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ABSTRACT

Context. Accretion disks in AGN should be subject to the same type of instability as in cataclysmic variables (CVs) or in low-mass
X-ray binaries (LMXBs), which leads to dwarf nova and soft X-ray transient outbursts. It has been suggested that this thermal/viscous
instability can account for the long-term variability of AGNs.
Aims. We test this assertion by systematically studying how the disk instability model (DIM) is applied to AGNs.
Methods. We use the adaptative grid numerical code we developed in the context of CVs, enabling us to fully resolve the radial
structure of the disk.
Results. We show that, because the Mach numbers are very large in AGN disks, the heating and cooling fronts are so narrow that
they cannot be resolved by the numerical codes that have been used until now. In addition, these fronts propagate on much shorter
time scales than the viscous time. As a result, a sequence of heating and cooling fronts propagate back and forth in the disk, leading
only to small variations in the accretion rate onto the black hole, with short quiescent states only occurring for very low mass-transfer
rates. Truncation of the inner part of the disk by e.g. an ADAF does not alter this result, but enables longer quiescent states. Finally we
discuss the effects of irradiation by the central X-ray source and show that, even for extremely high irradiation efficiencies, outbursts
are not a natural outcome of the model.
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1. Introduction

Accretion disks are found in a wide variety of astronomical ob-
jects, from young stars to active galactic nuclei (AGNs). Among
these, close binaries have deserved special attention, because
they are nearby, and they vary on short timescales that enable
time-dependent studies of their light curves. In particular, a num-
ber of these systems show large outbursts, such as dwarf no-
vae, which are a subclass of cataclysmic variables in which a
low-mass companion transfers mass onto a white dwarf. These
systems undergo outbursts lasting at least a few days, during
which their brightness increases by several magnitudes (see e.g.
Warner 1995, for a review). The outbursts are believed to be due
to a thermal-viscous accretion disk instability (Meyer & Meyer-
Hofmeister 1981) that arises when the disk effective tempera-
ture becomes <∼104 K, enough for hydrogen to become partially
ionized and opacities to depend strongly on temperature (see
Lasota 2001, for a review of the model). Similarly, soft X-ray
transients, which are a subclass of low-mass X-ray binaries in
which the compact object is either a black hole or a neutron star
also show outbursts, but their amplitude is greater and the time
scales longer than for dwarf novae. The ionization instability of
the accretion disk is also thought to be cause of the outbursts:
the difference with dwarf novae stems from the difference in the
mass of the compact object (and thus in the depth of the gravi-
tational potential well) and from the effect of illumination of the
disk, which is much more important in the case of X-ray binaries
(see e.g. Dubus et al. 2001).

It was realized long ago (Lin & Shields 1986) that the same
instability could be present in accretion disks around AGNs; it

was found that, at radii ∼1015−16 cm where the effective temper-
ature is indeed of a few thousand degrees, the disk should be
unstable. For the parameters of AGNs, the implied timescales
are 104−107 yr, making the direct observation of the instability
impossible, but predicting that in many systems the disk should
not be in viscous equilibrium and that many AGNs should be in
a quiescent state (see Siemiginowska et al. 1996; Siemiginowska
& Elvis 1997). It was also immediately realized that, as in
dwarf-novae, the character of putative AGN outbursts strongly
depends on the assumptions one makes about the disk viscos-
ity (Mineshige & Shields 1990). However, while one is guided
in the case of dwarf-novae by the observed outburst properties
when fixing the viscosity prescription, it is not even clear in the
case of AGN that outbursts are present, as the variability of these
objects could be just due to mass-supply variations. This state
of affairs gave rise to various, more or less arbitrary, prescrip-
tions for how viscosity varies (or not) with the state of the accre-
tion flow (Mineshige & Shields 1990; Menou & Quataert 2001;
Janiuk et al. 2004). In addition, results of numerical calculations
of AGN outbursts were marred by the insufficient resolution of
the grids used. As shown by Hameury et al. (1998), low grid
resolution often leads to unreliable results1.

The aim of the present article is to systematically study
how the disk-instability model (DIM) can be applied to AGNs.
Instabilities other than the thermal-viscous instability may

1 Mayer & Pringle (2006) make the mischievous remark in this context
that “mathematical convergence does not necessarily imply more accu-
rate modeling of physical reality”. While this might be true, it is clear
that the lack of convergence of a mathematical model makes it useless
for physical applications.
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exist in AGN disks (beyond the MRI instability thought to be
the source of viscosity, Balbus & Hawley 1991) and in particular
the gravitational instability that arises when self-gravity exceeds
the combined action of pressure and Coriolis forces (Toomre
1964; Safronov 1960); conditions for the onset of this insta-
bility are met at large distances from the black hole (see e.g.
Shlosman 1990). The outcome of this instability in the AGN
case is most probably the fragmentation of the accretion disk
(see e.g. Gammie 2001; Goodman 2003; Rafikov 2007) since
the cooling time is likely to be short in the AGN case. Duschl
& Britsch (2006) suggest that the gravitational instability might
instead be a source of turbulence, which could be the case if the
non linear development of the instability does not lead to frag-
mentation, not a likely outcome in the AGN case as mentioned
above. Other local or global instabilities may arise, such as the
Lightman-Eardley instability (Lightman & Eardley 1974), but it
is far beyond the scope of this paper to discuss them all, and we
consider parameters such as these instabilities do not occur.

2. Vertical disk structure

We recall here the vertical-structure equations adapted to AGN
parameters. We consider only the case where the viscosity ν is
proportional to the gas pressure (not the total pressure, in order
to avoid the Lightman & Eardley 1974, instability). The vertical
structure of an α disk in which the viscosity ν is assumed to be
proportional to the gas pressure is given by the standard disk
equations (see e.g. Frank et al. 2002, and references therein):

dP
dz
= −ρgz = −ρΩ2

Kz, (1)

dς
dz
= 2ρ, (2)

d ln T
d ln P

= ∇, (3)

dFz

dz
=

3
2
αeffΩKPg (4)

where P = Pg + Prad, ρ and T are the total (gas plus radia-
tion) pressure, density, and temperature, respectively, ς is the
surface column density between vertical coordinates −z and +z,
gz = Ω

2
Kz the vertical component of gravity, ΩK the Keplerian

angular frequency, Fz the vertical energy flux, and ∇ the temper-
ature gradient of the structure. This is generally radiative, with
∇ = ∇rad, given by

∇rad =
κPFz

4Pradcgz
· (5)

When the radiative gradient is superadiabatic, ∇ is convective
(∇ = ∇conv). The convective gradient is calculated in the mix-
ing length approximation, in the same way as in Hameury et al.
(1998), with a mixing length taken as Hml = αmlHP, where HP is
the pressure scale height:

HP =
P

ρgz + (Pρ)1/2ΩK
, (6)

which ensures that HP is smaller than the vertical scale height of
the disk. Here, we use αml = 1.5.

We have neglected the disk self gravity. This approximation
is valid as long as the ratio of self gravity to that of the central
object is low:

gs

gc
=
Ω2

KHP

2πGΣ
< 1. (7)

If this not the case, the disk is gravitationally unstable, which, as
mentioned in the introduction, is likely to lead to fragmentation
if the cooling time is short enough, or may significantly change
the angular momentum transport by introducing non local terms
(see e.g. Lin & Pringle 1987; Balbus & Papaloizou 1999). In
both cases, the thermal-viscous instability can no longer apply
(in the first case for obvious reasons, and in the second one
because non local effects cannot be approximated by viscosity,
which is local); in our calculations, we always make sure that the
condition (7) is fulfilled.

The parameter αeff is an effective viscosity, equal to the stan-
dard viscosity coefficient α when the disk is in thermal equilib-
rium, but it also accounts for the time-dependent terms that are
assumed to also be proportional to the pressure (see Hameury
et al. 1998, for a detailed discussion).

The equation of state of matter is interpolated from the tables
of Fontaine et al. (1977); in the low temperature regime (below
2000 K), which is not covered by these tables, Saha equations
are solved iteratively, as described by Paczyński (1969). The
Rosseland mean opacities are taken from Cox & Tabor (1976)
above 10 000 K, and from Alexander (1975) below (more mod-
ern opacities introduce changes that are not important in the
present context, see Lasota et al. 2008).

The boundary conditions are ς = 0 and Fz = 0 at the
disk midplane, and ς = Σ at the surface. The standard pho-
tospheric condition κPg = 2/3gz has to be slightly modified,
as (1) radiation pressure can de dominant; and (2) gz can vary
in the photosphere. Integrating the vertical hydrostatic equilib-
rium equation and using the Eddington approximation leading
to T 4(τ) = 3/4T 4

eff(2/3 + τ) where τ is the optical depth, one
obtains

κ

(
Pg +

1
2

Prad

)
=

2
3
gz

(
1 +

1
κρz

)
· (8)

The term 1/κρz is close to the relative thickness of the photo-
sphere relative to the total disk thickness. It is usually not very
important except when the disk luminosity is close to its local
Eddington limit, in which case the photosphere can be quite
extended.

The thermal equilibrium corresponds to Q+ = Q−, where Q+

and Q− are the surface heating and cooling rates, respectively
(see Eq. (14) below). Figure 1 presents two examples of thermal
equilibrium curves in the Σ – Teff plane, showing the charac-
teristic S shape. Also plotted are the conditions gs/gc = 1 and
h/r = 0.1. As can be seen, self gravity becomes important at
radii larger than 1 − 2 × 1016 cm, in agreement with the findings
of Cannizzo & Reiff (1992) and Cannizzo (1992). The condi-
tion that self gravity be small can be quite severe; for exam-
ple, we note that in several of the simulations by Janiuk et al.
(2004) this condition is not fulfilled and the corresponding re-
sults are therefore invalidated. The thin disk approximation con-
dition (h/r � 1) is usually less stringent; it may, however, break
for high accretion rates, in which case radiation pressure gradi-
ent almost balances vertical gravity in a significant fraction of
the disk vertical extent.

The values Σmin and Σmax that are the minimimun (resp. max-
imum) values of Σ on the upper (resp. lower) branches of the
S curve can be fitted by

Σmin = 2.90 × 103α−0.74
( r
1015 cm

)1.04
M−0.35

8 g cm−2 (9)

and by

Σmax = 3.85 × 103α−0.82
( r

1015 cm

)0.99
M−0.33

8 g cm−2 (10)
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Fig. 1. Examples of S curves in the Σ – Teff plane, for M = 108 M� and r = 1015 cm (left) and for r = 2 × 1016 cm (right). In both cases, S curves
obtained for α = 0.1 and 0.01 are shown. The dotted curve corresponds to ratio of self to central gravity equals 1, and the dashed curve to h/r = 0.1.
Only regions below the dashed curved and above the dotted one are allowed. For r = 1015 cm, these limits lie outside the portion of the Σ – Teff

plane shown here.

where M8 = M/(108 M�), M the black hole
mass. The corresponding effective temperatures are
Teff(Σmin) = 4300(r/1015 cm)−0.12 K and Teff(Σmax) =
3300(r/1015 cm)−0.12 K, respectively. These are independent
of α, as expected, and their radial dependence is quite weak.
As compared to disks around stellar mass objects, the surface
densities are much higher, hence somewhat smaller effective
temperature at the turning points of the S -curve (the upper
stable solution ends at 3000–4000 K instead of 7000–8000 K),
even though the corresponding mid-plane temperatures are quite
similar.

It should also be noted that, because we are restricted to a re-
gion where self gravitation is small, the disk extension, as mea-
sured by the ratio rin/rout is not very large. For the case of a
108 M� black hole, this is about 100, i.e. comparable to disks in
CVs, but much smaller than for LMXBs. It is also worth noting
that the disk thickness H,

H
r
� cs

vk
, (11)

where cs and vk are the sound and Kepler velocities, is small in
regions where the thermal-viscous instability can propagate. As
compared to the CV or LMXB case, cs is unchanged because the
central temperature at the turning points of the S curve are sim-
ilar, and on the order of 106 cm s−1, but vk is much larger, since
in the AGN case, we are restricted to regions close to the black
hole as mentioned above; here, we have H/r ∼ 10−3 or smaller.
As the width of the heating and cooling fronts are a few times H
(Menou et al. 1999), this can be a source of numerical problems.
In particular, these fronts have been completely unresolved in all
previous studies, casting some doubt on their results.

2.1. Critical points and the viscosity prescription

It should be noted that, for some choices of parameters, the equi-
librium curves show two “wiggles” (see e.g. the case α = 0.1 at
r = 1015 cm, Fig. 1) on the lower branch. This also happens in
accretion disks around stellar mass black holes, but, in contrast
to Janiuk et al. (2004), we do not find that this is always the
case for AGNs. This discrepancy can be due to a difference in
the treatment of convection or to different opacities. The small
wiggle at low temperature is not related to a strong change in
the opacities, but instead to a strong change in the adiabatic

Fig. 2. Vertical structure of the accretion disks, for M = 108 M�, r =
1015 cm, Σ = 4.3×104 g cm−2, α = 0.01, and Teff = 1400 K (thick curve)
and 1570 K (thin curve). The line is dashed when energy transport is
radiative. These two cases correspond to the upper and lower stable
parts of the small wiggle shown in Fig. 1.

gradient when molecular hydrogen becomes partially dissoci-
ated, as is shown by Fig. 2. Two vertical structures, correspond-
ing to the same r, Σ, and α, but two different effective tem-
peratures on the upper and lower stable branches of the small
wiggle of Fig. 1, differ essentially by a much stronger temper-
ature gradient in the disk midplane. In one case, ∇ad ∼ 0.10,
while ∇ad ∼ 0.40 in the other. This effect occurs only if molec-
ular hydrogen becomes partially dissociated in the convective
zone. Since the opacities are relatively low for the corresponding
temperatures and densities, there are cases where the transition
between molecular and atomic hydrogen occurs in a radiative
zone, in which case no wiggle is found.

In the standard dwarf-nova model, it is assumed that the
α-parameter changes rapidly when the disk temperature reaches
the ionization instability; this is required for the amplitude of the
modeled outburst to be comparable to the observed one. It is of-
ten stated that the physical reason for such a change is the change
in the ionization parameter of the gas, hence α is assumed to re-
main constant when transiting this secondary wiggle. This also

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810928&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810928&pdf_id=2
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seems to be a reasonable hypothesis in the AGN case, and does
not require the physics of accretion disk to be different in dif-
ferent environments, even though the temperatures and densities
are similar. In the following, contrary to Janiuk et al. (2004), we
assume therefore that the critical Σmax of the cold stable branch
corresponds to the ionization instability and that the lower wig-
gle is not associated with a change in α. This point is of im-
portance, since as shown by Hameury (2002), the shape of the
resulting S curve and hence the outcome of the model is by far
dominated by the change in the viscosity parameter α.

Finally, one should point out that whatever arguments are
used to justify the change in α, i.e. the use of an αcold and an
αhot ≈ (4−10)αcold, the real reason is the necessity to produce
the required outburst amplitude. It has been argued (Gammie
& Menou 1998) that the difference between viscosities in the
high and low (quiescent) states of dwarf-nova disks is due to the
“decay” of the MRI mechanism that is supposed to be the source
of turbulence in accretion disks (Balbus & Hawley 1991). In the
environment of AGN disks, the MRI is supposed to be operating
also in cold disks, which was used to argue that αhot ≈ αcold in
this case (Menou & Quataert 2001).

However, as noted by Steven Balbus (private communica-
tion), because of the fact that numerical simulations treat the tur-
bulent dynamics of disks at a level far beyond anything that can
be approached with strictly analytic techniques, there has been a
tendency to grant simulations a level of certainty that they do not
merit yet. A careful treatment of realistic energetics still remains
beyond the capabilities of current codes, and even simple poly-
tropic shearing box calculations need to be run at much higher
resolutions and for much longer times than were once thought
necessary.

Therefore the values of critical Reynolds numbers deduced
only from numerical simulations (Gammie & Menou 1998;
Menou & Quataert 2001) are highly uncertain and we opted for
using the standard dwarf-nova DIM also in AGNs.

3. Disk evolution

3.1. Basic equations

The standard equations for mass and angular momentum con-
servation in a geometrically thin accretion disk can be written
as
∂Σ

∂t
= −1

r
∂

∂r
(rΣvr) (12)

and

j
∂Σ

∂t
= −1

r
∂

∂r
(rΣ jvr) +

1
r
∂

∂r

(
−3

2
r2ΣνΩK

)
(13)

where vr is the radial velocity in the disk, j = (GM1r)1/2 is the
specific angular momentum of material at radius r in the disk,
ΩK = (GM1/r3)1/2 is the Keplerian angular velocity

The energy conservation equation is taken as (see Cannizzo
1993; Hameury et al. 1998, for details):

∂Tc

∂t
=

2(Q+ − Q− + J)
CPΣ

− Pc

ρcCP

1
r
∂(rvr)
∂r
− vr ∂Tc

∂r
, (14)

where Pc and ρc are the midplane pressure and density, and Q+

and Q− are the surface heating and cooling rates, respectively.
They are usually taken as Q+ = (9/8)νΣΩ2

K, and Q− = σT 4
eff, Teff

is the effective temperature. The term J accounts for the radial
energy flux carried by viscous processes,

J = 1/r∂/∂r(rFe), (15)

where Fe is the flux carried in eddies with characteristic veloc-
ity ve and size le:

Fe = CPΣve
∂Tc

∂r
le =

3
2
νCPΣ

∂Tc

∂r
· (16)

These are identical to the equations of a disk in a binary system,
except that there are no tidal torques and no tidal dissipation.

The inner boundary condition is also unchanged from the
binary case:

νΣ = 0 at r = rin (17)

where rin is the radius of the inner edge of the disk and can be
larger than the radius of the innermost stable orbit if the disk
is truncated by the formation of an ADAF, in which case rin is
a given function of the mass accretion rate (see e.g. Hameury
et al. 1997). As we use ln(Σ) as a variable, the Σ = 0 boundary
condition is not applicable. Instead, we take

νΣ = 1.1Σmin at r = rin (18)

so that this allows for the disk to be both in the hot or cold states
(see below for a more detailed discussion on the effect of using
this boundary condition).

The outer boundary condition is more problematic, as the
disk extends to large distances where all the usual approxima-
tions are invalid (thin disk, neglect of self gravity, etc.). We in-
stead assume that at some distance rout ∼ 1016 cm for M =
108 M�, the mass-transfer rate is given and constant. This ap-
proximation is valid provided that the heating front does not
reach this outer radius.

The heat Eq. (14) requires two additional boundary condi-
tions. As discussed in Hameury et al. (1998), these are of little
importance, and we take J = 0 at r = rin and r = rout.

3.2. Results

Figure 3 shows an example of the evolution of the accretion
disk. We have considered here a 108 M� black hole accreting
at 1024 g s−1, about one hundredth of the Eddington limit:

ṀEdd =
LEdd

c2η
=

4πGMmp

σthcη
� 1.4 × 1026M8g s−1 (19)

where η ∼ 0.1 is the efficiency of accretion, and σTh the
Thompson cross section. The mass is the same as in Janiuk et al.
(2004), but the mass-transfer rate is lower by a factor ∼10 in
order to avoid (or try to avoid) the instability occuring in the
self-gravitating part of the accretion disk. We have assumed a
varying α between αh = 0.2 and αc = 0.04. We have also taken
the outer disk radius to be 1016 cm, as the disk becomes self-
gravitating at larger distances. As can be seen, the disk can never
be brought completely to the cold regime; as a consequence, rel-
atively low amplitude oscillations are seen in the visual magni-
tude and in the accretion rate onto the black hole. This situation
is reminiscent of what happens in the case of soft X-ray tran-
sients when no disk truncation or irradiation is assumed (Menou
et al. 2000; Dubus et al. 2001), or in the case of symbiotic stars
(Duschl 1986). A cooling front is reflected at some radius much
larger than the disk inner radius and as a result a heating front
starts propagating outwards, but it cannot quite reach the outer
disk edge and a cooling front forms again. Such reflections oc-
cur when the surface density Σ behind the cooling front reaches
Σmax, which triggers a new instability. The resulting heating front
propagates outwards until the post-front density reaches Σmin.
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Fig. 3. Time evolution of an accretion disk with the following parame-
ters: black hole mass: 108 M�, inner and outer radius: 1014 and 1016 cm,
respectively, and mean mass transfer rate: 1024 g s−1. Top panel: vi-
sual magnitude; intermediate panel: accretion rate onto the black hole;
lower panel: radius at which the transition between the hot and cold
regimes takes place.

Then a new cooling front starts going down the disk. There is,
however, a significant difference in that the short time oscilla-
tions do not result in oscillations of the mass accretion rate on
the same time scale. Ṁ fluctuates only on the longer time scale
of the front oscillation pattern. The basic reason for this is that
the front propagates at approximately α times the sound speed,
i.e. on a time scale

tfront =
r
αcs
=

r
h

tth, (20)

where tth is the thermal time scale. tfront is shorter than the vis-
cous time tvisc = (r/h)2tth by a factor r/h, i.e. by several or-
ders of magnitude. The cooling front therefore propagates so
rapidly that the surface density at smaller radii does not change;
to a first approximation, it cannot propagate in regions where
Σ > Σmax(αc). In the CV case, tfront is shorter than tvisc, but not
by such a large amount, and strong gradients in the disk make
the effective viscous time comparable to the front propagation
time.

It must also be noted that the front occasionally reaches the
outer disk edge; then the outer boundary condition that dictates
in particular that there is no outward mass flow is not valid, so
that the correct sequence is probably different. The back and
forth propagation of heating fronts on a short time scale is, how-
ever, a firm prediction of the model.

For lower mass-transfer rates, the outer part of the disk can
remain on the cold, stable branch, in which case the front prop-
agation is restricted to the innermost parts of the disk. Figures 4
and 5 show the evolution of a disk with the same parameters

Fig. 4. Time evolution of an accretion disk with the following parame-
ters: black hole mass: 108 M�, inner and outer radius: 1014 and 1016 cm,
respectively, and mean mass transfer rate: 2 × 1022 g s−1. Top panel:
visual magnitude, lower panel: accretion rate onto the black hole.

Fig. 5. Details of the outburst shown in Fig. 4. Top panel: visual mag-
nitude; intermediate panel: accretion rate onto the black hole; lower
panel: radius at which the transition between the hot and cold regimes
takes place. The red-dashed line is the semi-analytic value of the mini-
mum transition radius given by Eq. (23).

as in Fig. 3, but with a mass-transfer rate of 2 × 1022 g s−1,
5×10−3 times the Eddington limit. As can be seen in Fig. 5, heat-
ing and cooling fronts propagate in a restricted fraction of the ac-
cretion disk. They do not reach radii larger than that at which the
disk can sit on the stable cool branch, given the externally im-
posed mass-transfer rate. They also do not reach the innermost

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810928&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810928&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810928&pdf_id=5
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Fig. 6. Radial structure of the disk. The blue solid line represents the
surface density, the red dashed one the central temperature. The dotted
lines are the critical Σmin and Σmax. See text for details.

regions where the surface density always remains high enough
for the disk to be stable on the hot branch, except when entering
a quiescence period, which happens when the disk finally emp-
ties on a much longer viscous time. The active phase lasts for
3 × 105 yr in the case presented here, with more than 400 con-
secutive oscillations. These are not random, but show relatively
regular sequences of decreasing oscillations that are interrupted
by an oscillation with a larger amplitude, clearly visible in Fig. 5.
Note also some sort of hierarchical structure for these oscilla-
tions. Figure 6 shows the radial structure of the disk during the
oscillating phase (compare wih Fig. 2 of Dubus et al. 2001). The
semi-stable inner and outer regions are clearly visible. The cen-
tral unstable zone is divided into two parts: an inner unstable
one, and an outer marginally stable one, where Σ ≈ Σmin, result-
ing from the successive passage of heating fronts that die at radii
decreasing with time. A leftover of the death of these fronts is the
little wiggle in Σ that gets smoothed with time as a result of dif-
fusion, or when a heat front is able to reach this region. Note also
the spike in the unstable region, which carries a small amount of
mass that will cause the small wiggles in the marginally stable
region.

3.3. Minimum radius reached by cooling fronts

The minimum radius reached by the cooling front can be deter-
mined by noting that the front propagates down to a point where
Σ = Σmax(αc) and that the innermost parts of the disk are in quasi
viscous equilibrium. This means that the surface density is deter-
mined by the accretion rate which is almost constant in this hot
inner region. This is equivalent to stating that, at the reflection
point, the dissipation rate Q+ is

Q+ =
3GMṀ

8πr3
f = σT 4

eff(Σmax, hot) (21)

where f = 1 − (r/rin)−1/2. Note that Teff is calculated on the hot
branch and is not given by the analytic fits obtained in Sect. 2.
An examination of Fig. 1 shows that Teff(Σmax, hot) is about 3.2
times that of the turning point on the cool branch, Teff(Σmax, cold)

for αc/αh = 0.1. As Q+ is proportional to νΣ, hence proportional
to α, one can guess that

T 4
eff(Σmax, hot) = 3.24 αh

10αc
T 4

eff(Σmax, cold), (22)

which is also a very good approximation even for αc/αh = 1, as
can be seen from Fig. 1. Now, from the fits of T 4

eff(Σmax, hot) we
have

r = 1.7 × 1015

(
Ṁ

1023g s−1
M8
αc

αh
f

)0.4

. (23)

Figure 6 shows that there are two points where Σ crosses the Σmax
line, and Eq. (23) indeed has two solutions, one for which f is
small, and another one in which f � 1. The first one corresponds
to the transition between the very inner disk, where Σ is vanish-
ingly small because of the boundary condition and therefore the
cool branch solution applies, and nearby regions where Σ is large
enough for the hot solution to apply. This is discussed in the next
section. The second one corresponds to the radius at which the
cooling front is reflected and becomes a heating front.

From Eq. (23), it appears that, for low enough Ṁ or large
enough rin, the cooling front can reach the inner radius, in which
case the system will enter a quiescence phase. More precisely,
this happens when Eq. (23) has no solution. Simple algebra
shows that the critical Ṁ is

Ṁ = 5 × 1020
( rin

1014 cm

)2.5 αh

αc
M−1

8 g s−1, (24)

and the corresponding critical radius is r = 1.44 Rin, at which
f = 1/6. It is interesting to rescale this relation as

Ṁ

ṀEdd
= 2.7 × 10−6αh

αc
M0.5

8 (rin/3rs)2.5 , (25)

which shows that, if the disk is not truncated, low states will be
found only for low mass-transfer rates, whatever the black hole
mass.

The critical rate given by Eq. (25) refers to the accretion rate
onto the black hole and not to the mass-transfer rate. For high
mass-transfer rates, both are almost equal, as seen above (see
e.g. Fig. 3). For lower values of Ṁtransf , they may differ by up to
one order of magnitude, as shown for example in Fig. 4 where
the accretion rate at maximum is 10 times higher than the mass
supply rate to the disk. In this case, Ṁ ultimately falls below the
critical value given by Eq. (25), and the disk enters a quiescent
state. The duration of this state is short, however, close to the
duration of the outburst state, as the average mass accretion rate
during the active state is ∼5.7× 1022 g s−1, i.e. not very different
from the steady mass-transfer rate. (The duty cycle expected for
an outburst with an average accretion rate 2.85 times higher than
the transfer rate is 0.35, very close to the value given by the
simulation (0.30), showing that the disk is almost relaxed.) We
therefore expect that outbursts exist only for low mass-transfer
rates, that these outbursts are weak – never reaching anything
close to the Eddington limit – and that the duty cycle cannot be
large.

3.4. Innermost disk instability

The very inner parts of the disk, where the density is very low be-
cause of the inner boundary condition should therefore be on the
cold branch. The transition between this cold region and more
distant, hotter regions should also be unstable; indeed, when one
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Fig. 7. Instability of the inner disk edge when the boundary condition
Σ = 0 is used. The top panel shows the position of the transition radius
as a function of time, the lower panel the mass accretion rate onto the
black hole. The parameters are those of Fig. 4. These large amplitude
are unphysical, since mass flows into the black hole from a region much
larger than the width of the zone in which these fluctuations occur.

assumes that the inner boundary condition is not Σ = 1.1Σmin
at r = rin, but is smaller than Σmin, oscillations are found. For
the sake of completeness, we show in Fig. 7 the effect of these
oscillations in such a case. Cooling/heating fronts propagate in a
very restricted region, whose radial extent is greater than the ver-
tical scale height so that the thin disk approximation is still valid,
but presumably much smaller than the zone from which matter
flows into the black hole. Also, this region is so small that the to-
tal disk luminosity remains constant. These oscillations are pos-
sible only when the width of heating/cooling fronts is less than
the width of the region over which Σ catches the boundary con-
dition Σ = 0, which is one to a few percent of rin (see Fig. 6),
otherwise fronts would simply not exist. This is quite possible
in the AGN case, because the fronts are so narrow and contrasts
with the CV or LMXB case where the reverse is true and the
condition Σ = 0 does not have such an effect. There oscilla-
tions are most probably not physical, because one assumes that
(i) there is absolutely no torque at the inner disk edge; and (ii)
that matter is lost from the disk only at r = rin. It is very likely
that the mechanisms leading to accretion at the inner disk edge
(e.g. evaporation, etc.) will smooth oscillations there. To avoid
these and to ease the numerical computations, we have assumed
that Σ is not vanishingly small at the inner disk edge, but that
instead it is very slightly larger than Σmin.

3.5. Disk truncation

Disk truncation could be a solution to the absence of large
outbursts. This was found to be an essential ingredient of the
soft X-ray transient model (see e.g. Menou et al. 2000; Dubus
et al. 2001). Truncation can be the result of the formation of
an advection-dominated accretion flow (ADAF) or of one of its
variants (see e.g. Narayan & McClintock 2008; Kato et al. 1998,
for reviews of the ADAF), the important feature being that the
flows becomes hot, geometrically thick, and optically thin close
to the black hole. For the outburst cycle to be modified, one

Fig. 8. Long-term evolution on an AGN accretion disk when rin can
vary as a result of e.g. evaporation or the formation of an ADAF. The
system alternates between active phases in which heating and cooling
fronts propagate back and forth in the disk and quiescent phases last-
ing about one million years. Top panel: visual magnitude; intermediate
panel: accretion rate onto the black hole; lower panel: inner disk radius.

needs the disk not to extend down to the innermost stable or-
bit, but instead be truncated at a radius comparable to the min-
imum radius reached by the cooling front. The inner disk ra-
dius will then depend on the mass accretion rate onto the black
hole. Many prescriptions can be derived; what really matters is
whether Eq. (23) can be satisfied or not, since the details of the
variations of rin as a function of Ṁ are not important.

Figures 8 and 9 show an example in which rin = 2 × 1014

(Ṁ/1023 g s−1)1/2. As can be seen, quiescent states are found,
as well as active states that are not very bright though – only
brighter than the active states for non truncated disks by a factor
∼2, resulting in duty cycles that also differ by factors ∼2.

3.6. Disk irradiation

Disk irradiation plays an essential role in soft X-ray transients
(see e.g. van Paradijs 1996; Dubus et al. 2001, and references
therein) and sometimes in CVs, see e.g. Hameury et al. (1999),
and could also play an important role in the AGN context. We
follow here the same procedure as in the case of irradiated disks
in SXTs (Dubus et al. 2001). We assume that the irradiation flux
Firr onto the disk is given by

Firr = σT 4
irr = C

Ṁc2

4πR2
(26)

where C is a constant. In the case of SXTs, C = 5 × 10−4 has
been adopted by Dubus et al. (2001). (We include here in C the
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Fig. 9. The outburst shown in Fig. 8. The two upper panels are the same
as in Fig. 8, and the lower panel shows the transition radius between the
inner hot disk and the cooler outer parts.

efficiency of mass to energy conversion.) The ratio of the irradi-
ating flux to the viscous flux is then given by

Firr

Fvisc
=

4
3

C
Ṁacc

Ṁ

r
rs
, (27)

which clearly shows, because we are interested in regions much
closer to the black hole than in the case of SXTs, that C must be
large if irradiation is to have any effect at all. To affect the cen-
tral temperature of the disk, Firr/Fvisc must exceed the optical
thickness of the disk (in the radiative case). This is possible in
principle because the X-ray emitting region could have a com-
plex geometry, such as a corona above a cooler disk, in which
case the irradiation flux can be large. It is however very unlikely
that it could exceed 0.01, since the fraction of X-rays absorbed
below the photosphere is at most 10%. In the following, we con-
sider the case C = 0.01, which corresponds to a maximally ir-
radiated disk. One should also note that, in this case, the X-ray
luminosity would be linked in a complex way to the local prop-
erties of the accretion flow and would not be proportional to the
accretion rate onto the black hole Ṁacc alone. Equation (27) as-
sumes steady state, and neglects the rin/r terms in the energy
dissipation equation, which can be significant close to the disk
inner edge.

We then calculated a grid of vertical disk structures to de-
termine the effective temperature as a function of Σ, Tc, Tirr, as
described in Sect. 2, with a modified boundary condition at the
disk surface:

Fz = σ(T 4 − T 4
irr). (28)

Fig. 10. Time evolution of an irradiated disk, with parameters identical
to those of Fig. 4; here C = 0.01. Top panel: V magnitude; intermediate
panel: accretion rate onto the black hole; lower panel: transition radius
between the hot, inner disk and the cool outer disk.

As in the case of SXTs, the effect of irradiation is a stabiliza-
tion of the disk when the irradiation temperature is high enough,
typically higher than ∼104 K.

A reasonably good fit to the effective temperature at Σmax is
given by

Teff(Σmax) = 730
( r

1015 cm

)0.33
M−0.11

8

( Ṁacc

1025g s−1

)−0.29

×
{
1 −

(7 × 1019 g s−1

Ṁacc

)1/4}1/4
K (29)

in a situation where the disk is in viscous equilibrium, hence Tirr
is directly given by Ṁ. This fit is valid for irradiation tempera-
tures higher than about 4000 K, but less than 104 K for which
the disk becomes stable.

Figure 10 shows the time evolution of an irradiated disk with
the same parameters as in Fig. 4, apart from the irradiation fac-
tor C set to 0.01. As can be seen, even in this maximally irra-
diated disk, the time evolution is not very different from that of
an unirradiated disk. There is still a succession of rapid oscilla-
tions of the luminosity, with a heating/cooling front propagating
back and forth. The main difference is here that the disk enters
into a quiescent phase more rapidly than in the unirradiated case,
but one should note that the initial structure was not exactly the
same in both cases, and that because of the huge computing time
required to follow the disk oscillations, a relaxed state cannot be
attained in practice. However, the radial disk structure obtained
at the end of active phases in the irradiated and unirradiated cases
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Fig. 11. Example of the disk radial structure in the irradiated case. The
blue solid line is the surface density, the red dashed line is the central
temperature. The blue dotted lines represent Σmin and Σmax, and the ef-
fects of irradiation are clearly visible ar radii <∼1015 cm; at radii smaller
than 3× 1014 cm, the S shape of the cooling curve vanishes and the disk
is stable.

do not differ much, with an outer disk on the cold stable branch,
and most of the disk having Σ = Σmin. This similarity, and the
fact that the unirradiated disk was almost relaxed makes us con-
fident that, here also, the disk is close to relaxation.

Figure 11 shows the radial structure of the disk at time t =
3.5×104 yr, when 3/4 of the first outburst have elapsed. It clearly
shows the impact of irradiation on the innermost part of the disk,
which is due both to a high irradiation temperature and to the
decreasing viscous dissipation close to the inner disk edge (the
f factor).

The conclusion that quiescent states are only possible for low
mass-transfer rates is very general. An analysis similar to that
described above in the non irradiated case leads to the conclusion
that the disk can enter into quiescence only if the mass accretion
rate is less than

Ṁacc,crit = 4 × 1020
( rin

1014 cm

)2
M−2/3

8

(
αh

αc

)0.46
g s−1, (30)

which is accurate to within a factor 2 when compared to the
results of the numerical simulations. Although the dependence
on M8, rin, and α are different from the unirradiated case, the
numerical value of this critical rate is not changed to the point
where one could obtain large amplitude outbursts, during which
the Eddington limit would be attained or approached.

4. Conclusion

We have shown that the accretion disks in AGNs can indeed be
subject to the same thermal-viscous instability as in dwarf novae
and soft X-ray transients, but the outcome of this instability is
very different. This contrasts with previous findings that large
amplitude outbursts reaching the Eddington limit were possible,
and the reason for this discrepancy is the poor spatial resolution
of the numerical codes that have been used to model the disk. In
AGNs, the disk opening angle is much less than in DNs or SXTs,
because the Keplerian velocity is not low compared to the speed

of light, whereas the sound speed is, by construction, the same
in both cases. This results in very thin transition fronts, which
are quite difficult to follow numerically.

We do, however, predict time variations of the AGN lumi-
nosity by a few magnitudes on time scales ranging from a few
thousand (the propagation time of a thermal front in the disk)
to a few million years (the typical quiescent/outburst time), and
these oscillations are enhanced by a possible truncation of the
innermost parts of the disk. However, because of their small am-
plitudes and duty cycles, these variations cannot explain the sta-
tistical properties of quasar and AGN luminosity distribution.

One should also stress that, for high mass-transfer rates,
the transition front can reach regions in the disk where self-
gravitation becomes important, and there the assumption of a
homogeneous disk becomes quite questionable, as a result of the
development of a gravitational instability that is likely to result
in the fragmentation of the disk.
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