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ABSTRACT
Motivated by the recent observational and theoretical evidence that long gamma-ray bursts

(GRBs) are likely associated with low metallicity, rapidly rotating massive stars, we examine

the cosmological star formation rate (SFR) below a critical metallicity Zcrit ∼ 1/10–1/5 Z�,

to estimate the event rate of high redshift long GRB progenitors. To this purpose, we exploit

a galaxy formation scenario already successfully tested on a wealth of observational data on

(proto)spheroids, Lyman break galaxies, Lyman α emitters, submm galaxies, quasars and local

early-type galaxies. We find that the predicted rate of long GRBs amounts to about 300 events

yr−1 sr−1, of which about 30 per cent occur at z � 6. Correspondingly, the GRB number counts

well agree with the bright SWIFT data, without the need for an intrinsic luminosity evolution.

Moreover, the above framework enables us to predict the properties of the GRB host galaxies.

Most GRBs are associated with low-mass galaxy haloes MH � 1011 M�, and effectively trace

the formation of small galaxies in such haloes. The hosts are young, with age smaller than

5 × 107 yr, gas rich, but poorly extincted (AV � 0.1) because of their chemical immaturity;

this also implies high specific SFR and quite extreme α-enhancement. Only the minority of

hosts residing in large haloes with MH � 1012 M� has larger extinction (AV ∼ 0.7 − 1), SFRs

exceeding 100 M� yr−1 and can be detected at submm wavelengths. Most of the hosts have

ultraviolet magnitudes in the range −20 � M1350 � −16, and Lyman α luminosity in the

range 2 × 1040 � LLyman α � 2 × 1042 erg s−1. GRB hosts are thus tracing the faint end of the

luminosity function of Lyman break galaxies and Lyman α emitters. Finally, our results imply

that the population of ‘dark’ GRBs occur mostly in faint hosts at high redshift, rather than in

dusty hosts at low redshift.

Key words: Galaxy: formation – galaxies: evolution – gamma-rays: bursts.

1 I N T RO D U C T I O N

The spectroscopic detection of the energetic supernova SN 2003dh

coincident with GRB 030329 (Hjorth et al. 2003; Stanek et al. 2003)

has firmly established that – at least some – long GRBs accompany

the core collapse of massive stars, as it was first suggested by the

spatial and temporal coincidence of GRB 980425 and SN 1998bw

(Galama et al. 1998). Such spectroscopic signatures of supernovae

(SNe) associated with GRBs have been detected in a handful of

cases during the last years, e.g. GRB 031203n/SN 2003lw (Malesani

�E-mail: lapi@sissa.it

et al. 2004), GRB 021211/SN 2002lt (Della Valle et al. 2003), GRB

050525A/SN 2005nc (Della Valle et al. 2006) and the recent case

of GRB 060218/SN 2006aj (Campana et al. 2006; Modjaz et al.

2006). The possibility that core-collapse SNe are progenitors of

GRBs has been further supported by the detection of re-brightening

in the late-time afterglow light curves, interpreted as a contribution

of accompanying SNe (Bloom et al. 1999; Castro-Tirado & Goros-

abel 1999; Zeh, Klose & Hartmann 2004) and the localizations of

afterglows in star-forming regions (e.g. Fruchter et al. 1999; Holland

& Hjorth 1999; Fynbo et al. 2000; Djorgovski et al. 2001; Bloom,

Kulkarni & Djorgovski 2002).

Indeed, the current most favoured scenario for the origin of

long GRBs involves the collapse of a massive Wolf–Rayet star
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endowed with rotation (Woosley 1993; MacFadyen & Woosley

1999; Woosley & Heger 2004). Recently, Yoon & Langer (2005)

considered the evolution of massive, magnetized stars where rapid

rotation induces an almost chemically homogeneous evolution, and

found that the requirements of this collapsar model are satisfied if

the metallicity is sufficiently small, namely less than 0.1 Z� (see

Woosley & Heger 2006; Yoon, Langer & Norman 2006). This is

broadly consistent with the estimates of metallicities of long GRB

hosts, which yielded preferentially subsolar – down to 10−2 Z� –

values (e.g. Chen et al. 2005; Gorosabel et al. 2005; Starling et al.

2005).

Clearly, this scenario has key implications not only on the physics

of the event and evolution of massive stars at low metallicities, but

also on the event rate and redshift distribution of long GRBs com-

pared with that of SNe. The cosmological consequences of a metal-

licty threshold can be explored by considering an average cosmic

metallicity evolution, as in the work by Langer & Norman (2006). In

this paper, we instead explore the effects of a metallicity threshold

following the star formation and chemical evolution of individual

galaxies.

In order to derive the rates of progenitors and the characteristics

of their host galaxies at high redshift, the star formation history

and the chemical evolution for a large range of galaxy mass and

virialization redshift must be computed. Baryon condensation in

cold gas, stars and in a central massive black hole (BH) within

galaxy Dark Matter (DM) haloes is a quite complex outcome of

a number of physical processes (including shock waves, radiative

and shock heating, viscosity, radiative cooling; star formation, BH

accretion, gas inflow and outflow) largely affecting each other (see

Granato et al. 2001, 2004; Croton et al. 2006; De Lucia et al. 2006).

When treating these processes within a self-consistent cosmological

framework of galaxy formation, most of the complexity is related

to the different scales involved.

For the sake of definiteness, here we adopt as a reference the

galaxy formation scenario developed by Granato et al. (2004), which

consistently accounts for the coevolution of spheroidal galaxies and

their nuclear activity and intrinsically follows in time the gas content,

star formation rate (SFR) and metallicity evolution for each galaxy

mass. This enables us to investigate in detail the effect of a metallicity

threshold on the properties not only of the GRB population, but also

of their host galaxies.

The outline of this paper is the following. In Section 2, we briefly

review the conceptual issues of the adopted galaxy formation sce-

nario and explain how the GRB progenitor rate has been estimated.

Our results are presented in Section 3. In Section 4, we discuss our

findings, by comparing them with observational results and previous

studies. In Section 5, we summarize our conclusions. Throughout

the paper, a flat cosmological model with matter density parameter

�M = 0.27 and Hubble constant H0 = 72 km s−1 Mpc−1 is adopted.

2 M O D E L L I N G

2.1 Overview of the galaxy formation scenario

Long GRBs at high redshift (z � 1) have progenitors which formed

at least 8 Gyr ago. Their coeval stellar populations are as old as

the populations of spheroidal galaxies and spiral bulges, and older

than the populations in present galaxy discs (see Renzini 2006):

thus, high redshift long GRBs trace the formation history of the

oldest stellar populations. Low-redshift GRBs conversely trace the

star formation in small-mass irregular/interacting galaxies with low

SFR (Fruchter et al. 2006; Wainwright, Berger & Penprase 2007).

Since we focus on high-z GRBs, in the following we will neglect the

contribution of star formation in discs of present-day spiral galaxies.

We exploit the physical model elaborated by Granato et al. (2001,

2004), which follows the evolution of baryons within protogalac-

tic spheroids taking into account the effects of the energy fed back

to the intragalactic gas by SN explosions and by accretion on to

the nuclear supermassive BH (see also Croton et al. 2006; De

Lucia et al. 2006). The model envisages that during or soon af-

ter the formation of the host DM halo, the baryons falling into the

newly created potential well are shock-heated to the virial tempera-

ture. The hot gas is (moderately) clumpy and cools fast especially in

the denser central regions, yielding a strong burst of star formation.

Star formation also promotes the storage of the cooled gas into a

reservoir around the central seed BH, eventually leading to accre-

tion on to it (see Kawakatu & Umemura 2002). The ensuing SN

explosions and the nuclear activity feed energy back to the baryons,

and regulate the ongoing SFR and BH growth. These mutual energy

feedbacks actually reverse the formation sequence of the baryonic

component of galaxies compared to that of DM haloes: the star for-

mation and the buildup of central BHs are completed more rapidly

in the more massive haloes, thus accounting for the phenomenon

now commonly referred to as downsizing (e.g. Cowie et al. 1996;

Glazebrook et al. 2004; Kodama et al. 2004).

In Appendix A, we present a simplified version of basic equa-

tions of the model, which allows to derive analytical solutions for

the time evolution of SFR, mass in stars and metallicity, the quanti-

ties relevant to this work. These analytical functions are very good

approximations of the more complex system of equations numeri-

cally solved in Granato et al. (2004; see for details Lapi et al. 2006;

Mao et al. 2007). Because of their fundamental character, these

equations catch the basic aspects of the physical processes ruling

star formation in protogalaxies at high redshift. The adopted initial

mass function (IMF) is a double power law with slope 1.25 from

120 to 1 M� and 0.4 from 1 M� down to 0.1 M� (Romano et al.

2002), which is quite similar to that proposed by Chabrier (2005).

In Fig. 1, we present the results for DM haloes virialized at z = 6

and endowed with mass ranging from 1010 to 1013 M�. For masses

MH � 1012 M�, the SFR increases almost linearly with galaxy age

in the initial stages, and then it is suddenly halted by the energy

feedback from the quasar after a few 108 yr. On the contrary, for

MH � 1012 M� it is first almost constant and then slowly declines

due to gas exhaustion. In fact, for small masses the effect of SNe

feedback regulates the star formation, while the BH is rather small

there and the SFR can proceed for a much longer time (see equa-

tion 16 in Shankar et al. 2006).

The mass cycled through stars at any time is easily obtained by

integrating the SFR (see Fig. 1). Note that the quantities plotted in

Fig. 1 refer to redshift z = 6; however, both SFR and mass in stars

scale approximately as (1 + z)3/2 for a given halo mass.

From the figure, it is apparent that the chemical enrichment of

the cold gas component is very rapid; for example, with the adopted

IMF the gas attains 1/100 and 1/10 the solar abundance in about

1.2 × 107 and 5 × 107 yr, respectively, almost independently of

the halo mass and redshift. A Salpeter IMF yields time-scales about

twice as long. This rapid enrichment is due to the fast evolution

and formation time-scales (t�, see Appendix A) for the massive

stars (greater than 10 M�) relative to the time-scale for the infall of

the diffuse medium with primordial composition, which dilutes the

metallicity of the cold star-forming gas. This behaviour shows that

a possible change of the IMF at metallicity lower than a threshold

around 3–5 × 10−4 Z� (see Bromm et al. 2001; Schneider et al.

2006) is not critical for the issue related to long GRBs. In other
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Figure 1. SFR, stellar mass, specific SFR, average cold gas metallicity, cold

gas mass and extinction at 1350 Å (from top to bottom panel) as a function of

the galactic age for haloes of masses 1010 M� (solid lines), 1011 M� (dot–

dashed lines), 1012 M� (dashed lines), 1013 M� (dotted lines), virialized at

redshift z = 6. The vertical lines mark the epoch when the cold gas metallicity

attains the critical thresholds Z�/10 (green) and Z�/5 (red).

words, if long GRBs are associated with low-metallicity environ-

ments, the quick enrichment implies that the most relevant epoch

for GRB progenitors comes soon after halo virialization.

This galaxy formation model neglects spatial resolution and as-

sumes instantaneous mixing, that is, it averages both SFR and chem-

ical composition over the entire mass of cold gas. We stress that

the cold gas is only a small fraction of the overall baryons associ-

ated with the galaxy halo (cf. Appendix A), and thus the averaging

concerns the mass/volume of the protogalaxy wherein star forma-

tion is occurring and not the overall DM halo mass/volume. On

the other hand, metallicity gradients have been observed in local

spheroidal galaxies, �[Z/H]/�log r ≈ −0.25 (e.g. Annibali et al.

2007; Sanchez-Blazquez et al. 2007). This implies variations of

about a factor of 2 in metal abundance within a radius enclosing

most of the galaxy mass. As we will see such a factor is not crucial

to the conclusions of this paper.

The model here adopted has the very valuable asset that

successfully fits a wealth of observational data and constraints

regarding protospheroids, Lyman break galaxies and Lyman α emit-

ters, submm-selected galaxies, quasars, EROS and local early-type

galaxies; for a detailed comparison with the observational data, we

defer the interested reader to the papers by Granato et al. (2001,

2004, 2006), Cirasuolo et al. (2005), Silva et al. (2005) and Lapi

et al. (2006, in particular their table 2), Mao et al. (2007); further-

more, clustering properties of submm galaxies have been extensively

discussed in the context of our model by Negrello et al. (2007).

2.2 Estimate of long GRB progenitor rates

The key ingredients provided by the galaxy formation model related

to this work are the SFR Ṁ�(t) and the average gas metallicity Z(t)
as a function of the age t for an individual galaxy within a given

halo mass MH virialized at redshift z (see Appendix A for handy

approximations). Note that Z refers to the average metallicity of the

gaseous component from which new stars form.

The cosmic SFR per unit volume at redshift z contributed by

objects with average-gas metallicity Z < Zcrit is thus given by

SFR(z)Z<Zcrit
=

∫
dṀ�dMH

d2 NST

dMH dtz

d

d ln Ṁ�

T >Ṁ�

Z<Zcrit
, (1)

where d2 NST/dMH dtz are the formation rates of DM haloes at cos-

mic time tz computed using the Sheth & Tormen (1999) mass func-

tion, and T >Ṁ�

Z<Zcrit
is the time the galaxy spends at SFR higher than

Ṁ� and metallicity lower than Zcrit.

It is plausible that the core collapse, believed to give rise to the

formation of a BH and a GRB event, is related to the final phases

of the evolution of stars with masses greater than 12 M� and with

rapidly rotating cores (Yoon & Langer 2005; Woosley & Heger

2006; Yoon et al. 2006). From a theoretical point of view, a major

issue in this respect is the large mass loss that would entail also

large angular momentum loss. This problem is possibly alleviated

in stars of metallicity below a critical threshold lower than 1/5–

1/3 Z� and high initial spin rate (Woosley & Heger 2006; Yoon

et al. 2006). Though observations are still scanty in supporting this

expectation, we will consider low metallicity and high rotation ve-

locity as necessary and sufficient conditions for a massive star to be

considered as a GRB progenitor.

The GRB progenitor rate will thus be based on the above prelim-

inary theoretical estimates which suggest that the expected fraction

of GRB progenitors with respect to the number of massive stars (8 �
m� � 100 M�) is f prog � 2–3 per cent for metallicity Zcrit � Z�/5

(see Woosley & Heger 2006; Yoon et al. 2006; see also Bissaldi

et al. 2007).

The absolute GRB progenitors rate per unit volume can be then

expressed as

Rprog(z) = fprog nSN SFR(z)Z<Zcrit
, (2)

where nSN ≡ ∫ 100

8
φ(m�)dm�/

∫ 100

0.1
m� φ(m�) dm� is the number of

massive stars ending in SNe per unit mass of formed stars; for the

adopted IMF, nSN ≈ 1.4 × 10−2 M−1� (it halves for a Salpeter IMF).

Thus, assuming f prog ≈ 0.02, the number of GRB progenitors per

unit mass of formed stars amounts to about 3.6 × 10−4 M−1� for

Zcrit � Z�/5.
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2.3 Long GRB number counts

The number of GRBs at redshift greater than z is

Robs
GRB(> z) ≈ fbeam

∫
z

dz′ Rprog(z′)
1 + z′

dV

dz′ , (3)

where V is the cosmological volume per unit solid angle and the

factor (1 + z)−1 accounts for time dilation effects due to redshift.

Moreover, recall that GRBs are believed to be anisotropic phenom-

ena owed to the flow collimation and/or relativistic beaming effects.

Thus, only a fraction fbeam of the estimated progenitors prompt emis-

sion would point towards us within an opening angle 2θ and could

then be observed as a GRB. For the events for which a (jet) opening

angle have been estimated1 assuming that an afterglow light curve

break owed to a jetted structure with a half angle θ (Ghirlanda et al.

2007), the median value θ ≈ 6◦ has been inferred (see also Guetta

et al 2005); correspondingly, f beam ≈ 5.5 × 10−3 (θ/6◦)2. The ex-

pected number of long GRBs per unit mass of formed stars within

metal-poor environments (Z � Zcrit) is thus k ≈ 1.5 × 10−6 (nSN/

1.4 × 10−2) (f prog/0.02)(θ/6◦)2 M−1� .

The long GRB number counts at flux limit Slim and redshift >z
are given as

Robs
GRB(> z)S>Slim

≈ fbeam

∫
z

dz′ Rprog(z′)
1 + z′

dV

dz′

∫ ∞

Llim

P(L) dL; (4)

in this expression, P(L) is the equivalent isotropic luminosity dis-

tribution (see Section 3.2 for details), and Llim is the luminosity

corresponding to the limiting flux, given by

L lim(z) = 4π d2
L(z)

K (z)
Slim, (5)

in terms of the luminosity distance dL(z) and K-correction K(z); note

that the latter quantity depends on the GRB spectra, see Section 3.2

for details.

3 R E S U LT S

3.1 Long GRB progenitor rates and redshift distribution

If progenitors of long GRBs are metal-poor massive stars, the metal

abundance Z of the cold gas wherein stars form is a crucial physical

parameter. Fig. 2 shows the cosmological SFR for the overall galaxy

population and for systems with Z � Zcrit ≈ 0.1 and 0.2 Z� as

function of redshift. The model prediction can be fitted with the

approximate formula

log

[
SFR(z)Z<Zcrit

M� yr−1 Mpc−3

]
= a + b (z − zmax)2, (6)

where a =−1.4 (−3.2), b =−3.8 (−3.2) × 10−2 and zmax = 4.5 (6.5)

for Zcrit = 0 (Z�/10).

The predicted overall SFR reproduces fairly well the extinction-

corrected data at 2 � z � 6, with reasonable correction for dust

extinction. At z � 1, the observed SFR is underestimated due to

the fact that intrinsically our model does not account for the contri-

bution of star formation in discs of present spiral galaxies. On the

other hand, only a minor fraction (less than 20 per cent) of long

GRBs with redshift determination (though it is difficult to quantify

the observational biases which certainly affect this percentage) are

1 These estimates maybe clearly affected by selection effects, though not

easy to quantify.

Figure 2. Cosmological SFR (left-hand side y-axis) and rate of long GRB

progenitors (right-hand side y-axis) as a function of redshift, computed with

no threshold on metallicity (blue line), and with thresholds at Z�/5 (red line)

and Z�/10 (green line). Data are from Schiminovich et al. (2005; circles),

Steidel et al. (1999; squares) and Bouwens et al. (2006; stars). The shaded
area illustrates the uncertainties due to the extinction correction; the data

have been rescaled down by a factor of about 2 to account for the adopted

IMF (see the text). In the hatched region, the SFR is dominated by discs of

present spiral galaxies, not treated in our model.

located at z � 1, while we are interested in the bulk of the (high

redshift) GRB population (cf. Section 2.1).

As expected the SFR in GRB hosts decreases with Zcrit, but the

effect is differential with redshift. Since the time-scale tcrit � 5 ×
107 yr to reach the critical metallicity threshold is almost indepen-

dent of mass and redshift (cf. Fig. 1), its ratio to the cosmic time

increases towards high z for all haloes. The fraction of overall cos-

mic star formation occurring in metal-poor protogalaxies raises with

redshift, and so does the predicted rate of GRB progenitors. The net

effect is that the expected redshift distribution of long GRB progen-

itors peaks to a redshift significantly higher than that of the cosmic

SFR. As a consequence, the higher the redshift the more directly

GRBs mirror the cosmic SFR. The fall off of star formation beyond

z � 10 in the galaxy formation model is a consequence of the effect

of the SN feedback; at increasing z, the decrease of star formation

∝M1.5
H is not balanced by the rise in the number of virialized haloes.

The long GRB progenitor rate shown in Fig. 2 can be integrated

over cosmic time to obtain the normalized redshift distribution re-

produced Fig. 3. For the case Zcrit = Z�/10, the fraction of progen-

itors is around 60 per cent at z � 4 and around 30 per cent at z �
6.

If the threshold Zcrit were to refer to stellar rather than interstellar

medium (ISM) metallicity, the time within which GRB progenitors

can be produced in any galaxy halo would be overestimated by a

factor of around 2. This would, in turn, double the duty cycle and,

hence, the number of progenitors. The difference in the predictions

worsens with higher Zcrit threshold, to the point where the threshold

might never be reached in small galaxies, which then can host GRB

progenitors over the whole Hubble time. Again the effect is differ-

ential with redshift, with a larger increase in the progenitor number

at higher z.

3.2 Long GRB counts with SWIFT

In order to assess whether a scenario in which single metal poor,

rotating massive stars are the GRB progenitors is tenable within the

adopted galaxy model framework, we estimated the predicted long
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Figure 3. Normalized redshift distribution of GRB progenitors, computed

with no threshold on metallicity (blue line), and with thresholds at Z�/5

(red line) and Z�/10 (green line).

Figure 4. GRB counts in the 15–150 keV band, computed with no threshold

on metallicity (blue line), and with thresholds at Z�/5 (red line) and Z�/10

(green line). Data (filled dots) are from the 2-yr SWIFT catalogue.

GRB counts which should have been detected by SWIFT (Gehrels

et al. 2004).

As discussed in Sections 2.2 and 2.3, we consider a number of

observed GRBs per unit mass k ≈ 1.9 × 10−6 M−1� and a metallicity

threshold Zcrit ≈ 1/10–1/5 Z�.

In order to estimate the observable number of GRBs as func-

tion of limiting flux, we assume that the prompt GRB luminosity

distribution can be characterized, independently of redshift, as

P(L) ∝ L−δ e−Lc/L , (7)

with a low-luminosity cut-off at Lc = 3 × 1051 erg s−1, and slope

δ = 2. This parametrization is consistent with those constrained by

Daigne, Rossi & Mochkovitch (2006) and Guetta, Piran & Waxman

(2005). As for the spectrum, we adopted – as commonly done –

a typical Band representation, with low- and high-energy slopes

α = −1 and β = −2.25, respectively. The peak energy is con-

sidered to follow a lognormal distribution (Preece et al. 2000) with

mean log Epeak,0 = 2.74 and dispersion σ = 0.3 dex (see Daigne et al.

2006). Although such spectral parameters have been estimated from

bright BATSE GRBs (Preece et al. 2000), this provides the simplest

hypothesis which – given the relatively small effect owed to the

K-correction – appears adequate for the consistency check we in-

tended to perform.

The predicted number counts are shown in Fig. 4 together with

the actual GRB SWIFT counts. A meaningful comparison can only

Figure 5. The redshift distribution of GRBs at the limiting flux (15–

150 keV) of 0.01 (dotted line), 0.1 (dashed line) and 1 ph s−1 cm−2 (solid

line), computed with a threshold on metallicity at Z�/10.

consider ‘bright’ SWIFT GRBs, namely above a photon flux of

1 ph s−1 cm−2, as below this level some degree of incompleteness

is expected (Band 2006).

As it is apparent from Fig. 4, a reasonable agreement with the

SWIFT counts can be obtained after the above assumptions. It should

be pointed out that we did not perform any fitting optimization, but

simply compared the counts predicted by the model with the data,

under the simplified and commonly adopted assumptions on the

luminosity and spectral energy GRB distributions outlined above.

A very interesting aspect concerns the fact that the counts can be

reasonably reproduced without requiring any GRB prompt luminos-

ity evolution (e.g. Daigne et al. 2006). This is a natural consequence

of the fact that our redshift progenitor distribution intrinsically peaks

at redshift higher than the cosmic star formation. Indeed, if we were

to reproduce the number counts with no metallicity threshold, the

number of GRBs per unit mass of formed stars (k) would have to be

a factor of about 10 lower, which would imply that the bulk of the

progenitors would be located at lower redshift.

The predicted redshift distribution of GRB events for different

flux limits is presented in Fig. 5. This shows that already at fluxes

S � 1 ph s−1 cm−2, we expect that 10 per cent of GRBs occur at z �
6. Of course such a fraction increases with decreasing limiting flux,

reaching around 30 per cent for S � 10−2 ph s−1 cm−2; since this

flux limit is below the present detectable level, the upper curve of

Fig. 5 represents the redshift distribution of all currently observable

GRBs.

More specifically, the model predicts that in two years 13 GRBs

at z � 6 and flux limit 1 ph s−1 cm−2 should have been detected by

SWIFT. So far, only 1 GRB has robust redshift estimate at z > 6.

On the other hand, while it is difficult to quantify the efficiency of

the redshift determination, especially for very high redshift events,

this could well be less than 10 per cent.

3.3 GRB host galaxies

The exploited galaxy formation model also enables us to directly

predict the properties of the GRB host galaxies (SFR, magnitude,

stellar mass, average metallicity, extinction) as a function of the

halo mass and age as well as the luminosity function (LF) and the

corresponding SFR distribution of the overall population.

As discussed in Section 2.1, during the evolution of individual

galaxies, the metallicity of the star-forming gas attains the threshold

Zcrit = 0.1–0.2 Z� quite rapidly, within tcrit ≈ 5 × 107, and this time-

scale is basically independent of the host halo mass.
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Figure 6. The redshift distribution of GRBs computed with a threshold on

metallicity at Z�/10 (solid line). The other curves illustrate the contribu-

tions from host galaxies with different halo masses: 109–1010 M� (triple-

dot–dashed line), 1010–1011 M� (dot–dashed line), 1011–1012 M� (dashed

line), 1012–1013 M� (dotted line).

Interestingly, since this is much shorter than the halo virialization

time-scale, tcrit � tH, the GRB rates for fixed halo mass directly

trace the cosmic rate of halo virialization. As a consequence, the

GRB hosts mostly reside within galaxy haloes in the mass range

109 � MH � 1011 M�, and only at z � 4, the fraction of hosts in

massive haloes MH � 1011 M� exceeds 10 per cent. The relative

number of GRBs for different halo masses as function of redshift is

shown in Fig. 6.

The predicted evolution of the SFR and stellar mass as functions

of galactic age and halo mass is reported in Fig. 1. For halo masses in

the range 1010–1013 M� and virialized at redshift z ≈ 6 the expected

SFR spans 0.3–103 M� yr−1, and the corresponding stellar masses

cover the interval 107 � M� � 2 × 1010 M�, with both quantities

scaling as (1 + z)3/2 at a given halo mass. The shortness of tcrit yields

high specific SFRs, Ṁ�/M� � 2 × 10−8, almost independently of

the virialization redshift.

Now we turn to consider more directly observable properties

of GRB hosts, such as the average ultraviolet (UV) extinction

A1350 and the corresponding extincted magnitude M1350 at 1350 Å,

again as function of galactic age. We recall that M1350 ≈ −18.6 −
2.5 log(Ṁ�/M� yr−1) + A1350 (see Appendix A). Fig. 1 reports

A1350, which scales with redshift as (1 + z)3/5, for various halo

masses virialized at redshift z = 6. A key prediction of the model

is apparent, namely that most GRB hosts are poorly extincted sys-

tems. Since the less massive hosts (MH � 1011 M�) largely outnum-

ber the most massive ones, the typical A1350 ranges between 0.01–

0.3 mag, corresponding to AV � 0.1. Larger dust extinction is pre-

dicted only for more massive hosts MH > 1011 M�, which exceed

a few per cent of the total GRB hosts only at z � 6 (cf. Fig. 1).

The AB absolute magnitude at 1350 Å, M1350, is reported in Fig. 7

for various halo masses and redshifts z = 3 and 6. The shaded

area indicates the absolute magnitude range where the UV high-z
LF is currently well sampled. It is clear that the UV luminosity is

practically not affected by dust, since the predicted extinction is low

for galaxy ages less than tcrit.

Fig. 7 also shows the age dependence of the expected Lyman

α luminosity at fixed halo mass. At variance with respect to the

behaviour of the UV magnitude, the Lyman α luminosity of hosts

in larger haloes is already declining for ages less than tcrit at z �
6, since Lyman α emission is sensitive not only to dust but also to

neutral hydrogen absorption.

Anyhow we expect a strict correlation between GRB hosts and

Lyman Break Galaxies (LBG) and Lyman α emitters (LAE). As the

galaxy model here adopted reproduces the high-redshift UV LF of

Figure 7. Extincted magnitude at 1350 Å and Lyman α luminosity of the

host galaxies of the GRB progenitors as a function of galactic age. Lines

as in Fig. 1. The first and third panels refer to redshift 3, the second and

forth ones to redshift 6. The shaded areas illustrate the ranges sampled in

the observed luminosity functions.

LBGs and LAEs (see Mao et al. 2007), it is meaningful to estimate

the UV LF expected for GRB hosts, namely by imposing the condi-

tion Z � Zcrit ≈ 0.1 Z�. The result is shown in Fig. 8. In general, the

conditional UV LF depends on the ratio between tcrit and the time

during which the host is brighter than a fixed absolute magnitude.

As expected, the metallicity cut depresses the UV luminosity distri-

bution, but this depression is minimal at the faint and bright ends,

and maximum at intermediate values, as expected from the effects

of the cut on M1350 in individual systems.

In particular, the time spent by galaxies in large haloes as LBGs

– before turning into strongly submm emitting galaxies because of

dust attenuation – is short and comparable with tcrit. At the faint end,

the luminosity of small hosts can fall below a fixed magnitude in

a relatively short time, as shown in Fig. 8 for hosts in haloes with

MH ≈ 1010 M�. It is also apparent that intermediate-mass haloes

and the corresponding intermediate-UV luminosity objects are sig-

nificantly more affected by the condition on metallicity. Obviously

at high redshift, for example, z ≈ 10, the cut reduces the visibility

time-scale only by a small fraction.

We can conclude that GRB hosts should well reproduce the LBG

LF at its faint and bright ends. Similar conclusions hold for LAE

LF.
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Figure 8. The comoving number density of galaxies as a function of UV magnitude at 1350 Å M1350 (left-hand panel) and SFR (right-hand panel). In both

panels, solid, dashed and dotted lines refer to redshifts z = 3, 6 and 10, respectively. The sets of blue and green curves refer to no metallicity threshold and

Zcrit = Z�/10. The data points reported in the left-hand panel are from Steidel, Pettini & Adelberger (2001; circles) and Yoshida et al. (2006; squares) at z ∼
3–4, Yoshida et al. (2006; diamonds) at z ∼ 4–5 and Bouwens et al. (2006; stars) at z ∼ 5–7.

The shortness of tcrit ≈ 50 Myr implies that the hosts must exhibit

quite large [α/Fe] enhancement. In fact, the cumulative fraction of

Type Ia SN (SNIa) explosions after an instantaneous burst of star

formation (1 at 12 Gyr) is negligibly small for 50 Myr (correspond-

ing to the lifetime of a 7 M� star), for a wide class of progenitor

models, i.e. Single Degenerates (SD) and Double Degenerates (DD)

exploders (Greggio 2005). At 0.1 Gyr, it reaches 10 per cent in the

most favourable case of close DD scheme. Furthermore, the typical

time-scales required to significantly decrease the [α/Fe] ratio from

its initial value produced by a single generation of massive stars

(approximately 0.4–0.6 depending on metallicity, IMF and stellar

yields, Gibson et al. 2003), is 0.3, 1 and 3 Gyr, for close DD, SD

and WIDE DD progenitors, respectively. Thus, while in the most

massive ellipticals the duration of the burst of star formation (around

0.3 Gyr) may be enough for a mild pollution by Fe-peak elements

(depending on the assumed scenario for SNIa progenitors), the lower

time-scale required to reach the critical metallicity implies that GRB

hosts should display the original pattern of heavy elements produced

by massive star chemical evolution. Note that the subsequent his-

tory of star formation decreases the initial α-enhancement more in

smaller than in larger objects (see Fig. 1). We conclude that at high

redshift, GRB hosts (and the similarly young LAEs) exhibit the

highest values of α-enhancement, even higher than those of high-z
quasar hosts and of their descendents, the massive elliptical galaxies.

Finally, we can also estimate the distribution of intrinsic SFRs.

It is worth stressing that generally the hosts with SFRs exceeding

a few ×102 M� yr−1 are significantly less than the overall galaxy

population. This suppression reflects not only the steep halo mass

function, but also the short duty cycle of GRB hosts following the

rapid metal enrichment in the initial stages of star formation. And

again, the effect gets more pronounced at decreasing z due to the

increased fraction of observable hosts which are below threshold.

On the other hand, the model allows for the existence of GRB hosts

with SFRs exceeding a few ×102 M� yr−1 within haloes endowed

with MH � 1012 M�: as shown in Figs 1 and 8, the fraction of

these hosts should amount to a few per cent of the total. Neverthe-

less, they should not have formed a large amount of stars M� �
1010 M�, exhibit specific SFR Ṁ�/M� � 10−8 yr−1 and should be

rather extincted by dust (see Fig. 1).

4 D I S C U S S I O N

The adopted galaxy formation scenario coupled with the metal-poor

collapsar model suggested by stellar evolution have been exploited

to infer the above results, which include GRB counts and redshift

distribution and the complete description of the relevant properties

of their hosts, such as SFR, mass in stars, chemical evolution in

the cold star-forming gas and the stellar component within individ-

ual galaxy haloes, with specified mass and formation redshift. In

this Section 4, these results are discussed in the light of presently

available observations and they are compared to previous studies.

4.1 GRB progenitor rates and GRB counts

The imposed metallicity threshold affects the GRB progenitor red-

shift distribution. Instead of peaking at around z ≈ 3 as in the case

without metallicity constrain, the threshold Zcrit = Z�/10 yields a

broad peak at z ≈ 6 (Fig. 2). A significant fraction of progenitors

are expected at high redshift: approximately 60 per cent at z � 4 and

approximately 30 per cent at z � 6 (see Fig. 3). This behaviour is

shared by all models which associate GRBs with metal-poor progen-

itors (e.g. Natarajan et al. 2005; Langer & Norman 2006; Salvaterra

& Chincarini 2007).

In particular, our findings are similar to those inferred by Langer &

Norman (2006), who explored the effect of a metallicity threshold in

the environment of GRBs, by adopting a mass-stellar metallicity re-

lation for galaxies and an average cosmic metallicity [Z] dependence

on redshift d[Z]/dz ≈ −0.15 dex. This law, derived to reproduce the

metallicity of stars in galaxies, has been extrapolated to the ISM.

This extrapolation implies that at z � 7 all cosmic star formation

occurs in environments with [Z] � 0.1 Z�, independently of the

processes occurring in galaxy haloes. As a result, the correspond-

ing rate of low-metallicity SNe peaks at z ≈ 6. In our model, the

combination of cooling and feedback processes implies that at z ≈
7 the SFR in cold gas with Z � 0.1 Z� amounts to about 40 per cent

of the cosmic one, due to the short time-scale for gas enrichment.

Therefore, despite of the quite different approach, the redshift dis-

tributions of GRB progenitors found by Langer & Norman (2006)

and Yoon et al. (2006) are very similar to ours, since their assumed

SFR for metal-poor stars peaks at z ≈ 6, similarly to our SFR in

cold gas environment (see Fig. 2).

The combination of the galaxy formation scenario with the low-

metallicity collapsar hypothesis for GRB events leads to a good

agreement of the predicted and observed (bright, S � 1 ph s−1

cm−2) SWIFT counts (see Fig. 4). This naturally follows – without

any tuning – from the derived number of GRB progenitors, under

quite simple and plausible assumptions on the GRB jet opening an-

gle, prompt gamma-ray luminosity distribution and spectral shape,

without requiring any luminosity evolution (see Sections 2.3 and

3.2).

The corresponding redshift distribution (see Fig. 5) implies that

at this bright limit the adopted model predicts about six GRBs per
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year, while only one GRB at z � 6 has been identified in two years

of SWIFT operation. As a matter of fact, only for about half of the

SWIFT bursts an optical afterglow has been observed, and for only

30 per cent it has been possible to infer a redshift estimate. It is

therefore quite reasonable to guess that this fraction could be about

10 per cent for bursts at z � 6 (see Fiore et al. 2007).

Recently, Salvaterra & Chincarini (2007) obtained a good formal

fit to the SWIFT counts down to S ≈ 0.4 ph s−1 cm−2, adopting as free

parameters the count normalization and the GRB LF (two further

parameters). They considered the case of low-metallicity environ-

ment by adopting a kinematical model and predict the occurrence

of only 1 GRB yr−1 for the SWIFT bright flux limit (1 ph s−1 cm−2).

Their result implies a redshift determination efficiency for GRBs

greater than 50 per cent.

It is worth noting that reaching completeness down to 0.1 ph−1

s−1 cm−2 would significantly increase the number of detected GRBs

and, in turn, allow to explore the Universe during the recombination

epoch, z � 8, with good statistical significance. A further decrease

in the flux limit to 0.01 ph−1 s−1 cm−2 would instead only increase

the GRB sample by a factor of 2; at this flux limit practically all

GRBs would be detected (see Figs 5 and 6).

In order to account for the trend of GRBs to be at substantial red-

shift, Firmani et al. (2005) proposed that the GRB LF is evolving.

Daigne et al. (2006) tested the hypothesis of an increasing efficiency

of GRB production by massive stars with increasing redshift. De-

tailed redshift distributions of GRBs will discriminate among these

different possibilities.

We can conclude that the hypothesis that metal poor, rapidly ro-

tating massive stars are the GRB progenitors (Woosley & Heger

2006; Yoon et al. 2006), is consistent with the observed SWIFT
counts. Clearly determinations of GRB redshifts will be extremely

informative on the progenitor and galaxy formation models.

We stress that the adopted galaxy formation scenario exploits

quite a standard IMF, independent of the gas metallicity. As a mat-

ter of fact, we showed that the cold star-forming gas is rapidly (t �
107 yr) enriched to the possible threshold around 3–5 × 10−4 Z�,

below which the IMF might be strongly biased towards high-mass

stars (see Bromm et al. 2001; Schneider et al. 2006). Therefore, the

possible contribution of Pop III stars with IMF strongly biased to-

wards high masses is not considered here. However, Bromm & Loeb

(2006) showed that at z ≈ 10 the contribution of Pop III to cosmic

SFR could be of the order of 1/10 of the overall SFR, becoming

dominant at z � 15; the GRB rate from Pop III massive stars would

grow correspondingly.

4.2 Properties of long GRB host galaxies

Though the idea that GRBs are preferentially located in metal-poor

environments is attractive, nevertheless observational estimates of

the metal content of host galaxies are still controversial. While most

of the results suggest that at high-z GRB hosts exhibit metallicity

Z � 0.1–0.3 Z� (Prochaska et al. 2007; Price et al. 2007), there are

claims of higher metal content (see Savaglio, Fall & Fiore 2003).

Once a metal-poor (Z ∼ 0.1 Z�) collapsar model is assumed, our

galaxy formation scenario predicts that GRB hosts are very young,

with age less than 5 × 107 yr, independently of the halo mass. This

young age directly mirrors the predicted short time-scale, tcrit ≈
5 × 107 yr, of chemical enrichment of the cold gas, independently

of mass. Such independence makes the GRB rate at high z a good

tracer of the virialization rate of relatively small galaxy haloes,

MH � ×1011 M� (see Fig. 6).

A definite prediction issuing from their youth is that GRB hosts

should exhibit high [α/Fe]-enhancement, as their metal content di-

rectly reflects the chemical yields of core collapse SNe. Indeed, in

the most favourable scenario of close DD progenitors, Type Ia SNe

(SNeIa) may halve the [α/Fe] ratio produced by the generations of

massive stars in a few 108 yr, somewhat longer than tcrit. Recent

observations by Prochaska et al. (2007) suggest that α/Fe ratios are

more than three times the solar value. Though differential depletion

could be responsible for the result, the young age of the hosts is a

much more palatable explanation.

The shortness of tcrit implies that star formation has not much

proceeded, i.e. the model predicts high specific star formation

Ṁ�/M� � 2 × 10−8 yr−1. Note that even the specific star forma-

tion is almost independent of halo mass. Specific SFRs at this

high level have been claimed by several authors (Fruchter et al.

1999; Le Floc’h et al. 2003; Christensen, Hjorth & Gorosabel 2004;

Castro Cerón et al. 2006; Savaglio, Glazebrook & Le Borgne 2006;

Micha�lowski et al. 2008). We caution that metal-poor gas may be

left over particularly in external regions of relatively old galaxies,

hosting a burst of star formation even if most stars already formed

and the gas was already metal enriched. However, we expect that

relatively evolved hosts endowed with significant stellar mass are

exceptions: GRB 020127 could be one of such cases (Berger et al.

2007). The vast majority of GRBs are hosted by small galaxies soon

after their first stars shine.

Since the hosts are very young galaxies, our model predicts that

they are gas-rich objects with large column density NH, once more

independently of their galaxy halo mass. Observations confirm the

tendency for GRB hosts to exhibit large NH (Prochaska et al. 2007;

Schady et al. 2007). At odd with these results, Tumlinson et al.

(2007) set stringent upper limits on the molecular hydrogen (H2)

abundance, concluding that the fraction of molecular hydrogen

H2/H I is extremely low in the examined hosts. These authors also

point out that the deficiency may be related to low dust abundance,

H2 formation being catalyzed on the surface of dust grains. An ad-

ditional possibility is the destruction of H2 by UV radiation. The

model here proposed predicts that GRB hosts are dust poor and

are pervaded by a intense UV radiation field; therefore, they are

expected to be quite poor in molecular hydrogen.

Concerning the UV emission, most of the hosts (MH � 1010 M�)

should have UV magnitude at 1350Å in the range −20 � M1350 �
−16. The most luminous hosts are bright enough to be included in

the already available LBG LF. Interestingly, Jakobsson et al. (2005)

have shown that GRB hosts are tracing the faint end of the LBG LF

at z ≈ 3.

The predicted host Lyman α luminosity should fall in the interval

2 × 1040 � LLyman α � 2 × 1042 erg s−1, only marginally overlapping

with the range explored by currently available Lyman α LF (Fig. 7).

Tanvir & Levan (2007) have shown that the UV rest-frame luminos-

ity distribution of Lyman α-selected galaxies and GRB hosts at z ∼
3 are quite similar. We note that Mao et al. (2007) pointed out that

LAE are expected to be younger, with lower stellar masses, more

compact and associated with less-massive haloes than LBGs.

In summary, observations support the model prediction that the

GRB hosts trace the faint end of the LF of LBGs and LAEs.

A further issue concerns the amount of dust in GRB hosts. While

most hosts have not been detected at mid-IR or submm wavelengths

(e.g. Tanvir et al. 2004; Le Floc’h et al. 2006; Priddey et al. 2006) in

a few cases submm and radio emission have been actually detected

(Micha�lowski et al. 2008). How can the existence of these hosts be

interpreted within the proposed scenario?
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The model predicts that only GRBs hosted in large galactic haloes

MH � 1012 M� can have significant dust absorption. These also

exhibit large SFR (Ṁ� � 100 M� yr−1) and relatively small stel-

lar mass (M� � 1010 M�). These properties correspond to those

inferred by Micha�lowski et al. (2008) for the submm and radio-

detected objects. The model also predicts that these systems should

represent only 1/20 of all the GRB hosts at z ≈ 1 − 2 and practically

disappear at z � 5.

We stress that the conclusions regarding the host properties refer

to the average GRB population, and do not exclude the possibility

that individual GRBs might reside in low-metallicity local regions

within their host (as might be the case for GRB 060206, Fynbo et al.

2006).

The above findings have been derived in the framework of a galaxy

formation scenario, where a key role is played by the energy feed-

backs provided by SNe and quasars. However, the fast chemical

enrichment leading to gas metallicity above Zcrit ≈ 0.1 Z� takes

place at early galactic times, before quasar feedback becomes ef-

fective. On the other hand, the stellar feedback is very relevant since

it regulates the star formation activity even at early galactic times.

5 S U M M A RY

We have explored the cosmological consequences of the assumption

that metal poor and rapidly rotating single stars are the progenitors

of most long GRBs. Our main conclusions are as follows.

(i) The overall long GRB rate amounts to approximately

300 yr−1 sr−1. Bright SWIFT counts are reproduced by assuming

a non-evolving prompt (gamma-ray) luminosity distribution.

(ii) Above a flux limit of 1 ph s−1 cm−2 about 30 per cent of GRBs

are predicted to be at z � 6 and 10 per cent at z � 8, amounting to

approximately 13 for two years of SWIFT operation. Only one have

been located above z � 6 in two years: this would require a redshift

determination efficiency around 10 per cent, to be compared with

the 30 per cent efficiency for events at lower z.

(iii) The host galaxies are very young, with age less than 5 ×
107 yr, gas rich (large column densities) but poorly extincted systems

(AV � 0.1), because of their chemical immaturity. Only the few

per cent of hosts associated with large haloes (MH � 1012 M�)

have large extinction (AV � 0.3), high SFR (Ṁ� � 100 M� yr−1)

and can be detected at relatively bright submm flux levels. This

result has implications for the origin of ‘dark’ GRBs [about 1/3 of

SWIFT GRBs can be considered ‘dark’, e.g. Schady et al. (2007)],

lacking a detection of the optical afterglow. Dark GRBs should

largely comprise a population of high-z events, rather than highly

extincted systems.

(iv) The young age of hosts implies that (i) the specific SFR

is high (Ṁ�/M� � 2 × 10−8) and (ii) the ratios of abundance of

different chemical elements are just those of the respective chemical

yields of SNeII, i.e. large α-enhancements should be the rule.

(v) Most of the hosts (109 � MH � 1011 M�) have UV magni-

tude in the range −20 � M1350 � −16 and Lyman α luminosity in

the range 2 × 1040 � LLyman α � 2 × 1042 erg s−1. They trace the

formation of small galaxies in small haloes, and as a consequence

the faint end of the LBG and LAE LF. These hosts would reionize

the Universe at z ≈ 7 (see Mao et al. 2007).
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A P P E N D I X A : A S I M P L E R E C I P E F O R S TA R
F O R M AT I O N A N D D U S T O B S C U R AT I O N I N
P ROTO G A L A X I E S

Granato et al. (2004) have proposed a model for early galaxy forma-

tion, in which the most relevant processes (gas cooling and inflow,

star formation and gas accretion on to BH, stellar and quasar feed-

back, gas outflow) are included in a set of equations, that can be

solved with straightforward numerical computations. In this Ap-

pendix, we present a simplified version of the model describing the

SFR, mass in stars and chemical evolution, which are relevant for

this work. The analytical formulae presented below are very good

approximations of the results found by solving the full set of equa-

tions of the model (for details see Lapi et al. 2006; Mao et al. 2007).

We stress that, because of their fundamental character, the equa-

tions listed below describe the main aspects of star formation and

chemical evolution in protogalaxies at high redshift.

When a DM halo of mass MH reaches the virial equilibrium, it con-

tains a mass Minf(0) = f cosm MH of hot gas at the virial temperature,

f cosm ≈ 0.18 being the mean cosmic baryon to DM mass-density

ratio. The gas in virial equilibrium flows towards the central re-

gion at a rate Ṁcond = Minf/tcond where the condensation time-scale

tcond = max [tcool(RH), tdyn(RH)], is the maximum between the dy-

namical time and the cooling time at the halo virial radius RH. When

computing the cooling time, a clumping factor C in the baryonic

component is also included: C � 7 implies tcool(RH) � tdyn(RH) on

relevant galaxy scales at high z. By defining such a condensation

time, we implicitly neglect the effect of angular momentum. How-

ever, angular momentum decays on a dynamical friction time-scale

tDF ≈ 0.2 (ξ/ln ξ ) tdyn, where ξ = MH/Mc, and Mc is the typical

mass cloud involved in major mergers (e.g. Mo & Mao 2004); ma-

jor mergers, which are very frequent at high redshift and in the

central regions of haloes, imply ξ ∼ a few.

The model also assumes that quasar activity removes the hot gas

from the halo through winds at a rate ṀQSO
inf ; the equation for the

diffuse hot gas is then

Ṁinf = −Ṁcond − ṀQSO
inf . (A1)

The cold gas is piled up following the cooling of hot gas, is

consumed by star formation (Ṁ�), and is removed by the energy

feedback from SNe (ṀSN
cold) and quasar activity (ṀQSO

cold ):

Ṁcold = Ṁcond − (1 − R)Ṁ� − ṀSN
cold − ṀQSO

cold , (A2)

where R is the fraction of gas resituated to the cold component by

the evolved stars. Under the assumption of instantaneous recycling,

R ≈ 0.54 for the adopted IMF (R ≈ 0.3 for a Salpeter IMF); this

value of R is an upper limit, since only a fraction of evolved stars

have a significant mass loss in the evolutionary phases considered

here. However, the relevant results are only very weakly sensitive to

the chosen value, in the physically allowed range. The mass of cold

baryons that is going to be accreted on to the central supermassive

BH is small enough to be neglected in the above equation (see

Granato et al. 2004).

Stars are formed at a rate

Ṁ� =
∫

dMcold

max(tcool, tdyn)
≈ Mcold

t�
, (A3)

where now tcool and tdyn refer to a mass shell dMcold, and t� is the

star formation time-scale averaged over the mass distribution.

The rate of cold gas removal due to SNe is parametrized as

ṀSN
cold = βSN Ṁ�, (A4)
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where the averaged efficiency

βSN = nSN εSN ESN

Ebind

≈ 0.6

(
nSN

1.4 × 10−2/M�

)

×
(

εSN

0.05

)(
ESN

1051 erg

)(
MH

1012 M�

)−2/3(
1 + z

7

)−1

(A5)

depends on the number of SNe per unit solar mass of condensed stars

nSN, the energy per SN available to remove the cold gas εSNESN and

the specific binding energy of the gas within the DM halo, Ebind.

Following Zhao et al. (2003) and Mo & Mao (2004), the latter

quantity has been estimated, for z � 1, as Ebind = V2
H f (c)(1 +

f cosm)/2 ≈ 5.6 × 1014 (MH/1012 M�)2/3 [(1 + z)/7] cm2 s−2. Here,

VH is the halo circular velocity at the virial radius and f (c) ≈ 2/3 +
(c/21.5)0.7 ∼ 1 is a weak function of the halo concentration c∼ a few.

Lapi et al. (2006) have shown that high-redshift LFs of quasars and

galaxies constrain εSN ≈ 0.05; the same value is required in order

to reproduce the fundamental correlations between local ellipticals

and dormant BHs.

By analysing the results of the numerical solution of the full set

of equations by Granato et al. (2004), it is apparent that the term

of quasar feedback is important only during the final stage of BH

growth, around two to three e-folding times (approximately 108 yr)

before the peak of quasar luminosity, when the energy discharged

by the quasar is so powerful to unbind most of the residual gas,

quenching both star formation and further accretion on to the su-

permassive BH. The time integral over the quasar bolometric power

exceeds the gas binding energy after

�tburst ≈ 2.5 × 108

(
1 + z

7

)−1.5

F
(

MH

1012 M�

)
yr, (A6)

where F (x) = 1 for x � 1 and F (x) = x−1 for x � 1. Therefore,

a good approximation for the star formation history is obtained by

neglecting the quasar feedback effect in equations (A1) and (A2),

and by abruptly stopping star formation and accretion on to the

central BH after � tburst since halo virialization.

Then equations (A1) and (A2) can be easily solved, with the

outcome that the infalling mass declines exponentially as Minf(t) =
Minf(0) e−t/tcond , while the SFR evolves according to

Ṁ�(t) = Minf(0)

tcond(γ − 1/s)
[e−t/tcond − e−s γ t/tcond ], (A7)

with γ ≡ 1−R+βSN. The quantity s ≡ tcond/t� is the ratio between

the time-scale for the large-scale infall estimated at the virial radius

and the star formation time-scale in the central region; it corresponds

to s ∼ 5, both for an isothermal or NFW (Navarro, Frenk & White

1997) density profile.

The following expression well approximates the condensation

time-scale (see Mao et al. 2007):

tcond ≈ 4 × 108

(
1 + z

7

)−1.5 (
MH

1012 M�

)0.2

yr. (A8)

The scaling with redshift reflects the dependence of the dynamical

time; the weak dependence on MH reproduces the impact of the en-

ergy feedback from the quasar on the infalling gas, which is stronger

for more massive haloes hosting more massive BH.

In order to compute the metal content of the cold gas, one has

to take into account the infall of primordial abundance gas, the

enrichment due to earlier generations of stars and outflows driven

by winds generated by SNe and quasars. We assume, as common,

that in the cold gas, there is an instantaneous mixing of metals

released by stars. The corresponding simplified equation reads

Żcold(t) = Z inf − Zcold

tcond

Minf(t)

Mcold(t)
+ RZ (t)

t�
, (A9)

where

RZ (t) ≈
∫ msup

�

m�,t

dm� m� qZ (m�) φ(m�)
Ṁ�(t − τm�

)

Ṁ�(t)
. (A10)

The IMF is denoted by φ(m�) and qZ (m�) is the metal yield of stars

of mass m�. From Fig. 1, it is apparent that metallicity rapidly (in a

time less than a few 108 Gyr) increases from primordial content to

the limiting value

Zcold ≈ s

sγ − 1
AZ , (A11)

with AZ = 0.043 for the adopted IMF (AZ = 0.021 for the Salpeter

IMF).

In an early galaxy evolution, an important role is played by dust

that absorbs the UV emission and re-radiates it in the mid- and far-

IR band. The amount of dust in a galaxy is expected to be correlated

with that of cold gas (or SFR, see equation A3) and with metallicity.

Mao et al. (2007) have shown that it is possible to describe the

luminosity-reddening relation found by Shapley et al. (2001) for

z ≈ 3 LBGs with the simple law

A1350 ≈ 0.35

(
Ṁ�

M� yr−1

)0.45 (
Z

Z�

)0.8

, (A12)

where A1350 is the attenuation at 1350 Å. By inserting in the above

equation the SFR and metallicity, we get the attenuation as function

of time. Then the UV magnitude is simply given by

M1350 ≈ −18.6 − 2.5 log

(
Ṁ�

M� yr−1

)
+ A1350. (A13)

This simplified treatment of dust attenuation proved to be quite

a good approximation for low-luminosity LBGs and LAEs, which

exhibit low attenuation (Mao et al. 2007).

On the other hand, for massive haloes attenuation is large soon af-

ter 108 yr; this corresponds to the quick appearance of very luminous

submm-selected galaxies. For these systems, the model by Granato

et al. (2004) includes a sophisticated treatment of dust attenuation

through the GRASIL code (Silva et al. 1998).

The scheme presented here traces the evolution of single galaxy

haloes as function of time, given their mass and formation redshift.

The results can be interfaced to the formation rate, d2 NST/dMH dtz
(see Section 2.2) yielding LFs, counts and redshift distribution for

spheroidal galaxies. Moreover, the quasar LF can also be reproduced

(Lapi et al. 2006), as well as the LF of LBGs and Lyman α emitters

(Mao et al. 2007). A summary of the parameters used by the model

and of its achievements is presented in tables 1 and 2 of Lapi et al.

(2006).
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