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ABSTRACT
A new multidimensional Hierarchical Structure Finder (HSF) to study the phase-space structure
of dark matter in N-body cosmological simulations is presented. The algorithm depends mainly
on two parameters, which control the level of connectivity of the detected structures and their
significance compared to Poisson noise. By working in six-dimensional phase space, where
contrasts are much more pronounced than in three-dimensional (3D) position space, our HSF

algorithm is capable of detecting subhaloes including their tidal tails, and can recognize other
phase-space structures such as pure streams and candidate caustics.

If an additional unbinding criterion is added, the algorithm can be used as a self-consistent
halo and subhalo finder. As a test, we apply it to a large halo of the Millennium Simulation,
where 19 per cent of the halo mass is found to belong to bound substructures, which is
more than what is detected with conventional 3D substructure finders, and an additional
23–36 per cent of the total mass belongs to unbound HSF structures. The distribution of
identified phase-space density peaks is clearly bimodal: high peaks are dominated by the
bound structures and show a small spread in their height distribution; low peaks belong mostly
to tidal streams, as expected. However, the projected (3D) density distribution of the structures
shows that some of the streams can have comparable density to the bound structures in position
space.

In order to better understand what HSF provides, we examine the time evolution of structures,
based on the merger tree history. Given the resolution limit of the Millennium Simulation,
bound structures typically make only up to six orbits inside the main halo. The number of orbits
scales approximately linearly with the redshift corresponding to the moment of merging of
the structures with the halo. At fixed redshift, the larger the initial mass of the structure which
enters the main halo, the faster it loses mass. The difference in the mass loss rate between the
largest structures and the smallest ones can reach up to 20 per cent. Still, HSF can identify at
the present time at least 80 per cent of the original content of structures with a redshift of infall
as high as z ≤ 0.3, which illustrates the significant power of this tool to perform dynamical
analyses in phase space.

Key words: methods: data analysis – methods: numerical – galaxies: haloes – galaxies:
structure – dark matter.

1 IN T RO D U C T I O N

When Zwicky (1933) studied galaxy velocities in clusters, he was
the first to notice that there should be about one order of magnitude
more matter in the Universe than the observed amount of baryonic
matter to explain the proper motions of galaxies through gravita-
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volker@mpa-garching.mpg.de (VS); alard@iap.fr (CA); bouchet@iap.fr
(FRB)

tional forces. Dark matter (DM) was introduced to overcome this
problem. Later on, the existence of a DM component was confirmed
by the analysis of galaxy rotation curves (Van Albada et al. 1985).
Recent studies of gravitational lensing (e.g. Van Waerbeke et al.
2000) and, more generally, multiwavelength observations in e.g. the
COSMOS project (Massey et al. 2007) provide additional proofs
for the existence of DM. Other constraints on the non-baryonic na-
ture of DM were also set by the analysis of the cosmic microwave
background (e.g. Hinshaw et al. 2009).

For the last three decades, the DM paradigm has been studied
extensively in the context of cosmological N-body simulations. The
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1330 M. Maciejewski et al.

comparison of structures formed in such simulations to observed
ones excluded some of the theoretical models, such as hot DM
and led to the nowadays commonly accepted � cold dark matter
(�CDM) model. In the �CDM model, DM is collisionless, with a
very small velocity dispersion at high redshift; structures are built in
a hierarchical, bottom-up process, where small structures arise first,
seeded from initial fluctuations, and then merge together to build up
larger and larger structures, designated commonly as haloes. Inside
the gravitational wells of these DM haloes, baryonic matter forms
galaxies (White & Rees 1978).

Recently, the efforts to finally identify the physical nature of
DM particles, either directly through detecting them in ground-
based DM particle detectors or indirectly by observing their an-
nihilation radiation, have intensified. At the same time, the ever
increasing resolution of N-body simulations (e.g. Springel et al.
2008) puts new levels of demand on the field of theoretical study of
non-linear haloes. The careful analysis of cosmological structures
moves from the study of spherically averaged three-dimensional
(3D) density profiles (Navarro, Frenk & White 1997) to the study
of the full six-dimensional (6D) phase space. For example, this
concerns the analyses of the properties of caustics described analyt-
ically in e.g. Bertschinger’s secondary infall model (Bertschinger
1985) and recently reviewed in the context of numerical simulations
(Mohayaee & Salati 2008; White & Vogelsberger 2009). Investi-
gations of full phase-space structures include accurate simulations
of two-dimensional (2D) phase space (Alard & Colombi 2005;
Colombi & Touma 2007) and analyses relying on determination
of the particle density in 6D phase space of N-body simulations
(Arad, Dekel & Klypin 2004; Ascasibar & Binney 2005; Sharma
& Steinmetz 2006; Vogelsberger et al. 2008; White & Vogelsberger
2009).

A particularly important step in understanding DM clustering lies
in an analysis of the bound structures found in N-body simulations.
This is at present usually carried out with structure finders such
as SUBFIND (Springel et al. 2001), ADAPTAHOP (Aubert, Pichon &
Colombi 2004) or PSB (Kim & Park 2006). Following this path,
we present a new multidimensional Hierarchical Structure Finder
(HSF) which complements all the above numerical methods with an
effective and robust analysis of phase-space structures in full 6D
space.

The paper is organized as follows. First, we review current struc-
ture finders in Section 2. We then present our new multidimensional
HSF in Section 3. In Section 4, we use our algorithm to detect and
analyse phase-space structures of a large halo taken from the Millen-
nium Simulation. We investigate the space of parameters on which
our HSF algorithm depends and try to find the best choice of the
parameters according to the application under consideration. We
also introduce the simulation merger tree to follow the evolution of
structures in phase space. This allows us to analyse in detail a few
representative cases. This is followed by a quantitative analysis of
HSF structures in the space and time domain. We also discuss the
bimodal nature of the substructure population, in terms of bound
structures versus tidal tails and tidal streams. Finally, in Section 5
we give a summary and present our conclusions.

2 ST RU C T U R E F I N D E R S

An important step in the analysis of cosmological N-body simula-
tions is to search for virialized DM haloes. These are commonly de-
fined as regions around local density maxima enclosed by a certain
isodensity contour. The exact definition of such a border changes
from method to method. The simplest and the most popular tech-

nique for finding virialized haloes is the friends-of-friends (FOF)
method (Davis et al. 1985), which links together particles which
are separated by less than a fixed length b. Usually b is set to 0.2
times the mean interparticle separation, which corresponds to find-
ing haloes with overdensity approximately equal to 178 times the
mean background density ρmean (Cole & Lacey 1996). The mass
function of haloes identified by the FOF method is in good but not
perfect agreement with the predictions of the Press–Schechter the-
ory. However, the method tends to link together structures across
fine bridges (e.g. Lukić et al. 2009) and it is not capable of detecting
substructures inside the virialized haloes themselves. A comparable
method is the spherical overdensity (SO) algorithm (Lacey & Cole
1994) which searches for local density peaks and then grows around
them spheres out to a radius where the enclosed mean density satis-
fies a prescribed overdensity criterion. By definition, the SO method
finds only spherical structures. It does not link structures together
with artificial bridges as FOF does, but it may count mass twice in
certain cases.

However, for current high-resolution simulations, one needs to
find not only isolated haloes but also their internal substructures.
One of the first methods which made it possible to find such struc-
tures is the hierarchical FOF scheme (Klypin et al. 1999), in which
a set of different linking parameters, b, is used to identify multiple
levels of substructures inside haloes.

To distinguish haloes and their substructures in rich environ-
ments, each detected structure is then usually tested against an
additional binding criterion. This dynamical criterion uses informa-
tion from velocity space to guarantee that each structure not only
exists but also will survive for a longer period of time.

In the spirit of the SO and FOF methods, the bound density max-
ima (BDM; Klypin et al. 1999) and DENMAX (Gelb & Bertschinger
1994) methods were proposed. In BDM, particles are grouped in
spheres around local density maxima and are then progressively
unbound. In DENMAX, particles are grouped together when they con-
verge to the same local density maximum if they are moved along
local gradients, calculated on a rectangular grid. In a final additional
step they are attached to groups identified by the FOF method and
then their total binding energy is checked. This method was general-
ized in the SKID algorithm (Governato et al. 1997), in which the local
density and its gradient are calculated directly at the particles posi-
tions with the smoothed particle hydrodynamics (SPH) method. A
similar but simpler method was implemented in the HOP algorithm
(Eisenstein & Hut 1998), in which each particle is connected to the
one with the highest density (found by SPH) among its Nngb closest
neighbours (with Nngb ranging typically between 10 and 20). In this
way, space is divided into peak-patches that are then combined into
the final structures.

The HOP method gave rise to new structure finders such as SUB-
FIND, ADAPTAHOP, VOBOZ and PSB. The differences between them are
sometimes quite subtle. In SUBFIND (Springel et al. 2001), each par-
ticle marks its two closest neighbours with higher density among
the Nngb closest ones. Then particles are sorted by SPH–density in
descending order. Particles without a higher density neighbour are
marked as the centres of new structures (local density maxima).
Then the structures grow down in density till they reach border par-
ticles, called saddle points, which have two higher density neigh-
bours belonging to two different structures. The smaller structure is
marked as a structure candidate and then both structures are joined
together. Structure candidates are arranged in a hierarchical tree and
are successively unbound, going from bottom of the tree to the top.
Particles which are not bound to a structure are attached to its larger
parent structure.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 396, 1329–1348

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/396/3/1329/990336 by guest on 14 M
ay 2022



Hierarchical Structure Finder 1331

Even though ADAPTAHOP (Aubert et al. 2004) constructs the tree
of structures in the opposite way to SUBFIND, from bottom to top,
the main ideas are very similar. First, it grows peak-patches around
local density maxima as in HOP and then finds border particles and
saddle points among them. In addition to SUBFIND, each structure is
checked against Poisson noise to infer its level of significance. In
ADAPTAHOP, contrary to SUBFIND, only particles above saddle points
define structures. VOBOZ (Neyrinck, Gnedin & Hamilton 2005) on
the other hand uses Delaunay tessellation to define particle densities
and neighbourhood relations, and also checks the significance level
of structures against a specific Poisson noise criterion. The PSB

algorithm (Kim & Park 2006) uses a grid as in DENMAX to find local
density maxima and saddle points, but then constructs a hierarchical
structure tree in the same way as in SUBFIND. In PSB, particles below
saddle points are first attached to all structures which are above them
and then are assigned to individual structures following the process
of unbinding. In addition to the standard unbinding procedure, PSB

takes into account tidal force criteria.
Even though many of the above structure finders use velocity

information for the purpose of a gravitational unbinding procedure,
none of them use the full 6D phase-space information. However, the
advantage of such an approach is that structures can be defined in
a much more natural way in phase space. In particular, they have a
higher contrast than in position space. In fact, many structures such
as streams and caustics are well defined only in phase space. 6D FOF
(Diemand, Kuhlen & Madau 2006) is the first implementation of a
structure finder working directly in phase space. It is conceptually
a simple extension of FOF based on a 6D distance measure, using
a fixed global scaling between position and velocity space. The
proposed method finds only local phase-space density maxima and
then grows spheres around them like in BDM algorithm.

In this paper, we propose a new universal multidimensional HSF

which is used here to find phase-space structures in cosmological
N-body simulations. The algorithm employs, in a higher number
of dimensions, a similar approach to SUBFIND and ADAPTAHOP, but
with a new and very effective cut or grow criterion, controlled by
a connectivity parameter α, to separate accurately structures from
each other.

3 TH E H I E R A R C H I C A L S T RU C T U R E F I N D E R

Our goal is to find the hierarchy of DM haloes and subhaloes, which
are defined by locally overdense regions in phase space. The main
difference between our approach and previous structure finders is
that we focus on all kinds of phase-space structures even those which
are not self-bound, such as tidal streams. To enable comparisons,
we however implement, in addition to our base algorithm, also an
unbinding step. The HSF can be run on a full simulation to detect
all the haloes and the subhaloes population, or on standard groups
found by a FOF algorithm with, e.g. b = 0.2.

Prior to the identification of structures, our HSF algorithm es-
timates the local phase-space density and the local phase-space
neighbourhood of each particle in the sample. Following the pro-
posal of Maciejewski et al. (2009) for optimum local phase-space
density estimation, we use the SPH method with Nsph neighbours
found in the adaptive metric computed by the ENBID algorithm1 of
Sharma & Steinmetz (2006). We performed a small modification
of the ENBID algorithm to make possible the output for each particle
of the Nngb closest neighbours among the Nsph (in the proper local

1 SPH-AM in the notation of Maciejewski et al. (2009).

adaptive metric frame). It is worth mentioning that both phase-space
density and neighbourhood estimations by the ENBID algorithm are
computationally inexpensive and are almost as fast as standard 3D
SPH estimators.

We define phase-space structures as the regions grown around
local density maxima by following the local density gradient. To
find such structures, HSF uses a modified version of SUBFIND, which
redistributes particles below saddle points in a new fashion. In the
first step, the HSF algorithm finds locally overdense regions in phase
space by tracing isodensity contours identified by saddle points. In
addition, we test on each saddle point if structures are statistically
significant when compared to Poisson noise as in ADAPTAHOP.

Particles below phase-space isodensity contours corresponding
to saddle points can in principle be attached to many structures
simultaneously but our aim is to attach each of them to only one
structure. To do that, we use a simple but robust cut or grow crite-
rion depending on a connectivity parameter α, which allows us to
reconstruct a multilevel hierarchy of structures within structures. In
our implementation, each saddle point defines a connecting bridge
between two structures. According to each structure mass, all the
particles below this saddle point can be attached to only one of
the structures if it is significantly more massive than the other one,
or redistributed between both structures if they have comparable
masses, as explained below. This way of cutting works like a sec-
ond Poisson noise criterion and it allows one to grow only structures
which are significant.

In detail, the HSF algorithm, sketched in Fig. 1, works as follows.

(i) For each particle, we estimate the local phase-space density
with SPH-AM and the local adaptive metric environment using
Nngb neighbours. We usually perform the SPH interpolation with
N sph = 64. This value represents a good compromise between
filtering of Poisson noise and identification of faintest significant
structures. We find that the final results are rather insensitive to the
choice of Nngb. Our favourite value is N ngb = 20, similar to what is
used with HOP, ADAPTAHOP and SUBFIND. Then for each particle, we
find the set A of its neighbours among the Nngb which have higher
density than the particle. We sort the set A ascendingly according
to local neighbourhood distances (closest particles are in the begin-
ning of the list). Then we take the two closest elements of A and put
them in a second set B. This set can be empty or contain one or two
elements.

(ii) We sort the particles by decreasing phase-space density and,
following this ordering, we attach each particle to different struc-
tures according to the following rules.

(a) The set B is empty. This means that the particle does not
have any neighbour with higher density: we found a local maxi-
mum and we mark the particle as the beginning of a new structure.

(b) The set B contains two particles which belong to different
structures Sm and Sn of which the masses have not been yet
compared to each other. It means that we just found a saddle
point connecting both structures and we perform the marking
Sm > Sn, Sn > Sm or Sm � Sn. The way the marking is performed
in detail can be described as follows.

(1) First, we check the level of significance of structures Sm

and Sn when compared to Poisson noise (Aubert et al. 2004).
Let 〈Sm〉 and 〈Sn〉 be the first and the second structure’s average
density and ρsaddle be the density of the saddle point connecting
them. Each structure is significant if

〈S〉 > ρsaddle

(
1 + β√

N

)
, (1)
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1332 M. Maciejewski et al.

Figure 1. Sketch of the HSF. S1, S2, S3 and S4 are four different structures found by the HSF algorithm. We start to grow structures from local maxima which
are marked with (a). We grow them down by looking at local neighbours with higher density (b), and we connect particles properly to structures. Particles
on the border of two structures are always connected to the larger one. When we find a saddle point (c) we first apply our Poisson noise criterion. When the
structure is not significant (S4), we connect all its particles to the most massive partner (c1). If both structures are significant, we apply to them the cut or grow
criterion, and when one structure is significantly less massive than its companion, we grow only the most massive one (c2), or if structures have comparable
masses, we grow both of them (c3).

where β is the ‘βσ ’ level of significance of the structure (in
our tests β is set between 0 and 4), and N is the number of
particles belonging to the structure. If one of the structures is
not significant, then we attach all of its particles to the second
structure. In the case where both structures are not significant,
we attach all the particles to the structure which has the highest
maximum density.

(2) If both structures are significant compared to Poisson
noise, we test them against the cut or grow criterion. Let |Sm|
and |Sn| be the masses of our structures up to this saddle point
and |Sm| > |Sn|, then we mark structure Sm as more massive
partner of Sn. If |Sm|α >|Sn|, with α ∈]0, 1], then structure Sn is
more than 1/α times less massive than Sm and we attach all the
particles below this saddle point to Sm.

(3) If (|Sm|/|Sn|) ∈]α, (1/α)[, we consider that both structures
have the same order of mass: we attach the saddle point to the
most massive structure and all particles below are attached ac-
cording to the rules we set before.

(c) The set B contains one or two particles which belong to
the same structure: we attach the particle to this structure; or set
B contains two particles which belong to different structures Sm

and Sn, and the Sm structure is marked as a more massive partner
of Sn: it means that we already found a saddle point connecting
these two structures, and this border particle is attached to the
most massive one, Sm.

(iii) Finally, a structure containing less than Ncut particles is
considered insignificant, and all its particles are attached to its
more massive partner. If a structure with less than Ncut particles
does not have a more massive partner, we put it on the list of
fuzzy particles.

(iv) At the end of this process, we obtain a hierarchical tree of
structures. Each particle belongs to only one structure or to the
background (fuzzy list). In addition, we add to our algorithm a

final step in which we check each structure against an unbinding
criterion. Once we have marked its more massive partner for each
structure, we sort them recursively such that the larger partners
(parents) are always after the smaller ones (children). Then we
unbind structure after structure from children to parents and add
unbound particles to the larger partner. For each individual struc-
ture, we calculate the gravitational potential. We set the structure
centre as the position of the particle with the minimum poten-
tial and the velocity centre as the mean velocity. We calculate
the kinetic energy of each particle relative to the mean velocity
of the structure. All the particles with positive total energy are
marked and, in that ensemble, 1/4 of the ones with positive total
energy are removed. We repeat this process iteratively (starting
with a new gravitational potential calculation) up to the moment
when we stay with bound particles only. If the structure has less
than Ncut particles after the unbinding process, then we mark it as
not bound and attach all its particles to its more massive partner
or put them on the fuzzy particles list. To speed up the calcu-
lation of the gravitational potential, we use the tree algorithm
implemented in GADGET-2 (Springel 2005).

Most halo finders such as DENMAX, BDM, SKID, SUBFIND, ADAPTAHOP

and VOBOZ use a two-step procedure for finding the structures. First,
they assign as many particles as possible to each individual structure
in 3D space by tracing local overdensities (Fig. 2, top left-hand
panel). When we move to phase-space diagram (Fig. 2, top right-
hand panel), we however immediately observe that there are many
particles belonging to different velocity structures. The unbinding
process (Fig. 2, second row of panels) then cleans up all these
spurious velocity structures. In the four bottom panels, one can
observe the results obtained with the 6D HSF algorithm. This method
allows us to attach particles to structures in a more natural way,
because it treats both position and velocity space (Fig. 2, third row
of panels). Note that, after unbinding, the structures detected by
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Figure 2. Appearance of our Millennium Simulation halo (colour ranging
from green to red, scaling logarithmically with phase-space density) and su-
perposed to it, one of its largest substructures found by different algorithms
(grey pattern). Left-hand panels: x–y position space; right-hand panels: ra-
dius r–radial velocity vr phase space. From top to bottom, the grey pattern
corresponds to the substructure found, respectively, by (i) SUBFIND before
unbinding, (ii) SUBFIND after unbinding, (iii) HSF before unbinding, (iv) HSF

after unbinding.

the HSF algorithm are more extended than with standard algorithms
working in position space (Fig. 2, bottom panels), an indication that
more of the mass belonging to the substructures is recovered.

4 R ESULTS FOR A TEST H ALO FRO M TH E
MILLENNIUM SIMULATION

To test our algorithm we use a large halo extracted from the Mil-
lennium Simulation (Springel et al. 2005). The main cosmological
parameters of this �CDM simulation are �m = 0.25, h = 0.73,

�� = 0.75 and σ 8 = 0.9 (H 0 = 100 h km s−1 Mpc−1). The simu-
lation volume is a periodic box of size 500 h−1 Mpc and individual
particles have a mass 8.6 × 108 h−1 M	. In our analysis we take
the second largest FOF halo at redshift z = 0, which has 3.83 × 106

particles.
This section is organized as follows. In Section 4.1, we discuss

the influence of the main parameters in our algorithm on the results.
In Section 4.2 we use the merger tree history to follow both quali-
tatively and quantitatively the evolution of structures. In particular,
the structures identified by HSF are cross-correlated with their coun-
terpart prior to merging with the main halo. Finally, Section 4.3
studies the properties of the substructure population obtained with
HSF and its bimodality in terms of bound structures versus unbound
tidal tails and tidal streams.

4.1 Choice of the main parameters in the algorithm

In the following, we check the influence of the different parameters
on the structures found by our HSF algorithm. A basic parame-
ter set-up is given by N sph = 64, N ngb = 20, β = 0, α = 0.2,
N cut = 20. We adopt the notation (N sph, N ngb, β, α, dimension,
(B)ound/(UN)bound) to label each set of parameters. When the di-
mension is set to 3D, we mean the three-dimensional position space,
whereas 6D means six-dimensional phase space. Unless mentioned
otherwise, we use the HSF algorithm without additional unbinding
step. SUBFIND is in fact one of the versions of our algorithm, char-
acterized by the following parameter set-up (64, 20, 0, always cut
smaller partner, 3D, B). In our analysis, we shall call all the particles
in a FOF group a halo, the largest structure of the FOF group a main
halo and all other structures substructures.

Figs 3 and 4 present the number of substructures per logarithmic
mass bin scaled to the main halo mass. While testing the different pa-
rameter set-ups, we find that α and β are the most influential. Fig. 3
shows that parameter β is important for the smallest structures:
visual inspection suggests that a higher β helps to preserve small-
scale connectivity, e.g. between tidal tails and the bound component

10-5 10-4 10-3 10-2 10-1

Msub/Mhalo

1

10
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1000

dN
/d

ln
(M

su
b/

M
ha

lo
)

SUBFIND
(64, 20, 0, 0.2, 6D, UB)
(64, 20, 1, 0.2, 6D, UB)
(64, 20, 2, 0.2, 6D, UB)

Figure 3. Mass distribution of the substructures as a function of the ratio
between the substructure mass and the mass of the main halo. Here, the
influence of the choice of the shot noise control parameter β (equation 1)
on the mass profile is tested.
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Figure 4. Mass distribution of the substructures as a function of the ratio
between the substructure mass and the mass of the main halo. Here, the in-
fluence of the connectivity parameter α and the importance of the unbinding
process are tested.

of the substructures. The connectivity parameter α has a similar ef-
fect, but on the whole mass range instead of small structures only,
as illustrated in Fig. 4. Because of the partial degeneracy between
α and β, we prefer to use β = 0 in most of our analyses. The choice
of α indeed influences connectivity as follows: when α = 0.2, the
main halo always wins the cut or grow criterion and all structures
are cut by it; when α = 0.02, the largest substructures can grow
inside the main halo; when α = 0.01, all small substructures grow
more aggressively and the halo is divided into more small parts. In
brief, focusing on bound structures calls for a value of α of the order
of 0.2, while if one is interested in all substructures including tidal
streams, it is better to set α � 0.01–0.02. In the later case, tuning
up β can help to control the small-scale connectivity.

Using our base parameter set-up, we now compare HSF bound
structures with those given by SUBFIND. The HSF algorithm works
in 6D phase space, where the distribution of particles shows much
more contrast than in position space alone. Because of that, HSF can
better trace contours of individual substructures and attach more par-
ticles to them. Even after the unbinding step, HSF therefore attaches
more particles to the substructures than SUBFIND. This is illustrated
in Fig. 5, where the ratio between the mass of HSF bound structures
and the mass of their SUBFIND counterparts is plotted: HSF attaches
on average ∼1.1 more mass to small structures than SUBFIND and up
to twice more to the largest ones.

The left-hand panels of Fig. 6 compare bound structures found
by both methods in position space. The area of each circle is pro-
portional to the structure mass.

With the parameters set-up chosen here, HSF finds around
10 per cent more structures, mostly small ones, in the outskirts
of the main halo and clearly attaches more mass than SUBFIND to
most of them. Nevertheless, the spatial distributions of HSF and SUB-
FIND substructures are nearly the same, as expected. To complete
this visual inspection, the right-hand panels of Fig. 6 compare the
200 largest bound structures found by both methods. Most of the
HSF structures are matched by SUBFIND, except that they are more ex-
tended. As mentioned before, many of these structures have 1.1–2
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Figure 5. Ratio of mass of each HSF bound structure divided by the mass
of its SUBFIND counterpart as a function of SUBFIND structure mass. The
central curve corresponds to the median value of the ratio calculated over 10
logarithmic bins along the x-axis, taking into account only bins containing
two points or more. The two additional green curves on each side show 1σ

errors estimated from the variance of points in each bin.

times more mass in HSF than in SUBFIND. Interestingly, this confirms
the mass excess found around SUBFIND substructures in a comparison
of simulation with gravitational lensing observations by Natarajan,
De Lucia & Springel (2007).

If bound substructures are counted as a function of maximum
circular velocity instead of mass, a much closer agreement is found,
however. This is seen in Fig. 7, where the cumulative velocity func-
tions of bound substructures for HSF and SUBFIND are compared. HSF

tends to find a few more small substructures, but both algorithms
essentially identify the same set of more massive structures, con-
firming the results above.

4.2 Phase-space structures and merger tree

In the following sections we describe a method to follow back in
time the structures detected by our HSF, paying particular attention to
the definition of what we use for initial halo. Then we study in detail
a set of specific but representative cases. The goal of this analysis
is to physically understand the nature of the structures found by
our algorithm, before and after unbinding. In particular, we aim
to separate clearly tidal streams from compact bounded subhaloes.
With the additional time information, we can also associate tidal
streams to objects at the stage they were prior to merging with the
main halo. We can also study quantitatively how in general phase-
space structures evolve in time.

4.2.1 Evolution with time and the merger tree

To study in detail the nature of phase-space structures found by
the HSF algorithm we use the merger tree history2 to follow their

2 Each branch of this tree corresponds to the evolution in time of a DM halo
as a stand alone structure, while each node of it corresponds to the event
of merging between two haloes or more. Note that, due to the collisionless
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Hierarchical Structure Finder 1335

Figure 6. Left-hand panels: spatial distribution of HSF bound structures and SUBFIND structures, with at least 20 particles. The area of each circle is proportional
to the structure mass. Right-hand panels: first 200 most massive bound substructures identified by HSF and their SUBFIND counterparts. Particles belonging to the
same substructure share the same colour.

evolution backwards in time. Then we count how many particles
are shared between each structure prior to merging with the main
halo and its counterpart detected by HSF at z = 0. This process uses
pieces of information which are already available for the processed
Millennium Simulation (Springel et al. 2005, supplementary infor-
mation) and it is divided into three steps: (i) cross-correlating the
HSF structure catalogue with the SUBFIND one, (ii) following the evo-
lution of SUBFIND structures using the already implemented merger
tree history and (iii) using each particle’s universal index3 to follow
structures at different output times. We now explain each of these
steps in turn.

(i) Cross-correlation between HSF and SUBFIND: information about
structures in the Millennium Simulation is organized in terms of two
levels: first, particles are attached to different FOF groups (found
with b = 0.2). Then, in each FOF group, they are separated into
the main halo, the substructures found by SUBFIND, and unbound

nature of DM, the haloes can pass through each other and separate again: in
practice, the structure of such a tree can be non-trivial.
3 The universal index of a particle is just a number associated to each single
particle in order to identify it unambiguously, which is useful for analyses
of Lagrangian nature such as performed in this work.

‘fuzzy’ particles if present. Running the HSF algorithm with the
base parameter set-up (64, 20, 0, 0.2, 6D UB/B) provides a phase-
space structure list. Then, for each member of that list, the SUBFIND

substructure sharing the largest possible number of particles with it
is identified. If the HSF structure shares less than 20 particles with
any SUBFIND substructure, it is put into an unmatched list. In the
opposite case, we call this SUBFIND substructure a seed of the HSF

structure.
(ii) Following SUBFIND structures back in time: information about

the time evolution of structures is stored in the Millennium Simu-
lation in a merger tree (more details in Springel et al. 2005, sup-
plementary information). We use the tree information which gives
for each halo or substructure its most massive progenitor, if there is
any. Once the list of seed SUBFIND substructures is obtained, each of
them is traced back in time by following its most massive progenitor
recursively up to the moment when this past structure was the main
halo of a FOF group. This is the last occurrence of the structure
as being distinguishable as an isolated halo. We store the redshift
of this event and all particles belonging to the main halo found in
this way are denoted as the initial halo. There is a small number
of substructures which do not have a proper progenitor, they are
dropped from the analysis.
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Figure 7. Cumulative count of substructures as a function of maximum
circular velocity. We here compare results of HSF for bound structures with
substructures identified by SUBFIND in the same halo.

(iii) Using each particle’s universal index to follow structures at
different times: in the last part of the procedure, we link together
the information gathered in the previous two steps. For each HSF

structure identified at the present time, we find its initial halo and,
with the help of universal indices, we identify shared particles,
i.e. particles belonging both to the initial and final structures. We
carry out exactly the same analysis for HSF bound structures and for
SUBFIND itself.

In addition, during this process, we gather for each substructure
information about the position of its centre and its velocity at various
times (we use the SUBFIND definition for the structure centre), and
similarly for the position and velocity of the centre of the main
halo. With these pieces of information at hand, we can define an
orbital count by determining the number of times a substructure’s
radial velocity with respect to the centre of the halo changes sign,
which each time signals completion of what we call an orbit.4

This definition requires that there are enough snapshots to catch
orbit details. This is the case for most substructures, probably all,
although this statement is not easy to check rigorously.

4.2.2 Definition of the initial halo

In our analysis of the time evolution of the structures, we adopt
the main haloes of the FOF groups found by SUBFIND as ‘initial
haloes’. Another possibility is to choose for each initial halo all the
particles belonging to the FOF group. In the first case, the analysis
is simplified by the fact that we look only for the evolution of one
isolated component. However, this component represents only one
part of the halo. In the second case, a FOF group can sometimes have
a few main halo candidates joined by small artificial bridges (up to
20 per cent of FOF groups show such a feature; e.g. Kim & Park
2006) but can in fact be tidally disrupted such that its components
get away from each other.

4 This definition is natural for orbits of Keplerian nature. In the pure radial
case, on the other hand, the radial velocity changes sign twice during an
orbital period.

To demonstrate the effects described above, we choose one par-
ticular structure in our test halo. The top panel of Fig. 8 shows all
the particles belonging to the initial halo traced to redshift z = 0,
while the second row of panels corresponds to the full traced initial
FOF group. This structure goes around the main halo one time (its
orbit is shown in the second row of panels of Fig. 9). The initial FOF
group is tidally disrupted during this process and its various com-
ponents are clearly separated from each other. SUBFIND recognizes
the central part of the bound object (bottom panels of Fig. 8). The
HSF bound structure contains more particles (fourth row of panels
in Fig. 8). These particles belong to tidal tails, but are in fact still
gravitationally linked to the structure. The HSF structure (prior to
unbinding) contains 55 per cent of the particles of the initial halo,
and reproduces perfectly its shape (on third row of panels in Fig. 8).

4.2.3 Qualitative analysis of structure evolution

To better understand all the processes at play during structure evo-
lution, we study in greater detail five different cases displayed in
Fig. 9. The colours in the figure are coded as follows.

(i) Green and red particles belong to one structure found by the
HSF algorithm (without unbinding): green particles belong to the
initial halo, while the red particles do not belong to it.

(ii) Black particles belong to the SUBFIND seed of the HSF structure.
(iii) Blue particles belong to the initial halo, but do not belong to

the HSF structure.
(iv) Yellow particles belong to the initial halo and belong to any

HSF structure, besides the one we take for the current analysis. We
mark particles in yellow only for structures in the last three rows of
panels of Fig. 9.

The particles are plotted in the following order: blue, red, green,
black and finally yellow. Various structures parameters are listed in
Table 1, for each of the five cases considered here. The pink curve
shows the orbit of the object inside the main halo. We now discuss
in detail each of these five cases.

(i) The first case corresponds to a structure which is at a moment
just before crossing for the first time the main halo centre and starts
to be significantly tidally disrupted. The HSF structure still contains
97 per cent of particles of the initial main halo, while the SUBFIND

bound structure accounts for only 26 per cent. Indeed, HSF manages
to attach to the structure unbound particles which already crossed
the main halo centre and contribute to a tidal tail.

(ii) The second structure is the same as in Fig. 8. It entered the
halo at redshift z = 0.56 and made an orbit inside it. This is the
reason why we identify only 55 per cent of the initial structure, but
still more than SUBFIND (35 per cent). HSF attaches some additional
particles to the structure, i.e. particles that do not belong to the
initial main halo, but in fact we found that a large fraction of them
belong to the initial FOF group.

(iii) The third row of panels corresponds to a rare occurrence
when HSF partly fails. The HSF structure contains 65 per cent of
particles of the initial one. It is falling inside the main halo centre
and some of the particles already crossed the centre. Parts of the
initial structure are identified as other HSF objects: the initial halo
shares 72 per cent of its particles with all detected HSF substructures.
There is however a large fraction of particles associated with the HSF

structure (in red) that should just belong to the background. Indeed,
we checked that most of them cannot even be associated with the
initial FOF group.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 396, 1329–1348

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/396/3/1329/990336 by guest on 14 M
ay 2022



Hierarchical Structure Finder 1337

Figure 8. Follow up of a particular substructure (in colour) of our Millennium test halo (in grey). From left to right: x–y position space, radius r–radial velocity
vr, radius r–phase-space density f . In the two left-hand columns of panels, the colour traces the logarithm of the phase-space density (from dark grey to light
grey or from dark blue to red). In the right-hand column of panels, the colour just traces the projected particle density. From top to bottom: initial main halo
traced to z = 0, initial FOF group traced to z = 0, HSF unbound structure, HSF bound structure and SUBFIND structure.
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1338 M. Maciejewski et al.

Figure 9. Properties of some chosen structures. From left to right: x–y position space diagram, radius r–radial velocity vr diagram, radial velocity vr–tangential
velocity vt diagram. Further description given in the text (Section 4.2.3).

(iv) The fourth row of panels shows the typical case of a mas-
sive structure which, after only two orbits (so it passed nearby
the halo centre only twice), already dissolved in the main halo,
because of massive tidal disruption. Even though the HSF struc-
ture contains only 11 per cent of the particles of the initial halo,
we find that other HSF substructures match some parts of the ini-
tial halo: 90 per cent of particles inside such substructures come
from the initial halo, although some of them belong to other mem-
bers of the initial FOF group. In other words, it means that our
algorithm is capable of finding remnants of tidal tails. All blue

particles cannot be distinguished from the main halo anymore and
correspond to the part of the structure which has been completely
diluted.

(v) In the last case, we take a structure which merged with the
main halo at high redshift z = 1.5, and already made four orbits
inside. As expected, this structure has experienced strong tidal strip-
ing: the HSF structure contains only 8 per cent of the initial structure.
Most of it indeed already dissolved inside the main halo. Still, some
remnants were identified as disjoint HSF components and represent
25 per cent of the initial structure.
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Table 1. Properties of five chosen structures. Column description: Nr.: structure number, in the same order as listed in the text and in
Fig. 9; Orbits: number of orbits inside the main halo; HSF par.: number of particles belonging to the HSF structure; Initial FOF group
par.: number of particles belonging to the initial FOF group; Initial halo par.: number of particles belonging to the initial main halo;
SUBFIND: fraction of the particles of the initial halo that are still identified in SUBFIND (in HSF bound, HSF, Any identified HSF structures,
respectively, for the next columns).

Nr. Orbits z HSF par. Initial FOF group par. Initial halo par. SUBFIND HSF bound HSF Any HSF

(per cent) (per cent) (per cent) (per cent)

1 0 0.09 37 417 39 511 32 383 26 84 97 99
2 1 0.56 36 248 85 225 53 186 35 44 55 57
3 1 0.62 17 971 17 053 14 364 32 38 65 72
4 2 0.83 14 477 140 799 119 621 2 5 11 12
5 4 1.50 854 10 696 9 896 3 6 8 25

To conclude this section, objects which recently entered the main
halo and typically made up to one orbit inside it are in most cases
fully recovered by HSF. When the structures make more orbits, they
are more tidally disrupted, especially when they come close to the
halo centre, so the fraction of particles identified decreases. HSF

still finds in most cases remnants of strongly disrupted objects as
individual tidal streams detached from the bound component (if this
later still exists).

4.2.4 Quantitative analysis of structure evolution

To test the performance of HSF quantitatively, one can for example
study the fraction M shared/M initial of particles inside the initial halo
found at the present time in the corresponding HSF structure, as a
function of redshift of merging with the main halo (top left-hand
panel of Fig. 10) or as a function of initial mass (top right-hand panel
of Fig. 11). Indeed, one expects a strong correlation between the
value of M shared/M initial and the initial halo mass and the redshift
z of merging. Obviously, the higher z, the larger the number of
orbits (Fig. 12) and the larger the number of particles lost due to
tidal stripping (top left-hand panel of Fig. 10). At low redshift,
z � 0.3, where the number of orbits is typically less than one, there
is no strong structure evolution in phase space and HSF identifies
80–100 per cent of the initial structure mass (upper left-hand panel
of Fig. 10). There are a few structures at redshift z ∼ 0.1–1.0 for
which HSF can find only a very small fraction of their initial mass.
All of them are tidal remnants.

The effect of unbinding on the ratio M shared/M initial is shown in
the lower left-hand panel of Fig. 11 (as a function of mass) and upper
right-hand panel of Fig. 10 (as a function of redshift). Obviously,
after unbinding, the fraction of particles recovered by HSF decreases
significantly, even for a small redshift of merging z � 0.3. Indeed, a
significant fraction of the mass in substructures is contained in tidal
tails that are very well identified by HSF, at least for z � 0.3, but that
are no longer bound to the substructures. Note that, as expected, the
SUBFIND (bound) substructures are not very different from the HSF

bound ones, except that they contain a slightly smaller fraction of
the mass of the initial structures (lower right-hand panel of Fig. 11).

Another important test of our structure finder consists in examin-
ing the fraction of particles inside each HSF structure that is shared
with the initial halo as a function of initial halo mass (top left-hand
panel of Fig. 11). HSF finds that for massive objects, 80–90 per cent
of the present structure mass belongs to the initial halo. For smaller
structures, the scatter is higher and only around 40 per cent of the
particles found in HSF objects belong to initial haloes. This actually
means that for many small structures, the HSF algorithm attaches
more particles than they had before. Thus it mainly due to the fact

that we consider for the initial stage only the main part of the halo
and not its substructures: disentangling substructures from the main
halo remains an ambiguous process, and structures identified at the
present time can contain part of the mass of the substructures inside
the initial halo. In the process, we also do not take into account
particles surrounding the initial halo which were not selected by the
FOF (yet) but were still infalling on to our Millennium test halo
and participate to its background density. As a result, additional
particles can be associated to the final HSF structure, and this effect
is expected to become stronger if the mass of the identified structure
is small.

Keeping that in mind, we can now study the ratio MX/M initial

between the total mass of the identified bound structure and the mass
of the initial halo as a function of redshift of merging, independently
of whether the particles are shared between initial and final stage or
not, as shown in the lower panels of Fig. 10 for HSF (X = HSF bound)
and SUBFIND (X = SUBFIND). The results are not very different for
both codes, except that, as already extensively argued previously,
this ratio is slightly larger for HSF than for SUBFIND. Furthermore,
because of the effect just discussed above (top left-hand panel of
Fig. 11), MX/M initial can be larger than unity at low redshift.

While the correlation between the mass loss due to tidal strip-
ping and the redshift of merging is quite obvious, the relationship
between mass loss and initial mass is less evident, given the limited
amount of statistical occurrences we analyse here (one single large
cluster-sized Millennium halo). Fig. 11 (right-hand panel and bot-
tom panels) indicates that the mass loss is significantly smaller for
initially light structures than for initially massive ones. To demon-
strate that unambiguously, we perform a more accurate analysis of
the global mass loss displayed on the lower panels of Fig. 10, by
fitting analytically the redshift and the mass dependence. To do so,
we divide the initial mass of the structures into four logarithmic
bins. Then for each bin, we fit the mass loss as a function of redshift
in logarithmic coordinates (Fig. 13) with the following convenient
parametric form

MX

Minitial
= 1

(z/zs)η(1 + z/zs)γ
. (2)

The best-fitting parameters, found by a standard least-square
method, are listed in Table 2. The fact that mass loss is more pro-
nounced for more massive objects is clear, and was also to be
expected. This behaviour can simply be explained as follows: small
structures are more strongly bound, because they are more concen-
trated (e.g. Angulo et al. 2008), so they do not lose as much mass as
large structures from tidal stripping. Indeed, the largest structures
are less compact and are more sensitive to dynamical friction. As
a result, they are strongly disrupted while they are orbiting around
the main halo. They also tend to have more radial orbits.
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Figure 10. Mass loss of structures as a function of the redshift z of merging with the main halo. Top left-hand panel: the mass loss is presented as the ratio
Mshared/M initial, where Mshared is the mass in common between the HSF structure and its counterpart (of mass Minitial) just prior to merging with the main halo.
Top right-hand panel: same as top left one, but for bound HSF structures. Bottom left-hand and bottom right-hand panels: same as the top ones, but the mass
loss is presented as the ratio between total final mass and initial mass, for HSF bound structures and SUBFIND (bound) structures, respectively. On all the panels,
the symbol size is proportional to Minitial. In addition, we plot the median value (in red) and the σ errors calculated in 10 logarithmic bins (in green), with at
least 10 structures per bin.

4.3 Bound subhaloes, tidal tails and tidal streams

By studying the merger tree history, we could show that the HSF

algorithm is capable of finding both substructures and their tidal
tails. As we noticed, some of the tidal tails are still connected to
their host substructures, while others are recognized as separate
objects. We now study this bimodality more carefully.

To better separate tidal streams from the bound counterpart of
substructures, we now take a small value of the connectivity pa-
rameter, α = 0.01. In the following analysis, we shall study the five
following populations:

(i) bound substructures found by HSF;
(ii) bound substructures found by SUBFIND;
(iii) all HSF substructures (before unbinding);
(iv) unbound HSF structures: substructures found by HSF which

disappear during the unbinding process, such as tidal streams;

(v) bound HSF structures: substructures found by HSF (along with
their tidal tails) which remain after the unbinding process.

To analyse substructures properties, we estimate, for each of them,
the phase-space density maximum f max and the minimum f min.
These two quantities are measured for the full set of particles be-
longing to the substructure prior to the unbinding process. To better
measure high phase-space density peaks, we use the SPH-AM ENBID

method with 32 neighbours.
In the top right-hand panel of Fig. 14, the distribution of the f max

values is shown. It is clearly bimodal, and this property is in fact
independent of α. It is straightforward to understand the origin of
the bimodality. The local phase-space density can for instance be
approximated as follows (Binney & Tremaine 1987):

f (x, v) = ρ(x)

(2π)3/2σ 3(x)
exp

{
− [v − v0(x)]2

2σ 2(x)

}
. (3)
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Figure 11. The mass, Mshared, in common between structures detected at present time by HSF and SUBFIND and their counterpart – of mass Minitial – just prior
to merging with the main halo, is studied in a fractional way as a function of Minitial. Top-left-hand panel: ratio between Mshared and the mass of the HSF

unbound structure. Top right-hand, bottom left-hand and bottom right-hand panel: ratio between Mshared and Minitial, respectively, for HSF unbound, HSF bound
and SUBFIND structures. The symbol size is proportional to redshift z of merging with the main halo. In addition we plot the median values (in red) and the σ

errors, calculated in 10 logarithmic bins (in green), with at least 10 structures per bin.

Two cases can be considered. In the centre of a bound substructure,
i.e. a standalone structure that survived the unbinding process, the
local density ρ is high and the local velocity dispersion σ (x) is low,
which gives a high local phase-space density maximum. On the
other hand, when substructures are disrupted by strong tidal forces,
their local density ρ decreases and their velocity dispersion, σ (x),
increases, so their peak phase-space density is lower.

These statements can be directly checked by unbinding the sub-
structures found by HSF. On the top right-hand panel of Fig. 14, the
high-density maxima peak of the distribution is dominated by the
bound substructures, as expected. There is a small fraction of bound
substructures for which f max resides in the lower density maxima
regime. We checked that this happens only for the smallest substruc-
tures with around 20 particles, for which Poisson noise fluctuations
start to be significant. The lower peak of the distribution of val-
ues of f max is mainly occupied by unbound substructures. There
are still some unbound substructures residing in the higher peak.
They have less than 100 particles and can be considered as ‘Poisson

clusters’ (even in Poisson noise it is possible to find high-density
contrasts).

Note that the high f max distribution peak is very sharp, corre-
sponding to f max � 0.2 M	 h2 kpc−3 km−3 s3. As already noticed
in Maciejewski et al. (2009), all the bound substructures present ap-
proximately the same value of f max (see also Vass et al. 2008). This
property could be simply an upper bound imposed by numerical res-
olution or set by the dynamics, or more likely a combination of both
(e.g. Binney 2004; Vass et al. 2008). The second peak, dominated
by tidal streams, is less pronounced, although still quite well de-
fined, with a maximum at f max � 4.0 × 10−5 M	 h2 kpc−3 km−3 s3,
a value about 3.7 orders of magnitude lower than what is found for
bound structures (all the values are summarized in Table 3). This
shows again the very clear separation between bound structures and
tidal streams.

Another way of separating various substructure populations
consists of measuring their ‘peakness’, i.e. the parameter cf =
f max/f min, where f min is the minimum value of the phase-space
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Figure 12. Number of orbits each structure made inside the main halo as a
function of redshift of merging of the structure with the halo. The symbol
size is proportional to Minitial, expressed in units of M	 h−1. In addition,
we plot the median value (in red) and the σ errors (in green) calculated in
10 logarithmic bins with at least 10 structures in each bin (for convenience,
binning is performed on y-axis). In our sample the structures do not made
more than six orbits inside the main halo, before they disappear.

distribution function of the HSF structures (prior to unbinding). The
advantage of the peakness parameter is that, as opposed to f max, it
does not depend on a specific choice of units: a structure with a
bound component should present a peakness parameter very large
compared to unity, contrary to a pure tidal stream. The measurement
of cf is however meaningful only if f min is well defined. This is a
priori not obvious as one expects f min to be very sensitive to local
fluctuations in the noise, which indeed affect the local topology
strongly. We checked that in fact f min is a robust statistic, as sug-
gested by the rather symmetric behaviour of the curves shown in the
bottom right-hand panel of Fig. 14. The distribution of measured
values of cf is shown in the bottom left-hand panel, and presents of
course the same bimodal nature as f max. For instance, one finds that
cf is typically of the order of 105 for bound structures, while it is
only of the order of 10 for tidal streams.

Finally, the top left-hand panel shows the distribution of measured
values of f for each DM particle. In this plot, particles left over after
unbinding HSF substructures, i.e. belonging to the tidal tails of these
substructures, are put on the list of unbound substructures. The high
phase-space density region is dominated by bound substructures,
which is consistent with the observations we made for the f max

distribution function. Note that HSF bound substructures are more
extended into lower phase-space density regions than SUBFIND ones
and are more likely to overlap in terms of density with unbound
streams. There is in total almost 19 per cent of mass in HSF bound
substructures to compare with 12.4 per cent in SUBFIND ones (see
Table 4). This additional mass in HSF bound substructures comes
from particles which were not found with the saddle point algorithm
working in 3D position space on which SUBFIND is based. This means
that the total bound mass of substructures strongly depends on the
cutting criterion applied to the 3D density field ρ, even with the
additional unbinding procedure.

An examination of the top left-hand panel of Fig. 14 suggests
that it is possible to perform an optimal cut on f , with a value
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Figure 13. Mass loss as a function of redshift of merging z for masses
binned in four logarithmic bins (dotted curves) with its smooth fit given
by equation (2) (thick curves). For each dotted curve, the number of bins
is equal to 2

√
N , where N is the number of samples. These two panels

are equivalent to bottom panels of Fig. 10. To make adequate fitting, we
perform Levenberg–Marquardt least-square minimization with σ errors set
from Poisson noise counting distribution. Masses are expressed in units of
M	 h−1.

chosen between 3 × 10−5 and 3 × 10−4 M	 h2 kpc−3 km−3 s3 so
that most particles with phase-space density above this threshold
belong to bound substructures. Such a criterion was used before
in the literature to mark substructures (Stadel et al. 2008). Tidal
streams and possibly signatures of caustics occupy the middle range
of phase-space densities, with 31.6 per cent (22.5 per cent for α =
0.2) of the total FOF halo mass belonging to them, which is more
than for bound substructures. Similarly as for bound substructures,
we can set some lower limit around 10−5 on the phase-space density
and claim that most particles with higher value of f than this limit
belong to substructures of some kind (bound or unbound). The low
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Table 2. Parameters used in equation (2) to fit results presented in Fig. 13.

Mass min Mass max HSF xs HSF η HSF γ SUBFIND xs SUBFIND η SUBFIND γ

1.7 × 1010 9.8 × 1010 0.54 0.04 0.78 0.30 −0.00 0.66
9.9 × 1010 5.6 × 1011 1.02 0.05 1.82 0.40 0.00 1.06
5.6 × 1011 3.1 × 1012 20.11 0.00 28.31 1.46 −0.03 3.01
3.2 × 1012 1.8 × 1013 19 188.89 0.01 28 851.01 18.93 −0.07 25.61
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Figure 14. Disentangling tidal streams from bound substructures: phase-space density distributions. Top left-hand panel: distribution function of logarithm of
phase-space density f estimated for all particles belonging to each category of substructures as indicated inside the panel (100 logarithmic bins). The black
dashed lines represent the best fitted Gaussian functions for the main halo found by SUBFIND, the main halo found by HSF and the unbound structures found by HSF

(including the tidal tails of bound structures). This means in fact that for each of these components, f is lognormal if the fit is good. To make adequate fitting, we
perform Levenberg–Marquardt least-square minimization with σ errors set from Poisson noise counting distribution. Top right-hand, bottom right-hand panels:
distribution function of substructures maxima, f max, and minima, f min (50 logarithmic bins). The substructures are separated into unbound components (blue)
and bound ones (green), while the black curve corresponds to all the substructures. Bottom left-hand panel: distribution function of substructures phase-space
‘peakness’, defined as cf = f max/f min.

phase-space density regime is indeed dominated by the main halo
component.

As a final note on the upper left-hand panel of Fig. 14, we found
that the shape of the distribution function of values f observed for
each component has interesting properties: it is very well fit by a
lognormal distribution both for the main halo component found by

SUBFIND and HSF, and the unbound substructures found by HSF. This
complements the findings of Vass et al. (2008), who performed
a similar analysis but used a more add hoc approach to separate
various components contributing to the phase-space distribution
function. The best-fitting parameters of a Gaussian on the logarithm
of f are given in Table 5. The interpretation of these results did not
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1344 M. Maciejewski et al.

Table 3. For each substructure we measure its maximum phase-space density f max, minimal value f min, maximum
3D density ρmax, minimum one ρmin, its phase-space density ‘peakness’, cf = f max/f min and 3D density
‘peakness’, cρ = ρmax/ρmin. Phase-space density is quoted in M	 h2 kpc−3 km−3 s3, while ρ is expressed in
units of total average density 〈 ρ〉.

Structure class f max f min cf ρmax ρmin cρ

HSF unbound 4.0 × 10−5 3.3 × 10−6 8.7 2.1 × 103 69.2 6.1
HSF bound 0.2 2.7 × 10−6 1.1 × 105 1.4 × 104 31.2 35.5

Table 4. Mass in each substructure class com-
pared to the total mass in our Millennium test
halo.

Structure class Mass
(per cent)

SUBFIND bound 12.4
HSF bound 18.8

HSF unbound α = 0.2 22.5
HSF unbound α = 0.01 31.6

HSF α = 0.2 41.2
HSF α = 0.01 50.4

Table 5. Best parameters of the Gaussians fitted to the distribu-
tion function of the logarithm of phase-space density estimated
for all particles belonging to each category of substructures (top
left-hand panel of Fig. 14).

Structure class Mean σ χ2 error

SUBFIND main halo 4.7 × 10−6 0.73 7.39
HSF main halo 2.7 × 10−6 0.55 1.11

HSF unbound substructures 1.4 × 10−5 0.65 0.34

seem straightforward to us, so we decided to leave it for future work.
Certainly, a path to follow is to examine the arguments developed by
Coles & Jones (1991) to explain the close to lognormal behaviour of
the projected 3D density, ρ, relying on the continuity equation and
the positivity of the density.

In practice, in observations of, e.g. X-rays clusters or gravita-
tional lensing, the 3D density ρ (or its projection on the sky) is
usually used to model DM haloes instead of the phase-space den-
sity f . To illustrate how the previous results translate in terms of
ρ, Fig. 15 is similar to Fig. 14, but the calculations are performed
for the normalized density 1 + δ = ρ/〈ρ〉 instead of f . The 3D
density is measured using ENBID’s SPH kernel with 32 neighbours.
Contrary to Fig. 14, the distribution function of values of ρmax (up-
per right-hand panel) shows only one peak. The difference between
bound and unbound structures shows much less contrast (see Ta-
ble 3 for numerical estimates of typical values of ρmax, ρmin and
cρ ≡ ρmax/ρmin). In particular, bound structures present a large
spread on their 3D local density maxima of about two orders of
magnitudes, in contrast with what happens with f max, and they are
more difficult to disentangle from their unbound counterparts, even
with the peakness, cρ , although this latter quantity seems to have a
better separating power than ρmax (lower left-hand panel).

Interestingly, the particle density distribution diagram (top left-
hand panel of Fig. 15) is populated in a different way from what
happens in phase space. In particular, tidal streams occupy the low-
density region although they still spread over a large dynamic range,
while the main halo dominates the high-density regime. Bound

substructures are rather subdominant and spread over the whole
dynamic range.

To complete this section, Figs 16 and 17 show the appearance of
bound structures, unbound ones and of the smooth part of the halo
after removal of all HSF structures. There is a subtle but significant
difference between the two figures. In Fig. 16, the top panels show
only the bound part of the bound substructures, while the top panels
of Fig. 17 show the bound structures along with their tidal tails. In
the middle panels of Fig. 16, particles both belonging to unbound
structures and particles removed from the bound structures during
the unbinding process are shown. In contrast, the bottom panels of
Fig. 17 show only particles belonging to unbound structures. This
results in an asymmetry in middle right-hand panel of Fig. 16, which
reflects the fact that structures passed through (or nearby) the centre
of the halo one more time in the upper part of the phase-space
diagram than in the lower part. Tidal disruption is indeed more
significant and thus removes particles with higher values of f in the
upper part of the phase-space diagram than in the lower part. Not
surprisingly, the asymmetry disappears in the bottom right-hand
panel of Fig. 17. Note that bound structures are absent in the region
close to the main halo centre, as expected. Note as well the rather
elongated tidal streams, in particular close to the halo centre, in the
bottom right-hand panel of Fig. 17 and the middle right-hand panel
of Fig. 16. These are the left overs of structures disrupted by strong
tidal forces. In the bottom right-hand panel of Fig. 16, the main halo
still presents, after cleaning, some filamentary structures, which are
parts of tidal tails, or less likely, signatures of caustics. It can be
cleaned even more by using a smaller value of the connectivity
parameter α.

5 D I S C U S S I O N S A N D C O N C L U S I O N S

We introduced a new universal multidimensional HSF which was
employed here to study DM structures in 6D phase space. The al-
gorithm used, for each particle, the phase-space density and local
neighbourhood estimated with the SPH method with adaptive met-
ric implemented in the ENBID package (Sharma & Steinmetz 2006).
To detect structures, HSF builds on the SUBFIND and ADAPTAHOP algo-
rithms, with the introduction of a new simple but robust cut or grow
criterion depending on a single connectivity parameter α.

The main steps of the algorithm are as follows: (i) local phase-
space density maxima are detected and structures around them are
grown by following local gradients up to saddle points; (ii) at each
saddle point level, the density f of each structure is compared to
Poisson noise: the structure is kept if f is β times more significant
than the Poisson rms noise level. At the same time its mass and
the mass of its partner (connected to it through the saddle point)
are measured and the cut or grow criterion is applied: if one structure
is α times smaller than its neighbour, then all particles below the
saddle point are attached to the neighbour. When the two structures
have comparable mass within a factor α, they are both set to grow
down as before. This criterion allows us to better trace substructures

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 396, 1329–1348

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/396/3/1329/990336 by guest on 14 M
ay 2022



Hierarchical Structure Finder 1345

1 2 3 4 5 6
log(ρ/<ρ>)

0.0

0.1

0.2

0.3

0.4

0.5

f(
lo

g(
ρ/

<
ρ>

))

All particles
Main halo SUBFIND

Main halo HSF
Sub. HSF

Sub. HSF unbound
Sub. HSF bound
Sub. SUBFIND

1 2 3 4 5 6
log(ρmax/<ρ>)

0.0

0.1

0.2

0.3

0.4

0.5

f(
lo

g(
ρ m

ax
/<

ρ>
))

Sub. HSF
Sub. HSF unbound

Sub. HSF bound

0 1 2 3 4
log(cρ=ρmax/ρmin)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(
lo

g
c ρ

)

Sub. HSF unbound
Sub. HSF bound

1 2 3 4 5 6
log(ρmin/<ρ>)

0.0

0.2

0.4

0.6

f(
lo

g(
ρ m

in
/<

ρ>
))

Sub. HSF
Sub. HSF unbound

Sub. HSF bound

Figure 15. Disentangling tidal streams from bound substructures: projected 3D density distributions. Top left-hand panel: distribution function of normalized
density 1 + δ = ρ/〈ρ〉 estimated for all particles belonging to each category of substructures as indicated on the panel (100 logarithmic bins). Top right-hand,
bottom right-hand panels: distribution function of substructure maxima ρmax/〈ρ〉, minima ρmin/〈ρ〉 (50 logarithmic bins); bottom left-hand panel: distribution
function of substructures density ‘peakness’ defined as cρ = ρmax/ρmin.

in phase space, with a good control of the effect of Poisson noise,
which is very important in this rather sparsely sampled space.

We demonstrated the potential of HSF on a large FOF DM halo
taken from the Millennium Simulation. Our tests show that β and
especially α are important control parameters. To better study the
smallest possible structures, β should be set close to 0. The smaller
α, the more subtle the structures found by the algorithm. In our
analysis, we give preference to α = 0.2, which provides a good
balance between finding the finest possible substructures and not
overgrowing them. This value of α is particularly appropriate when
an additional binding step is performed. In contrast, an analysis
of tidal tails is best carried out with small α, around 0.01–0.001,
which separates structures into smaller pieces. It is possible to use
it in combination with β = 4–10, which tends to reconnect the
structures together in a consistent way, to reconstruct tidal tails
rather well. A more advanced method of reconnecting phase-space
structures, by using the topology of the hierarchical tree created by
the HSF algorithm is under investigation.

We used the Millennium Simulation merger tree (Springel et al.
2005, supplementary information) to compare the HSF phase-space
structures found at the present time with the same structures traced
back to the time just before they entered the main halo. While the
best 3D algorithms used currently, such as SUBFIND, manage to find
only the main part of bound structures, HSF is capable of finding
more extended bound components along with their tidal tails. There
is much more information about structure evolution still stored in
phase space than in 3D and this information can be potentially fully
recovered from the data by a 6D algorithm such as HSF.

The main results of our analysis in time and space domain are
the following.

(i) HSF structures contain on average 80–100 per cent of the mass
inside the initial structures up to a redshift of merging z = 0.3–0.4.
This value drops down to 50 per cent for z = 1. On the other hand,
bound HSF structures contain on average 80–100 per cent of the mass
inside the initial haloes only up to z = 0.09 and 50 per cent up to
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1346 M. Maciejewski et al.

Figure 16. Appearance of bound and unbound structures in our Millennium test halo. Top panels: particles belonging to HSF bound structures (so unbound
particles are removed). Middle panels: particles which belong to HSF unbound substructures or are left over in the tails of HSF bound substructures after the
unbinding process. Bottom panels: the main halo after removal of all substructures. From left to right: x–y position space, radius r–radial velocity vr phase
space. The pictures are computed in three steps as follows: (i) division of space into a 3D equally spaced grid with N = 400 divisions across each x, y, z axes;
(ii) calculation of the mean density f of all particles inside each cell and (iii) projection of this density on the x–y plane by taking in each z column the cell with
the highest density. To enhance the contrasts, equalization of the histograms in log f was implemented.

z = 0.6. This shift in the mass loss is caused by the existence of tidal
tails, which are joined to HSF structures, but do not belong to their
bound part. In other words we can say that HSF is able to reconstruct
in most cases the full dynamical structures which enter the halo at
redshifts as high as z = 0.3–0.4.

(ii) The distribution function of the phase-space density maxima
f max of HSF structures clearly shows a bimodality. We can explain
it by partitioning the structures into two distinct groups. In the first

group, corresponding to the high phase-space density peak regime,
f max ≈ 0.2 M	 h2 kpc−3 km−3 s3, with a small spread around that
value, there are mostly bound structures. In the second group, cor-
responding to a three orders of magnitude smaller phase-space
density regime, f max ≈ 3.3 × 10−5 M	 h2 kpc−3 km−3 s3, and a
larger spread around this value, there are all unbound structures i.e.
tidal tails, streams and possibly some caustics. In terms of ‘peak-
ness’, cf = f max/f min, where f min is minimum value of f in each
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Hierarchical Structure Finder 1347

Figure 17. Same as Fig. 16, but the set-up is slightly different: in the top panels, the HSF structures which are seeds of bound structures are displayed entirely,
including their tidal tails. In the bottom panels, only HSF structures which are unbound are displayed.

substructure, this translates into cf = 1.1 × 105 and 8.7 for bound
and unbound structures, respectively.

(iii) We noticed, similarly as Vass et al. (2008), that the distribu-
tion function of the values of f around each DM particle is close to
lognormal for the smooth component of the halo and the unbound
part of the substructures (tidal streams).

(iv) We found that there is more mass in bound HSF substructures
than in SUBFIND ones. Fig. 18 shows the cumulative mass of substruc-
tures divided by the total halo mass as a function of substructure
mass. Around 18.5 per cent of halo mass is stored in bound HSF struc-
tures, and this quantity almost does not depend on α. In comparison,
about 12.4 per cent of the mass is stored in SUBFIND bound struc-
tures. The additional mass in HSF bound structures comes mainly
from the fact that subhaloes are better defined in phase space and are
more extended. However, the set of identified bound substructures
is nearly identical in both methods, and hence the cumulative abun-
dance of substructures as a function of maximum circular velocity
is the same as well.

We note that in our test halo, 41.2 per cent of the mass be-
longs to substructures for α = 0.2, 50.4 per cent for α = 0.01 and
55.2 per cent for α = 0.001. When we subtract from these numbers
the contribution of bound structures, we find that 22.9–36.4 per cent
of halo mass is stored in unbound structures. This should be taken
into account when analytical models of haloes with substructures
are proposed.

(v) While we would need a larger statistical sample of haloes
to perform robust measurements, we noticed that at fixed redshift
of merging with the main halo, small structures tend to lose less
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Figure 18. Cumulative mass in substructures found by SUBFIND, bound HSF

method and HSF with different choices of the connectivity parameter α.

mass than larger ones, in agreement with expectations based on the
higher concentration of smaller haloes. Furthermore, we found a
strong correlation between mass loss and the number of orbits a
substructure can make inside the main halo.
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When we observe our own Galaxy, we do not have access to
different ‘snapshots’ anymore, in stark difference with the world
of simulations. Instead, we have to be content with the data at the
present time. However, because we now know that our phase-space
structure finder can identify dynamical structures that were bound
before tidal disruption, it can provide totally new insights about
the past dynamical history of our Galaxy. Within the hierarchical
framework, we expect that our Galaxy should be made through
the merging of more than about 100 smaller subcomponents. Com-
paring structures in observational data and simulations can be one
of the best tests for the theory of hierarchical galaxy formation,
and provide important constraints on cosmological models such as
�CDM.

Up to now, we studied only the evolution of DM, but we can also
similarly study the evolution of baryons in gas and stars. Galaxies
are observed in many different ways, ranging from star distribu-
tions, velocity and chemical properties, to H I measurements etc.
Our phase-space structure finder with local metric fitting is in fact
implemented in such a way that it can be used in any number of
dimensions, where each dimension can have completely different
physical units. So it is in principle straightforward to use it for
studying galaxy structure evolution in multidimensional space with
the appropriate probabilistic weightings to take into account the
noise and holes (missing measurements) in the data hypercube. We
think that such an approach can yield a deeper understanding of
galaxy evolution, and looks especially promising in light of the up-
coming GAIA mission (Gilmore et al. 1998) which plans to map the
positions of around one billion stars in our Galaxy.
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