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ABSTRACT

In this paper, we extend the Bayesian model fitting shape measurement method presented in
Miller et al., and use the method to estimate the shear from the Shear TEsting Programme
simulations (STEP). The method uses a fast model fitting algorithm that uses realistic galaxy
profiles and analytically marginalizes over the position and amplitude of the model by doing
the model fitting in Fourier space. This is used to find the full posterior probability in ellipticity.
The shear is then estimated in a Bayesian way from this posterior probability surface. The
Bayesian estimation allows measurement bias arising from the presence of random noise to
be removed. In this paper, we introduce an iterative algorithm that can be used to estimate the
intrinsic ellipticity prior and show that this is accurate and stable.

We present results using the STEP parametrization that relates the input shear γT to the
estimated shear γM by introducing a bias m and an offset c: γM − γT = mγT + c. The average
number density of galaxies used in the STEP1 analysis was 9 per square arcminute, for STEP2
the number density was 30 per square arcminute. By using the method to estimate the shear
from the STEP1 simulations we find the method to have a shear bias of m = 0.006 ± 0.005 and
a variation in shear offset with point spread function type of σc = 0.0002. Using the method to
estimate the shear from the STEP2 simulations we find that the shear bias and offset are m =
0.002 ± 0.016 and c = −0.0007 ± 0.0006, respectively. In addition, we find that the bias and
offset are stable to changes in the magnitude and size of the galaxies. Such biases should yield
any cosmological constraints from future weak lensing surveys robust to systematic effects in
shape measurement.

Finally, we present an alternative to the STEP parametrization by using a quality factor that
relates the intrinsic shear variance in a simulation to the variance in shear that is measured
and show that the method presented has an average of Q � 100 which is at least a factor of
10 times better than other shape measurement methods.

Key words: gravitational lensing – methods: data analysis – methods: numerical – methods:
statistical – cosmology: observation.

1 I N T RO D U C T I O N

It has been shown that weak lensing has the potential to become
one of our most powerful cosmological probes (see Munshi et al.
2007 for a recent review of weak lensing; DETF, Albrecht et al.
2006; Peacock et al. 2006). By using redshift and weak lensing

�E-mail: tdk@astro.ox.ac.uk

information, 3D weak lensing techniques have been developed that
are particularly sensitive to the dark energy equation of state (for ex-
ample, Heavens, Kitching & Taylor 2006; Taylor et al. 2007). Since
the promise of weak lensing is now firmly established one must
begin to focus on refining the technique and addressing systematic
issues.

The determination of galaxy shape, and the inference of shear
across an ensemble of galaxies for use in weak lensing is a chal-
lenging problem with a rich history. However recent studies of weak
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lensing systematic effects (e.g. Amara & Refregier 2007; Kitching
et al. 2008a) have shown that in order to fully utilize future weak
lensing surveys (e.g. Pan-STARRS, Kaiser et al. 2002; SNAP, Kim
et al. 2002; LSST, Tyson et al. 2003; DUNE, Refregier et al. 2006)
in the determination of cosmological parameters, such as the equa-
tion of state of dark energy, the bias in the estimated shear as a result
of any difference between a galaxy’s true shape and the measured
shape needs to be �e/e < 5–8 × 10−3 (Amara & Refregier 2007;
Kitching et al. 2008a). Currently-used methods, tested on simula-
tions, have at best a 10−2 bias (Heymans et al. 2006; Massey et al.
2007b).

In this paper, we expand upon and apply to simulations the
new shape measurement method LENSFIT1 presented in Miller et al.
(2007), a method which uses realistic galaxy profiles and fits these
models to images using a fast fitting algorithm. The fast model
fitting approach allows the entire posterior probability surface in el-
lipticity to be calculated. By including a prior the estimation of the
shear can then be done in a fully Bayesian way. It was shown that a
Bayesian estimator should be unbiased, given that realistic models
and an accurate and correct intrinsic ellipticity prior are used. A
new bias was discovered as a result of assuming that the prior is
centred on zero-shear, that must be assumed given no knowledge
of the intrinsic ellipticity distribution, but it was shown that this
bias can be exactly corrected for to first order within the Bayesian
formalism.

The simulations analysed in this paper are the publicly avail-
able simulations from Shear TEsting Programme (STEP).2 The
published STEP papers present the accuracy with which available
shape measurement methods can recover the input shear from sim-
ulations of varying complexity. STEP1 (Heymans et al. 2006) used
simulated galaxies that consist of a de Vaucouleurs bulge plus an
exponential disc (in varying degrees), these are provided in sets of
images with varying point spread functions (PSFs) and shear, there
are 64 images covering five shear values for each of five different
PSF types. In STEP2, Massey et al. (2007b) used shapelet generated
galaxies and exponential galaxies, these are provided in sets of 128
images for each of six different PSFs.

In Miller et al. (2007), the results shown were for individual
galaxy ellipticities, in this paper, we present results for shear. The
results presented compare the estimated shear found using our tech-
nique with the known input shear of the simulations. Sections 2 and
3 review the shape measurement method, as well as extend the
development by introducing a new way to determine the prior in-
trinsic ellipticity distribution from data. In Section 4, we describe
the simulations in more detail and present the results from STEP1
and STEP2, respectively. We present a new way to characterize a
shape measurement method’s performance in Section 5. Discussion
and conclusions will be presented in Section 6.

2 OV E RV I E W O F L E N S F I T

This section presents an overview of the LENSFIT shape measurement
method, for an full description see Miller et al. (2007).

The method presented here combines two innovations in the
shape measurement problem. First, the shear estimation is done
in a fully Bayesian way, given a likelihood in ellipticity generated

1 For further information, and to download publicly available code, please
go to http://www.physics.ox.ac.uk/lensfit
2 http://www.physics.ubc.ca/∼heymans/step.html

by some procedure and a prior on ellipticity it is possible to con-
struct a shear estimator that is in principle unbiased. Secondly, we
use realistic galaxy profiles to generate a full posterior probability
surface in ellipticity.

The Bayesian shear estimation formalism can be applied to any
shear measurement method that can produce a full likelihood surface
in ellipticity. Similarly the fast model-fitting algorithm could be
applied to any choice of model.

2.1 Overview of Bayesian galaxy shape measurement

For each galaxy a (Bayesian) posterior probability in ellipticity can
be generated

pi(e| yi) = P(e)L( yi |e)∫
P(e)L( yi |e)de

, (1)

where P(e) is the ellipticity prior probability distribution and
L( yi |e) is the likelihood of obtaining the ith set of data values
yi given an intrinsic ellipticity e.

We would hope that by considering the summation over the data
the true distribution of intrinsic ellipticities can be obtained from
the data〈

1

N

∑
i

pi(e| yi)

〉
=

∫
d y

P (e)L ( y|e)∫
P (e)L ( y|e) de

∫
f (e)ε( y|e)de,

(2)

where ε( y|e) is the probability distribution for the data y given an
ellipticity e and f (e) is the true (intrinsic) ellipticity distribution. On
the right-hand side (RHS) we are integrating over the probability
distributions to obtain the expectation value of the summed posterior
probability distribution for the sample. This will be achieved under
the conditions that ε( y|e) = L( y|e) andP(e) = f (e) (assuming the
likelihood is normalized,

∫
L( y|e)d y = 1) from which we obtain〈

1

N

∑
i

pi(e| y)

〉
= P (e) = f (e). (3)

This is the equation that highlights the essence of the Bayesian
shape measurement method, given a prior that matches the intrinsic
distribution of ellipticities the estimated posterior probability should
be unbiased. It may appear at first that having an accurate and correct
measure of the prior distribution before estimating the ellipticity of
galaxies may represent petitio principii, however this was partially
addressed in Miller et al. (2007) and we extend and validate the
issue of creating the prior in Section 3.

Throughout this paper we assume a galaxy’s ellipticity e is defined
by relating the axial ratio β and orientation φ of the galaxy via(

e1

e2

)
= 1 − β

1 + β

(
cos[2φ]

sin[2φ]

)
. (4)

The ellipticity can be related to the intrinsic galaxy ellipticity es in
the weak lensing regime via:

e = es + g

1 + g�es (5)

from Seitz & Schneider (1997), where e is a complex variable and
g, g� are the reduced shear and its complex conjugate, respectively.
The complex ellipticity is represented in terms of two components
e = e1 + ie2. In this formalism, we expect that 〈e〉 =g for an unbi-
ased sample for which the average intrinsic ellipticity is zero, 〈es〉
= 0. As such we will use 〈e〉 for a sample of galaxies as our esti-
mator of shear g. For a population of galaxies, we integrate over the
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probability distribution in ellipticity, f (e), to obtain the expectation
value of ellipticity 〈e〉 = ∫

ef (e)de. In the Bayesian formalism,
we can write a similar expression for an individual galaxy if we
know its Bayesian posterior probability distribution, and hence for
a sample of N galaxies we can evaluate the sample mean as

〈e〉 = 1

N

∑
i

∫
epi(e| yi)de. (6)

This allows error estimates to be made on a galaxy-by-galaxy basis
and each individual contribution to the signal to be evaluated.

In measuring shear we cannot know in advance the correct prior
to apply, even if we know the intrinsic unsheared ellipticity prior
probability distribution, because the amount of shear varies over the
sky in a way that we are attempting to measure. We must therefore
use a prior that contains zero shear. The result of having a zero-
shear prior introduces the need to add a weight to the ellipticities
to counter the effect of this assumption. This shear sensitivity is
an effect that has been identified by a number of shape measure-
ment methods, for example Bernstein & Jarvis (2002), Luppino
& Kaiser (1997), Kaiser (2000) and Massey et al. (2007a) (it has
also been called shear ‘polarizability’ or ‘responsivity’). Crucially
the Bayesian methodology allows the magnitude of this effect to
evaluated on a galaxy-by-galaxy basis directly from the data.

The shear sensitivity for an individual galaxy may be quantified
as |∂〈e〉i/∂g|: a measure of how the measured mean ellipticity 〈e〉i
for the ith galaxy depends on the shear g. For measurements on
noisy data we expect the sensitivity to be reduced from the ideal
value of unity. For a given sample of N galaxies the estimator of the
shear is now given by

ĝ =
∑N

i 〈e〉i∑N

i |∂〈e〉i/∂ g| . (7)

This is the key equation used to estimate the shear. The shear sen-
sitivity for an individual galaxy falls within in the range 0 < ∂〈e〉i/
∂g ≤ 1, for a measurement completely dominated by noise ∂〈e〉i/
∂g ∼ 0.

The shear sensitivity can be calculated to first-order using the
likelihood and the prior probability distributions for an individual
galaxy using

∂〈e〉
∂ g

� 1 −
∫

(〈e〉 − e)L(e)
∂P
∂e

de∫
P(e)L(e)de

. (8)

In the case that P(e) is fitted with a function, ∂P
∂e can be evaluated

analytically.
The summation over the posterior probabilities, used here to find

the mean ellipticity and hence shear of a sample, could be replaced
by a convolution of all the posterior probability distributions. For a
set of N galaxies with mean ellipticity 〈e〉, this would yield the prob-
ability distribution P(N〈e〉) whose expectation value is given by N
times the mean, that we calculate here by summation. This would be
a useful procedure for making weak-lensing maps. For cosmologi-
cal studies, we may be more interested in quantities such as shear
variance or the shear power spectrum, for which the calculation of
a full posterior probability distribution is less straightforward. We
leave a full discussion of this issue for a future publication.

Alternatively, the LENSFIT method can be used in exactly the same
way as any traditional shape measurement method. For example a
shear estimator can be calculated on a galaxy-by-galaxy basis from
the posterior probability distribution, and the shear variance, E and
B modes and shear power spectrum can then be calculated using
standard procedures.

2.2 Overview of fast realistic galaxy model fitting

The method we use to evaluate the likelihood of a galaxy’s ellipticity
L(e) is to fit a model surface brightness profile to each galaxy
image (earlier shape measurement methods that use model fitting are
presented in Bridle et al. 2002; Kuijken 1999). For a simple model
galaxy whose profile is parametrized by a characteristic radius the
total number of free parameters that need to be estimated is six:
position (two parameters), ellipticity (two parameters), brightness
and the radius. The key innovation of the work presented in Miller
et al. (2007) is that if the model fitting is done in Fourier space
then the marginalization over position and brightness can be done
analytically, therefore speeding up the model estimation, leaving
only the radius to be marginalized over to obtain the ellipticity
likelihood L(e). By using fast Fourier transform techniques the
method can provide a full likelihood surface for an individual galaxy
in ∼1 s (on a standard 2 GHz CPU).

As shown in Miller et al. (2007) the likelihood of a model galaxy
being the correct fit to a galaxy image can be written as

L ∼
√

2π

A
e− ∑

y2
i
/2σ 2

i eAB2/2. (9)

This has been analytically marginalized over the amplitude of the
model, A and B are summations over combinations of the data yi

and model ym
i defined in Miller et al. (2007) and σi is the statistical

uncertainty of the data.
To marginalize over position it is more straightforward to work

in Fourier space, where the data and model vectors can be rewritten
as

yi =
∑

k

yke−ik.xi and ym
i =

∑
k

ym
k e−ik.xi . (10)

One can simplify the various summations by assuming that faint
galaxies are being used in weak lensing measurement, such that σi

is dominated by the background photon shot noise and is constant for
all pixels. This assumption of spatially invariant noise is applicable
to faint galaxies but not for very bright galaxies, but since weak
lensing is concerned with faint galaxies this assumption is valid.
To take into account the effect of position uncertainty a shift X is
introduced into the model position, so that the new model becomes

ym
i

′ =
∑

k

ym
k e−ik.xi e−ik.X . (11)

Substituting into equation (9) the likelihood becomes

L ∝ exp

[ |h(X)|2
2σ 2

∑
ym

i
2

]
, (12)

where h(X) is the cross-correlation of the data yi with the model ym
i .

To marginalize over X Miller et al. (2007) adopt a prior on position
chosen to be a Gaussian centred on some previously estimated
position and that falls off to zero at large distances.

If the cross-correlation function has the Gaussian form h =
h0 exp [−(r − r0)2/s2] and we approximate the likelihood itself as a
Gaussian, then it can be shown that the likelihood, now marginalized
over position and amplitude, becomes

L ∝ πs2

2b2

eβ

β
e−r2

0 /2b2
, (13)

where β depends on the amplitude of the cross-correlation (see
Miller et al. 2007), r0 is the nominal galaxy position, s is the variance
of the cross-correlation and b is the prior uncertainty on the galaxy
position. This is another key equation which is used in the LENSFIT

implementation, that is, if the width s, amplitude h0 and centroid
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r0 of the cross-correlation function can be determined then the
marginalized likelihood may be estimated from equation (13).

For our model we choose an exponential profile which has been
shown to be a good estimate of realistic galaxy profiles. For faint
galaxies, exponential and de Vaucouleurs profiles are indistinguish-
able. The STEP simulations present a real challenge of this choice
since STEP1 consists of composite exponential+de Vaucouleurs
profiles and STEP2 uses complex galaxy morphologies. To create
a sheared set of galaxy models the axial ratio β and orientation of
the model φ are related to ellipticity using equation (4). So in the
case of an exponential profile, equation (13) yields a likelihood as
a function of e1, e2 and the scale radius of the model L(e1, e2, r).
To obtain the likelihood as a function of ellipticity, so that it can
be used in equation (7), we analytically marginalize over the radius
using a simple summation

L(e1, e2) =
∫

drL(e1, e2, r) ≈
rmax∑
rmin

L(e1, e2, r)�r, (14)

where rmin and rmax are some minimum and maximum that are
numerically justified in the following Section 2.3.

2.3 Numerical range and resolution

Here we show how the resolution and range in the model parameter
variables are chosen. We choose a grid in e1, e2 and r to search
the parameter space, however this is not essential and one could
imagine using a Monte Carlo Markov Chain (MCMC) if this was
preferable in terms of speed or accuracy. The level of accuracy with
which the parameter space needs to be characterized, and hence the
range and resolution of the parameters needed, depends on the data
set used, and particularly on the signal-to-noise ratio of the galaxies.
For example, in the case that the likelihood surfaces are sharp delta
functions, the parameter space may need to have a finer sampling
than if the likelihood surfaces are broad. Since weak lensing surveys
target faint galaxies, the likelihood surfaces should dominantly be
broad so that a finite grid sampling should be the fastest method.

The only numerical parameters that need to be specified are, in
the case of a grid search in (e1, e2, r), the resolution in ellipticity
�e and the range and resolution in the scale factor rmin, rmax and
�r. Fig. 1 shows the values of the parameters that are used in
Bayesian shear estimation (〈e〉, 〈e2〉 and ∂〈ei〉/∂gi), measured from
the LENSFIT code, for various values of the model parameter’s range
and resolution. To ensure that the code is numerically stable we use
values of �e = 0.1, �r = 0.2 pixels and rmax = 10 pixels throughout
the remainder of this paper. For rmax and �r, these values are well
within the numerically stable regime. We choose these values so that
the code is assured to be robust, when marginalizing over the radius,
as a result of this built-in redundancy. Some additional redundancy
could be built-in at the expense of computational time; the time
to find the full posterior likelihood scales as 1/�e2. We set the
minimum radius investigated to rmin = 0, any objects for which the
most likely value is r ≡ 0 we identify as stars and do not use in
the average shear estimation. The values of �e, �r and rmax imply
that our 3D parameter space in (e1, e2, r) has less than 20 × 20 ×
50 points for which the likelihood must be evaluated. This is much
less than the number of MCMC evaluations that would need to be
performed in order to fully characterize the three dimensional (e1,
e2, r) parameter space.

We also present an investigation into the marginalization over
the position of the centroid of the galaxy. The results from LENSFIT

should be robust to inaccuracies in the centroid position of any

Figure 1. Variation in the expectation value of the ellipticity 〈ei〉 (black,
lowest lines), the variance in ellipticity 〈e2

i 〉 (green, middle lines) and the
shear sensitivity dei /dgi (red, upper lines) for γ 1 (solid lines) and γ 2 (dashed
lines) as a function of the model parameter values used in the LENSFIT code.
The y-axis’ displays the value of each of these quantities 〈ei〉, 〈e2

i 〉 and
∂〈ei〉/∂gi individually; we scale the sensitivity by 1/10 to fit the values
within the y-axis range. The top left-hand panel shows the result of changing
the resolution in ellipticity �e. The top right- and bottom left-hand panels
show the result of changing the range rmax and the resolution �r of the
model galaxy radius. As each model parameter is varied the others are kept
at the values of �e = 0.1, �r = 0.2 pixels and rmax = 10 pixels, which are
the values that we use in the remainder of the paper. The lower right-hand
panel shows how 〈ei〉, 〈e2

i 〉 and ∂〈ei〉/∂gi vary as the nominal catalogue
position of every galaxy is offset. This tests the ability of the method to
marginalize over the position of the galaxy centroid. The simulation used
was the STEP1 PSF 0 zero-shear image, the results are for the average over
the whole galaxy ensemble.

galaxy, since the method analytically marginalizes over galaxy po-
sition uncertainty (Miller et al. 2007). In Fig. 1, we introduce a con-
stant offset in the position of every galaxy from the actual galaxy
position. It can be seen that the method is relatively insensitive
up to a constant offset of ∼10 pixels so that when estimating the
position of galaxies any source extraction routine could misplace
galaxies by up to this amount with no major effect on the shear
estimation (this result was also presented in Miller et al. 2007; here
we additionally show Fig. 1). In reality source extraction routines
such as SEXTRACTOR (Bertin & Arnouts 1996) or HFINDPEAKS (part
of the IMCAT3 software package) have accuracies much better than
this (Heymans et al. 2006).

3 www.ifa.hawaii.edu/∼kaiser/imcat/content.html
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Bayesian galaxy shape measurement 153

In the implementation of the method we extract a small postage-
stamp image about each galaxy. This postage stamp size then de-
termines the size of the model and PSF. We use a postage stamp
size of 32 × 32 pixels, that is the same for the model, PSF and
galaxy images. We reject any galaxies that are in a close pair,
that is, ones which have one or more other galaxies within their
postage stamp. It is possible to intelligently reject close galaxy
pairs based on signal-to-noise criterion, for example, Schrabback
et al. (2007) and Leauthaud et al. (2007) employ more sophisticated
close-pair rejection algorithms, however we have not implemented
this technique here. The postage stamp size was optimized for the
STEP simulations; if the postage stamp size is too large then too
many galaxies will have ‘close neighbours’ (i.e. another galaxy or
star in the postage stamp) and be rejected, if too small then the
largest galaxies will not fit into the postage stamp. We found that a
32 × 32 stamp was the smallest stamp in which every galaxy could
fit,4 allowing for the postage stamps to be a factor of 2 larger to
minimize edge effects. We create a model galaxy on a grid the size
of the postage stamp and fit this model to the data, hence an edge
effect could occur if the surface brightness profile of the galaxy is
artificially truncated at the postage stamp’s edge. In principle the
LENSFIT technique could model this truncation by creating a galaxy
model on a large grid and truncating the model. We did not find that
such a sophistication was necessary. An adaptive postage stamp
size could be used to minimize the number of close pairs, that is, a
smaller postage stamp for smaller galaxy images, though we leave
this sophistication for future work.

The size of the postage stamp does not determine rmax, and as we
have shown a value rmax = 10 pixel is sufficient to ensure numerical
accuracy.

2.4 Pixelization and PSF estimation

The level of accuracy with which a PSF can be characterized is
an important factor in the performance of any shape measurement
method. As described by Massey et al. (2007b), the PSF must either
be deconvolved from the image to generate a raw galaxy image or,
more robustly, in LENSFIT a galaxy model is convolved with the PSF
and then fitted to the data. Existing methods usually either stack
star images or fit functional forms to star images. A limitation of all
methods is that the spatial and chronological variability of the PSF
needs to be determined, for which only a finite number of stars in
each image are available (e.g. Paulin-Henriksson et al. 2008).

We create the PSF model by stacking star images selected using
the SEXTRACTOR ‘class_star’ parameter. The data for each star are
subsampled on to a 50 times finer pixel grid using sinc function inter-
polation (that precisely preserves the data values without inventing
any new Fourier modes), and stacking takes place in a two-stage
iterative process. In the first stage, the stars are co-aligned by cross-
correlating with a delta function, and then co-added. Then, each
star is individually compared with the stack by cross-correlation,
any that have a low cross-correlation amplitude are rejected. In the
second stage, the remaining stars are again cross-correlated with
the stacked PSF to redetermine their centroids more accurately, the
stack is remade and again individual stars are checked by cross-

4 The fast Fourier transforms techniques which are used by LENSFIT work
fastest for grid sizes that have a number of pixels which are power of 2.
However, the gain in computational speed by choosing a power of 2, over
another number, is not a dominating factor in the total computational time
used.

correlation with the new stack, and eliminated if appropriate. The
stack of surviving stars thus forms the final PSF that is then down-
sampled to the original pixel sampling (without aliasing since in
the above process there have been no modes created above the
Nyquist frequency). We find in the STEP simulations that if stars of
low signal-to-noise ratio are used, many are rejected at the cross-
correlation stage. Stars with peak signal-to-noise ratio greater than
30 worked well, with only a small number of stars being rejected,
these being instances of closely neighbouring stars being blended
together. No selection of stars ‘by eye’ was required.

In generating the PSF-convolved models, the method described
takes full account of the effect of pixelization in the case of fully-
sampled data. Models are generated that are sampled on a grid which
is finer than the data pixel sampling by a factor of 4 (the value of
this oversampling factor makes little difference to the measured
galaxy ellipticities) and are then transformed to the Fourier domain
ready for the convolution step. The PSFs generated as described
above represent the combined effects of atmospheric, telescope and
detector pixel PSFs, and this total PSF is sampled with the data
pixel sampling. Thus when the models are convolved with the PSF
the data pixelization is included in the resulting convolved model.

If the true PSF is band-limited at the pixel sampling Nyquist
frequency the above method produces a faithful representation of it
in the sampled image plane. Convolution with a galaxy model then
yields an ‘observational model’ of the galaxy with the effects of the
PSF and pixel sampling correctly matched to the data. In reality,
the band-limited assumption is not likely to be true, and all meth-
ods of PSF determination and hence galaxy shape measurement are
ultimately limited by the problem of pixelization: we have no infor-
mation on the PSF below the pixel scale, and any Fourier modes in
the PSF with frequencies higher than the Nyquist frequency become
aliased to lower measured frequencies. There is, in principle, some
information available on the subpixel scale owing to the centres
of the stars not being exactly centred on pixels, but in reality it is
very hard to extract that information to yield a robust estimate of
the high frequency modes in the presence of noise. Without such
information the best we can do is to assume that the sampling of
the PSF is sufficient to render aliasing of high frequency modes
insignificant. This deficiency of information may become one of
the main limiting factors in the accuracy with which weak lensing
shear may be measured. Dithering of images would also allow us
to gain back information on the subpixel scale and for some future
space-based experiments such as DUNE or SNAP, high-resolution
pre-launch characterization of the PSF should allow improved PSFs
to be reconstructed. Jarvis & Jain (2005) and Jee et al. (2008) dis-
cuss the characterization of a PSF using PCA techniques which can
be used for ground-based surveys.

3 ESTI MATI ON OF THE PRI OR

A requirement of the Bayesian shape measurement approach is
the accurate and correct estimation of the ellipticity prior. Here,
we present an iterative method that should yield the correct prior
from the data itself (this is similar to the approach introduced in
Lucy 1974; Richardson 1972 and Lucy 1994 in image deconvolu-
tion). One could use the entire data set or a subset of a large wide
field survey to do this. Many planned future surveys, for example
DUNE, Pan-STARRS, SNAP and LSST include in their strategies
medium-deep surveys over much smaller areas than the main wide
field surveys which would be used for cosmic shear analysis. These
medium-deep surveys would be ideal data sets from which to esti-
mate the prior.
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As already discussed in Miller et al. (2007) one must assume a
prior with zero shear, that is, centred on e1 = e2 = 0, since this is
a baseline assumption that enforces no a priori knowledge on the
result. The level of bias introduced by this assumption can be exactly
accounted for within the Bayesian formalism by using the shear
sensitivity, equation (7). Also, in the case of real data one would
expect the shear to average to zero over a sufficiently large number
of galaxies. In the STEP simulations there can be a large shear
(γ ∼ 0.10 in STEP1 and γ ∼ 0.06 in STEP2) over a whole image
which in reality one would not expect, and the simulations thus test
this assumption of a zero-centred prior to an extreme. When testing
on simulations the prior has to be found using a zero-shear image
since the posterior probability estimated from these images will
be the intrinsic ellipticity distribution, however in a real data set
where the mean shear across an image should be zero the prior can
be estimated directly from the data.

The iterative approach centres around equation (3) which is the
average summed posterior probability for an ensemble of N galaxies〈

1

N

∑
α

P(e)L(e)α∑
e P(e)L(e)α

〉
= P(e), (15)

where for each galaxy the posterior probability is normalized. If
the prior initially used were the true, intrinsic, prior this would be
a stable equation provided that a sufficient number of galaxies are
used, that is, if the prior that is output on the RHS of the equation is
used on the left-hand side (LHS) of the equation in a second iteration
the result will be the same. If the prior used on the LHS is not the
true prior then the distribution given on the RHS will be closer to the
true intrinsic distribution than the prior initially used. The method
involves using this equation to iterate on the prior, i.e.

P(e)i+1 =
〈

1

N

∑
α

Pi(e)L(e)α∑
e Pi(e)L(e)α

〉
. (16)

This is repeated over i iterations, when the prior used is an accurate
and correct representation of the true intrinsic prior a stable solution
will have been found. This iterative approach, and the method in
general, assumes that the function that is used as the prior is con-
tinuous and non-zero at all points in the parameter space at which
the likelihood is evaluated.

One may be concerned that iterating on data would lead to diver-
gent results; for example if data were used to estimate the likelihood
of a parameter and that likelihood were used as the prior in a sec-
ond iteration then the result could diverge. Crucially, this common
concern involved with iterating on a data set does not apply here.
This is due to the nature of the operation: we are not using a prior to
improve the probability distribution of some estimated parameter,
but rather use the data to estimate the prior. Since the operation de-
scribed above yields the prior itself once the true prior is found this
operation could be performed given a sufficient number of galaxies
{ad infinitum} with no divergence of results. In the limit of a small
number of galaxies, this stability will diverge owing to shot noise
(i.e. sampling variance) in ellipticity, in Section 3.2 we estimate the
minimum sample sizes that are needed for convergence to a correct
prior.

3.1 Fitting the prior

In practice after each iteration we fit the prior surface with a func-
tional form and use this as the prior for the next iteration. This is
done since a functional form ensures that the prior is known every-
where, also using a functional form means that the derivative of the

prior, to use in equation (8) can be calculated exactly. To avoid di-
vergence we do not allow the functional form to have turning points
in the region 0 < |e| < 1, if turning points were admitted then in an
iteration such structures could become artificially amplified. This
assumption should be valid in reality since there is no a priori reason
to expect a particular non-zero intrinsic ellipticity to be preferred
(or disfavoured) by a large ensemble of galaxies. The fitting of this
simple functional form results in a ‘smoothed’ representation of
the prior, that is, any small-scale structure and noise has been av-
eraged over. The requirements on the fitted functional form ensure
that no stopping criterion is needed, since by fitting a functional
form any noise in the probability distribution is averaged over (the
smoothing acts like a regularizing constraint). If a functional form
were not used then the iterations could artificially amplify any noisy
structures (this is a concern in using the iterative approach in image
deconvolution, Richardson 1972; Lucy 1974, where such a simple
functional form for the prior cannot be assumed). The 2D functional
form in (e1, e2) we use is

P(e1, e2) = A cos

( |e|π
2

)
exp

{
−

[
2|e|

B(1 + |e|D)

]C
}

, (17)

where B, C and D are free parameters to be fitted and |e| =√
e2

1 + e2
2. The prior is always normalized so that the parameter

A is determined by the normalization. The cosine factor ensures
that the prior goes to zero at |e| = 1. For C ≤ 1 and �=0 the func-
tion has a cusp at |e| = 0, however the continuity of the function
ensures symmetry about |e| = 0 which means that the derivative of
the function is always zero at the origin.

We have found this function to be a good fit to both the STEP
simulations’ intrinsic distributions and the APM survey’s published
intrinsic ellipticity distribution (Crittenden et al. 2001). To convert
to a 1D distribution in |e| one must multiply by the appropriate
parameter space volume factor, that is, P1D(|e|) = 2π |e|P(e1, e2).
To fit the output prior from each iteration with this 2D functional
form we minimize the cross-entropy defined as

H (p, q) = −
∑

x

p(x) log q(x), (18)

where q(x) is some estimated probability distribution and p(x) is the
‘true’ distribution. This is similar to the Kullback–Leibler diver-
gence between two distributions and is a measure of the difference
between the two distributions q(x) and p(x). In our case we wish to
minimize the difference between the functional prior and the output
prior

H = −
∑
e1

∑
e2

P(e1, e2)functional form logP(e1, e2)output. (19)

By minimizing this function the best-fitting functional form to the
output prior is found. We found this to be more robust and yield bet-
ter fits to the STEP intrinsic ellipticity distributions than projecting
the distribution on to a 1D function of |e| and using a binned least
squares fitting method.

3.2 Testing the iterative approach with STEP

To test this iterative method we estimated the prior of the STEP1
simulations for PSF 0 from the zero-sheared image (PSF 0, image
0; see Section 4.1 for a full description of the STEP1 simulation)
and compared the prior found with the input intrinsic ellipticity
distributions used to create the simulated images. Fig. 2 shows
the actual intrinsic ellipticity distribution in (e1, e2) for the STEP1
simulation and the prior found using the iterative approach. It can
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Bayesian galaxy shape measurement 155

Figure 2. The top panels show the actual intrinsic ellipticity distribution
used in the STEP1 simulations (top left-hand panel) and the prior created
using the iterative method (top right-hand panel), where the distributions are
normalised. The left-hand side of the middle panels shows the residual as
a fraction of the actual distribution, i.e. R = �P/P = (Ptrue − Pfunc)/Ptrue.
The middle right-hand panel shows the azimuthally averaged 2D priors of
the upper panels with the actual input prior (red points) and fitted prior
(solid line). These include the the appropriate parameter space volume fac-
tor P1D(|e|) = 2π |e|P(e1, e2) and we have rescaled the y-axis for clarity.
The lower left-hand panel shows the azimuthally averaged residual. The
lower right-hand panel shows how the values of the parameters of the fitted
functional form of the prior change as the number of iterations increases for
parameter A (solid line), B (dashed line), C (dot–dashed line) and D (dotted
line), see equation (17).

be seen from the very low level of fractional residual �P/P =
(Ptrue − Pfunc)/Ptrue between the ‘true’ and the estimated prior, of or-
der 0.02, that the iterative approach is an accurate and good method
for finding the correct prior. Furthermore, the convergence to an
accurate functional fit can occur in approximately five iterations.
We tested the robustness of this convergence to the starting values
of the functional parameters (A–D) and found that in all cases there
was convergence in fewer than six iterations.

The correct prior is formally only a stable solution to the iterative
approach in the case of an infinite ensemble of galaxies. Here, we
present results that show the variation of the estimated prior as a
function of the number of galaxies used in the iterative determina-
tion. There is no simple analytical way to determine the minimum
number of galaxies required to determine the prior to a certain level

of accuracy as this depends on the form of the prior. To accurately
determine the prior probability surface the ellipticities of the galax-
ies used have to sample, to some degree, the whole (e1, e2) plane,
that is, if a subset of galaxies were used that had exactly the same
ellipticity they would not recreate the intrinsic distribution of the
overall population using the iterative approach. In the limit of a
small number of galaxies, from which the ellipticity is imperfectly
determined, sample shot noise becomes an important factor. The
accurate determination of the prior from a subset of galaxies from a
population thus depends in a complex way on the shape of the like-
lihood surfaces and the number used. One may expect that ∼100
galaxies would not suffice since, with a resolution of �e = 0.1,
we evaluate the prior at �100 independent points in the (e1, e2)
plane.

We numerically investigated the number of galaxies required to
estimate the prior by selecting random samples of galaxies from the
STEP1 PSF0 catalogue and recreating the prior using only these
galaxies for many different random realizations of the subset. The
prior created using these random subsets was then be compared
to the prior found using the entire population. In Fig. 3, we show
the best-fitting values of the functional parameters as the number
of galaxies used to estimate the prior changes. For each galaxy
subset number, we made 10 random samplings of the full catalogue,
the lines show the mean values of the parameters averaged over
these random samplings (after 10 iterations of the prior estimation
algorithm). The errorbars show the variance in the values over the
random samplings of the catalogue. This shows how the parameters
fitted to the prior vary with the number of galaxies used to create
the prior.

The value of the D parameter begins to deviate at a very low
level when �500 galaxies are used. However, this parameter has
a very small effect on the functional form. At |e| ∼ 0 the D pa-
rameter only enters as a second order term in |e| and so has a
small effect. At |e| ∼ 1 the cosine factor (in equation 17) dom-
inates the functional form of the prior that suppresses any influ-
ence that the parameter D has on changing the behaviour of the
function.

The deviation and variance in parameters B and C becomes sig-
nificant when �100 galaxies are used, that is, the parameters that fit
the prior depend strongly on the specific subset of galaxies, which
are randomly chosen. This is demonstrated by the variance in the
best-fitting values increasing in the top panel of Fig. 3 when fewer
galaxies are used, and in addition the mean values deviate from the
parameter values found using the whole population (∼3000 galax-
ies) by a large amount. The bottom panel of Fig. 3 shows the rms
value of the residual between the actual STEP1 input prior and the
functional fit to the prior as a function of the number of galaxies
used in the iterative approach. It is clear that the rms of the resid-
ual increases dramatically when the number of galaxies falls below
∼300.

When analysing the STEP simulations, in which there are a small
number of galaxies per image, the problem of too few galaxies with
which to recover the prior will be encountered. This is discussed
in Section 4.2 where we find that in the STEP2 simulations the
intrinsic ellipticity varies as a function of size and magnitude, and
that by correctly accounting for this variation the shear estima-
tion does improve. In an actual survey in which the number of
galaxies is 104 one would expect that in any subpopulation of
galaxies, defined by some commonly observed property such as
magnitude, size, colour or type, there would be 100 galaxies, so
that this problem will not arise when the method is used on large data
sets.
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156 T. D. Kitching et al.

Figure 3. The top panel shows the variation in the parameter values, from
equation (17), found by recovering the prior using the iterative approach
(after 10 iterations) as a function of the number of galaxies used in the prior
estimation. For each galaxy number bin we selected ten random subpopula-
tions of the entire sample of galaxies. The bold black lines show the mean
and the variance of the parameter values over all the random samplings.
We show parameters A = solid line, B = dashed line, C = dot–dashed
line, the dotted horizontal lines show the values of these parameters when
the whole galaxy sample is used. We do not show the variation of D for
clarity, and since the value of D has a small effect on the functional form
of the probability; the value of D begins to deviate below ∼500 galaxies.
The bottom panel shows how the rms of the fractional residual between the
actual STEP1 input prior and the functional fit to the prior, i.e. R = �P/P =
(Ptrue − Pfunc)/Ptrue, varies with the number of galaxies used to create the
prior. The mean is the average rms over all random samplings of the full
input catalogue, the error on each point shows the variance of the rms over
the random samplings.

3.3 Summary of the lensfit shape measurement method

Before presenting the results of using LENSFIT on simulations, we
summarize the method. We consider the i = {1, 2} shear component
gi , where g = g1 + ig2 and e = e1 + ie2. We also recast any integrals
as summations, as is done in the actual LENSFIT implementation.

(i) We use a Bayesian estimator of shear that is given by the
summation over N galaxies:

ĝi =
∑N

α 〈ei〉α∑N

α |∂〈ei〉α/∂gi |
, (20)

where ∂〈e〉α/∂g is the shear sensitivity (Miller et al. 2007) and we
sum over galaxies α.

(ii) The expectation value of the ith ellipticity value for an indi-
vidual galaxy α is given by

〈ei〉α =
∫

dej

∫
deieipα(ei, ej ) ≈

∑
j

∑
i

�e2eipα(ei, ej ), (21)

where pα(ei, ej ) = P(ei, ej )Lα(ei, ej ) is the posterior ellipticity
probability distribution for a given galaxy.

(iii) To calculate the likelihood as a function of ellipticity we
use a model fitting approach that marginalizes over position and
amplitude in an analytic way and fits a exponential profile. Using
equation (13) the likelihood is then given as a function of radius r
and ellipticity e1 and e2. This is then analytically marginalized over
radius using

L(e1, e2) ≈
rmax∑
rmin

L(e1, e2, r)�r, (22)

where we assume a uniform prior in r.
(iv) The shear sensitivity is recast from equation (8) as

∂〈ei〉α

∂gi

� 1 −
∑

j

∑
i �e2 (〈ei〉 − ei)Lα(ei, ej )

∂P(ei, ej )

∂ei∑
j

∑
i �e2P(ei, ej )Lα(ei, ej )

. (23)

(v) The prior P(ei, ej ) is a zero-centred function that is represen-
tative of the intrinsic ellipticity distribution. We calculate this using
a stable iterative approach in which the data itself can be used to
estimate the prior.

4 RESULTS OF TESTS ON SI MULATI ONS

In the following section we describe the simulations in detail, and
present the results of recovering the input shear from these simula-
tions using LENSFIT, we also compare with the currently published
STEP1 and STEP2 results.

The ability of a shape measurement method to recover the input
shear from a simulation in the STEP papers is parametrized by

γ M
i − γ T

i = miγ
T
i + ci, (24)

where γT
i is the ‘true’ (input) shear for the ith shear component

and γM
i is the ‘measured’ or estimated shear value using a given

shape measurement method. mi characterizes any bias in a shape
measurement method, ci characterizes any residual shear offset.
Any residual shear offset is usually due to inaccuracies in the PSF
estimation, as a PSF that is slightly more elliptical than reality
will simply act to add a constant to any estimated shear value. In
STEP1, some methods also require a quadratic term on the LHS
side of equation (24), q(γT

i )2. We have found that the LENSFIT results
do not require the quadractic term hence we will present the results
in terms of mi and ci in line with the STEP papers.

4.1 Application to the STEP1 simulations

STEP1 (Heymans et al. 2006) created simulated galaxies that consist
of a de Vaucouleurs bulge plus an exponential disc. The simulations
are provided with six different PSFs (named 0–5), and for each PSF
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Bayesian galaxy shape measurement 157

there are five shear sets each consisting of an ensemble of 64 indi-
vidual images of 4096 pixels × 4096 pixels. The five shear sets for
each PSF have different shear values of γ 1 = 0.0, 0.005, 0.01, 0.05
and 0.10; γ 2 = 0.0 is set for all the STEP1 simulations. Each of
the shear sets (64 images) contains ∼2 × 105 galaxies. Each image
also contains ∼3000 stars from which the PSF can be determined,
the pixel scale in the simulations is 0.206 arcsec and the average
PSF full width at half-maximum is 0.8–0.9 arcsec.

In order to test the LENSFIT method we used SEXTRACTOR (Bertin
& Arnouts 1996) to create input catalogues from the STEP1 simu-
lations to find the positions of the galaxies and stars. For each image
in each PSF set and for each shear value we recalculated the PSF
from the stars available in that image. We calculated the prior, as
described in Section 3, using the zero-shear image from each PSF
set.

For the error on the shear estimate γi and hence γM
i − γT

i for
each image we use the error on the mean ellipticity given for N
galaxies by σM = σ/

√
N . The expectation value σ 2 = 〈e2

i 〉/(∂〈e〉i/
∂gi) is calculated by integrating over the posterior probability as in
equation (21). We then use a χ 2 fit to γM − γT as a function of γT

to find the best-fitting values of mi and ci defined in equation (24).
The errors on mi and ci are found by exploring the whole (mi , ci)
parameter space and projecting the two parameter 1σ errors on to
the corresponding axis to find the 1σ error on each parameter.

Fig. 4 shows the measured shear minus the true (input) shear
γM − γT for PSF 0 of the STEP1 simulations with the best-fitting
linear function from equation (24).

Fig. 5 shows the results of applying the LENSFIT method to the
STEP1 simulation. For STEP1 we find m1 and c1 (bias and offset
of the measured γ 1 values), we also find c2 assuming that m2 = 0,
as in the STEP1 publication. 〈m〉 is the average bias over all PSFs,
and the error on this value is the sum of the squares of the errors on
m from each PSF. σc is the average variance in the offset from c1

and c2, i.e. σc =
√

σ 2
c1 + σ 2

c2. The result is detailed in Table 1.
The value of 〈m〉=+0.006 ± 0.005 is the smallest for any method

for which a linear fit to γM
i − γT

i is required (Heymans et al. 2006).
The methods that require a non-linear term in equation (24), q,
are shown by a circle about the point in Fig. 5. q > 1.3 for all
these methods and, as shown in fig. 2 of Heymans et al. (2006),
this parametrizes large non-linear effects. In our results there is no
motivation for a non-linear term. We find minimum χ 2 ∼ 1.7 with
3 degrees of freedom, therefore we find no extra parameters are
warranted. The value of σc = 0.0002 is smaller than any method in
the STEP1 publication. This value parametrizes any PSF systemat-
ics: in the absence of systematics and shot noise for a perfect shape
measurement method one would expect σc = 0.

We also present a preliminary analysis of the dependence of
the bias and offset on galaxy type. The success of the method
on the bulge plus disc galaxies in the STEP1 simulations (and using
the STEP2 shapelet galaxies – see Section 4.2) suggests that the
method is robust to the type of simulated galaxy. One may expect
that the assumption of a particular model may bias the model-fitting
class of shape measurement method, where a model is implicitly
assumed, however in the low signal-to-noise ratio limit all profiles
can be approximated by a simple exponential form. In Fig. 6, we
show the bias and offset in γ 1 using PSF0 using three different
galaxy selection criteria. The criteria are somewhat arbitrary since
in the STEP1 simulations there is a continuous range of galaxies
containing different proportions of (exponential) disc and (de Vau-
couleurs) bulge. It can be seen that LENSFIT has a bias of |m| < 0.02
for all simulated galaxy types in STEP1. The errorbars are a reflec-
tion of the number of galaxies in each type bin, for the dominantly

Figure 4. The upper panel shows the estimated γ 1 shear values minus
the true (input) γ true

1 shear for STEP1 PSF 0, for STEP1 only five input
shear values are provided. The upper solid line shows the m1 and c1 fit
for STEP1 PSF 0 (m1 = −0.0009, c1 = −0.0002). The lower panel shows
the estimated γ 1 shear values minus the true (input) γ true

1 shear for STEP2
PSF A simulations, the solid line shows the best linear functional fit m1 =
−0.012 and c1 = −0.000 99. There are 64 images, with random shear values
distributed within the range −0.06 ≤ γ 1 ≤ 0.06, that are used to estimate
the shear for each point in the upper panel whereas only two images per
point are used in the lower panel.

exponential and de Vaucouleurs sets the number of galaxies in each
image catalogoue are �200 and �500, respectively hence the de-
viation away from m ≡ 0 and c ≡ 0 for the exponential population
is purely statistical. The fitting does not improve when galaxies are
chosen which have the same profile as the underlying model (an ex-
ponential), this shows that the method is not biased by the assumed
model, and confirms the expectation that in the low signal-to-noise
ratio limit the majority of galaxy profiles can be approximated by an
exponential.
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158 T. D. Kitching et al.

Figure 5. Adapted from Heymans et al. (2006), Fig. 3. The average value
of the bias m over all PSFs in the STEP1 simulation and the variation in the
offset σc . The red point ‘TK’ shows the result of using LENSFIT, the black
points show the other shape measurement methods presented in Heymans
et al. (2006) (the labelling reflects the authorship of the method, see table 2
of Heymans et al. 2006 for more details). The points surrounded by circles
are those that required an extra quadratic term in equation (24). The hatched
region indicates the level of precision required by current surveys (〈m〉 ≤
0.07), as discussed in Heymans et al. (2006). The inset shows a zoom in of
the bottom part of the figure.

4.2 Application to the STEP2 simulations

This section presents the results of extracting shear estimates using
LENSFIT from the STEP2 (Massey et al. 2007b) simulations. These

Table 1. The STEP1 and STEP2 m and c results.

Data set Galaxy sample 〈m〉 σ (〈m〉) 〈c〉 σ (〈c〉) N

STEP1
All PSFs SEXTRACTOR catalogue +0.0058 0.0056 −0.0006 0.0002 9

STEP2
All PSFs SEXTRACTOR matched catalogue +0.0020 0.0163 −0.00071 0.00063 30
No PSF D & E SEXTRACTOR matched catalogue +0.0010 0.0159 −0.00025 0.00063 29

All PSFs 18 ≤ M<20 −0.0640 0.1294 −0.0029 0.0032 0.2
All PSFs 20 ≤ M<21 −0.0167 0.1235 +0.0020 0.0030 0.8
All PSFs 21 ≤ M<22 +0.0134 0.0258 +0.0015 0.0006 2
All PSFs 22 ≤ M<23 +0.0019 0.0251 −0.0011 0.0006 6
All PSFs 23 ≤ M<24 −0.0177 0.0281 −0.0003 0.0007 13
All PSFs 24 ≤ M<25 −0.0049 0.0662 −0.0033 0.0016 7

All PSFs 0.2 ≤ R<0.4 +0.0027 0.0152 −0.0028 0.0011 15
All PSFs 0.4 ≤ R<0.6 +0.0094 0.0113 −0.0015 0.0003 7
All PSFs 0.6 ≤ R<0.8 +0.0031 0.0260 +0.0001 0.0007 2
All PSFs 0.8 ≤ R<1.0 −0.0192 0.0370 −0.0005 0.0009 0.7
All PSFs 1.0 ≤ R<1.2 −0.0130 0.0559 −0.0041 0.0013 0.2

Note. We use galaxies in the catalogues created using SEXTRACTOR, for STEP2 we match the rotated and unrotated catalogues. N is the
average number density of galaxies per square arcminute, for STEP2 this is the number in the matched catalogues. For STEP2 PSF A
contains a slightly higher than average matched number density 32 per square arcminute, and PSF C contains slightly lower than average
26 per square arcminute. The lower two sections show how the STEP2 results vary with magnitude M and size/radius R, the magnitude
is the SEXTRACTOR magnitude calibrated using the STEP2 zero-point of M0 = 30.8 and the radii are assigned using a shapelet based
definition described in Massey et al. (2007b).

Figure 6. Type dependence of the bias m1 and offset c1 in the measured
shear using the STEP1 simulation and PSF0. The type selection has been
done using B the ‘bulge to total flux ratio’ provided in the STEP1 simulations.
The points are labelled as: red (�) dominantly de Vaucouleurs B ≤ 0.3, black
(�) mixed profiles 0.3 < B ≤ 0.7 and green (×) dominantly exponential
B > 0.7.

simulations consist of shapelet based (Refregier 2003; Massey et al.
2004; Massey & Refregier 2005) and exponential galaxy profiles
convolved with various PSFs. There are six sets of PSF and galaxy
profile combinations provided. Sets A, C, D, E and F have shapelet
simulated galaxies and various PSF shapes. Sets D and E have highly
elliptical PSFs aligned along the e1 and e2 directions, respectively.
Set B has the same PSF shape as A but with exponential galaxies
as opposed to shapelet galaxies. Each set consists of 64 images
and 64 ‘rotated’ images. The rotated simulated galaxies are the
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same as the ‘original’ images except that they have been rotated
by 90◦ before being sheared. As described in Massey et al. (2007)
this allows the intrinsic shape noise to be dramatically reduced
by co-adding the shear estimates from the matching corresponding
images. The signal-to-noise ratio error on the intrinsic ellipticity is
usually given for a sample of N galaxies as (equation 3, Massey et al.
2007)

σ (〈eint〉) =
√

〈(eint
i )2〉
N

. (25)

Massey et al. (2007b) showed that by defining the average shear
as the average of the observed ellipticities from the rotated and
unrotated galaxy images, γ̃ = (eobs,unrot + eobs,rot)/2, the shot noise
error on the average shear is reduced to (equation 6, Massey et al.
2007)

σ (〈eint〉) =
√

〈(eint
i )4〉

2N
. (26)

In STEP2, the averaging is done on a galaxy-by-galaxy basis, that
is, each galaxy paired with its rotated counterpart. We calculate the
shear by taking the mean expected ellipticity weighted by the shear
sensitivity γ̃ = (〈eobs,unrot〉+〈eobs,rot〉)/2, giving equal weight to the
unrotated and rotated probability surfaces.

Each image (and corresponding rotated image) contains ∼1500
galaxies that are usable for shear (the images actually contain ∼5000
galaxies but the majority are too faint to be detected), and has a
different random shear, γ 1 and γ 2, applied. The shear values are
randomly chosen in the range γ ≤ 0.06. For each set (PSF) a star
field is provided that contains ∼240 stars (and no galaxies) which
can be used to estimate the PSF, the galaxy fields also contain stars
that can be used instead of, or in addition to, the stars provided in
the star fields. The simulations are a sophistication of the STEP1
simulations in two important ways. First the galaxies are ‘more
realistic’, that is they are mostly shapelet galaxies some of which
exhibit substructure, spiral arms etc. This should be a significant
test for LENSFIT which assumes exponential profiles. Secondly the
shear values are varied randomly in both the γ 1 and γ 2 directions
as opposed to sampling just five points in γ 1 and setting γ 2 to be
zero as is the case in STEP1. In this case there will be mi and ci

values associated with γ 1 and γ 2; m1, m2, c1, c2.
To implement the LENSFIT method we used SEXTRACTOR (Bertin &

Arnouts 1996), on each set of PSF images to create a catalogue for
the rotated and unrotated sets of images, we then created a matched
catalogue in which we kept only galaxies that were detected in both
rotated and unrotated catalogues. For each PSF the positions of the
galaxies are the same over every image (shear value). We measured
the PSF from the starfield images by using SEXTRACTOR to identify
the star positions. For PSFs D and E we also used the stars that were
detected in the galaxy images and co-added this to the PSF from
the starfield since a poor characterization of these highly elliptical
PSFs could affect the shear found from these sets of images as seen
in Massey et al. (2007).

For the global shear estimates we used every galaxy in the
matched catalogues to determine the intrinsic ellipticity prior from
the zero-shear image provided for each PSF, that is, the prior was
averaged over all size and magnitude ranges. For the investigation
into the size and magnitude dependence of the estimated shear using
these simulations we recreated the prior for each size and magni-
tude bin using only the galaxies in that bin. We found that the prior
exhibited significant variation over the magnitude and size ranges
investigated.

We calculate the errors on γM
i − γT

i and hence the best-fitting
values of mi and ci with associated errors in the same way as for
STEP1, described in Section 4.1. This results in a most likely value
for mi and ci for each PSF with associated errors, Fig. 4 shows the
linear fit to γM

i − γT
i for the PSF A set of shear values. The average

〈m〉 and 〈c〉 is taken over all the values from each PSF and over γ 1

and γ 2. The error presented on the average is the same as presented
in Massey et al. (2007) which is the average of the errors over all
PSFs

σ̄ (〈m〉) =
∑

psf σ (mpsf )

Npsf
, (27)

where Npsf is the number of PSFs. This is meant to produce an error
that is indicative of the expected error that one should get when
using a particular shape measurement method on a data set.

Bias and offset for the whole STEP2 catalogue

For the analysis of the entire catalogue we make no additional size or
magnitude cuts other than those implicit in the SEXTRACTOR source
extraction, we use every galaxy in the matched catalogue for each
image in each PSF set. Fig. 7 shows the best-fitting mi and ci values
for γ 1 and γ 2 for each PSF. It can be seen that there is no general
pattern or offset in the values: the individual values of the biases
and offsets for any individual PSF are consistent with that expected
if the points were randomly scattered about (m = 0, c = 0) with a
dispersion due to the finite size of the galaxy sample. The value of c1

is slightly systematically offset from c1 = 0, we discuss this later in
this section. Fig. 8 shows that the scatter in bias is indeed statistical
since when averaging over all PSFs the value of 〈m〉 ∼ 0.002 ±
0.016. The results are presented in detail in Table 1. This shows that
the LENSFIT method has a smaller bias than any method presented
in the STEP2 publication (Massey et al. 2007). Furthermore, the
most likely values of m and c do not vary substantially when PSF
D and E, that have the strongest PSF distortions, are removed. This
suggests that the scatter in Fig. 7 is indeed purely statistical. The
errorbars do not increase since they are the average errors on m and
c for the PSFs used, see equation (27). We find minimum χ 2 ∼ 60
for the linear fit to the STEP2 results (compared to 62 degrees of
freedom), as such we find no extra parameters, for example an extra
quadratic term in the γM − γT functional fit, are warranted.

The errors on m and c in Fig. 8 are larger than some of the
methods in STEP2 and similar to other methods’ errors. We do
not have enough information to comment on the relative size of
the errorbars between the different methods in this paper. However,
in Section 5 we do investigate the measured shear variance of the
LENSFIT method and show that it is close to the expected variance
from the simulations, this is shown in Fig. 11. In practice one could
design an additional weighting scheme to supplement equation (7)
(as in Miller et al. 2007; equation 3) in order to improve the shear
estimation even further, we leave this optimization for future work.

The slightly larger value of 〈c〉 relative to the other STEP2 meth-
ods is possibly due to residuals in the PSF estimation. We make
this assertion since a systematic error on PSF estimation is the most
straightforward way to create a non-zero c value and also because
we have identified pixelization of the PSF as a potential source of
limitation. Whilst the value of c is larger we do note a number of
points that are relevant to this issue. First it has been shown (for
example in Kitching et al. 2008a) that it is the bias m not an offset
c in the estimated shear that has the largest effect on cosmologi-
cal parameter estimation. Furthermore, planned space-based wide
field imagers such as DUNE and SNAP will have very stable PSF
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160 T. D. Kitching et al.

Figure 7. The top panel shows the best-fitting m1 and c1 values with errors
for the STEP2 simulations. The bottom panel shows the best-fitting m2 and
and c2 values. In both panels black (�) =PSF A, red (+)=PSF B, green
(×)= PSF C, blue (�)= PSF D, cyan (�) = PSF E, magenta (•)= PSF F.

modelling at high resolution before launch. We also note that the
way in which the PSF is determined is not central to the method, for
example any PSF determination routine could be used (e.g. polyno-
mial or shapelet reconstruction) in conjunction with the unbiased
shear estimation method to reduce the c value.

Bias and offset as a function of size and magnitude

Here we show how the bias and offset vary as a function of mag-
nitude M and size/radius R, the detailed results are summarized
in Table 1. The SEXTRACTOR matched catalogues used were set to
the zero-point of M0 = 30.8 as discussed by Massey et al. (2007).
The value of the size of the galaxy used a shapelet based defini-
tion (Massey & Refregier 2005; equation 53) and these values were
obtained for each galaxy we detected from the STEP2 website.5

5 http://www.physics.ubc.ca/∼heymans/step/step2_info.html

Figure 8. Adapted from Massey et al. (2007b), Fig. 6. The red points (in
larger font) show the result of using LENSFIT on the STEP2 simulations. The
black points show other shape measurement methods analysed in Massey
et al. (2007b). The top panel shows the value of m and c, averaged over
all PSFs and γ 1 and γ 2. The bottom panel shows the value of m and c
averaged over PSFs A, B, C and F, that is, with the highly elliptical PSFs D
and E ignored. The errors shown are the average of the errors on each PSF,
equation (27).

Positions were not obtained from the website. We re-iterate that
the intrinsic ellipticity prior was recalculated for each magnitude
and size bin, always assuming a zero-sheared functional form as
described in Section 3. The extent of the magnitude and size
ranges used here differs slightly from that used in the STEP2
publication since we find on average less than 2 galaxies in the
magnitude range M = 25–26 or the size range R = 1.2 to
1.4 arcsec. For each magnitude bin the whole range of galaxy
sizes is used, and for each size bin the whole magnitude range
is used (though of course maginitude and size are highly correlated
quantities).
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Bayesian galaxy shape measurement 161

Figure 9. The variation in the bias 〈m〉 and offset 〈c〉 as a function of
magnitude for the STEP2 analysis. The fainter coloured lines are the values
from each individual PSF; in both panels for the fainter lines black (�) =PSF
A, red (+)=PSF B, green (×)=PSF C, blue (�)=PSF D, cyan (�) =PSF E,
magenta (•)=PSF F. The bold black lines show the average over all PSFs.
The points in magnitude are at the centre of the bin used, see Table 1 for
the values of the bin boundaries used. The errors on the average over all
PSFs are the average of the errors from each individual PSF, as discussed in
Section 4.2. The average errorbars do not represent the scatter in the mean
values of the individual PSF points.

Fig. 9 shows how the bias m and offset c vary as a function of the
magnitude of the galaxies. The fainter coloured lines show how this
varies for each individual PSF, averaged over γ 1 and γ 2, the bold
black lines show the average 〈m〉 and 〈c〉 over all PSFs. There is a
scatter of values from each PSF about the 〈m〉 = 0 line, however this
is dominantly statistical since, when taking the average, the bias is
|〈m〉| < 0.02 for 20 < M < 24. The deviation at M < 20 is due
to the number of galaxies in this bin being small (<10), however

the errorbars show that the points’ variation from 〈m〉 = 0 is not
statistically significant. The weak variation of 〈c〉 as a function of
magnitude shows that the method is robust to the magnitude range
used. The only deviations from 〈c〉 = 0 occur where the number
of galaxies in the bin becomes very low at M < 20 and at the
faintest magnitudesM > 24. The method performs better in certain
magnitude bins than when the sample is taken as a whole because the
intrinsic ellipticity prior, which is recalculated for each magnitude
bin, now better represents the intrinsic distribution of ellipticities in
that bin. The variation of the intrinsic ellipticity distribution was an
issue highlighted in the STEP2 publication (Massey et al. 2007). By
taking a global average this information is averaged over, so that the
global prior is less representative of some galaxy subpopulations.
This highlights the need to calculate the prior as a function of
galaxy properties; in STEP2 we only investigated magnitude and
size dependence but this could be extended to colour or galaxy
type.

Fig. 10 shows the variation in 〈m〉 and 〈c〉 as function of galaxy
size, and as in Fig. 9 the fainter lines show the values for each PSF
individually and the bold line shows the average over all PSFs. The
variation in the bias over the whole range in size is |〈m〉| � 0.02
with no point being a statistically significant deviation from 〈m〉 =
0. The variation of the offset as a function of size is very small in the
range 0.6 < R < 1.0 arcsec. Again, the method performs better in
certain size bins than when the galaxy sample is taken as a whole.

The deviation at R > 1.0 arcsec is again due to the very small
average number of galaxies (<10) in this bin, however even with
this small number of galaxies the bias is unaffected. There is also a
deviation in the offset at R < 0.6 arcsec, however the STEP2 pixel
scale is 0.2 arcsec pixel−1 so that galaxies in the bin 0.2 < R < 0.4
arcsec have scales of only ∼1–2 pixels.

4.3 Discussion

In Section 4.1, we presented the results of using the LENSFIT method
on the STEP1 and STEP2 simulations. The performance of the
method was parametrized by calculating the difference between the
input shear value for a given image and the estimated shear from that
image. This quantity was then fitted, as a function of input shear,
with a linear function. The function is parametrized by a bias m and
an offset c, defined in equation (24). The results of this application
to the simulations were summarized in detail in Table 1.

We found that the method performed very well in comparison to
the other methods presented in the STEP publications. In particular
the bias m is smaller in both the STEP1 and STEP2 simulation
results than the majority of methods, and performs consistently
well over the whole suite of simulations. The small residual bias
in the STEP1 simulation might be attributed to inaccuracies in the
PSF characterization due to pixelization effects, see Section 2.4. In
STEP2 we found again that the bias m was small in comparison to
other methods. Furthermore when two of the PSFs were removed,
the most elliptical PSFs (D and E) the best-fitting values of the m
and c values change by a very small margin, this suggested that the
scatter in the values, shown in Fig. 7 is entirely statistical and due
to the finite, number of galaxies in each STEP2 image.

Of course, there is the caveat that there could exist galaxies that
have morphological types that are not included in the simulations.
However we have found that the LENSFIT method performs well over
all simulated morphological types upon which it has been tested
(exponential, de Vaucouleurs, shapelet). In addition, one may be
concerned that the source extraction routine used may bias the re-
sults by preferentially selecting a galaxies with particular properties.
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162 T. D. Kitching et al.

Figure 10. The variation in the bias 〈m〉 and offset 〈c〉 as a function of size
for the STEP2 analysis. The size of a galaxy is defined as its radius, and is
shown in units of arcseconds, where the pixel scale of the STEP2 simulations
is 0.2 arcsec pixel−1. The fainter coloured lines are the values from each
individual PSF; as in Fig. 9. The bold black lines show the average over all
PSFs. The points in radius are at the centre of the bin used, see Table 1 for
the values of the bin boundaries used. The errors on the average over all
PSFs are the average of the errors from each individual PSF, as discussed in
Section 4.2. The average errorbars do not represent the scatter in the mean
values of the individual PSF points.

However since we have used a realistic source extraction routine and
found similar number densities to those used by other shape mea-
surement methods in the STEP publications we not expect selection
effects to significantly bias the method in real data.

We now refer to table 1 in Massey et al. (2007b). To summarize,
all STEP2 PSFs use shapelet galaxies except PSF B which uses
exponential profiles, PSF A and B are the same SUBARU PSF but
use different galaxy types. PSF C is an enlarged PSF, and PSFs
D and E are highly elliptical aligned along the x (e1) and 45◦ (e2)
axes, respectively. PSF F is circularly symmetric. It can be seen

from Fig. 7 that there is no pattern in the best-fitting values of
the bias m and offset c as function of galaxy type or PSF. The
PSF for which these values is largest is C. This could be due to
the slightly lower number density of matched galaxies for PSF C,
26 per square arcmin (which is consistent with other methods in
Massey et al. 2007 all of which find a lower number density for
PSF C). There is no statistically significant difference between the
exponential or shapelet simulated galaxy sets, that is, the values
of the biases and offsets are consistent with a scatter about zero
bias and offset owing to the small number of galaxies in each
PSF set. Even though we have assumed exponential galaxy profile
the method retains its ability to fit this model to either shapelet,
exponential or bulge plus disc (STEP1, that is, exponential disc plus
a de Vaucouleurs bulge). This is because differences in the surface
brightness profiles are subtle and not significant at low signal-to-
noise ratio. The method could be extended to fit to individual nodes
of substructure in galaxies with complex morphologies, and the
exact form of the model profile used is not a central tenant of
LENSFIT method, however since the vast majority of galaxies used
in cosmic shear analysis will be faint we expect that either a de
Vaucouleurs or an exponential profile will suffice.

By calculating the bias and offset as a function of size and magni-
tude, Figs 9 and 10, we have shown that the bias m remains at |m| <
0.02 over a wide range in size and magnitude. The offset c is mainly
consistent with zero in the regime that there are a sufficient number
of galaxies. We find a deviation from zero where the number of
galaxies is very low (at bright magnitudes and large radii). The only
deviations occur in the offset c where M � 24.5 and the size is
R � 0.5 arcsec.

We emphasize here that although this analysis has been carried
out after the details of the STEP simulations were made public we
did not iterate on the STEP1 or STEP2 simulations to tune any
{ad hoc} parameters or vary the shape measurement method. The
numerical convergence of the parameter space values were found
using the zero-shear image from STEP1 PSF0. In our investiga-
tion we did however find some nuances of the STEP simulations
which we will highlight. For STEP1 we found that the intrinsic
ellipticity prior is very sharply peaked about zero and that the func-
tional form used in the prior needs to be sufficiently able to fit this
peak.

In STEP2, we found that to fully characterize PSFs D and E we
required more stars than just the ones in the starfields. To yield an
accurate PSF we co-added the PSF derived from the starfield and
galaxy fields. Furthermore the PSF determined from the starfield,
rotated image and unrotated image separately were not fully com-
patible, that is, they varied to such a degree that the shear bias and
offset could be affected by up to 5 per cent if either one of the
PSFs (from the starfield or galaxy images) were used individually.
To resolve this issue we did re-analyse this part of data once these
unexpected aspects of the simulations were found. These differ-
ences could be attributed to a number of aspects of the simulation,
however we do not have sufficient information at the simulation
level to make any quantitative statements in this study. The galaxy
fields for PSFs A, B, C and F contained too few stars, which did
not have close star–star or star–alaxy neighbours, to create a reli-
able additional PSF. PSFs D and E contain 30 useable stars in the
galaxy images whereas the other PSFs galaxy images contain ap-
proximately 15 useable stars. Since the useable stars in the galaxy
fields are also all relatively low signal-to-noise ratio this yields a
noisy and unreliable PSF model from the galaxy fields for these sets.
The overall conclusion, that LENSFIT yields a small bias and offset, is
not dependent on this aspect of the data analysis since when PSFs
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Bayesian galaxy shape measurement 163

D and E are removed the method still finds a small bias and offset
(Fig. 8).

An important feature of this shape measurement method is that
there are no parameters which are tuned or changed in order to
create an unbiased shear estimator. Originally the issue of tuning
a shape measurement pipeline was raised by Bacon et al. (2001)
who found that to relate measured shear to input shear a factor
of 0.8 was needed for their particular KSB (Kaiser, Squires &
Broadhurst 1995) implementation. Some methods, including other
KSB implementations, do not require tuning parameters. However
what existing shape measurement methods find, and KSB some-
what more than others, is that there are large magnitude and size
dependent biases (Massey et al. 2007) and that tuning is required to
eliminate these biases to some degree. Recently, Schrabback et al.
(2007) and Leauthaud et al. (2007) find that they need ‘shear calibra-
tion’ factors of up to 0.8 so that their shear measurement pipelines
agree with simulations to the 10−2 level over a range of magnitude.

5 AN ALTER NATIVE TO THE STEP

PARAMETRIZATION

We now investigate the results going beyond the m and
c parametrization. These results do not only compare the abso-
lute values of some quantity relative to the ‘ideal’ result, of m =
0 and c = 0, for example, but will assess whether any deviation in
the estimated shear values found by applying a shape measurement
method to simulations is statistical, owing to the finite number of
galaxies, or is a property of the method.

The new statistic also uses more information than the STEP
parametrization. As can be seen from Fig. 4 the m and c parametriza-
tion is well suited to STEP1 in which the number of points tested
in shear is small, and a linear parametrization can capture most of
the relevant information. However, when using fewer galaxies per
shear value (so that the variance is larger) and using many more
shear values as in STEP2, the m and c parametrization disregards a
large majority of the information by fitting a simple linear function
through many noisy points. The approach presented here is well
suited to STEP2-like simulations in which there are many shear
values for which a relative large variance is expected.

5.1 The quality factor

Bridle et al. (2008) (the GRavitational lEnsing Accuracy Testing
2008, GREAT08 Handbook) define a quality factor which allows
one to compare the expected statistical distribution of estimated
shear values from a simulation with the distribution measured by a
method. The GREAT08 quality factor is based on the work done in
Amara & Refregier (2007) on the desired minimum statistical and
systematic spread of estimated shear values when designing a future
weak lensing survey. In this paper, we present a generalization of
the GREAT08 quality factor for use in an arbitrary weak lensing
simulation. The central variable used here is the same as that used in
the m and c analysis, which is the difference between the estimated
shear and the input shear γM

i − γT
i . For a good shear measurement

method, that contains no biases, the variance in this quantity should
be entirely statistical. The quantity used is the average mean-square
error 〈(γM

i − γT
i )2〉. The statistical spread from the simulation in

question is denoted by σ 2
stat. This expected variance is related to

the measured spread of values via the ‘quality factor’ Q which we

define as

Q = 1000
σ 2

stat

1

2

1

Nimages

∑
i=1,2

∑
images

〈(γ M
i − γ T

i )2〉
, (28)

where the mean-square error is averaged over γ 1 and γ 2 for each
image (input shear value) in a simulation. The factor of 1000 nor-
malizes the expression so that a method which performs well should
have Q ∼ 1000, that is, the spread in estimated shear is purely sta-
tistical. The numerator σ stat is the shear variance of the galaxies
analysed and is set by the simulations. The quality factor averages
over all values of γT in an analogous way to the m and c parametriza-
tion, which fits a functional form to γM

i − γT
i over all values of γT .

This effectively averages over the angular scale on which shear is
averaged as we shall discuss.

The mean square error can be written as a sum of the intrinsic
variance and a bias 〈(γM − γT )2〉 = 〈(γT )2〉 + [Bias (γT , γM )]2

where Bias (γT , γM ) = 〈γM〉 − γT so that the quality factor effec-
tively parametrizes any residual bias in the estimators γM ; for an
unbiased estimator the mean-square-error is equal to the variance
of the data. This is an example of a loss function that parametrizes
the amount that an estimator differs from an underlying distribution.
The mean-square-error penalizes outliers as a result of the quadratic
nature of the function, an example of a loss function that does
not penalise outliers to such a degree is the absolute loss function
〈|γM − γT |〉. This loss function could also be used to make effective
comparisons between the shear estimations from several different
shape measurement methods, for a good shear estimator the abso-
lute loss function should be close to zero.

When designing a simulation and considering what value of the
quality factor would render a shape measurement method ‘ade-
quate’ (for use in current or future surveys) one must define the
variance in shear that a particular survey requires, σ . In Bridle et al.
(2008) the numerator in the GREAT08 quality factor is effectively
10−4 = 1000 × σ 2 where σ 2 = σ 2

stat + σ 2
systematic is the sum of ex-

pected statistical and systematic errors, and so slightly differs from
the definition presented in this paper. When designing a simulation
the requirement of a particular shear variance defines the number of
galaxies N in the simulation via σstat = σε/

√
N . This is justifiable

since one can determine the shear variance that a particular survey
will need in order to fully utilize the data (Van Waerbeke et al. 2006;
Amara & Refregier 2007) and create a simulation that allows one
to simulate the expected data.

5.2 Relation to the STEP parametrization

The relationship between the quality factor and the STEP
parametrization is not straightforward and one should exercise cau-
tion when making a mapping between the two statistics, as we shall
discuss. A subtlety also arises in the scale dependence of the statis-
tics when one considers the level of bias or offset that one requires
for a future survey and attempts to determine the requirement on
the quality factor that this would imply.

The quality factor effectively combines, in a non-trivial but jus-
tifiable way, the information from the four STEP parameters: m, c
and the uncertainties on these values �m and �c. As such one must
take care when determining a quality factor from the absolute m and
c values alone, in fitting this linear functional form, information on
a method’s performance is lost as a result of the assumption of
the functional form itself. By using equation (24) one can relate the
quality factor to the STEP m and c parametrization (for clarity in the
following we let the angular brackets correspond to the averaging
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over images as well as γ 1 and γ 2) the average values are calculated
by integrating the function in the angular brackets over the interval
−γL to +γL where γL = 0.06 in the STEP2 simulations,

Q = 1000
σ 2

stat

〈m2(γ T )2 + 2cmγ T + c2〉
= 1000

3σ 2
stat

m2γ 2
L + 3c2

,

(29)

where we have assumed that the true shear values are evenly dis-
tributed in the range −γL to +γL, i.e. P(γ )= constant for all |γ | ≤
γL. In the case that c = 0 the quality factor is simply inversely pro-
portional to m2. This highlights the difference between the quality
factor and the STEP parametrization, given a simulation the STEP
parametrization quantifies a method’s performance by the m and c
values with the hope that m ∼ 0, but this does not quantify whether
such values achieved are statistically significant. The quality factor
essentially combines the bias and offset along with the uncertainties
on these values into a single parameter. As an aside we note that
the substitution of the STEP parametrization into the absolute loss
function gives 〈|γM − γT |〉 = |c|.

As shown most recently by Fu et al. (2008, fig. 5), 〈(γT )2〉 varies
as a function of angular scale. So by choosing an average value
of 〈(γT )2〉 one implicitly assumes that m is averaged over scale. If
a particular value of 〈(γT )2〉 is chosen (as opposed to taking the
average) then this corresponds to picking a certain scale over which
shear variance is averaged. Furthermore a degeneracy exists when
determining the required quality factor between m, c and scale. This
can be seen by referring to Fu et al. (2008, fig. 5): if c > 0 then
for a particular value of 〈(γT )2〉 the scale to which this corresponds
to will increase. The exact relation between the bias, offset and
scale depends on the simulation through σ stat. This bias, offset and
scale degeneracy highlights the fact that the quality factor itself
averages over scale, but that this is no more pernicious than the
STEP parametrization in this regard.

We emphasize that using the STEP m and c values to calculate
a quality factor using equation (29) merely gives the maximum
possible Q for those m and c values. The two panels in Fig. 11
show that for the same m and c values the quality factor can be very
different (for these we assume that σ 2

stat = 10−7). From equation (29)
the quality factor found using these values would be Q = 770,
however this would only be achieved if all the points in Fig. 11 had
zero scatter about the best-fitting line. The quality factor thus takes
into account both the bias and offset as well as the scatter of points.
However as can be seen from equation (29) different sets of m and
c values can produce the same quality factor.

In the STEP2 and GREAT08 simulations |γT | ≤ 0.06 so that
〈(γT )2〉 = (1/3)(0.06)2 ∼ (0.03)2. If we assume that σ 2

stat ∼ 10−7

and m ∼ 0.1, as is found in STEP2 when investigating magnitude
and size dependence of the methods, it can be seen that existing
methods have a quality factor of Q � 10 which is sufficient for
current surveys (see Heymans et al. 2006; and the hatched region
in Fig. 5). As discussed in Bridle et al. (2008), if a method only
recovers a single constant value of zero shear for any input shear
value, γ 1 = γ 2 = 0, then Q ∼ 0.1. When m and c values are
compared with the quality factor a limit of reliability is inevitably
reached since in fitting the STEP parametrization to a large number
of points, as in STEP2, information on the scatter of the points is
lost in the fitting process.

The issues with the quality factor that were previously discussed
will only arise when designing a simulation and assessing which
quality factor corresponds to a particular bias or offset requirement.
When presented with existing simulations one can readily calculate

Figure 11. Simulated results of measured shear showing γM − γT for two
different realizations. Both panels show results which have best-fitting m and
c values of m = 0.01 and c = 0.0001 the solid lines show this fit. However,
the quality factor of the two results is very different owing to the scatter of
points about the best-fitting line. The maximum quality factor for these m
and c values would occur if all the points lay exactly on the best-fitting line,
using equation (29) is Q = 770. In the two cases, the uncertainty on the best-
fitting m and c values are different, the quality factor effectively combines
the best-fitting values and the uncertainties into a single parameter.

the quality factor which allows the shear variance of a method to be
compared to the intrinsic shear variance of the simulation.

5.3 Determination of the quality factor from the STEP2

simulation

Fig. 12 shows the spread in γM
i − γT

i for γ 1 and γ 2 for the LENSFIT

application to the STEP2 simulations. We do not show results for
Q from STEP1 since the number of points is so small (only 5 shear
values) that results on Q may be inaccurate. In Fig. 12 c �= 0 would
mean that the points would be scattered about a point offset from the
origin, m �= 0 would mean the spread of the points about zero would
be larger than the intrinsic shear variance of the STEP2 simulation.
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Figure 12. The values of γM
1 − γT

1 and γM
2 − γT

2 for all PSFs from the
STEP2 simulations. The figure shows a scatter in the values about zero, the
scatter is due to intrinsic variance that occurs as a result of the number of
galaxies in the simulation, the scatter about zero shows that the shear offset
is small. The errorbars show the average error on each point. The colours
and symbols again represent the various PSFs with black (�) =PSF A,
red (+)=PSF B, green (×)=PSF C, blue (�)=PSF D, cyan (�) =PSF E,
magenta (•)=PSF F.

It can be seen from Fig. 12 that there is a spread in estimated
shear values about (γM

1 − γT
1 ≈ 0, γM

2 − γT
2 ≈ 0), that is expected

for a method which can accurately estimate the shear. The points
which are scattered furthest from the origin are all associated with
the highly elliptical PSFs D and E. Usually the expected statistical
mean-square error would be given, assuming Poisson statistics, by
σ 2

stat =〈(eint
i )2〉/N. However as discussed in Section 4.2 the statistical

error for the STEP2 simulations is reduced due to the co-addition of
rotated and unrotated images to σ 2

stat = 〈(eint
i )4〉/2N for the STEP2

simulations
√〈(eint

i )4〉 ∼ 0.05 and N ∼ 3000 so that σ 2
stat ∼ 4.2 ×

10−7.
We find that for the LENSFIT application to the STEP2 simulations

the global average value of 〈(γM − γT )2〉 ∼ 1.1 × 10−5 so that
the global Q factor is Q = 38. This value shows that there is still
some residual bias in the spread in the values of 〈(γM

i − γT
i )2〉,

which we attribute to poor estimation of the prior owing to low
numbers of galaxies at the extremes of magnitude and size. If the
highly elliptical PSFs are removed, PSFs D and E, then the Q factor
improves to Q = 58.

We also show how the Q value varies as a function of magnitude
and size, in Table 2. When this is done the statistical variance σ stat

is changed since there are fewer galaxies in the corresponding bins,
as shown in Table 2.

It can be seen for the variation in magnitude that the Q values
are generally higher, with an average Q ∼ 150 than for the global
sample, because the prior better represents the samples intrinsic
ellipticity distribution in each bin. This is the same reason that the
m and c values improve in some bins when the sample is split
into size and magnitude bins, as discussed in Section 4.2. There
is similar variation as a function of size with an average Q ∼ 93,
the quality factor increasing as the size of the galaxies increases
as one would expect since with larger galaxies the model fitting
procedure becomes more reliable. The LENSFIT method therefore

Table 2. The STEP2 quality factor Q for the global STEP2 analysis and as
a function of M and size/radius R, as in Table 1.

Data set Galaxy sample σ 2
stat Q

All PSFs SEXTRACTOR matched catalogue 4.2 × 10−7 38.5
No PSF D & E SEXTRACTOR matched catalogue 4.2 × 10−7 57.7

All PSFs 18 ≤ M<20 6.3 × 10−6 45.3
All PSFs 20 ≤ M<21 3.2 × 10−6 112
All PSFs 21 ≤ M<22 1.6 × 10−6 93.8
All PSFs 22 ≤ M<23 1.6 × 10−6 74.2
All PSFs 23 ≤ M<24 6.3 × 10−6 295
All PSFs 24 ≤ M<25 3.1 × 10−5 277

All PSFs 0.2 ≤ R<0.4 3.6 × 10−7 15.4
All PSFs 0.4 ≤ R<0.6 7.8 × 10−7 33.3
All PSFs 0.6 ≤ R<0.8 1.6 × 10−6 81.0
All PSFs 0.8 ≤ R<1.0 3.1 × 10−6 89.0
All PSFs 1.0 ≤ R<1.2 1.3 × 10−5 169

Note. STEP2 uses galaxies in the catalogues created using SEXTRACTOR and
matching the rotated and unrotated catalogues.

has an approximate quality factor of Q � 100 (see Table 2) which is
a factor of at least 10 times better than is required for current weak
lensing surveys.

6 C O N C L U S I O N

In this paper, we have presented the application of the LENSFIT

method of Miller et al. (2007) to simulated weak lensing data from
the Shear TEsting Programme (STEP1 Heymans et al. 2006 and
STEP2 Massey et al. 2007). The method is a model fitting approach
to weak lensing shape measurement. The key advances over other
model fitting approaches are that it uses realistic galaxy profiles
and analytically integrates over the position and amplitude of the
model. Furthermore we use a Bayesian shear estimation method
that can take into account any bias in a fully self-contained way by
using a prior ellipticity distribution. This is done by calculating a
shear-sensitivity that produces a natural and correct weight function
for galaxies.

In this paper, we have shown how to estimate the prior distribu-
tion from data using an iterative approach which we have shown to
be stable and convergent. By using this on the STEP1 simulation
we have shown that this yields a prior distribution that is a good
representation of the true intrinsic ellipticity distribution. We use
the model fitting method to find the full posterior probability distri-
bution in ellipticity and then use the Bayesian approach to estimate
the shear from this distribution.

This method then, yields a very small bias in the estimated shear.
Furthermore it is a fast fitting method which takes approximately
1 second per galaxy (on a 2 GHz CPU) to find the full posterior
probability in ellipticity and is trivially parallelizable by assigning
one galaxy per CPU.

The STEP simulations parametrize the ability of a method to
measure shear by fitting a linear function to the difference between
the input (true) shear γT and the measured shear γM as a function
of the input shear γM

i − γT
i = mγT

i + c. The values m and c are
found which represent any bias in a method and any residual offset
in the estimated shear, respectively. We have shown that LENSFIT

yields values of m = +0.006 ± 0.005 and σc = 0.0002 for the
STEP1 simulations. The variance of c represents the stability of a
method’s estimation of shear to PSF variation. This is the smallest
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combined bias and variance for any method, and the smallest bias
for any method which has a linear response to the input shear.

By applying the method to the STEP2 simulations we again
found that the bias m = 0.002 ± 0.016 and offset c = −0.0007 ±
0.0006 were very small and that the method performed very well
in comparison to the methods presented in the STEP2 publication.
Furthermore when the galaxy sample is split into magnitude and
size bins, the bias and offset improve over a certain ranges since the
intrinsic ellipticity prior varies as a function of these parameters. By
recalculating the prior distribution in each bin the intrinsic distribu-
tion used is a better representation of the galaxies’ true ellipticity
distribution in that bin than if a global average prior is used. The
bias was found to be |m| < 0.02 over magnitudes 20 ≤ M ≤ 25
and sizes of galaxy from 0.2 ≤ R ≤ 1.2 arcsec. The offset only de-
viated from c = 0 in the magnitude and size bins where the number
of galaxies was � 100 and at the faintest magnitude and smallest
sizes, for all cases the bias was |c| � 0.004.

The small biases we report exceed the predicted requirement
for future weak lensing surveys. Amara & Refregier (2007) set a
requirement for the DUNE weak lensing concept that any bias in
shape measurement m needs to be be |m| � 5 × 10−3. Kitching
et al. (2008a) present a similar required accuracy of |m| � 8 ×
10−3 for dark energy parameters to remain unbiased. Furthermore,
if the shape measurement bias is marginalized over as part of the
parameter estimation then this requirement relaxes to an error on the
bias of �m � 10−2. Thus we have shown in this paper that LENSFIT

has the potential to negate the concern that shape measurement bias
may dominate weak lensing systematics.

Going beyond the m and c parametrization we defined a quality
factor Q, which quantifies whether the variation in γM − γT is
purely statistical, owing to the finite number of galaxies, or whether
it is a result of some bias in the method. A Q = 1000 is where the
variance is entirely statistical and Q ∼ 10 is the limit of current
methods analysed in the STEP publications. We have shown that
using the STEP2 simulation that LENSFIT has a quality factor of
Q � 100, approximately 10 times better than is required by current
surveys.

To summarize the main conclusions.

(i) Using the STEP1 simulations LENSFIT has a bias of m ∼ +6 ×
10−3 and a variation in the shear offset σc ∼ 2 × 10−4. These are
some of the smallest values for any shape measurement method.

(ii) Using the STEP2 simulations LENSFIT has a bias of m ∼
2 × 10−3 and a shear offset of c ∼ −7 × 10−4, this is the smallest
bias of any published method. Furthermore these values do not
substantially vary when the shear values from images with highly
elliptical PSF’s are removed suggesting any variation is statistical.

(iii) By analysing the STEP2 simulations as function of size and
magnitude the bias and offset over a certain range can improve
relative to those found using the entire population as a whole. This
is due to the intrinsic ellipticity prior’s variation as a function of
size and magnitude being correctly characterized.

(iv) We generalize the quality factor from Bridle et al. (2008) for
an arbitrary simulation. Using STEP2 LENSFIT has an average Q �
100, when the prior is correctly calculated in each magnitude or
size bin, which is at least a factor of 10 times larger than current
methods and the accuracy required by existing surveys.

In a real survey, there are a number of sophistications which the
STEP simulations do not include. None of these should present an
insurmountable problem to this method. The PSF will vary as a
function of position, but given a large enough number of stars in
each region this can be determined. Currently, we reject any close

pairs of galaxies when two or more galaxies lie in the same postage
stamp, this could be improved so that for pairs in which there is one
high signal-to-noise ratio galaxy and one very low signal-to-noise
galaxy the pair is kept, or adaptive postage stamp sizes could be
used. In cases of multiple exposures the posterior probability for
each galaxy and each exposure may be combined in an optimal
way. In other respects the STEP simulations are more difficult to
analyse using this method than in a real survey, for example our
assumption that the prior intrinsic ellipticity distribution is centred
on zero is not true in the STEP simulations since the ellipticity is
constant across the whole image. In reality, where the mean shear
across an image should be zero, the assumption of a zero-centred
prior should be a good representation of this distribution.

The LENSFIT method outperforms the majority of other shape mea-
surement methods since it uses realistic galaxy profiles and crucially
uses a Bayesian method to remove bias. We have shown that the
method reaches a level of accuracy, on simulated data sets, that
surpasses the level which current surveys require. This gives us
confidence that future weak lensing surveys which use such a tech-
nique will not be limited by the ability to measure the shapes of
galaxies.
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