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Observations of gravitational waves from massive binary black-hole systems at cosmological distances

can be used to search for a dependence of the speed of propagation of the waves on wavelength, and

thereby to bound the mass of a hypothetical graviton. We study the effects of precessions of the spins of

the black holes and of the orbital angular momentum on the process of parameter estimation based on the

method of matched filtering of gravitational-wave signals vs theoretical template waveforms. For the

proposed Laser Interferometer Space Antenna, we show that precessions, and the accompanying

modulations of the gravitational waveforms, are effective in breaking degeneracies among the parameters

being estimated, and effectively restore the achievable graviton-mass bounds to levels obtainable from

binary inspirals without spin. For spinning, precessing binary black-hole systems of equal masses 106M�
at 3 Gpc, the lower bounds on the graviton Compton wavelength achievable are of the order of 5�
1016 km.

DOI: 10.1103/PhysRevD.80.044002 PACS numbers: 04.30.�w, 04.80.Cc, 04.80.Nn

I. INTRODUCTION AND SUMMARY

The anticipated launch of the Laser Interferometer
Space Antenna (LISA) in the 2020 time frame will provide
a promising new tool for doing astrophysics with massive
binary black-hole systems. The inspiral and merger of
massive black holes (MBHs) with masses of the order of
105–107M� will be detectable to large distances in LISA’s
sensitive frequency band between 10�5 and 1 Hz. The
detection of gravitational waves (GWs) from MBH sys-
tems will allow us to infer important astrophysical and
astronomical information, such as the masses and spins
of the black holes, the location of the system on the sky and
its distance from the Solar System.

Another important aspect of MBH binaries is the possi-
bility of testing general relativity itself. In previous papers
we have studied the bounds that could be placed on alter-
native theories of gravity such as scalar-tensor theories of
the Brans-Dicke type, and theories in which gravitational
waves propagate with a wavelength-dependent speed, as if
the ‘‘graviton’’ were massive [1–6]. Specifically, in [5] we
showed that the inclusion of aligned, nonprecessing spins
weakens the bounds obtainable on the graviton mass by
almost an order of magnitude. This is because the parame-
ters that characterize the inspiraling binary are highly
correlated, so that the addition of parameters (the spins)
into the estimation process effectively dilutes the available
information, leading to weakened bounds or estimates on
most parameters.

However, Vecchio [7] pointed out that when the effects
of precession of spins are incorporated into the gravita-

tional waveforms, i.e. when the spins are not aligned with
the orbital angular momentum, the accuracy of parameter
estimation can be improved. He studied the so-called
‘‘simple precession’’ case where either one of the bodies
has zero spin, or the black-hole masses are equal, and only
spin-orbit interactions are included. The modulations of
the amplitude and phase of the gravitational waveform
induced by the precession of the spin(s) and by the pre-
cession of the orbital plane effectively adds information to
the estimation process, partially decouples some of the
parameters, and thus leads to restored accuracy. Lang and
Hughes [8] extended Vecchio’s work to include arbitrary
spins and masses, and also spin-spin interactions, and
found significant improvements in the accuracy of mass
measurements as well as sky localization. In addition, they
showed that the magnitudes of the spins of the binary
members, especially for low redshift systems at z ’ 1,
could be measured with accuracies of the order of 10�2.
In this paper we describe the results of an independent

code written by one of us (A. S.) for analyzing binary
inspiral with precessing spin and for carrying out parame-
ter estimation based on the method of matched filtering,
but extended to include the effects of a massive graviton. In
addition to confirming the central conclusions of Lang and
Hughes [8], we show that spin precessions significantly
improve the bounds that can be placed on the mass of the
graviton. In parallel work, we have shown that including
higher signal harmonics in the post-Newtonian (PN) wave-
form (but without spins) also leads to improved bounds on
the graviton mass [6].
Our main conclusion, shown in Figs. 1 and 2, is that the

inclusion of spin precession effects increases the lower
bound on the graviton Compton wavelength �g by almost

an order of magnitude, on average, with respect to the one
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calculated for the same nonprecessing system. Recall that
�g is related to the mass of the graviton by �g ¼ h=mgc,

where h is Planck’s constant and c is the speed of light, so
that a lower bound on �g represents an upper bound onmg.

Indeed, the new bounds, labeledMGþ SOþ PREC and
MGþ SOþ SSþ PREC in Fig. 1, which incorporate

spin-orbit (SO) effects only and spin-orbit and spin-spin
(SS) effects, respectively, along with the effect of a massive
graviton (MG), are comparable to those inferred from an
identical system without spin effects at all, labeled MG.
This improvement is independent of mass, as seen in
Fig. 2, which plots median lower bounds on �g for systems

without spin (MG), with nonprecessing spins (MGþ
SOþ SS), and with precessing spins (MGþ SOþ SSþ
PREC) for various pairs of masses spanning 2 orders of
magnitude in total mass.
The rest of the paper provides the details of the analysis

behind our main conclusion. In Sec. II we review the
construction of gravitational waveform templates and the
orbital dynamics when spin precessions are incorporated.
In Sec. III we describe the parameter estimation process
based on the method of matched filtering, and in Sec. IV
we present the results. Section V presents concluding re-
marks. Throughout the paper we use units in which c ¼
G ¼ 1.

II. GRAVITATIONALWAVEFORM AND ORBITAL
DYNAMICS INCLUDING SPIN PRECESSIONS

In this section we give a brief overview of the assump-
tions made for the GW signal used for our calculations.
The waveform emitted by an inspiraling black-hole binary
system can be described accurately by the post-Newtonian
approximation developed by several groups (see for ex-
ample [9]; for a review of the post-Newtonian approxima-
tion for gravitational-wave emission from inspiraling
binaries see [10]). For our study we made the following
assumptions, some physically justified and some imposed
for simplicity: (i) We take into account only the inspiral
phase of the signal, ignoring the merger and ringdown part.
The bound on the graviton mass will be dominated by
information from the inspiral phase where the wavelength
of the signal varies over many orders of magnitude. (ii) We
assume the restricted second post-Newtonian (2PN) ap-
proximation, in which the amplitude of the signal is eval-
uated to the lowest, Newtonian order, while the phase is
evaluated to 2PN order. (Reference [6] goes beyond this
approximation, but does not include spins.) (iii) We use the
stationary phase approximation for calculating the Fourier
transform of the signal. (iv) We assume that the orbits are
quasicircular.
With these assumptions and following [8], we express

the Fourier transform of the GW signal as

~h IðfÞ ¼
ffiffiffiffiffiffi
5

96

s
��2=3M5=6

DL

AI½tðfÞ�f�7=6ei�I ; (2.1)

where f is the frequency of the wave; M is the ‘‘chirp

mass’’ of the system given by M ¼ �3=5M, with M ¼
m1 þm2 and � ¼ m1m2=M

2; I ¼ 1; 2 labels two possible
combinations of data from the three arms of LISA. The
quantity tðfÞ is the time at which the emitted gravitational-
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FIG. 2 (color online). Median lower bounds on the graviton
Compton wavelength �g (in units of 10

15 km) for 104 black-hole

binaries at redshift z ¼ 0:55, or a luminosity distance 3 Gpc,
randomly located on the sky. Systems contain black holes of
mass ð1; 1Þ � 105, ð1; 10Þ � 105, ð1; 1Þ � 106, ð1; 10Þ � 106 and
ð1; 1Þ � 107M�, from left to right, respectively.
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FIG. 1 (color online). Distribution of lower bounds on the
graviton Compton wavelength �g (in units of 1015 km) for 104

equal-mass (106M�) black-hole binaries at redshift z ¼ 0:55, or
a luminosity distance 3 Gpc, randomly located on the sky. The
number of bins is set to 50. The first three histograms (narrow
lines; red, blue, and green in the color version) assume either no
spins or aligned spins with SO and/or SS coupling. The final two
histograms (thick lines; violet and black in the color version)
include precessions induced by nonaligned spins.
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wave frequency equals f. The distance of the source DL is
given as a function of the redshift by the expression

DLðzÞ ¼ ð1þ zÞ
H0

Z z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mð1þ z0Þ3 þ��

p ; (2.2)

with the cosmological parameters having the values�M ¼
0:25, �� ¼ 0:75, and H0 ¼ 75 km s�1 Mpc�1, following
the latest fits by the WMAP mission [11].

The amplitude of the wave AI½tðfÞ� is given by the
expression

AIðtÞ ¼
ffiffiffi
3

p
2

ð½1þ ðL̂ � n̂Þ2�2Fþ
I ðtÞ2 þ 4ðL̂ � n̂Þ2F�

I ðtÞ2Þ1=2;
(2.3)

where L̂ and n̂ are unit vectors in the directions of the
source orbital angular momentum and the line of sight to
the source, respectively. The LISA antenna pattern func-

tions for one pair of armsFþ;�
1 are given by the expressions

[12]

Fþ
1 ð�S;�S; c SÞ ¼ 1

2ð1þ cos2�SÞ cos2�S cos2c S

� cos�S sin2�S sin2c S;

F�
1 ð�S;�S; c SÞ ¼ 1

2ð1þ cos2�SÞ cos2�S sin2c S

þ cos�S sin2�S cos2c S;

(2.4)

where �S and �S are the spherical angles for the binary’s
line of sight n̂ in a frame in which the three LISA space-
craft are at rest, and c S is the polarization angle of the
wave in the same frame given by the expression

tanc S ¼ q̂ � ẑ
p̂ � ẑ ¼ L̂ � ẑ� ðL̂ � n̂Þðẑ � n̂Þ

n̂ � ðL̂� ẑÞ : (2.5)

The unit vector ẑ is orthogonal to the plane of the LISA
satellites, while p̂ and q̂ are axes orthogonal to n̂, defined

as p̂ ¼ n̂� L̂=jn̂� L̂j and q̂ ¼ p̂� n̂; they are the prin-
cipal axes of the wave, i.e. defined such that the two
polarizations are exactly 90� out of phase. For the second
‘‘detector’’ (actually a linear combination of outputs from
the three LISA arms such that the noise is independent of
the noise in the two arms that make up detector 1) the
expressions are

Fþ
2 ð�S;�S; c SÞ ¼ Fþ

1

�
�S;�S � �

4
; c S

�
;

F�
2 ð�S;�S; c SÞ ¼ F�

1

�
�S;�S � �

4
; c S

�
:

(2.6)

In order to use these expressions for our calculations
they must be transformed to a coordinate system tied to the
ecliptic. Taking into account the ‘‘cartwheel’’ motion of
the LISA array as it orbits the Sun, we use expressions in
Ref. [12],

cos�S ¼ 1

2
cos ��S �

ffiffiffi
3

p
2

sin ��S cos½ ��ðtÞ � ��S�;

�S ¼ �0 þ 2�
t

T
þ tan�1�;

� ¼
ffiffiffi
3

p
cos ��S þ sin ��S cos½ ��ðtÞ � ��S�
2 sin ��S sin½ ��ðtÞ � ��S�

;

(2.7)

where ��S and ��S denote the fixed direction to the source,
and ��ðtÞ ¼ ��0 þ 2�t=T denotes barycentric longitude of
the detector’s center of mass as it orbits the Sun, where T is
1 yr and ��0 and �0 are arbitrary orientation constants
usually chosen to be zero. The polarization angle c S is
written in terms of barycentric angles using Eq. (2.5) and
the expressions [5]

ẑ � n̂ ¼ 1

2
cos ��S �

ffiffiffi
3

p
2

sin ��S cosð ��ðtÞ � ��SÞ;

L̂ � ẑ ¼ 1

2
cos ��L �

ffiffiffi
3

p
2

sin ��L cosð ��ðtÞ � ��LÞ;
L̂ � n̂ ¼ cos ��L cos ��S þ sin ��L sin ��S cosð ��L � ��SÞ;

n̂ � ðL̂� ẑÞ ¼ 1

2
sin ��L sin ��S sinð ��L � ��SÞ

þ
ffiffiffi
3

p
2

½cos ��L sin ��S sinð ��ðtÞ � ��SÞ
� cos ��S sin ��L sinð ��ðtÞ � ��LÞ�; (2.8)

where ��L and ��L are the polar and azimuthal angles,

respectively, of the orbital angular momentum vector L̂
in barycentric coordinates.
In order to determine tðfÞ in Eq. (2.1), we use the rate at

which the observed frequency changes because of the
emission of gravitational radiation by the binary system
and because of the propagation delay induced by a massive
graviton, as given by the expression [13]

df

dt
¼ 96

5�M2
ð�MfÞ11=3

�
1þ �gð�MfÞ2=3

�
�
743

336
þ 11

4
�

�
ð�MÞ2=3 þ ð4�� �Þð�MfÞ

þ
�
34 103

18 144
þ 13 661

2016
�þ 59

18
�2 þ �

�
ð�MfÞ4=3

�
;

(2.9)

where

�g ¼ �2DM
�2
gð1þ zÞ (2.10)

describes the contribution of the massive graviton. Its
effect is to alter the time of arrival of the wave fronts for
a given frequency, as a function of the Compton wave-
length �g and a distance parameter defined as [2]
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D ¼ 1þ z

H0

Z z

0

dz0

ð1þ z0Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½�Mð1þ z0Þ3 þ���
p : (2.11)

The parameter �, describing spin-orbit interactions, is
given by

� ¼ 1

12

X2
i¼1

	i

�
113

�
mi

M

�
2 þ 75�

�
L̂ � Ŝi; (2.12)

and the parameter � describing spin-spin interactions is
given by

� ¼ �

48
	1	2½721ðL̂ � Ŝ1ÞðL̂ � Ŝ2Þ � 247ðŜ1 � Ŝ2Þ�;

(2.13)

where 	i ¼ Si=m
2
i , is the dimensionless spin parameter for

each body.
To get the relation between the time elapsed and the

frequency, one has to integrate Eq. (2.9). When spin pre-
cessions are taken into account, both the spin-orbit and
spin-spin coefficients � and � are oscillating functions of
time around an average value; however, as shown in [14],
the amplitude of the oscillations is small so one can,
without significant loss of accuracy, assume that they are
constant for the purpose of the integration. The result is

tðfÞ ¼ tc � 5

256
Mð�MfÞ�8=3

�
1þ 4

3
�gð�MfÞ2=3

� 4

3

�
743

336
þ 11

4
�

�
ð�MfÞ2=3

� 8

5
ð4�� �Þð�MfÞ þ 2

�
3 058 673

1 016 064
þ 5429

1008
�

þ 617

144
�2 � �

�
ð�MfÞ4=3

�
: (2.14)

In our calculations we use the above expression wher-
ever necessary to express time as a function of frequency,
but we insert the frequency-dependent values of � and �
that come out of the numerical integration of the spin
precession equations, as described below. Although this
is a slightly inconsistent procedure, we do not expect it to
have a large effect, since the spin-orbit and spin-spin terms
are high-order PN corrections, and thus are relatively
small.

The phase�I in Eq. (2.1) has several terms that describe
different effects contributing to the phasing of the gravita-
tional wave, in the form

�I ¼ �ðfÞ � ’I
pol½tðfÞ� � ’D½tðfÞ� � 
p�½tðfÞ�:

(2.15)

The first term �ðfÞ is the phasing function at 2PN order
arising from the internal dynamics of the binary system,
given by the expression [5]

�ðfÞ ¼ 2�ftc ��c � �

4
þ 3

128
ð�MfÞ�5=3

�
�
1� 128

3
�gð�MfÞ2=3 þ 20

9

�
743

336
þ 11

4
�

�

� ð�MfÞ2=3 � 4ð4�� �Þð�MfÞ
þ 10

�
3 058 673

1 016 064
þ 5429

1008
�þ 617

144
�2 � �

�

� ð�MfÞ4=3
�
; (2.16)

where tc and�c are the time and the phase of coalescence,
respectively. Here, as in the calculation of tðfÞ, we hold �
and � fixed during the required integrations, and then
insert the time-varying values afterward.
The term ’I

pol½tðfÞ�, often called the ‘‘polarization

phase,’’ arises from the conversion of the real signal into
an amplitude (2.3) and a phase, and is given by the ex-
pression

’I
polðtÞ ¼ tan�1

�
2ðL̂ � n̂ÞF�

I ðtÞ
½1þ ðL̂ � n̂Þ2�Fþ

I ðtÞ
�
: (2.17)

The term’D½tðfÞ� is the ‘‘Doppler phase,’’ arising from the
varying arrival time of the signal as the detector moves
around the Sun, given for both detectors by the expression

’DðtÞ ¼ 2�fR� sin ��S cos½ ��ðtÞ � ��S�; (2.18)

where R� ¼ 1 AU.
Finally, the term 
p�½tðfÞ� comes from the integrated

change in the orbital phase, caused by the precession of the
orbital angular momentum vector that accompanies the
spin precessions, and is given by [15]


p�½tðfÞ� ¼ �
Z ffinal

f
df

2L̂ � n̂
1� ðL̂ � n̂Þ2 ðL̂� n̂Þ � _̂L:

(2.19)

In contrast to the case where the spins are aligned with
the orbital angular momentum, precessions of the spins and
of the orbital plane induce modulations of both the ampli-
tude and phase of the gravitational wave on a precession
time scale. The orbital time scale is given by

Torbital � ðr3=MÞ1=2; (2.20)

while the precession time scale is given by

Tprecession � r3

L
� r5=2

�M1=2
: (2.21)

The final relevant time scale is that of the inspiral, given by

Tinspiral � r4

�M2
: (2.22)

Since for most of the inspiral, Torbital 	 Tprecession 	
Tinspiral, we are justified to use orbit-averaged equations
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for the spin and angular momentum precessions, and to
allow the total angular momentum J to evolve adiabatically
as a result of gravitational radiation damping.

The relevant equations [15] are

_S1 ¼ �1 � S1; (2.23a)

_S2 ¼ �2 � S2; (2.23b)

_L ¼ _J� _S1 � _S2; (2.23c)

where

�1 ¼ 1

r3

��
2þ 3

2

m2

m1

�
�

ffiffiffiffiffiffiffi
Mr

p
L̂� 3

2
ðS2 � L̂ÞL̂þ 1

2
S2

�
;

(2.24a)

�2 ¼ 1

r3

��
2þ 3

2

m1

m2

�
�

ffiffiffiffiffiffiffi
Mr

p
L̂� 3

2
ðS1 � L̂ÞL̂þ 1

2
S1

�

(2.24b)

are the orbit-averaged precession vectors, and

_J ¼ � 32

5

�2

r

�
M

r

�
5=2

L̂ (2.25)

is the change in the total angular momentum due to radia-
tion reaction to lowest PN order and for a quasicircular
orbit. The overdot denotes a usual time derivative.

From Eqs. (2.23a) and (2.23b), the magnitudes of the
spin vectors Si do not change, so the dimensionless spin
parameters 	i are constant. When jLj 
 jSj, spin-orbit
coupling dominates, and the rate of precession of each spin
is independent of the other spin. In other words, when spin-
orbit effects dominate, binaries with slowly spinning ob-
jects produce roughly as many precession cycles as do
binaries with faster spinning objects. The difference is
that for small jSj the cone describing the precession of L
is smaller.

In the general case of arbitrary initial conditions for the
spin and angular momentum vectors the above system of
equations cannot be solved analytically, so we must resort
to numerical integration using routines from [16].

III. PARAMETER ESTIMATION

We carry out the parameter estimation using the
standard theory of Fisher information matrices and the
maximum likelihood approximation developed for
gravitational-wave applications by several authors
[14,17,18].

Given the noise spectrum of the instrument and a signal
hðt; �aÞ characterized by a number of parameters �a of the
source, one can define the inner product between two
signals h1ðtÞ and h2ðtÞ as follows:

ðh1jh2Þ � 2
Z 1

0
df

~h�1ðfÞ~h2ðfÞ þ ~h�2ðfÞ~h1ðfÞ
SnðfÞ

¼ 4Re
Z 1

0
df

~h�1ðfÞ~h2ðfÞ
SnðfÞ ; (3.1)

where ~h1ðfÞ and ~h2ðfÞ are the Fourier transforms of the
respective gravitational waveforms hiðt; �aÞ, the star de-
notes complex conjugate, and SnðfÞ is the noise spectral
density of the detector. The signal-to-noise ratio (SNR) for
a given signal hðtÞ is then given by

�½h� � ð~hj~hÞ1=2; (3.2)

evaluated at the estimated values �a of the source parame-
ters. In our analysis wewill include the possibility that both
detector combinations of LISA will be operational. In this
case, the Fisher information matrix �ab of the source is
defined as follows:

�ab �
�
@h1

@�a

��������
@h1

@�b

�
þ

�
@h2

@�a

��������
@h2

@�b

�
; (3.3)

where h1, and h2 are the signals in the two LISA arm
combinations discussed earlier. In the limit of large SNR
and if the noise is stationary and Gaussian, the probability
that the GW signal hðtÞ is characterized by a given set of
values of the source parameters �a is

pð�jhÞ ¼ pð0Þð�Þ exp½�1
2�ab��

a��b�; (3.4)

where ��a ¼ �a � �̂a, is the difference between the esti-

mated and the true value of the parameters, and pð0Þð�Þ is
the prior information. An estimate of the rms error in
measuring the source parameter �a can then be calculated,
in the limit of large SNR, by taking the square root of the
diagonal elements of the inverse of the Fisher matrix:

��arms ¼
ffiffiffiffiffiffiffiffi
�aa

p
; � ¼ ��1: (3.5)

Finally, the correlation coefficients between two parame-
ters �a and �b are given by

cab ¼ �abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aa�bb

p : (3.6)

It turns out that because LISA is designed to detect
massive inspirals, it will naturally provide the largest lower
bounds on �g. This can be seen from the dependence of the

bound on �g on the relevant parameters of the system and

the detectors, given by Eq. (4.9) of [2]:

�g /
�
Ið7Þ
�

�
1=4

�
D

ð1þ ZÞDL

�
1=2 M11=12

S1=40 f1=30

; (3.7)

where S0 is a parameter that establishes the floor of the
noise spectral density (in Hz�1), f0 is a characteristic
‘‘knee’’ frequency, or frequency where the noise is a
minimum. The quantities Ið7Þ and � are determined from
the Fisher matrix inversion and are largely independent of
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either S0 or f0, or of the SNR of the signal. In any case, the
bound is only weakly dependent on these variables. The
ratio D=ð1þ ZÞDL is weakly dependent on distance, re-
flecting the fact that the effect of the massive graviton and
the estimation errors both grow with distance. Finally, the

factor S1=40 f1=30 is roughly the same for LISA as it is for, say,

advanced LIGO, and thus the best bound on �g will come

from LISA.
The noise spectrum of LISA consists of the instrumental

noise intrinsic to the on-board instrumentation and drag-
free control, and astrophysical noise due to unresolved
astrophysical sources of GWs lying in the instrument’s
frequency band. The instrumental noise currently used in
the literature is that of Ref. [19] (also found online at [20]).
In our calculations we use an analytic version of the
instrumental noise following [5], given by

Sinstrh ðfÞ ¼ ½9:18� 10�52f�4 þ 1:59� 10�41

þ 9:18� 10�38f2� Hz�1; (3.8)

where f is in Hz. Technically this model ignores the
oscillatory effects in the transfer function of LISA at
high frequencies where the gravitational wavelength be-
comes comparable to the spacecraft separations, but since
the relevant systems for bounding the graviton mass are
massive binary inspirals at the low frequency end, we do
not expect this simplification to have a large effect.

The spectral density for the noise from galactic binaries
is approximated by [21]

S
gal
h ðfÞ ¼ 2:1� 10�45f�7=3 Hz�1; (3.9)

and for extragalactic binaries by [22]

S
ex-gal
h ðfÞ ¼ 4:2� 10�47f�7=3 Hz�1: (3.10)

The total noise spectrum to be used [23] is given by

ShðfÞ ¼ minfSinstrh ðfÞ expðT�1
missiondN=dfÞ; Sinstrh ðfÞ

þ Sgalh ðfÞg þ Sex-galh ðfÞ; (3.11)

where Tmission is the duration of the mission, which we
assume to be 1 yr,  ¼ 4:5 is the average number of
frequency bins that are lost when each galactic binary is

fitted out, and dN=df ¼ 2� 10�3f11=3 Hz�1.
In calculating the integrals for the Fisher matrix, we use

the following expressions for the lower and upper limits of
integration [5]. The initial frequency is given by

finitial ¼ maxfflow; fðTobsÞg;

fðTobsÞ ¼ 4:149� 10�5

�
M

106M�

��5=8
�
Tobs

yr

��3=8
;

(3.12)

where fðTobsÞ comes from the leading term of Eq. (2.14),
with Tobs ¼ tc � tðfÞ, and where flow is the lower cutoff of
the LISA instrument, taken here to be 10�5 Hz. The final
frequency is given by

ffinal ¼ minffISCO; fendg; (3.13)

where fISCO ¼ ð63=2�MÞ�1 is the usual frequency for the
innermost stable circular orbit and fend ¼ 1 Hz is a con-
ventional upper cutoff for the LISA noise curve. In order to
see clearly the effects of spin precessions on the graviton-
mass bound, we choose the same observation time Tobs ¼
1 year as in [5].

IV. RESULTS

In general a quasicircular binary black-hole inspiral in
general relativity is described by a total of 15 parameters;
adding the parameter for the massive graviton, we have the
following 16 parameters: the two individual masses of the
system, lnðm1Þ and lnðm2Þ, the luminosity distance to the
source lnðDLÞ, the two dimensionless spin parameters 	1

and 	2, the time and phase at coalescence tc and �c, the
two angles of the binary’s sky position ��S and cos ��S, the
two angles of the initial orientation of the orbital angular
momentum vector, ��L and cos ��L, the four angles of the
initial orientations of the spins of the two bodies, ��S1 ,

cos ��S1 ,
��S2 , and cos ��S2 , and finally �g, the parameter

that describes the massive graviton contribution to the
phase of the waveform. All angles are defined in the frame
attached to the Solar System barycenter.
The inclusion of spin precessions makes some of the

parameters used traditionally for estimation less suitable.
For example, the spin-orbit and spin-spin parameters� and
� are now time- (frequency-) dependent, so one must
either go directly to the values of 	1 and 	2 and the four
initial spin orientation angles as parameters, or one must
use the initial values of � and � along with four other
suitable parameters (such as the initial angles) as the
appropriate parameters. We choose the former. Instead of
the chirp mass (M) and the symmetric mass ratio (�), we
use the individual masses as parameters, because they
more directly scale the spins.
Proceeding with the error estimation, we first fix a pair

of masses in the source rest frame, the phase at coalescence
and a redshift or luminosity distance. We then randomly
select the dimensionless spin parameters, 	i within the
range ½0; 1�, and the initial spin, orbital angular momentum
and source position angles (eight angles). We also select
randomly the time of the coalesence tc, within the assumed
time duration of the mission, which corresponds to differ-
ent orientations of the LISA arms at the first reception of
the gravitational-wave signal. One effect of the selection of
random tc is that some signals might be partially cut off
because they are already in the sensitive band when LISA
starts observing them. We use the routine RAN2 [16] to
produce the random numbers.
We also set the nominal value �g ¼ 0 for our calcula-

tions since we are interested in setting a lower limit for �g.

The inclusion of spin precessions modulates both the
amplitude and the phase of the waveform. Since the total
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angular momentum J ¼ S1 þ S2 þL is conserved on a
precession time scale, the orbital angular momentum vec-
tor L must precess to cancel out the effects of spin pre-
cessions. As a consequence, the amplitude given by
expression (2.3) now changes and modulates the waveform
accordingly. The phase is also affected mainly through the
terms that describe the polarization phase (2.17) and inte-
grated change in orbital phase (2.19). Finally, in the phas-
ing function �ðfÞ the parameters � and � are now
frequency-dependent.

Another thing to note about precession is the following.
Since we generate arbitrarily the initial directions of the
spin and angular momentum vectors we can have both
kinds of precession, simple and transitional, as described
in [15]. ‘‘Simple’’ precession is the (most common) case
where the angular momentum vector L and the total spin
vector S precess around the total angular momentum vec-
tor J, which decreases slowly because of gravitational
radiation reaction. Simple precession always occurs when
jLj 
 jSj, which is generally the case early in the inspiral.
‘‘Transitional’’ precession occurs whenL and S are almost
antialigned and jLj< jSj. It consists of a ‘‘tumbling’’ of
theL and S vectors (with the sum still tied to J) because of
the loss of ‘‘gyroscopic bearings’’ of the system.

Apostolatos et al. [15] found that, in order to get transi-
tional precession, the initial angle between the total spin S
and the angular momentum L must be larger than about
164�, so that, as jLj decreases because of radiation reac-
tion, the conditions for transitional precession will be met
during the inspiral phase. We have checked our initial
values and learned that out of the 104 sets of initial angles

for Ŝ1, Ŝ2 and L̂ only about 80 lead to transitional pre-
cession, and for these, the Fisher matrix calculations were
not adversely affected by the complicated precessions.

Our calculations start with the numerical integration of
the spin precession equations (2.23a)–(2.23c) in the fre-
quency domain, using the random initial values for the six
parameters of the spins of the two bodies and the two
components of the orbital angular momentum, to get the

orientations of L̂, Ŝ1, and Ŝ2 over the duration of the signal.
We use Eq. (2.9) to convert from d=dt to d=df, and use

Kepler’s third law at lowest order, r ¼ M1=3=ð�fÞ2=3, to
convert from r to f in Eq. (2.24). We use a fourth order
Runge-Kutta constant step size routine RK4 [16]. Once this
is done, the spin parameters � (spin-orbit), � (spin-spin)
and the integrated phase correction 
p�½tðfÞ� (2.19) are
calculated. Subsequently the signal in the frequency do-
main, Eq. (2.1), is calculated on the same grid on which the
precession equations are solved.

All the derivatives of the signal with respect to parame-
ters needed for the Fisher matrices are calculated numeri-
cally. Given a determination of hðfÞ for a given set of initial
values of the 16 parameters �a, we also calculate hðfÞ for
nearby values �a þ 
�a and �a � 
�a for each parameter
in turn. Then for each �a, we calculate the derivative using

the standard central finite difference formula

@hðfÞ
@�a

’ hðf; �a þ 
�aÞ � hðf; �a � 
�aÞ
2
�a

þOð
�a2Þ;
(4.1)

for each value of f on the grid. Since we are using double
precision accuracy for our variables a natural choice of the
small shifting parameter 
�a for the calculation of the
numerical derivatives would be 
�a ’ 10�7–10�8. We
have chosen 
�a ¼ 10�8 for all 16 parameters estimated
in order to achieve the best possible accuracy. Then the
necessary integrals are calculated numerically on the same
grid using the extended Simpson rule for the closed inter-
val ½finitial; ffinal�.
Finally, the inverse of the Fisher matrix is calculated

using the routine SVDCMP [16]. We have also used lower-
upper and Gauss-Jordan decomposition as a cross check,
with identical results. The main advantage of this routine is
that it allows us to check whether the matrix is ill-
conditioned for the inversion, by calculating the ratio of
the smallest to the largest eigenvalue of the matrix. If this
ratio is of the order of the machine accuracy ( ’ 10�16),
then the matrix inversion is not to be trusted. However,
another simple sanity test is to multiply the original with
the produced inverse matrix and check how far the product
is from the identity matrix. This can be measured by the
maximum deviation of the nondiagonal elements of the
matrix from zero ( ’ 10�16) in double precision. We have
checked both of these criteria. In most of the cases the
condition number is of the order of 10�10–10�11 and the
maximum deviation is of the order of 10�6–10�7. In the
cases where the condition number approaches double pre-
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FIG. 3 (color online). Distribution of lower bounds on the
graviton Compton wavelength �g (in units of 1015 km) for 104

binaries when spin is included without precession. The system is
a 106 þ 106M� binary black hole at z ¼ 0:55 (3 Gpc). Solid
(dashed) lines refer to one (two) LISA detectors. The number of
bins is set to 50. Results match Fig. 6 of [5].
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cision accuracy, i.e. ’ 10�16, the maximum deviation is of
the order of 10�4.

We have carried out several tests and diagnostics for the
validity of our code. In the case of aligned, nonprecessing
spins, we have reproduced the fifth panel of Fig. 6 of Berti,
Buonanno, and Will [5] for 1 yr integration time and tc
fixed; the results, shown in Fig. 3, agree within the natural
statistics of our Monte Carlo simulations. In contrast to [5],
we have been able to quote errors on the graviton mass
including spin-spin effects because of the improved ma-
chine precision available that allowed us to invert the larger
matrices reliably. Also for the nonprecessing case, and for
individual choices of angles, we have compared parameter
estimation errors and correlation coefficients with those
from a MATHEMATICA code developed independently and
used by Arun for other calculations; the agreement was
excellent.

For the precessing cases, we have checked our code with
respect to the median error results quoted by Lang and
Hughes [8,24] for the asymmetric mass systems of
ðm1; m2Þ ¼ ð3; 1Þ � 105M� and ðm1; m2Þ ¼ ð3; 1Þ �
106M� at z ¼ 1, 3, and 5, respectively. Modulo the statis-
tics of the Monte Carlo simulation, we found good agree-
ment for the median errors in masses and dimensionless
spin parameters, the semimajor and semiminor axis values
ða; bÞ of the error ellipse on the sky, and the luminosity
distance and angular resolution; the comparisons are
shown in Tables I, II, and III.

The effect of choosing arbitrary coalescence times tc is
illustrated in Fig. 4 where the distributions of lower bounds
on the graviton Compton wavelength �g are shown for

TABLE I. Comparison of median errors in selected parameters for two cases of 104 precessing binaries at z ¼ 1. Semimajor axes of
error ellipse on the sky parametrized by a and b; angular resolution is ��S. Lang-Hughes results are quoted in the first line; our results
are in italics in the second line.

m1 (M�) m2 (M�) �m1=m1 �m2=m2 �	1 �	2 2a (arcmin) 2b (arcmin) ��S (deg2 �DL=DL

3� 105 105 0.000 667 0.000 541 0.001 57 0.003 06 16.9 7.3 0.0233 0.002 40

0.000 387 0.000 314 0.001 30 0.001 76 13.9 8.4 0.0245 0.002 36

3� 106 106 0.002 38 0.001 92 0.003 80 0.006 74 32.3 14.7 0.0839 0.004 19

0.004 58 0.003 71 0.003 57 0.006 13 23.8 14.6 0.0730 0.001 93

TABLE II. The same as Table I, but for z ¼ 3.

m1 (M�) m2 (M�) �m1=m1 �m2=m2 �	1 �	2 2a (arcmin) 2b (arcmin) ��S (deg2 �DL=DL

3� 105 105 0.003 63 0.002 94 0.008 79 0.0171 92.5 32.5 0.656 0.0126

0.002 25 0.001 82 0.006 71 0.0140 83.5 49.0 0.885 0.0058

3� 106 106 0.0181 0.0148 0.0223 0.0386 142 64.6 1.65 0.0193

0.0129 0.0103 0.0130 0.0290 96.8 58.4 1.21 0.0161

TABLE III. The same as Table I, but for z ¼ 5.

m1 (M�) m2 (M�) �m1=m1 �m2=m2 �	1 �	2 2a (arcmin) 2b (arcmin) ��S (deg2 �DL=DL

3� 105 105 0.008 11 0.006 58 0.0193 0.0359 217 95.8 3.73 0.0284

0.004 76 0.004 10 0.0108 0.0150 201 123 5.22 0.0145

3� 106 106 0.0576 0.0475 0.0606 0.107 304 139 7.52 0.0436

0.0656 0.0536 0.0468 0.112 190 116 4.68 0.0164

001011
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FIG. 4 (color online). Distribution of lower bounds on �g (in
units of 1015 km) for 104 binaries including spin precessions.
The system is a 106 þ 106M� binary black hole at z ¼ 0:55
(3 Gpc). The red curve is for tc fixed to 1 yr; the blue curve is for
random values of tc in the 1 yr interval of the LISA mission.
Solid (dashed) lines refer to one (two) LISA detectors, respec-
tively.
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fixed and random values of tc. It is clear from the graph that
randomizing tc leads to somewhat smaller lower bounds,
with a tail at low values of the bounds, depicting the effect
of signal loss in some of the cases. Figure 4 also shows that
using two LISA arm combinations generally leads to im-
proved bounds.

In Fig. 5 we plot the distribution of the correlation
coefficients between the massive graviton parameter �g,

and the two dimensionless spin parameters 	i (top panel)
and the two massesmi (bottom panel) for the 106 þ 106M�
black-hole case. The correlations are quite mild, with most
of the values ranging between 0 and 0.8, in contrast to the

nonprecessing case [5], where correlation coefficients
larger than 0.9 were routine. This illustrates the strong
decorrelating effect of the precessions.

V. CONCLUSIONS

In this paper we have studied bounds that can be placed
on the mass of a hypothetical graviton using GW observa-
tions from the planned LISA mission, including spin pre-
cession effects. A similar analysis incorporating only spin-
orbit coupling (simple precession), but including small
eccentricities, was carried out recently by Yagi and
Tanaka [25]. One possible extension of this work would
be to include the effect of higher amplitude harmonics of
the GW signal; in the nonspinning case, this is known to
improve the accuracy of estimating parameters, including
distance and sky location (see, e.g. [26–28]), and the
graviton mass [6]. For recent results along this line see
[29]. A final note: The inclusion of spin precessions has a
significant computational cost in the parameter estimation
procedure. Recently Kocsis et al. [30] have developed a
very efficient way, the harmonic mode decomposition, of
decoupling the several parameters that the signal depend
on, according to their frequency ‘‘signature.’’ This way the
integrations for computing the elements of the Fisher
matrices can all be done at once, lowering significantly
the computational cost. It would be interesting to try to
implement this decomposition on our code in the future.
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[14] C. Cutler and É. E. Flanagan, Phys. Rev. D 49, 2658

(1994).
[15] T.A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.

Thorne, Phys. Rev. D 49, 6274 (1994).
[16] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,

Numerical Recipes in Fortran (Cambridge University

Press, Cambridge, UK, 1992), 2nd ed.
[17] L. S. Finn, Phys. Rev. D 46, 5236 (1992).
[18] E. Poisson and C.M. Will, Phys. Rev. D 52, 848 (1995).
[19] S. L. Larson, W.A. Hiscock, and R.W. Hellings, Phys.

Rev. D 62, 062001 (2000).
[20] The sensitivity curve generator can be found online at

http://www.srl.caltech.edu/~shane/sensitivity/.
[21] G. Nelemans, L. R. Yungelson, and S. F. Portegies Zwart,

Astron. Astrophys. 375, 890 (2001).
[22] A. J. Farmer and E. S. Phinney, Mon. Not. R. Astron. Soc.

346, 1197 (2003).
[23] L. Barack and C. Cutler, Phys. Rev. D 70, 122002 (2004).
[24] R. N. Lang and S.A. Hughes, Astrophys. J. 677, 1184

(2008).
[25] K. Yagi and T. Tanaka, arXiv:0906.4269.
[26] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, S. Sinha, and

C. van den Broeck, Phys. Rev. D 76, 104016 (2007).
[27] M. Trias and A.M. Sintes, Phys. Rev. D 77, 024030

(2008).
[28] E. K. Porter and N. J. Cornish, Phys. Rev. D 78, 064005

(2008).
[29] A. Klein, P. Jetzer, and M. Sereno, arXiv:0907.3318.
[30] B. Kocsis, Z. Haiman, K. Menou, and Z. Frei, Phys. Rev.

D 76, 022003 (2007).

ADAMANTIOS STAVRIDIS AND CLIFFORD M. WILL PHYSICAL REVIEW D 80, 044002 (2009)

044002-10


