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ABSTRACT
We investigate how well the three-dimensional density field of neutral hydrogen in the inter-

galactic medium (IGM) can be reconstructed using the Lyman α absorptions observed along

lines-of-sight to quasars separated by arcmin distances in projection on the sky. We use cosmo-

logical hydrodynamical simulations to compare the topologies of different fields: dark matter,

gas and neutral hydrogen optical depth and to investigate how well the topology of the IGM can

be recovered from the Wiener interpolation method implemented by Pichon et al. The global
statistical and topological properties of the recovered field are analysed quantitatively through

the power spectrum, the probability distribution function (PDF), the Euler characteristics, its

associated critical point counts and the filling factor of underdense regions. The local geomet-

rical properties of the field are analysed using the local skeleton by defining the concept of

interskeleton distance.

As a consequence of the nearly lognormal nature of the density distribution at the scales under

consideration, the tomography is best carried out on the logarithm of the density rather than the

density itself. At scales larger than ∼1.4 〈dLOS〉, where 〈dLOS〉 is the mean separation between

lines-of-sight, the reconstruction accurately recovers the topological features of the large-scale

density distribution of the gas, in particular the filamentary structures: the interskeleton distance

between the reconstruction and the exact solution is smaller than 〈dLOS〉. At scales larger than

the intrinsic smoothing length of the inversion procedure, the power spectrum of the recovered

H I density field matches well that of the original one and the low-order moments of the PDF

are well recovered as well as the shape of the Euler characteristic. The integral errors on the

PDF and the critical point counts are indeed small, less than 20 per cent for a mean line-of-sight

separation smaller than ∼2.5 arcmin. The small deviations between the reconstruction and the

exact solution mainly reflect departures from the lognormal behaviour that are ascribed to

highly non-linear objects in overdense regions.

Key words: methods: statistical – intergalactic medium – quasars: absorption lines – large-

scale structure of Universe.

1 I N T RO D U C T I O N

The structure and composition of the intergalactic medium (IGM)

has long been studied using the Lyman α forest in quasi-stellar ob-

ject (QSO) absorption spectra (Rauch 1998). The progress made in

high-resolution Echelle spectrographs has led to a consistent picture

in which the absorption features are related to the distribution of neu-

tral hydrogen through the Lyman transition lines of H I. Hydrogen in

the IGM is highly ionized (Gunn & Peterson 1965). Its photoioniza-

tion equilibrium in the expanding IGM establishes a tight correlation

between neutral and total hydrogen density and numerical simula-

tions have confirmed the existence of this correlation. They have

�E-mail: caucci@iap.fr

also shown that the gas density traces the fluctuations of the dark

matter density on scales larger than the Jeans length (see e.g. Cen

et al. 1994; Petitjean, Mücket & Kates 1995; Miralda-Escudé et al.

1996; Theuns et al. 1998; Viel, Haehnelt & Springel 2004).

As we will show in the first part of this work, the statistical and

topological properties of the IGM and of the dark matter distribu-

tions are the same, so that recovering the three-dimensional distri-

bution and inferring the topological properties of the IGM allows us

to constrain the properties of the dark matter distribution as well.

Although topological tools have been introduced only relatively

recently in cosmological analysis, they have been used extensively

to characterize the topology of large-scale structures as revealed

by the three-dimensional distribution of galaxies in the local Uni-

verse (see e.g. Gott, Melott & Dickinson 1986; Vogeley et al. 1994;

Protogeros & Weinberg 1997; Trac et al. 2002; Park et al. 2005;
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Sousbie et al. 2008a for the topological analysis of galaxy surveys).

The outcome of such an analysis is a quantitative description of the

complex appearance of the distribution of the matter in the Uni-

verse, with its network of clump, voids, filaments and sheet-like

structures. The study of the topology using galaxy surveys is attrac-

tive because of their large volume and the huge number of objects

they contain. However, the clustering of highly non-linear objects

(galaxies, clusters of galaxies or QSOs) is biased compared to the

underlying clustering of dark matter fluctuations that we wish to

constrain (see Kaiser 1984). This biasing results from a complicated

and delicate competition between a variety of processes which are

often too complicated to be tractable analytically. Besides, the max-

imum redshift in surveys is low (in the analysis of the SDSS data

made by Park et al. 2005, the maximum redshift is z = 0.1654), so

that this kind of analysis can be done only in the local Universe,

where the fluctuations have already entered the highly non-linear

regime.

Given the strong correlation existing between dark matter distri-

bution and the low-density IGM, one could probe the underlying

distribution of matter via the signature produced by diffuse hydro-

gen in quasar spectra, namely absorption features observed in the

Lyman α forest. Indeed, absorption spectra provide a picture com-

plementary to those drawn by galaxy surveys to infer the large-scale

distribution of the matter in the Universe, since the absorption fea-

tures produced by the IGM in Lyman α forest can be detected also

at large redshift and since the IGM probes the low-density range,

whereas the galaxy distribution does not. Eventually, higher density

contrasts can be recovered from the analysis of the Lyman α forest

if higher order transitions are included in the analysis; for example,

the Lyman β transitions should allow us to probe density contrasts

up to δ ≈ 15.

The flux along a single line-of-sight (LOS) towards a quasar only

provides one-dimensional information, which can be used to con-

strain the fluctuation amplitude and the matter density (Nusser &

Haehnelt 1999; Rollinde, Petitjean & Pichon 2001; Zaroubi et al.

2006). The transverse information, found in pairs of quasars, has

been used to study the extension of the absorbing regions (e.g. Crotts

& Fang 1998; D’Odorico et al. 1998; Petitjean et al. 1998; Young,

Impey & Foltz 2001; Aracil et al. 2002) and the geometry of the

Universe at z ∼ 2 (Hui, Stebbins & Burles 1999; McDonald &

Miralda-Escudé 1999; Rollinde et al. 2003; Coppolani et al. 2006).

Given a set of LOSs towards a group of QSOs with a small

angular separation, inversion methods can be used to recover the

three-dimensional distribution of low-density gas, as demonstrated

in Pichon et al. (2001) (hereafter PVRCP). They showed that the

visual characterization of the density field (with its network of fil-

aments, clumps, voids and pancakes) is correctly reproduced if the

mean separation between the LOSs is less than 〈dLOS〉 � 5 Mpc.

In this paper, we test quantitatively whether such an inversion

can recover the global properties of connectivity of the density field,

using topological tools such as the Euler characteristic and the prob-

ability distribution function (PDF).

This paper is organized as follows. In Section 2, the Euler char-

acteristic is defined as an alternate critical points count and imple-

mented for a Gaussian field. The difference between the topological

properties of the dark matter, of the gas and of the observed op-

tical depth is then discussed using outputs of a hydrodynamical

simulation (Section 3) and relying on different statistical tools. In

Section 4, the ability to reconstruct the global topology of the three-

dimensional distribution from a simple Wiener interpolation of a

discrete group of LOSs is considered. Finally, Section 5 summa-

rizes the results of this paper and discusses some possible improve-

ments of the method as well as observational constrains from future

surveys.

2 T H E E U L E R C H A R AC T E R I S T I C : A N
A LT E R NAT E C R I T I C A L P O I N T C O U N T

This paper makes use of various statistical tools, namely the PDF,

the Euler characteristic, the skeleton and related estimators such as

the first cumulants of the PDF (connected moments), critical point

counts and the filling factor, to characterize the topology of the

large-scale density distribution. These tools will also be used to test

the efficiency of reconstructing the density field from a grid of QSO

LOSs and in particular the ability to reproduce the connectivity of

the large-scale structures.

Following Colombi, Pogosyan & Souradeep (2000, hereafter

CPS), this section introduces the Euler characteristic, χ̃+, as an

alternate critical point count in an overdense excursion with density

contrasts larger than a threshold δTH. It is shown how the behaviour

of χ̃+ is related to connectivity in the field. The numerical imple-

mentation used to measure it is described and tested on Gaussian

random realizations.

2.1 Definition of the Euler characteristic

Let δ(x) be a scalar function defined in a three-dimensional volume

V. Given a threshold value δTH, consider the excursion set E+ formed

by the points x with δ(x) � δTH, as expressed by the following

equation:

E+ ≡ {x | δ(x) > δTH}. (1)

The analysis of the geometrical properties of points that belong to

the excursion set E+ as a function of δTH gives information about

the global topology of the scalar field δ(x) and allows for the char-

acterization of large-scale structures.

A simple qualitative link can be established between the distri-

bution of critical points (defined by ∇δ = 0), on the one hand, and

connectivity, on the other, which are related to local and global
properties of the excursion set, respectively. If one considers over-

dense regions, connectivity happens along ridges (filaments) passing

through saddle points and connecting local maxima. The same rea-

soning can be applied to underdense regions where minima are con-

nected through tunnels (pancakes) via another kind of saddle point.

This idea is in fact supported on rigorous grounds by Morse theory

(see Milnor 1963). The Morse theorem establishes the link between

the distribution of critical points and the global connectivity of the

excursion set, via the Euler characteristic. This quantity represents

the integral of the Gaussian curvature over an isodensity surface that

marks the boundary of the excursion set (see e.g. Gott et al. 1986).

It is usually defined as the following count (see e.g. Mecke, Buchert

& Wagner 1994, for details):

χ̃+ = connected components − tunnels + cavities. (2)

According to Morse theorem, it can also be expressed as a linear

combination of the number of critical points of different types that

are found in the excursion set as a function of δTH.

To be more specific, let us consider the critical points of the field.

For these points, the Hessian matrix, whose components are given

by

Hi, j = ∂2δ

∂xi∂x j
, (3)
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is calculated and its eigenvalues are estimated. According to the

number of negative eigenvalues, I, of the Hessian matrix, the local

structures of the field can be classified in the following way: a clump,

a filament, a pancake and a void corresponding to I = 3, 2, 1 and 0,

respectively. The Morse theorem states that the Euler characteristic

can be expressed as a count of the number of critical points belonging

to each of these four classes:

χ̃+ = NI=3 − NI=2 + NI=1 − NI=0 , (4)

where NI=i is the number of critical points with i negative eigen-

values. With this approach, it is sufficient to determine the number

distribution of the four kinds of critical point. However, this differen-

tial method requires the field under consideration to be sufficiently

smooth and non-degenerate. To this end, in the subsequent analyses

of this paper, the field will be smoothed with a Gaussian window

(using standard fast Fourier transform technique),

W (r ) = 1

(2π)3/2 L3
s

exp

(
− r 2

2L2
s

)
, (5)

of sufficiently large size Ls compared to the sampling grid pixel size

in order to minimize the impact of numerical artefacts coming from

the discretization of the field on a grid (see e.g. CPS for a thorough

analysis of measurement issues). In what follows, the smoothing

scale used to measure the Euler characteristic is always larger than

0.01Npix grid pixels where Npix = 256 pixel is the box resolution of

the simulations. In principle, this smoothing scale is large enough

to have an unbiased measurement of the Euler characteristic. The

prescription of CPS is used to detect and classify critical points.

This method involves locally fitting a second order hypersurface on

the smoothed density field, while taking into account each point on

the grid under consideration and its 26 neighbours.

2.2 Interpretation of the Euler characteristics

For clarity, let us recall here the interpretation of the shape of the

Euler characteristic as a function of density threshold (CPS). Let us

first study the simple case of a Gaussian random field (GRF). The

analytic predictions for a GRF are given, for example, in Doroshke-

vich (1970) (see also Schmalzing & Buchert 1997). In what fol-

lows, a slightly different normalization from equation (4) is used:

the volume-independent quantity

χ+ = χ̃+

Ntot

, (6)

where Ntot = ∑
i NI=i is the total critical point count in the volume

considered, in the limit δTH → −∞.

In Fig. 1, the numerical estimates of the Euler characteristic are

given as a function of the density threshold δTH = δ/σ , where

δ = (ρ − ρ̄)/ρ̄ is the density contrast and σ = rms(δ) from five

GRF realizations (points with error bars) whose power spectrum is

given by a power law with spectral index n = −1, that is, P(k) ∝
kn. The result is compared with the analytic prediction (solid line).

The shape of the curve as a function of the density threshold can be

understood from equation (4) and Fig. 2 which displays the critical

point counts. At very low values of the threshold (δ/σ � −4), the

excursion set includes almost all points and, due to the symmetry

between high- and low-density regions, the number of minima (pan-

cakes) compensates the number of maxima (filaments) so that the

Euler characteristic approaches zero. When the value of the thresh-

old is increased, local minima first drop out of E+, creating cavities

and thus increasing the value of χ+. At δ/σ � −2, pancakes start

to drop out too and cavities connect together, thus the value of χ+

0.00

0.02

0.04

δ/σ

χ+

Figure 1. Mean Euler characteristics, χ+ (see equations 4 and 6), for a

GRF, points with small error bars as a function of the density threshold, δ/σ ,

compared to the theoretical prediction (Doroshkevich 1970, smooth curve).

The mean is carried over five realizations of a GRF whose power spectrum

is given by a power law with spectral index n = −1 on a 2563 grid, while

additional smoothing is performed with a Gaussian window of size 5 pixel.
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Figure 2. Evolution of the number of critical points entering the computa-

tion of the Euler characteristic for the GRF considered in Fig. 1. The fraction

of different types of critical points above the threshold is plotted as a function

of δ/σ and each distribution is compared to the analytical prediction. Again,

the symbols with error bars represent the mean over five realizations of the

same GRF, while the smooth curves give the analytical prediction (which

can be easily derived from Bardeen et al. 1986).

decreases, reaching its minimum at δ/σ ≈ 0. In the range 0 � δ/σ �
2, filaments also drop out, breaking up the ridges to create isolated

clusters, thus increasing χ+ again. Finally in the region δ/σ � 2 only

clumps are found to lie in the excursion set, but they are progres-

sively lost as the threshold increases, explaining the final decrease

of the curve.

This simple analysis shows how the features seen in the Euler

characteristic are closely related to the network of filaments and

pancakes that connect clumps and voids.
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3 F RO M DA R K M AT T E R TO O P T I C A L D E P T H

The Lyman α absorption lines observed in QSO spectra and pro-

duced by the H I structures intercepted by the LOS can be used to

study the topology of the Universe at high redshift (z � 1–2). How-

ever, the information derived from observations of QSO spectra is

more directly related to the H I optical depth, whereas here the aim

is to constrain the underlying dark matter density field for which

theory makes direct predictions. Hence, one has to rely on simula-

tions in order to calibrate the relation between the density field of

the neutral hydrogen and that of the dark matter.

In this section, we first present the hydrodynamical simulations

used in this work and we then analyse the shape of the PDF and the

Euler characteristic of the three density fields (dark matter, gas and

H I) and of the optical depth field, explaining how these curves are

related.

3.1 Numerical simulations

We analyse a cosmological hydrodynamical simulation that evolves

both dark matter particles and a gaseous component to study the

global topology of the IGM at redshift z = 2. The dynamical evo-

lution and the physical properties of the gas and the of the H I com-

ponent are calculated taking into account the heating and cooling

processes and the effect of the ionizing ultraviolet background in

a standard way. The corresponding Particle-Mesh (PM) code used

to perform the simulation is described in detail in Coppolani et al.

(2006).

In this run, the standard 	 cold dark matter is assumed with a set

of cosmological parameters given by 
m = 0.3 and 
	 = 0.7, while

the assumed baryon density is 
b = 0.04. The Hubble constant is

H0 = 70 km s−1 Mpc−1 and the amplitude of the fluctuations of the

matter density field in a sphere of radius 8 h−1 Mpc is σ 8 = 1. While

the other cosmological parameters are roughly in agreement with

recent observational constraints, the value of σ 8 is somewhat large

compared to the value suggested by WMAP (see Spergel et al. 2007).

However, this should not have any incidence on the results derived

in this paper.

The simulation involved 5123 dark matter particles in a box with

periodic boundary conditions of comoving size Lbox = 40 Mpc.

The gaseous component was also followed on a 5123 grid which

was used to compute gravitational forces. Although this simulation

marginally resolves the Jeans length of the gas, Coppolani et al.

(2006) checked with higher resolution runs that numerical conver-

gence was achieved at small scales.

Although 5123 grid points were available, this resolution was de-

graded to a 2563 resolution (using standard donner cell procedure),

in order to make the calculations more tractable. Obviously, this

additional smoothing makes the effects of subclustering within the

Jeans length irrelevant. Therefore, the gaseous component should

be nearly indistinguishable from the dark matter component.

The main limit in these analyses remains the box size, which is

still small and only allows for a fair statistical measure at scales Ls

larger than Lmax ∼ Lbox/10, that is, 4 Mpc. Indeed, finite volume

effects are known to become significant for Ls � Lmax for standard

statistics such as the probability function (see e.g. Colombi, Bouchet

& Schaeffer 1994) and the Euler number (see e.g. CPS). For the

reconstruction, the typical separation 〈dLOS〉 between LOSs defines

a natural smoothing scale Ls � 〈dLOS〉. Note that, unfortunately,

the upper bound of Ls ∼ 4 Mpc corresponds to a lower bound on

〈dLOS〉 in present state-of-the-art observations (Rollinde et al. 2003),

but one can expect to lower this limit in future surveys (Theuns &

Srianand 2006). Hence, the following analyses are performed in the

range 2 � Ls � 4 Mpc.

3.2 PDF and Euler characteristic of physical density fields

In this section, we compare the large-scale distribution and the topo-

logical properties of the different density fields (dark matter, total

amount of gas and neutral gas) by looking at their PDFs and their

Euler characteristic (χ+). Our knowledge of the physics of the IGM

is used to perform the analysis and to link the distributions of H I

and H. Indeed, the observations give access to the H I optical depth

through absorption spectra. We also consider thermal broadening

and redshift distortion effects.

3.2.1 From dark matter to H I: IGM equation of state

It is well known that on scales larger than the Jeans length the

distribution of the gas follows the distribution of dark matter, so

that their statistical and topological properties are expected to be

the same at these scales. This is checked by comparing the PDF and

the Euler characteristic of the two density fields smoothed using

different values of Ls, as shown in Figs 3 and 4. Note the agreement

of the PDFs and of the Euler characteristics of the two fields for

all values of the smoothing scale considered, a result which can be

expected since the scaling regime probed is largely above the Jeans

length of the gas.

The comparison of the distribution of the neutral gas (H I) with

that of the total amount of gas and the dark matter calls for a slightly

more elaborate approach, given the non-linearity involved in the

expression that relates the distribution of the gas to the distribution

of H I. In fact, numerical simulations support the idea that a tight

correlation exists between neutral and total hydrogen density (Cen

et al. 1994; Miralda-Escudé et al. 1996; Theuns et al. 1998; Viel

et al. 2004). This correlation is expected to follow a power law of

the form

ρgas ≈ A (ρH I)
α (7)

We thus introduce here a new density field ρ̃H I defined as the right-

hand side of equation (7), so that ρ̃H I ≡ A (ρH I)
α . In what follows,

this new density field will be used in order to approximate the density

of the gas. However, equation (7) is not fulfilled in the whole range

of ρH I values.

To illustrate this, Fig. 5(a) displays the gas density distribution

(top panel), with its network of filaments outlined in the left-hand

panel with a contour corresponding to δ = 1, and the temperature

distribution in units of 104 K (bottom panel) for which we have

drawn the contour corresponding to (T/104 K) = 2 in the left-hand

panel. Note that along filaments and at their intersection the gas

is hot. This indicates that shock waves propagate along filaments,

rising the temperature and ionizing the gas. This is confirmed in

Fig. 5(b) which shows the ratio R = ρ̃H I/ρgas measured directly in

the 2563 grid (top panel), and after a Gaussian smoothing with a

window whose size is Ls = 2.2 Mpc (bottom panel). In both cases,

the panels on the left-hand side show the contours relative to R =
0.7. To complete the picture, let us consider Fig. 6 which shows

the scatter between ρgas and ρH I for different smoothing scales, as

indicated in each panel. As expected, the tightness of the correlation

is very high in underdense and moderately dense regions, but shock

heating, on the one hand, and the formation of condensed objects, on

the other, produce a significant scatter (where R < 1) along

densest filaments and at their intersection (in clusters). For the
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Figure 3. PDF of density fields at different smoothing scales (from the left-hand to right-hand panel, top to bottom, no smoothing, Ls = 1.6, 2.2 and 3.6 Mpc).

The thick solid, thick dashed and thin solid curves correspond to dark matter, gas and H I (rescaled according to equation 7), respectively. The dotted curve is a

best fit of a lognormal distribution to the thin solid curve, showing that all these PDFs are reasonably close to lognormal, a property that will be useful for the

reconstruction. In the unsmoothed case, the gas and H I PDFs match very well for 1 + δ � 1 but depart from each other at higher density. The apparent very

good match in the unsmoothed case comes from the fact that the unshocked part of the IGM totally dominates the part of the PDF which is visible in this panel.

The match between H I and gas PDFs decreases with increasing smoothing scale, due to ‘mixing effects’, as explained in the main text. Note, finally, that the

dark matter is not displayed in the unsmoothed panel, because the result would be contaminated by the cloud-in-cell interpolation used to compute the density

on the grid.
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Figure 4. The same as in Fig. 3 but for the measured Euler characteristic as a function of density threshold at different smoothing scales. Again, the thick

solid, thick dashed and thin solid curves correspond, respectively, to dark matter, gas and H I [rescaled according to equation 7 with the values (A, α) given in

Table 1]. While the curves for the dark matter and for the gas superpose exactly at all smoothing scales, all values of the threshold, H I, even after the scaling is

applied, behave in a different way in the high-density region. As explained in the text, this is a consequence of the presence of shocks and condensed objects,

whose effect is a change in connectivity properties.

purpose of the reconstruction, some smoothing is required. Unfortu-

nately, smoothing also mixes these regions with the unshocked part

of the IGM. This is confirmed, in a qualitative way, by the slices

shown in Fig. 5(b). More quantitatively, for the fields R shown in

Fig. 5(b) we have calculated the fraction of the volume occupied

by the regions with R < 0.7 (i.e. the volume of the regions en-

closed by the contours in the left-hand panels). For the slice shown,

this fraction is f (R < 0.7) = 0.07 and 0.19 for the unsmoothed
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Figure 5. Top panel: gas density and temperature (in units of 104 K) spatial distributions in a one-pixel (≈15.6 kpc) slice. The intensity of the fields is

colour-coded with the scale given in the right-hand panel. The panels on the left-hand side give the contours corresponding to δ = 1 for the density and to

T/104 = 2 for the temperature. Bottom panel: for the same slice as above we show in the right-hand panel the spatial distribution of the ratio R = ρ̃H I/ρgas for

the unsmoothed field (up) and for the field smoothed with a Gaussian window of size (full width at half-maximum) Ls = 2.2 Mpc (down). The colour-scale is

such that darker regions correspond to low values of R. In the left-hand panel, the contours correspond to R = 0.7.

and the smoothed case, respectively, while when the whole three-

dimensional boxes are considered, the fraction of volume occupied

by shocked regions is f (R < 0.7) = 0.05 and 0.11. As a result of

such mixing, the tightness of the correlation is weakened, but re-

mains good as shown in Fig. 6. However, the best-fitting values of

the parameters A and α change slightly when the field is smoothed

(see Table 1). We fit these values with the low-density tail of the PDF

(see Fig. 3). As expected, the higher density tail match worsens with

smoothing.

Given that the scaling relation (7) is monotonous, should it apply

exactly, the topology of the neutral gas should be exactly the same

as of the total gas/matter distribution. However, given the dispersion
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Figure 6. Scatter plots displaying the relation between the gas density and the H I density at different smoothing scales. The dashed black lines in each panel

represent the best fit, following equation (7), with the parameters (A, α) given in Table 1. Note that the dispersion increases when the smoothing scales increases,

due to the mixing effect discussed in Fig. 5.

Table 1. Values of the parameters A and α

entering in the scaling relation between gas

and H I (see equation 7) as a function of the

smoothing scale Ls.

Ls A α

Unsmoothed 1.275 0.63

1.6 Mpc 0.915 0.568 79

2.2 Mpc 0.85 0.552 09

3.6 Mpc 0.795 0.5389

of this relation, one expects the Euler characteristic of the ρ̃H I field

to depart from that of ρgas for large density contrasts. This is con-

firmed in Fig. 4: a nearly perfect agreement is found between the

gas and H I for δ � 0, while differences become significant at larger

values of the density contrast. Increasing the smoothing length (i.e.

going from the left-hand to right-hand panel in Fig. 4) worsens the

match, as expected, but this is in part lost in the noise due to fi-

nite volume effects. Note that χ+ measured in H I is, in the δ > 0

regime, more peaked than for the total gas. This agrees with intu-

ition, since galaxies form in filaments: in these highly condensed

objects, gas concentrates and cools down. Hence, the H I density

becomes significant again inside these clumps, but is depleted in

their surroundings due to shock heating as can be seen from Fig. 5.

The resulting distribution of H I in filaments is therefore expected

to be more clumpy than the total gas, that is, less efficiently con-

nected, resulting in a larger increase in χ+ for δ > 0. The estimates

made inside filaments are, however, certainly not free of numerical

artefacts since they are limited by the simulation’s spatial resolution

(following accurately the formation of condensed objects requires

much higher spatial resolution than our simulation). Therefore, al-

though one can definitely trust the δ � 0 measurements, the results

derived for δ > 0 are likely to yield the right qualitative behaviour,

but are certainly quantitatively biased.

In the next sections, the δ > 0 disagreement will be ignored and it

will be assumed that the scaling relation (7) is always valid, keeping

in mind the limitation of such an assumption. Hence, reconstructions

will be performed on the optical depth without attempting to directly

recover the gas distribution.

3.2.2 From H I to optical depth: redshift-space distortions
and thermal broadening

In the above discussion, we argued that the main features of dark

matter topology, as traced through the Euler characteristic and the

probability density function, can be recovered through the topology

of the H I for small density contrasts, δ � 0. However, along an

LOS, the optical depth is in fact observed in redshift space, where

distortions induced by the peculiar motions operate. Moreover, the

profiles of absorption lines are broadened at small scales by the

effect of the temperature. Since the thermal broadening is important

only at scales of the same order or smaller than the Jeans length, this

second effect should be negligible in the scaling range considered

in this paper, since it will be swept out by the smoothing. On the

contrary, redshift distortion should a priori not be neglected.
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Figure 7. The effect of redshift distortion on the H I density. The same slice

(whose width is 6 pixels, corresponding to 0.94 Mpc) of the H I density

contrast is shown without distortion (left-hand panels) and with distortion

(right-hand panels, using the infinitely distant observer approximation with

a distortion along the x-axis) in the case where the fields are not smoothed

(top panels) and when the fields are smoothed at Ls = 1.6 Mpc (bottom

panels).

In theory, it is possible to partially correct for redshift distor-

tion effects (see for instance PVRCP). However, the corresponding

treatment of the peculiar velocities involves a simultaneous decon-

volution of the H I density field with the velocity field on top of the

inversion discussed in next section. This requires not only a prior

for the density field but also for its correlation with the peculiar ve-

locity field and makes the inversion quite convolved and this would

go beyond the scope of this paper. In what follows, it is shown that

in fact redshift distortions have a small effect on the topology of

the overall density distribution for the probed scales; they shall thus

be neglected in the reconstruction part of this work. Moreover, one

of the interesting outcomes of the reconstruction is to predict the

positions of filaments in the three-dimensional matter distribution.

Cross-correlation of such a distribution with, for instance, the ob-

served distribution of galaxies at high redshift can in fact be also

performed in redshift space.

Fig. 7 displays the H I distribution in real and redshift space with

and without smoothing: the main effect of redshift distortion on H I

is an enhancement of large-scale density contrasts orthogonally to

the LOS due to large-scale motions (this is the so-called Kaiser ef-

fect, e.g. Kaiser 1987): the ‘voids’ (underdense regions) are more

pronounced, and the filaments orthogonal to the LOS are more con-

trasted. There is as well a small-scale ‘finger of god’ effect, due to

internal motions inside large dark matter haloes, but it is not very

pronounced at such a high redshift, and is in amplitude of the same

order as thermal broadening. Note, however, that non-trivial shell

crossings can still occur, for example, two filaments crossing each

other, thanks to peculiar velocities, but this effect remains small,

and is clearly damped out by smoothing; after smoothing only the

Kaiser effect remains.

These qualitative arguments are illustrated in Fig. 8. The mea-

sured Euler characteristics before and after redshift distortion differ

only slightly. When the redshift distortion is taken into account, for

δ � 0, a shift towards the left is induced (dashed curve) as compared

to the non-distorted case (solid curve); while the opposite occurs for

δ � 0 (although in the latter case, the effect seems to be nearly in-

significant). This shift remains quite small as argued before. Note

as well that thermal broadening (thin curve) is totally negligeable.

Finally, one last point should be mentioned. When one considers

real absorption spectra, instrumental noise has to be taken into ac-

count in the analysis. This noise, combined with saturation of the

flux of the Lyman α absorption lines arising in high-density regions

(with δ � 10) can complicate the interpretation of the measure-

ments. In this case, some of the information about the intensity of

the density field cannot be recovered, unless, say, Lyman β is also

available. In this work, however, the main interest lies in reproduc-

ing the low-density part of the H I distribution, for which relation

(7) holds and for which the topology of the underlying dark matter

distribution is theoretically constrained. In this regime, the Lyman

α lines are not saturated, thus a complete treatment of saturation

effects in high-density regions is not required for the aim of this

work.

4 TO P O L O G I C A L A N D S TAT I S T I C A L
P RO P E RT I E S O F T H E R E C OV E R E D F I E L D S

The absorption spectrum towards a quasar gives access to one-

dimensional information, that is, the optical depth along the LOS

towards the QSO. However, if a set of LOSs towards a group of

quasars is available, the information along each LOS can be inter-

polated to construct a three-dimensional optical depth field.

In this section, we first briefly outline the inversion technique

implemented to recover the optical depth and describes how to set

the parameters that enter the inversion procedure. We then check

how the reconstruction performs by measuring various statistical

quantities, in particular the PDF of the density field and its Euler

characteristic. As argued in the previous section, the focus is on

the optical depth: no attempt is made to recover the gas or dark

matter distribution directly. Thermal broadening, redshift distortion

and effects of saturation or instrumental noise are neglected. Given

these assumptions, studying the optical depth distribution is then

equivalent to studying the H I density distribution, ρH I.

4.1 The inversion method: Wiener interpolation

The technique used to interpolate the optical depth field between

LOSs is described and discussed in details in PVRCP.

Let D be a one-dimensional array representing the data set (i.e.

the values of γ LOS = ln (ρH I) along the LOSs, which we assume to

be parallel to each other); we call M the three-dimensional array of

the parameters that need to be estimated [here the values of γ 3D =
ln(ρH I) in the three-dimensional volume] by fitting the data. Wiener

interpolation reads (see equation 20 of PVRCP), assuming the noise

is uniform and uncorrelated,

M = CMD · (CDD + N)−1 · D , (8)

where N = n2I is the diagonal noise contribution, CMD is the mixed

parameters-data covariance matrix and CDD is the data covariance

matrix:

CMD = Cγ3DγLOS
, CDD = CγLOSγLOS

. (9)
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without any distortions, the dashed yellow line has been obtained by including only the effect of peculiar velocities, while for the red thin line both redshift

distortion and thermal broadening are taken into account.

Here, an ad hoc prior is used and a Gaussian shape for the covari-

ances is assumed. In these cases, the matrices Cγ3DγLOS
and CγLOSγLOS

are given by

C(x1, x2, x1⊥, x2⊥) = σ 2 × exp

[
− (x1 − x2)2

L2
x

]

× exp

(
− |x1⊥ − x2⊥|2

L2
T

)
, (10)

where (xi) and xi⊥) represent the coordinates of the points along and

perpendicular to the LOSs, respectively, Lx and LT are correlation

lengths along and perpendicular to the LOSs, while σ 2 quantifies

the typical a priori fluctuations in a volume of size Lx × L2
T . The

meaning and choice of these parameters will be discussed further in

Section 4.2.

Note that the shape of the covariance matrix can be calculated

with a more sophisticated approach. This would involve the use

of theoretical priors relying on our knowledge of large-scale struc-

ture dynamics. If, for instance, the reconstruction was performed

on the pure dark matter density contrast, one could be tempted to

derive these correlation matrices from the non-linear power spec-

trum obtained, for example, by Peacock & Dodds (1996), given a

cosmological model. Here, a simpler interpolation scheme is used.

This scheme has the advantage of depending only on three tuning

parameters: the assumed typical overall signal-to-noise ratio, σ /n,

and two typical lengths in the interpolation, Lx and LT .

4.2 Choice of the parameters in the interpolation

Each reconstruction is performed on a number NLOS of LOSs ex-

tracted at random from the simulation box. Since the distant observer

approximation is implemented, all the LOSs are parallel. For a given

value of NLOS, the mean inter-LOS distance, 〈dLOS〉, reads

〈dLOS〉 ≡
√

L2
box

NLOS

. (11)

This parameter obviously defines a natural scale in the reconstruc-

tion: one cannot, intuitively, expect to reconstruct details of the

distribution at scales �〈dLOS〉, at least in the direction orthogonal to

the LOSs.

The meaning of the parameters LT and Lx in equation (10) is

then quite straightforward. The correlation lengths L = LT and

L = Lx stabilize the inversion by ensuring the smoothness of the

reconstruction. In order to avoid the formation of fictitious struc-

tures, the transverse correlation length must be of the order of the

mean separation between the LOSs, LT ∼ 〈dLOS〉 (we have chosen

to take it exactly equal to 〈dLOS〉), while the choice of the longitudi-

nal correlation length depends on the problem considered. Since

redshift distortion is not a concern in this work, this parameter

can be chosen to be of the order of the Jeans length in order to

avoid information loss for small scales along the LOSs, here Lx =
0.4 Mpc.

From a practical point of view, the variance parameter σ of the

correlation matrix fixes the relative contribution of signal-to-noise

ratio in equation (8), σ /n. In our reconstruction, only ideal LOSs are

considered. Thus, strictly speaking, there is no instrumental noise or

saturation effects. However, the inversion of the matrix CDD + N is

numerically unstable when N is set to zero, given the finite sampling

and the degeneracy of the matrix, equation (10), close to its diagonal,

(x1, x1⊥) � (x2, x2⊥). In practice, one has to ‘tune’ the signal-to-noise

ratio,σ /n, to obtain the best compromise between numerical stability

and ‘exactness’ of the final reconstruction. This choice is ad hoc:

(σ /n)2 is the estimated variance σ 2(LT , Lx) of the underlying field in

a box of size LT × LT × Lx. This is equivalent to assuming that, as

the noise goes to zero, the inverse of the non-reduced second-order

correlation (in the appropriate units) is used, I + CDD, instead of the

reduced one, C−1
DD, to perform a stable reconstruction.

In this work, we estimate directly σ 2(LT , Lx) from the simulation.

It is, however, important to note that σ 2(LT , Lx) can, in principle,

be derived from the LOSs alone by measuring the one-dimensional

power spectrum of ρH I. From this one-dimensional power spectrum,

one can indeed infer a three-dimensional power spectrum with stan-

dard deconvolution methods and then an estimate of σ 2(LT , Lx) by

the appropriate integral on the three-dimensional power spectrum.

The measured values of σ (LT , Lx) are listed in Table 2. They are

of the order of unity: the assumed signal-to-noise ratio is about 1 in

Table 2. Parameters used in the reconstructions performed in this

paper. The longitudinal correlation length has been fixed to the value

Lx = 0.4 Mpc for all the reconstructions.

NLOS Separation LT σ

(arcmin) (Mpc)

400 1.33 2 1.12

320 1.49 2.24 1.17

225 1.77 2.67 1.23

200 1.88 2.83 1.25

145 2.2 3.32 1.29

120 2.42 3.65 1.31

100 2.65 4 1.34
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the regime considered here. Hence, in practice, the ad hoc procedure

used to perform the inversion does not change significantly by in-

cluding the contribution of the actual instrumental noise. However,

in this case, the presence of the saturated regions in the Lyman α

spectra remains a problem.

Finally, note that due to the large size of the matrices, recon-

structions can only be performed by partioning the simulation box

in blocks of smaller size, that contain N3
sub grid points with Nsub =

32. The reconstruction is performed on each block individually. In

order to avoid edge effects, neighbouring patches are overlapped by

adding a buffer region in which LOSs still contribute. In this way,

the a priori correlation ensures continuity between adjacent patches.

The size of the buffer region is chosen to be nover � 2 LT (in grid

pixel units), which implies a typical residual contamination of edge

effects due to the partitioning of less than 2 per cent.

4.3 Bias in the reconstruction

First note that the inversion is not directly performed on the density,

but on its logarithm, that is, the normalized density field is written

as ρH I = 1 + δH I ≡ exp (γ H I) and the field γ H I is interpolated by

using the method described above. This has two advantages: (i) it

ensures the positivity of the reconstructed density; and (ii) since the

density turns out to be roughly lognormal1 (see e.g. Bi & Davidsen

1997; Choudhury, Padmanabhan & Srianand 2001; Viel et al. 2002;

Zaroubi et al. 2006; Desjacques, Nusser & Sheth 2007; and see

Coles & Jones 1991, for the statistical properties of the lognormal

distribution), performing the reconstruction on the logarithm of the

field is expected to reproduce more realistic results as shown in

Fig. 3.

However, as a result of the reconstruction, the recovered field,

γH I,rec, will be smooth over anisotropic volumes of size ∼ Lx ×
LT × LT , which means that at best, one can identify structures at

this level of smoothness on a logarithmic space. Although theoret-

ical predictions (namely gravitational clustering, primordial non-

Gaussianities, etc.) do exist for the density field itself, that is for

ρH I = exp(γ H I) and its smoothed counterparts, they cannot be ap-

plied directly in our case because smoothing and taking the expo-

nential are operations which do not commute, except in the weakly

non-linear regime, δH I � 1. In particular, recovering the results for

δH I on a linear space, by taking the exponential of γ H I and subse-

quently smoothing it, an effective bias, essentially due to rare peaks

in the γ H I,rec field, is introduced. The effect of such a non-linear bias

is difficult to control and can in some cases be important as shown

below and studied in more details in Appendix A.

4.4 Testing the reconstruction: statistical
and topological analysis

We now test the quality of the reconstruction using the same statis-

tical tools as in Section 3, namely the PDF of the field and the Euler

characteristic. Other statistics are considered, such as the variance

and the skewness of the PDF, the power spectrum of the density field

and the filling factor of regions less dense than the minimum of the

Euler characteristic. In addition, to have a quantitative estimate of

the accuracy in the locus of the filamentary structures, we use the

skeleton as introduced by Novikov, Colombi & Doré (2006) and by

Sousbie et al. (2008b) and define an interskeleton distance (ISD).

1 Note that if a field such as ρgas is lognormal, (inverse of) transformation

(7) leaves the new field, for example, ρH I, lognormal as well.

Following the discussion in Section 4.3, the reconstruction is

mainly tested on the field γ H I and its smoothed counterparts. In

Appendix A, we provide additional results on the field δH I.

Since there are two scales in the inversion (see Section 4.2), the

recovered optical depth is an anisotropic smooth field with fewer

structures in the direction transverse to the LOSs than in the direction

parallel to them. Optimal comparison between reconstructed and

real optical depth would require an approach based on anisotropic

smoothing, a level of complexity well beyond the scope of this paper.

Instead, to compare the reconstructions to the exact solution, an

isotropic smoothing via a Gaussian window is used (see equation 5).

The width of the smoothing window is Ls � 〈dLOS〉 = LT . The choice

of the optimal smoothing scale is constrained by the ISD.

One of the uncertainties in the reconstruction involves the deter-

mination of the mean value of the field μtrue ≡ 〈γ H I〉 ≡ 〈ln ρH I〉,
which can, in principle, be estimated only along the LOSs. To im-

prove the quality of the reconstruction, its average is fixed to μtrue:
2,3

γH I,rec = γ̃H I,rec − 〈γ̃H I,rec〉 + μtrue. (12)

In practice, the knowledge of μtrue is expected to be accurate, even

though its actual measured value, μLOS, is determined along the

LOSs. For instance, in the worse case considered in this work,

NLOS = 100, 〈(μLOS − μtrue)
2〉1/2/|μtrue| � 1.91 per cent, where

the mean value of the difference between the measured and the real

μ has been calculated by averaging over 100 different realizations

of 100 LOSs.

4.4.1 Visual inspection

A first qualitative comparison between the original and the recov-

ered fields in logarithmic space can be made by examining Fig. 9.

The top panels illustrate the anisotropic nature of the reconstruc-

tion. Smoothing at a scale Ls � 〈dLOS〉 (e.g., in the case of Fig. 9,

L s = √
2〈dLOS〉), greatly improves the agreement between the re-

construction and the exact solution and the two field become almost

indistinguishable (bottom left-hand panels). When one examines in

detail where the reconstruction fails, one notes that these structures

correspond to overdense regions. The fine nature of the web formed

by overdense regions (filaments, clusters) makes the reconstruction

more difficult for these regions than for the underdense ones because

of the sparse sampling of the transverse structures.

When going to linear space, that is, taking the exponential of

the fields and subsequently smoothing them, the effect caused by

the amplification of rare events discussed in Section 4.3 becomes

obvious, as illustrated by the bottom right-hand panels of Fig. 9, that

represent the counterpart of the bottom left-hand panels in linear

space. In logarithmic space, the highest density peaks are highly

depleted, here they are visible and spread over a beam the typical

size of which is that of the smoothing window.

4.4.2 Power spectrum: the scales correctly reconstructed

The good agreement between the original and the recovered fields in

logarithmic space is confirmed by the first row of panels in Fig. 10,

which shows the power spectrum, P(k) = 〈|γ k|2〉, of the raw fields,

γ H I and γH I,rec, for three reconstructions (NLOS = 320, 200 and 120

2 Note that the inversion formula, equation (8), can be amended to impose

directly this constraint, following equation (11) of PVRCP, by including this

information in M0.
3 When the analyses are performed in linear space, the normalization is

different, as discussed in Appendix A.
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Figure 9. Qualitative comparison between the original H I density field in terms of γ = ln(1 + δ) (left-hand column in each group of four panels) and the

recovered one (right-hand column in each group of four panels) in a thin slice (the thickness of the slice is 8 pixels, corresponding to 1.25 Mpc). Higher densities

correspond to darker colours. The recovered field has been obtained by inverting a set of NLOSs = 320 random LOSs (mean separation 〈dLOS〉 = 2.24 Mpc)

taken through the original (unsmoothed) density field. In each group of panels, the first row corresponds to a slice orthogonal to the LOSs, while the second

row corresponds to a slice parallel to the LOSs. Upper group: the raw γ fields for the original box and for the reconstruction. Lower left-hand group: the same

as the upper group but after smoothing (in the logarithmic space) with a Gaussian window of radius Ls = √
2〈dLOS〉 = 3.17 Mpc. Lower right-hand group: the

same as the lower left-hand one, but smoothing is now applied directly to the density field, 1 + δ = exp (γ ), instead of its logarithm and the normalization is

slightly different (see equation A1 of Appendix A).

corresponding, respectively, to 〈dLOS〉 = 2.24, 2.83 and 3.65 Mpc).

We also show five realizations of a GRF with the same P(k) as γH I,rec,

in order to estimate finite volume effects. As expected, the filtering

nature of the reconstruction introduces an apodization effect on P(k)

visible in Fig. 10: a bending of P(k) is expected to happen roughly

for k � kbend ≡ 2π/LT, that is, kbend = 0.44, 0.35 and 0.27 from the

upper left-hand to the upper right-hand panel, respectively, in the

units chosen in Fig. 10. It is not straightforward to check accurately

this property by visual inspection. Indeed, when NLOS decreases,

the small k part of the reconstructed power spectrum becomes less

well correlated with the true P(k), giving the illusion, for example,

that overall the NLOS = 120 reconstruction does better than the

NLOS = 320 one. Still for k � kbend, that is, Ls � LT = 〈dLOS〉,
there is a good agreement between the reconstruction and the exact

solution. However, the measurement of the power spectrum itself

is not accurate enough neither does it contain enough information

to guarantee that filaments are well reconstructed in detail, as we

examine now.
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Figure 10. Statistics and topology in logarithmic space, that is, in terms of γ H I = ln (1 + δH I), for three different reconstructions performed with NLOS =
320, 200 and 120, from the left-hand to right-hand panel, respectively. First row of panels: the power spectrum of γ H I as a function of wavenumber indicated

at the top. In each panel, the thin dashed curve represents the power spectrum of the original field, while the thick solid line is the power spectrum of the

(unsmoothed) recovered field. The light shaded region corresponds to the scatter between five realizations of Gaussian fields (GRFs) with the same power

spectrum as the reconstruction. The wavenumber k is expressed in unit of the inverse of the pixel size multiplied by 2π, corresponding roughly to k � 1/L(Mpc).

Second row of panels: the PDF as a function of γ H I = ln (1 + δH I (as it is indicated at the bottom), after smoothing γ H I with a Gaussian window of size

Ls = √
2〈dLOS〉. The solid thick and dashed thin lines correspond to the recovered and the original fields, respectively. The light shaded region in each panel

represents the scatter derived from the five GRFs, while the big dots correspond to gaussian profiles with same mean and same variance as the smoothed

recovered fields. Third row of panels: similarly as for the second row, but for the Euler characteristic. Fourth row of panels: similarly as for the third row, but for

the individual critical point counts. In that case, the thick and thin lines correspond to the recovered and original fields, respectively. The solid, dashed, dotted

and dot–dashed lines correspond, respectively, to minima, pancake saddle points, filament saddle points and maxima.

4.4.3 The skeleton: optimal smoothing scale

The visual inspection of Fig. 9 seems to show that the filamen-

tary pattern of the overall three-dimensional distribution is well re-

covered by the reconstruction in logarithmic space. One can check

that assertion more quantitatively on the skeleton (Novikov et al.

2006; Sousbie et al. 2008b). This will allow us to define an opti-

mal smoothing scale which will be used in the subsequent analyses.

More detailed analyses relying on the skeleton are postponed to

another paper.
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Figure 11. Left-hand panel: comparison between the skeletons of the original field (light lines) and its recovered counterpart (darker lines) (the skeletons

represented here are the true ones, and not their local approximations, as defined in the main text). The original field was recovered by inverting NLOS = 320

LOSs, corresponding to a separation 〈dLOS〉 = 2.24 Mpc. Both skeletons are computed on fields smoothed over a scale Ls = 3.16 Mpc, in logarithmic space. For

clarity, only a 4-Mpc slice is shown, the background contour representing the original smoothed density field (lighter colours corresponding to higher densities).

Right-hand panel: evolution of the ISD between the original and reconstructed fields as a function of the number of LOSs NLOS. The ISD is computed after

smoothing over a scale Ls = 3.65 Mpc which is roughly equivalent to the lowest resolution reconstruction sample. The upper (crosses) and lower (squares)

curves represent the measured median distance from the reconstructed field skeleton to the original one and vice versa, respectively, while the dotted curves

represent their average value.

The actual definition of the skeleton is in fact deeply related to the

Euler characteristic since it relies on first principles of Morse theory:

basically, the skeleton is composed of the set of field lines (the curves

defined by the gradient of the density field) starting from the filament

saddle points (I = 2 in the formalism described in Section 2.1) and

converging to local maxima.4 Although apparently simple, solving

this equation is quite difficult, and this is why a local approximation,

based on a Taylor expansion around the critical points contained in

the skeleton, was introduced in Novikov et al. (2006) and extended

in three-dimensions by Sousbie et al. (2008b): the local skeleton. In

this paper, we use the implementation of Sousbie et al. (2008b).

Note that, as opposed to a global topological estimator such as

the Euler characteristic, the skeleton provides a local test of the

accuracy of reconstruction (i.e. one can check whether a precise

filament at a given location is recovered or not). Fig. 11(a) presents

the skeleton (yellow lines) of a 4-Mpc slice extracted from the orig-

inal H I density field, as well as the skeleton of its reconstructed

counterpart (red lines), using 320 LOSs. Both fields are smoothed

in logarithmic space using a Gaussian window of scale Ls =
3.16 Mpc. This figure confirms that, on large scales, the general

shape of the filamentary structures is well preserved, demonstrating

the ability of the reconstruction to recover the cosmic web. None

the less, as expected, some discrepancies appear on small scales.

The ISD is an estimator which allows to make a quantitative

comparison. A skeleton corresponds to a number of small segments

linked together to form the filaments. In order to estimate the av-

erage distance between two skeletons, A and B, for each segment

of A, the distance to the closest segment in B is computed leading

to the PDF of the distribution of the spatial separation from A to

B. The distance from A to B is defined as the median of this PDF.

Since this definition of distance is not symmetrical [in the sense that

ISD(A,B) and ISD(B,A) will, in general, be different], the mean

4 The actual conditions for this definition to be valid are discussed in Novikov

et al. (2006).

distance between A and B is defined as the average of these quan-

tities. Fig. 11(b) presents the measurement of the ISD between the

skeleton of the original field and its reconstruction, as a function

of the number of LOSs used to perform the inversion (in units of

the smoothing scale). In all cases, both fields were smoothed over

a scale Ls = 3.65 Mpc. What is important to note here is the sharp

transition at NLOS = 225, corresponding to Ls = Lcrit with

Lcrit � 1.35〈dLOS〉. (13)

For a smoothing scale Ls � Lcrit, the match between reconstruction

and exact solution worsens suddenly, while no significant improve-

ment is really seen when Ls � Lcrit: Lcrit represents some ‘optimal’

smoothing scale, which is the smallest possible scale at which the

reconstruction performs well, in terms of filamentary pattern recov-

ery. Note that only the measurements for a particular value of Ls

are shown, but equation (13) should not change significantly for the

scaling range considered in this work.

Although all the subsequent analyses involving smoothing were

performed at various scales, namely L2
s = 〈dLOS〉2, 2〈dLOS〉2,

3〈dLOS〉2, increasing likewise the number of LOSs contributing per

smoothing volume, we will, in light of the above findings, mainly

concentrate on the results corresponding to L2
s = 2〈dLOS〉2 � L2

crit.

4.4.4 Statistical analysis

The second row of Fig. 10 shows the PDFs of the smoothed coun-

terparts of γ H I (dashed line) and γH I,rec (solid line), with a window

of size L s = √
2〈dLOS〉, as argued just above. These measurements

are supplemented with Fig. 12, which shows the variance and the

skewness of the PDFs of various fields as functions of separation be-

tween the LOSs. Again, the agreement between the solid and dashed

curves in the second row of panels of Fig. 10 is quite good and the

results do not depend significantly on the value of NLOS.

From a quantitative point of view, the difference between the re-

covered and the original curves can be calculated using the following
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Figure 12. Variance (top panel) and skewness (bottom panel) of γ H I = ln

(1 + δH I) for the original (open crosses), the recovered (filled crosses) fields

and the Gaussian prediction (light dots), as functions of the LOS separation,

〈dLOS〉. The symbols correspond to measurements performed on the γ fields

smoothed with a Gaussian window of size Ls = √
2〈dLOS〉. For a proxy of

the error bars, we used the measurements at smoothing scales Ls = 〈dLOS〉
and

√
3〈dLOS〉, except for the Gaussian fields, where the dispersion among

the five realizations is a better choice. For the Gaussian case, the skewness

should be exactly zero. The measurements are consistent with that value,

despite the large dispersion at the largest scales, due to finite volume effects.

estimator:

err =
∑

i

∣∣yorig
i − yrec

i

∣∣�xi∑
i

∣∣yorig
i

∣∣�xi

, (14)

where yorig
i = yorig (xi ) and yrec

i = yrec(xi ) are the values of the curves

relative to the original and the recovered fields, respectively, and the

curves have been sampled at points xi. This corresponds to the area

between the curves, normalized by the area enclosed by the original

ones. For the three reconstructions shown, the errors are of the order

of err PDF = 10–20 per cent.

These quantitative estimates show that there are still some no-

table differences between the reconstruction and the true field: the

shape of PDF of the reconstructed field, γH I,rec, tends to be Gaus-

sian, within the error range provided by the five Gaussian fields. This

‘Gaussianization’ is expected from both the central limit theorem

and the shape of the correlation matrix given by equation (10). Note

that this statement is not totally consistent with the measurement

of the skewness (lower panel of Fig. 12), especially at intermedi-

ate separations between the LOSs. However, this skewness is quite

sensitive to the upper tail of the PDF corresponding to rare events

in overdense regions: one expects, in that regime, deviations from

Gaussianity in the reconstruction because the central limit is not yet

reached.

The true field, γ H I, deviates slightly from a Gaussian, as already

shown in Fig. 3. In particular, in the right-hand part of the bell shape

of the PDF in Fig. 10, there is a slight disagreement between the

dashed and the continuous curves, which corresponds to the weak

negative skewness measured in the lower panel of Fig. 12. This

disagreement would be even more visible if a logarithmic represen-

tation were used on the y-axis to display the PDF: the high-density

tail of the H I field is far from lognormal. The main contribution to

such a tail comes from collapsed objects in clusters and in filaments.

As argued in Section 4.4.1, these objects are sparsely sampled by the

LOSs, which worsens the quality of the reconstruction in overdense

regions.

4.4.5 Global topology

The nearly Gaussian nature of the reconstructed γ field can be also

confirmed by examining the third row of panels in Fig. 10, which

is similar to the second row, but displays the Euler characteristic

as a function of the density threshold. Deviations from Gaussianity

of the true field, γ H I, are more clearly visible than for the PDF. In

particular, on all the panels, the corresponding dashed curve always

presents an asymmetry between its two maxima, contrary to what

is observed in the Gaussian limit. The reconstruction, γH I,rec, be-

ing more symmetrical, is clearly closer to the Gaussian limit than

the true field. However, as noted earlier for the skewness of the

PDF, one cannot really claim that the reconstruction is fully Gaus-

sian: deviations outside the range allowed by our five Gaussian

realizations are notable, particularly in the right-hand panel and in

general in the overdense right-hand tail (γ � −1.5) of χ+. Still

the overall topology of the reconstructed field, although closer to

the Gaussian limit, reproduces rather well the topology of the true

field, especially in the range −2.0 � γ � −1.5, which confirms

the findings of Section 4.4.3 on the skeleton. This density regime

is indeed dominated by filament saddle points and local maxima,

as shown by the last row of panels of Fig. 10, which displays the

different critical point counts as functions of the density threshold

for γ H I and γ H I,rec. Note the increasing contribution of the noise

when NLOS decreases, which makes the agreement between recon-

struction and exact solution worse, particularly for large densities,

as expected. From a more quantitative point of view, one can, sim-

ilarly as for the PDF, compute the integrated errors on the critical

point counts (equation 14). For the three reconstructions we consider

here, these errors are of the same order as for the PDF (i.e. less than

20 per cent).

As an additional test, the minimum of the Euler characteristic,

γ min ∼ −2, can be used to define a topological boundary between

‘underdense’ and ‘overdense’ regions. Indeed in the Gaussian limit,

this minimum lies exactly at γ min = 〈γ 〉. Defining the filling factor

of underdense regions, FFunderdense, as the fraction of space occu-

pied by points verifying γ � γ min, one expects FFunderdense to be

always close to 0.5: at least this is true for any monotonic local

transform of a Gaussian field (with no additional smoothing). Even

though the reconstruction and the true field do not have exactly the

same behaviour for χ+, they seem to have very close values of γ min,

which should correspond to a good agreement between the measured

values of FFunderdense: this is indeed the case as shown in Fig. 13. Al-

though the measured values of FFunderdense are consistent with those

of the original ones, the connectivity of the underdense (or equiva-

lently, overdense) regions defined in this way is good but not perfect,

as illustrated in Fig. 14. In this range of densities, connectivity of

the excursion is controlled equally by filament and pancake saddle

points and their respective counts tend to be slightly underestimated

and overestimated, respectively, as illustrated by the bottom panels

of Fig. 10. This is, however, not enough to explain the discrepancies

in Fig. 13, and shows the limits of global topological estimators.

At the qualitative level, note finally that the situation becomes

worse when one attempts to recover the boundary contour between
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shown here, would give a filling factor exactly equal to 0.5.
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Figure 14. Contours of underdense regions estimated from the minimum of

the Euler characteristic in logarithmic space. The thick curves represent the

contours for two recovered fields γ H I,rec obtained by the inversion of NLOS =
320 and 200 LOSs (solid and dashed lines, respectively). Prior to contour

determination, the recovered field was smoothed with a Gaussian window of

size Ls = √
2〈dLOS〉. These contours should be compared with those of the

original field, γ H I, represented with a thin line, smoothed at the same scales

(solid and dashed lines, respectively). This figure is complemented with the

two upper panels of the lower left-hand group shown in Fig. 9, where the

same slices for the original and the recovered fields are displayed.

overdense and underdense regions in linear space, because of the

bias mentioned in Section 4.3. This is shown in Fig. 15, which

represents the same slice as in Fig. 14 but in this case the contours

were calculated from the minimum of the Euler characteristic after

smoothing the exponential of the fields. Here, the position of the

structures in the recovered contours is significantly different from

that of the original fields, not to mention connectivity. Appendix A,

which discusses a figure similar to Fig. 10 but in linear space, fully

confirms these results.
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Linear space: contours δunderdense

Figure 15. The same as Fig. 14, but smoothing is performed in linear space.

This figure is complemented with the two upper panels of the lower right-

hand group in Fig. 9, where the same slices for the original and the recovered

fields are displayed.

5 D I S C U S S I O N A N D C O N C L U S I O N

In this paper, we have studied the topology of large-scale structures

as traced by the IGM in a hydrodynamical cosmological simula-

tion. The main goal was to test a reconstruction method (PVRCP)

of the three-dimensional large-scale matter distribution from multi-

ple LOSs towards quasars. For this purpose, we relied on a number

of global statistical tools, the PDF of density field, the Euler charac-

teristic (χ+) as an alternate critical point count and related quantities

such as the variance and the skewness of the PDF, the individual crit-

ical point counts and the filling factor of the underdense regions at

the minimum of the Euler characteristic. We also used the skeleton

as local probe of the geometry and the topology of the field. The

main results of our investigations can be summarized as follows.

(i) In the first part of this paper, we addressed the problem of

relating the topology of the dark matter density field to the topology

of the distribution traced by the total amount of gas and the neutral

gas (H I). When one considers the H I density distribution at scales

larger than the Jeans length of the gas and takes into account the

IGM equation of state relating the neutral and total amount of gas,

then the properties of this nearly lognormal distribution are exactly

the same as found for the dark matter/total gas in underdense re-

gions (i.e. for density contrasts δ � 0). For larger density contrasts,

some deviations appear, due to shocks (where H I is depleted) and to

the presence in filaments and clusters of highly condensed objects

(where H I is very concentrated). Taking these results into account,

with the additional assumption that instrumental noise, in particular

effects of saturation, can be neglected, we have shown that studying

the topological properties of large-scale matter density distribution

is equivalent to studying directly those of the optical depth or in

what follows, those of neutral gas, H I.

(ii) In the second part of this work, we tested the Wiener in-

terpolation proposed by PVRCP to recover the three-dimensional

distribution of H I from a set of multiple LOSs, along which the

(one-dimensional) distribution of H I is assumed to be known ex-

actly. This interpolation depends on three parameters, the typical

size, Lx of structures along the LOSs, the typical mean LOSs sep-

aration, LT = 〈dLOS〉, and the expected variance of the fluctuations
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of the field which can be, in principle, indirectly inferred from the

LOSs themselves.

Our investigation shows that the reconstruction method can be

used to predict quite accurately the patterns in the large-scale matter

distribution at scales of the order of ∼1.4〈dLOS〉 or larger when one

attempts to recover the logarithm of the density field. In particular,

it allows us to recover the position of filaments in the large-scale

distribution: we compared the skeleton of the initial and recovered

field and measured the distance between these skeletons and found

that for smoothing scales larger than ∼1.4〈dLOS〉, the ISD remains

smaller than 〈dLOS〉. Furthermore, the global shape of the PDF, of

the fraction of critical points and of the Euler characteristic are

well reproduced, the integral errors on these quantities varying in

the range 10–20 per cent. Discrepancies between the reconstruction

and the exact solution are mainly found in overdense regions, where

deviations from a lognormal behaviour are the most significant.

The good recovery of the statistical properties of the density field

in logarithmic space is strongly related to the Gaussian prior on

which the inversion method is based. Recall that, since the distribu-

tion of the gas density is very close to lognormal, the distribution

of its logarithm is well approximated by a Gaussian function. As

demonstrated in PVRCP, the Wiener interpolation is just a special

case of the maximum-likelihood method. It gives, under the hypoth-

esis that the statistical distributions of the data and of the parameters

are Gaussian, the optimal reconstruction for a linear model. How-

ever, this relies on a proper knowledge of the covariances matri-

ces. Here, we assume a simple functional shape for these matrices,

given by equation (10). A better treatment would need an accurate

knowledge of the underlying power spectrum of the logarithm of

the density. The interpolation could, for instance, be improved by

using a stronger prior relying on the extension of, for example, the

non-linear ansatz of Hamilton et al. (1991) to logarithmic space.

We noted that some deviations are present in the original field,

compared to the lognormal limit at the scales we have probed

here. This information could be added to the model. This could

be achieved by applying an Edgeworth expansion to the logarithm

of the field (Colombi 1994; Juszkiewicz et al. 1995), hence by tak-

ing into account slight deviations of the likelihood function from a

Gaussian distribution to correct our Wiener interpolator (Amendola

1996).

Even though the best variable for the reconstruction is the loga-

rithm of the density, theoretical predictions are usually performed on

the density itself. Therefore, it is in practice difficult to compare the

properties of the reconstructed density distribution to those predicted

by, for example, non-linear perturbation theory (e.g. Bernardeau

et al. 2002) or other models. The problem is that linear space gives

more emphasis to rare events in overdense regions. In Appendix A,

we analyse the corresponding bias on the reconstruction, and find

that it is critical for the higher density peaks. As a result, the to-

mography is in practice much less robust when expressed directly

in linear space. However, this is mainly related to the fact that our

analyses are performed at scales smaller or of the order of 4 Mpc,

where non-linear effects in the dynamics are still present.

Due to the size of our simulation (Lbox = 40 Mpc), in this work

we have analysed the properties of connectivity at relatively small

scales (Ls = 4 Mpc), where the distribution of matter is close to

lognormal.5 However, one could, in principle, extend the analyses

5 Note that, because of the small size of our simulation, we could not

really examine the effects of cosmic variance, except with our Gaussian

realizations.

to larger scales, to probe the linear or quasi-linear regime, where the

density distribution is actually close to Gaussian. In that case, the

reconstruction should be performed on the density itself rather than

on its logarithm while the above-mentioned problems would become

irrelevant. In particular, the implementation of the improvements on

the Wiener interpolator could, for instance, be used to test directly

if non-trivial deviations from Gaussianity are present or not in the

data. If present, they could be ascribed to primordial non-gaussian

features that are produced during the inflationary phase or as a result

of topological defects.

The inversion method is based on the hypothesis that a sufficiently

strong correlation exists at the scale under consideration. Indeed,

various sources of noise can hide such a correlation completely

(errors due to the finite cosmological volume probed by a finite

number of LOSs, noise in the measurement of the spectra), making

the reconstruction irrelevant. To test the strength of the correlation,

a large number of quasar pairs spanning the range of separations

we want to probe must be observed. It has been recently shown

(Coppolani et al. 2006) that at z ≈ 2 for a separation of ∼5 arcmin

(corresponding to ≈7.6 Mpc for a flat universe with 
m = 0.3,


	 = 0.7 and H0 = 70 km s−1 Mpc−1), some correlation is observed,

suggesting that the inversion method could be applied at such scales.

It is thus very important to measure more accurately the transverse

correlation function from quasar pairs. Indeed, once this is done,

we can include this information as a self-consistent prior in the

reconstruction procedure.

Using realistic data about the luminosity function of quasars

(Jiang et al. 2006), it is found that for magnitude limits of g �
(23, 24, 25) the number of quasars observed per square degree at

z � 2 is nQSOs = (41, 77, 136), respectively. For the set of cosmo-

logical parameters assumed here, the corresponding mean angular

separations are 〈dLOS〉 = (9.37, 6.84, 5.15) arcmin. Moreover, for

g � 23 the number density of Lyman break galaxies (LBGs) starts

to become significant and we can think of using these objects as

background sources in combination with QSOs. In particular, it is

found that for g � (23, 24, 25) the number of LBGs per square de-

gree is nLBGs = (0.3, 116, 2325), respectively (Adelberger & Steidel

2000), so that, even at g � 24, the number of available sources is

largely increased. In Table 3, we display the mean separation one

can expect as a function of the magnitude limit.

One can see that if we are able to observe objects up to a magnitude

limit of g ∼ 24, the density of background sources will be high

enough to perform a reconstruction similar to what described in

this paper. A better approach will be to search for peculiar fields

in which the density is larger by chance (e.g. Petitjean 1997). The

spectral resolution will be a decreasing function of the magnitude.

Observational difficulties will include the contamination of the LBG

spectrum by absorption lines originating in the interstellar medium

of the galaxy and the fact that the mean redshift (z ≈ 2.8) will be

larger than what we have considered in this paper. To reach these

faint magnitudes, we need to wait for the advent of the Extremely

Large Telescopes (Theuns & Srianand 2006).

Table 3. Mean angular separation between the background sources as a

function of the magnitude limit (left-hand column).

Magnitude limit Separation (QSOs) Separation (QSOs and LBGs)

g (arcmin) (arcmin)

23 9.4 9.3

24 6.8 4.3

25 5.2 1.2
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To conclude, the approach developed here is very promising as

the advent of Extremely Large Telescopes will boost this field by

allowing the observation of a number of background sources large

enough to probe the distribution of the matter with accurate precision

at the scales under consideration. The total amount of observing time

will be large, however, but worthwhile, given the expected results

foreseen in this paper.
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A P P E N D I X A : R E C OV E R E D F I E L D :
A NA LY S I S I N L I N E A R S PAC E

While the reconstruction seems to perform well for γ = ln(ρ) and its

smoothed counterparts (except that it is somewhat ‘Gaussianized’,

as shown by the measurements in the main text), let us now inves-

tigate what happens for the statistical properties of the field itself

ρ = exp(γ ).

It was noted in that case (Section 4.3) that the recovered field

is expected to be biased, originating from the fact that taking the

exponential of a field does not commute with smoothing via a Gaus-

sian window. Furthermore, taking the exponential gives emphasis to

high-density peaks, which are the most poorly reconstructed (Sec-

tion 4.4). Additional smoothing contaminates neighbouring pixels

as well, resulting in significant changes in the connectivity. These

effects were confirmed at the qualitative level in the main text by

visual inspection of Figs 9, 14 and 15. We now examine them more

quantitatively.

As just argued above, since we are working in linear space, ρ ∼
exp(γ ), rare events in overdense regions (which are poorly recon-

structed) dominate. As a consequence, the reconstruction fails with

respect to the mean density: equation (12) is clearly not appropriate

anymore to normalize the reconstruction. Instead, the reconstructed

density, ρH I,rec, is renormalized as follows:

ρH I,rec = 〈ρH I〉 exp(γ̃H I,rec)

〈exp(γ̃H I,rec)〉 , (A1)
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where 〈ρH I〉 is the true mean density in the simulation. Note that

this density is no longer accurately determined from direct mea-

surements on the LOSs: in the worse case considered in this paper,

NLOS = 100, we indeed find a relative error on the estimate of 〈ρH I〉
of the order of 30 per cent. However, the simulation volume is quite

small, leading to unrealistically short LOSs. In real observations,

the determination of the average neutral gas density along LOSs

should be much more accurate (Guimarães et al. 2007).

The choice of the normalization given by equation (A1) is natural

since it imposes the average density of the reconstructed field to be

equal to that of the exact solution. However, because it is still affected

by overdense regions contributions, this normalization is not fully

satisfactory as it does not lead to the appropriate corrections in

underdense regions, as can be noted by a careful examination of

four lower right-hand panels of Fig. 9.

The contamination by high-density peaks affects all statistics,

as illustrated in Figs A1 and A2. This is particularly dramatic for
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Figure A1. The same as in Fig. 10, but in the linear space, that is, by taking the exponential of the recovered fields and the Gaussian realizations along with

normalization (A1), with subsequent smoothing with a Gaussian of size Ls = √
2〈dLOS〉 for the last three rows of panels. The big dots on the second row of

panels now correspond to a lognormal distribution with same variance and average as the reconstruction.

second-order statistics (upper row of Fig. A1 and upper panel of

Fig. A2). The reconstruction underestimates the normalization of

the power spectrum, and as a result the variance of the PDF, espe-

cially when the separation between the LOSs is small: in the latter

case, non-linear features in the density field are given more weight

and are poorly captured by the reconstruction. This appears as a shift

in the PDF shown in the second row of panels in Fig. A1, worsening

with increasing NLOS. Note, however, that the agreement between

the reconstruction and the exact solution, although poorer than in

logarithmic space, improves when NLOS � 200. Note also that the

smoothed lognormal fields no longer match the reconstruction. In

fact, in the linear space, its seems that the reconstruction gives a

solution intermediate between the exact one and the smoothed log-

normal fields, both from the point of view of the power spectrum

and the PDF (and its cumulants) (Fig. A2): it captures more than

just the Gaussian features of the logarithm of the real solution, as

would have naively followed from the analysis of Section 4.4.
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Figure A2. The same as Fig. 12, but in linear space, as explained in the

caption of Fig. A1.

These results are confirmed in the third row of panels in Fig. A1:

the measured Euler characteristic of the reconstruction gives an in-

termediate solution between the true and the lognormal solution (see

for instance the position of the local extrema of the curves repre-

senting χ+). Note that overall the reconstruction matches better the

lognormal behaviour than the true solution, especially when NLOS

is large, implying that ‘lognormalization’ dominates, at least from a

topological point of view, while non-linear dynamics implies signif-

icant departures from a purely lognormal behaviour. This explains

again why the quality of the reconstruction decreases when attempt-

ing to probe the smallest scales. Note that this does not mean that

decreasing the number of LOSs is better: the analysis always looks

at the smallest scale recoverable in logarithmic space, ∼1.4 〈dLOS〉.6
At fixed smoothing scale, a reconstruction with a given number of

LOSs does better than a reconstruction with sparser LOS sampling.

Still, note that the reconstruction does more than a simple ‘lognor-

malization’ as it gives an intermediary answer between the expected

lognormal behaviour from the analysis in logarithmic space and the

true solution, at least from the point of view of the PDF and the

Euler number. The uncertainties in the measurements due to

the emphasis put on rare events are, however, too large to drive

definite conclusions with a small sample of LOS: the spread be-

tween the five lognormal fields is much larger than they were in the

logarithmic space (and similarly for the PDF).

6 We did not examine the skeleton in linear space to find the best smoothing

scale in that case.
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Figure A3. The same as Fig. 13, but in linear space, as explained in the

caption of Fig. A1.

Let us finally check the global topological properties of the

reconstruction by examining the number counts of each kind of

critical points individually, as shown in the last row of panels in

Fig. A1. Notwithstanding all the above points, note that the in-

version achieves a fair reconstruction of the distribution of some

of the critical points: in the low-density regime, it overestimates

the local minima count, as expected from a visual inspection of

the four lower right-hand panels of Fig. 9 and from the PDF: the

reconstructed field in underdense region is overestimated. In the

intermediate density range, reconstruction overestimates pancake

saddle point counts (and to a lesser extent, underestimates filament

saddle point and local maxima counts) for NLOS = 320, while larger

separations between LOSs do better. In the overdense regime, where

the reconstruction fails more dramatically, and where the amplifica-

tion of the errors is large, one tends to overestimate (underestimate)

filament saddle points (local maxima).

Still, it is interesting to note that the local minimum of the Euler

number, ρmin ∼ 0.7 is comparable for the reconstruction and the

exact solution, suggesting that the measured filling factor defined

previously will be similar for the reconstruction and the exact solu-

tion: according to Fig. A3, the filling factor of underdense regions

at the minimum of the Euler number does nearly as well as in loga-

rithmic space, but the match between its isocontours is worse than

before (compare Fig. 14 with Fig. 15): thus, even if the critical point

counts and the fraction of underdense regions agree, this does not

necessarily imply that the structures, in particular the densest ones,

are at the right position.
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