally robust approximation case.

Table 3 Example distribution of item size

Item sizes 1 2 4 8 16 32 72

% Items 36.3 13.8 21.3 23.1 3.5 1.9 0.1

We first illustrate the approach of sampling µ. We approximate the target distribution by a normalized

histogram such that its quantile distribution is the same as in Table 3. A histogram consists of intervals 925

divided from the entire range [0,72], and each interval has endpoints of two consecutive quantiles of Table 3.

The histogram gives a discrete non-parametric estimation of the target distribution. To obtain a nominal item

size µi (i∈N) sampled as from a continuous distribution, we apply a two-stage sampling. It has two steps:

1. sample an interval [d1, d2] from the histogram;

2. sample a nominal item size µi from [d1, d2] uniformly. 930

Second, we construct a truncated Gaussian, which is defined by its lower and upper bounds A and A, its

mean µ′, and its standard deviation σ′. To obtain these parameters, for each i∈N , we:

1. sample Ai ∈ [0.3,0.6] and Ai ∈ [0.7,1.0] uniformly;

2. sample scale parameter si ∈ [0.1,0.5];

3. compute the mean µ′
i and the standard variation σ′

i of the truncated Gaussian with lower bound Ai, 935

upper bound Ai and scale parameter si.

With the above parameters, we generate the data a, b, σ of the SMBP (4). There are three cases, which

correspond to different assumptions on the uncertainty or probability distribution.

For the Gaussian case:

1. let σ=Φ−1(α), where Φ is the cumulative distribution function of the Gaussian distribution; 940

42

2. for i∈N :

(a) ai = µ′
iµi;

(b) bi = (σ′
iµi)

2
.

For the Hoeffding’s inequality case:

1. let σ=
√
−0.5 ln (1−α);945

2. for i∈N :

(a) ai = µ′
iµi;

(b) bi = ((Ai−Ai)µi)
2
.

For the distributionally robust approximation case:

1. let σ=
√
α/(1−α);950

2. for i∈N :

(a) ai = µ′
iµi;

(b) bi = (σ′
iµi)

2
.

For all the above cases, if there exists i∈N such that ai, bi are too large to fit a bin (usually for large α,σ),

then we rescale ai, bi to fit the bin.955

Appendix D: Detailed Results

Master problem statistics are summarized in Table 4, Table 5, and Table 6. Pricing problem statistics are

summarized in Table 7, Table 8, and Table 9.

As for the case notation, “G” denotes the instances of the Gaussian distribution case, “H” denotes the

instances of the Hoeffding inequality case, and “D” denotes the instances of the distributionally robust case.960

For each benchmark, we report the SGM statistics of performance metrics, the number of solved instances

(#S), and the number of instances with improved primal bounds (#I).

We also divide the instances in each benchmark into small subsets and report SGM statistics of these

subsets. In these subsets, instances have the same risk level and case.

43

e
s
a
C

α
CPLEX-BSOCP B&P-BSOCP B&P-PWL B&P-Hybrid B&P-Hybrid*

t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I

G

0.6 38 1.6 0.0 70 4 0 211 1.7 0.0 7 4 0 43 0.0 1.2 2 6 1 47 0.6 0.0 7 5 0 42 0.6 0.0 6 5 0

0.7 1199 10.6 0.0 42897 1 0 1049 6.0 0.0 10 2 0 145 1.6 0.0 9 4 0 80 1.5 0.0 20 4 0 84 1.5 0.0 19 4 0

0.8 3600 21.6 0.0 215412 0 0 3600 19.3 0.0 21 0 0 3161 10.0 0.0 287 1 0 2792 9.7 0.0 1177 1 0 2917 9.8 0.0 918 1 0

0.9 3600 24.6 0.0 236150 0 0 3600 23.3 0.0 25 0 0 624 1.7 3.7 79 4 2 221 1.5 3.7 112 4 2 271 1.5 3.7 126 4 2

0.95 3600 30.3 0.0 125945 0 0 3600 23.3 0.0 16 0 0 1160 3.6 3.7 140 3 2 1190 5.1 6.5 743 2 3 836 1.4 34.1 465 4 5

0.99 3600 35.6 0.0 85454 0 0 3600 27.4 0.0 25 0 0 1952 5.5 6.3 266 2 3 1624 10.1 0.8 1110 1 1 828 5.4 6.3 442 2 3

H

0.6 535 3.5 0.0 6828 3 0 2300 6.4 1.2 66 2 1 777 1.7 1.2 35 4 1 166 0.6 3.7 41 5 2 253 1.7 1.2 43 4 1

0.7 532 6.0 0.0 3565 2 0 572 3.1 0.0 6 3 0 71 0.0 0.0 1 6 0 18 0.0 0.0 1 6 0 19 0.0 0.0 1 6 0

0.8 178 3.3 0.0 2159 3 0 1728 7.6 0.0 37 2 0 572 0.7 9.0 83 5 3 528 3.8 1.2 277 3 1 587 3.8 1.2 247 3 1

0.9 352 3.4 0.0 1807 3 0 3600 20.4 0.0 76 0 0 1506 6.1 0.0 160 2 0 413 1.6 3.7 167 4 2 455 1.6 3.7 162 4 2

0.95 734 6.5 0.0 23189 2 0 990 6.5 0.0 17 2 0 329 1.5 0.0 18 4 0 119 0.6 1.2 17 5 1 203 1.4 1.2 27 4 1

0.99 3600 20.9 0.0 345213 0 0 3600 19.7 0.0 16 0 0 253 1.8 1.2 31 4 1 215 1.5 1.2 91 4 1 222 2.9 0.9 81 3 1

D

0.6 3600 24.0 0.0 187687 0 0 3600 20.2 0.0 18 0 0 419 1.7 1.2 34 4 1 145 0.6 7.8 55 5 3 135 1.5 3.1 46 4 2

0.7 3600 29.0 0.0 153161 0 0 3600 23.1 2.3 21 0 2 1234 1.6 9.0 141 4 3 458 1.6 9.0 276 4 3 476 1.6 9.0 246 4 3

0.8 3600 34.7 0.0 95858 0 0 3600 22.3 0.0 20 0 0 3600 14.4 0.9 463 0 1 2153 2.8 9.0 1542 3 3 2476 4.6 7.8 1305 2 3

0.9 3600 44.6 0.0 41259 0 0 3600 25.8 2.4 27 0 2 3146 8.8 6.6 384 1 3 2389 9.0 3.0 1260 1 2 2459 7.4 25.0 1111 1 5

0.95 3600 62.1 0.0 29645 0 0 3600 15.4 46.9 20 0 6 3321 6.3 31.8 414 1 5 2332 3.5 66.3 664 2 6 2028 3.8 59.1 741 2 6

0.99 3600 77.5 0.0 10352 0 0 1218 0.6 96.4 33 5 6 117 0.0 100.0 90 6 6 30 0.0 100.0 32 6 6 27 0.0 100.0 32 6 6

All 1452 15.8 0.0 26601 18 0 2129 11.4 0.9 21 20 17 633 2.4 2.7 66 61 32 330 2.0 3.4 127 65 36 335 2.1 4.1 114 63 41

Table 4 Master problem statistics of CloudSmall with 108 instances (|N |= 100)

4
4

e
s
a
C

α
CPLEX-BSOCP B&P-BSOCP B&P-PWL B&P-Hybrid B&P-Hybrid*

t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I

G

0.6 3600 100.0 0.0 0 0 0 3600 20.6 0.0 2 0 0 3600 14.1 0.0 2 0 0 3600 8.5 0.0 32 0 0 3600 8.6 0.0 32 0 0

0.7 3600 100.0 0.0 0 0 0 3600 30.1 0.0 2 0 0 3600 16.3 0.0 2 0 0 3600 10.9 0.0 122 0 0 3600 10.9 0.0 100 0 0

0.8 3600 100.0 0.0 0 0 0 3600 36.4 0.0 2 0 0 3600 15.9 0.0 2 0 0 3600 11.3 0.0 46 0 0 3600 9.7 4.4 42 0 3

0.9 3600 100.0 0.0 0 0 0 3600 42.2 0.0 2 0 0 3600 19.1 0.0 2 0 0 3600 13.0 0.0 18 0 0 3600 11.2 11.0 24 0 5

0.95 3600 100.0 0.0 0 0 0 3600 48.4 0.0 2 0 0 3600 18.8 0.0 2 0 0 3600 14.8 0.8 9 0 1 3600 13.7 14.8 8 0 6

0.99 3600 100.0 0.0 0 0 0 3600 47.6 0.0 2 0 0 3600 22.3 0.0 2 0 0 3600 14.1 0.0 2 0 0 3600 13.3 2.9 2 0 3

H

0.6 3600 100.0 0.0 0 0 0 3600 27.7 0.0 2 0 0 3600 16.4 0.0 2 0 0 3600 10.5 0.0 22 0 0 3600 10.5 0.0 21 0 0

0.7 3600 100.0 0.0 0 0 0 3600 29.0 0.0 2 0 0 3600 18.0 0.0 2 0 0 3600 10.5 0.0 30 0 0 3600 10.6 0.0 32 0 0

0.8 3600 100.0 0.0 0 0 0 3600 31.5 0.0 2 0 0 3600 17.2 0.0 2 0 0 3600 11.6 0.0 9 0 0 3600 11.6 0.0 10 0 0

0.9 3600 100.0 0.0 0 0 0 3600 33.3 0.0 2 0 0 3600 17.0 0.0 2 0 0 3600 10.9 0.0 7 0 0 3600 10.8 0.0 9 0 0

0.95 3600 100.0 0.0 0 0 0 3600 35.1 0.0 2 0 0 3600 17.6 0.0 2 0 0 3600 10.7 0.0 24 0 0 3600 10.7 0.0 23 0 0

0.99 3600 100.0 0.0 0 0 0 3600 39.3 0.0 2 0 0 3600 19.4 0.0 2 0 0 3600 12.7 0.0 27 0 0 3600 12.7 0.0 27 0 0

D

0.6 3600 100.0 0.0 0 0 0 3600 42.9 0.0 2 0 0 3600 20.2 0.9 2 0 1 3600 12.9 0.0 10 0 0 3600 10.3 21.8 13 0 6

0.7 3600 100.0 0.0 0 0 0 3600 48.7 0.0 2 0 0 3600 21.3 0.0 2 0 0 3600 15.3 0.6 12 0 1 3600 13.6 15.0 19 0 6

0.8 3600 100.0 0.0 0 0 0 3600 48.4 0.0 2 0 0 3600 22.7 0.0 2 0 0 3600 15.1 0.9 2 0 1 3600 14.8 7.4 2 0 5

0.9 3600 100.0 0.0 0 0 0 3600 51.2 0.0 2 0 0 3600 21.0 0.0 2 0 0 3600 15.4 0.0 2 0 0 3600 14.8 2.3 2 0 3

0.95 3600 100.0 0.0 0 0 0 3600 55.9 0.0 2 0 0 3600 22.3 2.6 2 0 3 3600 17.4 13.7 2 0 6 3600 16.5 17.6 2 0 6

0.99 3600 100.0 0.0 0 0 0 3600 57.4 3.3 2 0 4 3600 4.0 78.4 2 0 6 3600 4.2 76.4 3 0 6 3600 3.9 77.4 2 0 6

All 3600 100.0 0.0 0 0 0 3600 39.0 0.1 2 0 4 3600 17.2 0.4 1 0 10 3600 11.8 0.6 12 0 15 3600 11.2 3.0 12 0 49

Table 5 Master problem statistics of CloudMedium with 108 instances (|N |= 400)

45

e
s
a
C

α
CPLEX-BSOCP B&P-BSOCP B&P-PWL B&P-Hybrid B&P-Hybrid*

t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I t δd% δp% #N #S #I

G

0.6 3600 100.0 0.0 0 0 0 3600 38.9 0.0 2 0 0 3600 38.7 0.0 2 0 0 3600 32.6 0.0 2 0 0 3600 32.6 0.0 2 0 0

0.7 3600 100.0 0.0 0 0 0 3600 41.7 0.0 2 0 0 3600 38.7 0.0 2 0 0 3600 34.9 0.0 2 0 0 3600 35.2 0.0 2 0 0

0.8 3600 100.0 0.0 0 0 0 3600 51.2 0.0 2 0 0 3600 39.1 0.0 2 0 0 3600 35.0 0.0 2 0 0 3600 35.2 0.0 2 0 0

0.9 3600 100.0 0.0 0 0 0 3600 64.1 0.0 2 0 0 3600 47.3 0.0 2 0 0 3600 41.3 0.2 1 0 1 3600 41.9 0.9 1 0 3

0.95 3600 100.0 0.0 0 0 0 3600 71.3 0.0 2 0 0 3600 47.7 0.0 1 0 0 3600 41.5 0.2 1 0 1 3600 41.6 1.2 1 0 4

0.99 3600 100.0 0.0 0 0 0 3600 79.8 0.0 2 0 0 3600 45.0 0.0 1 0 0 3600 38.4 0.2 1 0 1 3600 38.9 0.4 1 0 2

H

0.6 3600 100.0 0.0 0 0 0 3600 44.5 0.0 2 0 0 3600 41.6 0.0 2 0 0 3600 36.4 0.0 1 0 0 3600 36.8 0.0 2 0 0

0.7 3600 100.0 0.0 0 0 0 3600 45.7 0.0 2 0 0 3600 41.0 0.0 2 0 0 3600 35.5 0.0 2 0 0 3600 35.7 0.0 2 0 0

0.8 3600 100.0 0.0 0 0 0 3600 47.5 0.0 2 0 0 3600 43.1 0.0 2 0 0 3600 37.5 0.0 2 0 0 3600 36.1 0.0 1 0 0

0.9 3600 100.0 0.0 0 0 0 3600 50.3 0.0 2 0 0 3600 41.9 0.0 2 0 0 3600 36.6 0.0 1 0 0 3600 36.7 0.0 2 0 0

0.95 3600 100.0 0.0 0 0 0 3600 52.1 0.0 2 0 0 3600 43.3 0.0 2 0 0 3600 37.3 0.0 1 0 0 3600 37.0 0.0 1 0 0

0.99 3600 100.0 0.0 0 0 0 3600 58.5 0.0 2 0 0 3600 46.1 0.0 2 0 0 3600 41.3 0.0 1 0 0 3600 41.3 0.0 1 0 0

D

0.6 3600 100.0 0.0 0 0 0 3600 62.2 0.0 2 0 0 3600 48.0 0.0 1 0 0 3600 41.4 0.0 1 0 0 3600 41.7 0.0 1 0 0

0.7 3600 100.0 0.0 0 0 0 3600 69.6 0.0 2 0 0 3600 46.8 0.0 1 0 0 3600 42.4 0.0 1 0 0 3600 42.2 0.5 1 0 2

0.8 3600 100.0 0.0 0 0 0 3600 77.1 0.0 2 0 0 3600 45.3 0.0 1 0 0 3600 39.6 0.0 1 0 0 3600 39.4 0.5 1 0 2

0.9 3600 100.0 0.0 0 0 0 3600 82.2 0.0 2 0 0 3600 44.1 0.0 2 0 0 3600 35.7 0.0 1 0 0 3600 36.7 0.0 1 0 0

0.95 3600 100.0 0.0 0 0 0 3600 84.5 0.0 2 0 0 3600 49.0 0.0 2 0 0 3600 27.7 1.6 1 0 2 3600 29.8 7.0 2 0 6

0.99 3600 100.0 0.0 0 0 0 3600 84.9 0.0 2 0 0 3600 32.9 19.9 2 0 6 3600 7.9 61.0 2 0 6 3600 13.1 49.6 2 0 6

All 3600 100.0 0.0 0 0 0 3600 59.6 0.0 2 0 0 3600 43.1 0.2 1 0 6 3600 34.2 0.4 1 0 11 3600 35.3 0.6 1 0 25

Table 6 Master problem statistics of CloudBig with 108 instances (|N |= 1000)

46

Case α
B&P-BSOCP B&P-PWL B&P-Hybrid B&P-Hybrid*

#C E% τ% tp% #C E% τ% tp% #C E% τ% tp% #C E% τ% tp%

G

0.6 519 100 0.1 99 226 100 0.01 99 440 33 0.02 97 389 33 0.02 94

0.7 836 100 2.1 99 517 100 0.01 99 838 27 0.02 97 808 28 0.02 89

0.8 1784 100 5.71 99 7573 100 0.01 99 25935 12 0.01 94 21026 12 0.01 70

0.9 1711 100 11.67 99 1874 100 0.01 99 2904 16 0.01 96 3260 15 0.01 87

0.95 1717 100 12.59 99 2887 100 0.01 99 14654 12 0.01 95 8706 13 0.01 81

0.99 1699 100 16.48 99 5800 100 0.01 99 20729 12 0.01 94 10076 11 0.01 73

H

0.6 2449 100 0.29 99 1869 100 0.02 99 1511 20 0.03 96 2084 19 0.02 86

0.7 523 100 4.14 99 204 100 0.02 99 179 35 0.01 98 194 34 0.01 98

0.8 1594 100 0.29 99 2149 100 0.01 99 7162 13 0.01 94 6128 13 0.01 76

0.9 2663 100 0.9 99 3782 100 0.01 99 4476 16 0.01 95 4117 18 0.01 86

0.95 897 100 1.48 99 942 100 0.02 99 861 32 0.03 97 1293 33 0.02 91

0.99 1722 100 8.05 99 940 100 0.01 99 2420 21 0.01 96 2274 20 0.01 81

D

0.6 1821 100 6.4 99 1306 100 0.01 99 2099 16 0.01 95 1798 16 0.01 86

0.7 1728 100 12.51 99 3303 100 0.01 99 7434 10 0.01 95 6730 10 0.01 81

0.8 1697 100 15.03 99 7952 100 0.01 99 23859 12 0.01 95 20313 13 0.01 75

0.9 1686 100 17.62 99 6862 100 0.01 99 20794 15 0.01 96 18002 15 0.01 83

0.95 1703 100 16.3 99 5850 100 0.01 99 7948 37 0.01 98 8224 32 0.01 95

0.99 601 100 10.74 99 730 100 0.01 99 603 23 0.01 97 606 22 0.01 96

All 1373 100 3.56 99 1869 100 0.01 99 3485 18 0.01 96 3204 18 0.01 84

Table 7 Pricing problem statistics of CloudSmall with 108 instances (|N |= 100)

Case α
B&P-BSOCP B&P-PWL B&P-Hybrid B&P-Hybrid*

#C E% τ% tp% #C E% τ% tp% #C E% τ% tp% #C E% τ% tp%

G

0.6 2060 100 0.01 94 3117 100 0.01 88 9368 4 0.06 54 8054 5 0.06 55

0.7 1413 100 0.02 97 3622 100 0.01 87 12327 4 0.02 54 12105 4 0.01 50

0.8 943 100 0.11 98 3847 100 0.01 88 11031 5 0.02 61 9597 5 0.02 55

0.9 814 100 0.36 99 3277 100 0.01 91 6595 9 0.01 74 7190 9 0.01 73

0.95 658 100 0.77 99 3200 100 0.01 93 6212 11 0.01 81 6150 11 0.01 81

0.99 589 100 2.04 99 3816 100 0.01 92 6622 10 0.01 76 6786 9 0.01 74

H

0.6 1503 100 0.02 97 2985 100 0.01 90 6343 8 0.11 70 6258 8 0.1 70

0.7 1281 100 0.03 97 3114 100 0.01 90 7692 7 0.07 64 7005 7 0.07 64

0.8 1246 100 0.03 98 3346 100 0.01 91 5947 9 0.09 75 5715 10 0.09 75

0.9 1043 100 0.06 98 3409 100 0.01 90 6472 9 0.05 73 6275 9 0.05 73

0.95 867 100 0.13 98 3145 100 0.01 91 6513 9 0.02 74 6570 9 0.02 71

0.99 840 100 0.22 99 3199 100 0.01 91 7448 9 0.02 73 7067 9 0.02 72

D

0.6 794 100 0.31 99 3189 100 0.01 91 6691 9 0.01 67 6962 9 0.01 70

0.7 681 100 0.57 99 3191 100 0.01 93 6069 11 0.01 80 6991 10 0.01 78

0.8 609 100 1.55 99 3674 100 0.01 93 5792 11 0.01 81 5848 11 0.01 80

0.9 552 100 2.35 99 3331 100 0.01 94 6703 9 0.02 78 6844 8 0.02 78

0.95 519 100 2.7 99 3129 100 0.01 96 5757 15 0.01 90 5817 14 0.01 87

0.99 448 100 16.35 99 4386 100 0.01 97 4162 18 0.12 97 4126 18 0.09 95

All 861 100 0.39 98 3372 100 0.01 91 6879 9 0.04 73 6797 9 0.03 71

Table 8 Pricing problem statistics of CloudMedium with 108 instances (|N |= 400)

47

Case α
B&P-BSOCP B&P-PWL B&P-Hybrid B&P-Hybrid*

#C E% τ% tp% #C E% τ% tp% #C E% τ% tp% #C E% τ% tp%

G

0.6 1786 100 0.01 55 1923 100 0.01 47 2748 6 0.01 5 2766 6 0.01 5

0.7 1315 100 0.01 79 1903 100 0.01 53 2953 6 0.01 5 2932 6 0.01 5

0.8 1038 100 0.01 90 1977 100 0.01 56 3182 5 0.01 6 3155 5 0.01 6

0.9 760 100 0.02 96 2130 100 0.01 60 4433 3 0.01 5 4360 3 0.01 5

0.95 629 100 0.03 98 2223 100 0.01 61 4724 3 0.01 6 4597 3 0.01 5

0.99 409 100 0.08 99 2340 100 0.01 64 5005 3 0.01 6 4795 3 0.01 6

H

0.6 1422 100 0.01 76 1624 100 0.01 67 2968 5 0.01 10 2960 5 0.01 10

0.7 1357 100 0.01 80 1689 100 0.01 66 3058 6 0.01 9 3017 6 0.01 9

0.8 1242 100 0.01 84 1723 100 0.01 67 3214 5 0.01 8 3174 5 0.01 8

0.9 1091 100 0.01 88 1694 100 0.01 66 3134 5 0.01 9 3070 5 0.01 9

0.95 1017 100 0.01 90 1822 100 0.01 63 3316 5 0.01 8 3244 5 0.01 8

0.99 877 100 0.01 94 1916 100 0.01 63 3780 4 0.01 7 3686 4 0.01 7

D

0.6 788 100 0.02 96 2114 100 0.01 60 4225 4 0.01 6 4145 4 0.01 5

0.7 673 100 0.02 97 2158 100 0.01 60 4302 4 0.01 5 4130 4 0.01 5

0.8 498 100 0.04 99 2210 100 0.01 63 4842 3 0.01 6 4634 3 0.01 6

0.9 328 100 0.2 99 2461 100 0.01 69 6319 3 0.01 7 5800 3 0.01 7

0.95 254 100 0.53 99 2208 100 0.01 82 9854 3 0.01 16 8816 3 0.01 12

0.99 186 100 3.13 99 5373 100 0.01 84 12413 5 0.01 32 9778 4 0.01 17

All 741 100 0.04 89 2105 100 0.01 63 4257 4 0.01 8 4088 4 0.01 7

Table 9 Pricing problem statistics of CloudBig with 108 instances (|N |= 1000)

48

References965

Achterberg T, Berthold T, Koch T, Wolter K (2008) Constraint integer programming: A new approach to

integrate cp and mip. Perron L, Trick MA, eds., Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems, 6–20 (Berlin, Heidelberg: Springer Berlin

Heidelberg).

Allman A, Zhang Q (2021) Branch-and-price for a class of nonconvex mixed-integer nonlinear programs.970

Journal of Global Optimization 1–20.

Atamtürk A, Narayanan V (2008) Polymatroids and mean-risk minimization in discrete optimization.

Operations Research Letters 36(5):618–622.

Atamtürk A, Narayanan V (2009) The submodular knapsack polytope. Discrete Optimization 6(4):333–344.

Bärmann A, Burlacu R, Hager L, Kleinert T (2021) On piecewise linear approximations of bilinear terms:975

Structural comparison of univariate and bivariate mixed-integer programming formulations .

Batun S, Denton BT, Huschka TR, Schaefer AJ (2011) Operating room pooling and parallel surgery processing

under uncertainty. INFORMS Journal on Computing 23(2):220–237.

Ben-Tal A, Nemirovski A (2001) On polyhedral approximations of the second-order cone. Mathematics of

Operations Research 26(2):193–205.980

Bergman D (2019) An exact algorithm for the quadratic multiknapsack problem with an application to event

seating. INFORMS Journal on Computing 31(3):477–492.

Berjón D, Gallego G, Cuevas C, Morán F, Garćıa N (2015) Optimal piecewise linear function approximation

for gpu-based applications. IEEE Transactions on Cybernetics 46(10):2584–2595.

Berthold T, Heinz S, Vigerske S (2012) Extending a cip framework to solve miqcps. Lee J, Leyffer S, eds.,985

Mixed Integer Nonlinear Programming, 427–444 (New York, NY: Springer New York).

Bertsimas D, Gupta V, Kallus N (2018) Robust sample average approximation. Mathematical Programming

171(1):217–282.

Bliek C, Bonami P, Lodi A (2014) Solving mixed-integer quadratic programming problems with IBM-CPLEX:

A progress report. Proceedings of the twenty-sixth RAMP Symposium, 16–17.990

Bonami P, Tramontani A (2015) Recent improvement to misocp in cplex. Technical report.

Cacchiani V, Iori M, Locatelli A, Martello S (2022) Knapsack problems-an overview of recent advances. part

ii: Multiple, multidimensional, and quadratic knapsack problems. Computers & Operations Research

105693.

Caprara A, Pisinger D, Toth P (1999) Exact solution of the quadratic knapsack problem. INFORMS Journal995

on Computing 11(2):125–137.

Cardoen B, Demeulemeester E, Beliën J (2010) Operating room planning and scheduling: A literature review.

European journal of operational research 201(3):921–932.

49

Ceselli A, Létocart L, Traversi E (2022) Dantzig–wolfe reformulations for binary quadratic problems. Mathe-

matical Programming Computation 1–36. 1000

Charnes A, Cooper WW (1963) Deterministic equivalents for optimizing and satisficing under chance

constraints. Operations Research 11(1):18–39.

Coey C, Lubin M, Vielma JP (2020) Outer approximation with conic certificates for mixed-integer convex

problems. Mathematical Programming Computation 12(2):249–293.

Cohen MC, Keller PW, Mirrokni V, Zadimoghaddam M (2019) Overcommitment in cloud services: Bin 1005

packing with chance constraints. Management Science 65(7):3255–3271.

D’Ambrosio C, Frangioni A, Gentile C (2019) Strengthening the sequential convex MINLP technique by

perspective reformulations. Optimization Letters 13(4):673–684.

D’Ambrosio C, Lee J, Wächter A (2012) An algorithmic framework for minlp with separable non-convexity.

Lee J, Leyffer S, eds., Mixed Integer Nonlinear Programming, 315–347 (New York, NY: Springer New 1010

York).

Delorme M, Iori M, Martello S (2016) Bin packing and cutting stock problems: Mathematical models and

exact algorithms. European Journal of Operational Research 255(1):1–20.

Deng Y, Shen S, Denton B (2019) Chance-constrained surgery planning under conditions of limited and

ambiguous data. INFORMS Journal on Computing 31(3):559–575. 1015

Denton BT, Miller AJ, Balasubramanian HJ, Huschka TR (2010) Optimal allocation of surgery blocks to

operating rooms under uncertainty. Operations Research 58(4 PART 1):802–816.

Farley AA (1990) Note on bounding a class of linear programming problems, including cutting stock problems.

Operations Research 38(5):922–923.

Foster BA, Ryan DM (1976) An integer programming approach to the vehicle scheduling problem. Operational 1020

Research Quarterly (1970-1977) 27(2):367–384.

Furini F, Traversi E (2019) Theoretical and computational study of several linearisation techniques for binary

quadratic problems. Annals of Operations Research 279(1):387–411.

Gamrath G, Anderson D, Bestuzheva K, Chen WK, Eifler L, Gasse M, Gemander P, Gleixner A, Gottwald L,

Halbig K, Hendel G, Hojny C, Koch T, Le Bodic P, Maher SJ, Matter F, Miltenberger M, Mühmer 1025

E, Müller B, Pfetsch ME, Schlösser F, Serrano F, Shinano Y, Tawfik C, Vigerske S, Wegscheider F,

Weninger D, Witzig J (2020) The SCIP Optimization Suite 7.0. Technical report, Optimization Online.

Gamrath G, Lübbecke ME (2010) Experiments with a generic dantzig-wolfe decomposition for integer

programs. Proceedings of the 9th International Conference on Experimental Algorithms, 239–252, SEA’10

(Berlin, Heidelberg: Springer-Verlag). 1030

Geißler B, Martin A, Morsi A, Schewe L (2012) Using piecewise linear functions for solving minlps. Lee J,

Leyffer S, eds., Mixed Integer Nonlinear Programming, 287–314 (New York, NY: Springer New York).

50

Ghaoui LE, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization: A conic

programming approach. Operations Research 51(4):543–556.

Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem. Operations1035

Research 9(6):849–859.

Gleixner A, Maher SJ, Müller B, Pedroso JP (2020) Price-and-verify: a new algorithm for recursive circle

packing using Dantzig–Wolfe decomposition. Annals of Operations Research 284(2):527–555.

Goyal V, Ravi R (2010) A PTAS for the chance-constrained knapsack problem with random item sizes.

Operations Research Letters 38(3):161–164.1040

Joncour C, Michel S, Sadykov R, Sverdlov D, Vanderbeck F (2010) Column generation based primal heuristics.

Electronic Notes in Discrete Mathematics 36(C):695–702.

Lübbecke M, Puchert C (2012) Primal heuristics for branch-and-price algorithms. Operations Research

Proceedings 2011, 65–70 (Springer).

Luedtke J, Ahmed S (2008) A sample approximation approach for optimization with probabilistic constraints.1045

SIAM Journal on Optimization 19(2):674–699.

Ni W, Shu J, Song M, Xu D, Zhang K (2021) A branch-and-price algorithm for facility location with general

facility cost functions. INFORMS Journal on Computing 33(1):86–104.

Olivier P, Lodi A, Pesant G (2021) The quadratic multiknapsack problem with conflicts and balance constraints.

INFORMS Journal on Computing 33(3):949–962.1050

Puchinger J, Raidl GR, Pferschy U (2010) The multidimensional knapsack problem: Structure and algorithms.

INFORMS Journal on Computing 22(2):250–265.

Sadykov R, Vanderbeck F (2013) Bin packing with conflicts: A generic branch-and-price algorithm. INFORMS

Journal on Computing 25(2):244–255.

Shylo OV, Prokopyev OA, Schaefer AJ (2013) Stochastic operating room scheduling for high-volume specialties1055

under block booking. INFORMS Journal on Computing 25(4):682–692.

Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Mathe-

matical Programming 103(2):225–249.

Vance PH, Barnhart C, Johnson EL, Nemhauser GL (1994) Solving binary cutting stock problems by column

generation and branch-and-bound. Computational Optimization and Applications 3(2):111–130.1060

Vielma JP, Ahmed S, Nemhauser G (2010) Mixed-integer models for nonseparable piecewise-linear optimiza-

tion: Unifying framework and extensions. Operations Research 58(2):303–315.

Wei L, Lai M, Lim A, Hu Q (2020a) A branch-and-price algorithm for the two-dimensional vector packing

problem. European Journal of Operational Research 281(1):25–35.

Wei L, Luo Z, Baldacci R, Lim A (2020b) A new branch-and-price-and-cut algorithm for one-dimensional1065

bin-packing problems. INFORMS Journal on Computing 32(2):428–443.

51

Zhang Y, Jiang R, Shen S (2018) Ambiguous chance-constrained binary programs under mean-covariance

information. SIAM Journal on Optimization 28(4):2922–2944.

Zhang Z, Denton BT, Xie X (2020) Branch and price for chance-constrained bin packing. INFORMS Journal

on Computing 32(3):547–564. 1070

	Introduction
	Literature Review
	Outline

	Problem Description and Formulations
	Compact Formulations
	Set Cover Formulation

	Branch and Price
	Branching Rule
	Column Generation
	Initial Columns
	Dual Bound Computing
	Primal Heuristic

	Pricing Algorithms
	Heuristic Algorithm
	BSOCP Formulation
	MBQCP Formulation
	PWL Relaxation
	Exact PWL-B&C Algorithm
	Hybrid Pricing Strategy

	Computational Experiments
	Benchmarks
	Experimental Setups
	Comparative Analysis of Main Results
	Non-equidistant Breakpoints

	Conclusion
	Proof of prop.strong
	Proof of lem.approx
	Benchmark Generation
	Detailed Results

