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ABSTRACT

Context. In the past decade or so, using numerical N-body simulations to describe the gravitational clustering of dark matter (DM)
in an expanding universe has become the tool of choice for tackling the issue of hierarchical galaxy formation. As mass resolution
increases with the power of supercomputers, one is able to grasp finer and finer details of this process, resolving more and more of
the inner structure of collapsed objects. This begs one to revisit time and again the post-processing tools with which one transforms
particles into “invisible” dark matter haloes and from thereon into luminous galaxies.
Aims. Although a fair amount of work has been devoted to growing Monte-Carlo merger trees that resemble those built from an
N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one
extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive
study of the problems one faces when following this route.
Methods. The first step in building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of
the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm
(called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but instead
extend to most if not all (sub)structure finders. To illustrate this point in the appendix we compare AdaptaHOP’s results to the standard
friend-of-friend (FOF) algorithm, widely utilised in the astrophysical community. We then highlight different ways of building merger
histories from AdaptaHOP haloes and subhaloes, contrasting their various advantages and drawbacks.
Results. We find that the best approach to (sub)halo merging histories is through an analysis that goes back and forth between
identification and tree building rather than one that conducts a straightforward sequential treatment of these two steps. This is rooted
in the complexity of the merging trees that have to depict an inherently dynamical process from the partial temporal information
contained in the collection of instantaneous snapshots available from the N-body simulation. However, we also propose a simpler
sequential “Most massive Substructure Method” (MSM) whose trees approximate those obtained via the more complicated non
sequential method.

Key words. methods: numerical – methods: N-body simulations – cosmology: large-scale structure of Universe

1. Introduction

Dark matter haloes and their mass assembly histories are the
fundamental bricks of any nonlinear structure formation theory
based on the current concordance (ΛCDM) model that has been
so successful at reproducing large scale structure data (Dunkley
et al. 2009). It is therefore natural that a lot of effort has been
devoted to finding semi-analytic descriptions of this process.
These culminated with the seminal papers on the extended Press
Schechter (EPS) formalism (Bond et al. 1991; Lacey & Cole
1994), as it became possible to make Monte-Carlo realisations of
merging histories of haloes using EPS. However, it was also re-
alised early on that shortcomings of the EPS theory needed to be
circumvented (non spherical collapse, loss of internal structure,
no spatial information) to get accurate halo mass distributions
and merging tree histories (Sheth & Lemson 1999; Somerville
& Primack 1999).

� Appendices are only available in electronic form at:
http://www.aanda.org

For a detailed critique of the EPS theory, we refer the inter-
ested reader to Benson et al. (2005), however we point out one of
the most worrisome of its shortcomings. It may seem legitimate
to generate merging trees for a representative sample of haloes at
a given redshift and then attempt to construct the halo mass func-
tion at an earlier time, combining the branches of these Monte-
Carlo merging trees, with each branch appropriately weighted
according to the EPS theory. However, in doing so, one will not
obtain good agreement between this mass function and the mass
function of haloes extracted directly from N-body simulations
at this early epoch. This discrepancy can be tuned empirically,
but there is no theoretical justification as to why such a correc-
tion should be made (Benson et al. 2001). This explains why
people calibrate Monte-Carlo merging trees against those gener-
ated using N-body simulations, as done recently by Neistein &
Dekel (2008) and Parkinson et al. (2008). Indeed merging trees
directly built from N-body simulations naturally circumvent the
shortcomings of the Monte-Carlo methods. Moreover with the
democratisation of (super)computer power N-body simulations
are becoming more and more available and resolved, and this
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implies that it will inevitably make more and more sense to build
trees directly from them in the future.

However, as underlined in the hierarchical galaxy formation
primer of Baugh (2006), the construction of a merger tree from
the outputs of an N-body simulation is not a trivial matter. The
mass of a halo can decrease with time since haloes may spa-
tially overlap one another at a given time output and therefore
be blended together by the group-finding algorithm, then sep-
arate at the next time output for good, or come back together
again later on. This paper is therefore devoted to identifying and
quantifying the occurrences of these “anomalies” that plague
N-body merger trees. It also proposes different methods of deal-
ing with them and contrasts/compares their advantages and dis-
advantages.

Its outline is as follows: in the first part (Sect. 2) we discuss
the issue of dark matter halo and subhalo detection in cosmologi-
cal N-body simulations; in the second (Sect. 3) we build N-body
merger histories based on three methods we use to construct sub-
haloes. We use these merger trees to pitch these methods against
one another. We draw our conclusions in the third part (Sect. 4).

2. Dark matter halo and subhalo detection

Most algorithms commonly used to identify dark matter haloes
in N-body cosmological simulations are based either on a per-
colation algorithm, as the so called friend-of-friend (FOF) algo-
rithm (Huchra & Geller 1982; Davis et al. 1985) or a prescription
to identify local maxima of the density field (e.g. DENMAX,
Gelb & Bertschinger 1994; SOD, Lacey & Cole 1994; BDM,
Klypin et al. 1999; HOP, Eisenstein & Hut 1998). With com-
putational power rapidly increasing, these algorithms have been
recently extended to probe the inner structure of the haloes and
detect subhaloes within them (e.g. IsoDen, Pfitzner & Salmon
1996; SKID, Ghigna et al. 1998; HFOF, Klypin et al. 1999;
SUBFIND, Springel et al. 2001; AdaptaHOP, Aubert et al. 2004;
MHF, Gill et al. 2004; and its successor AHF, Knollmann &
Knebe 2009).

Note however that, in the best of cases, these algorithms pro-
ceed in two consecutive steps: first they identify the halo in real
(3 dimensional (3D)) space, and then they use velocity space
information to “refine” the composition of their haloes (i.e. de-
cide if a particle is gravitationally bound to it or not). Ultimately,
to obtain the most reliable results, one would want to define
haloes as structures detected directly in the 6 dimensional (6D)
phase space (for a review and extensive comparison of the meth-
ods which have been proposed to do that see Maciejewski et al.
2009a), but the developments in that direction are pretty recent
(Diemand et al. 2006; Maciejewski et al. 2009b) so our approach
in this paper remains three dimensional. Moreover, in practise,
the bound structures detected in 6D space are not very differ-
ent from the 3D ones, except that they tend to be systematically
(albeit slightly) more massive (Maciejewski et al. 2009b).

In light of the previous comments, we feel it is a fair claim to
say that none of the 3D algorithms are completely satisfactory,
and that the results of the analysis of any output of a cosmologi-
cal N-body simulation in terms of halo/subhalo detection will, to
a certain extent, depend on the choice of algorithm used to per-
form that detection. Bearing these limitations in mind we choose
AdaptaHOP (Aubert et al. 2004) as our halo and subhalo finder
in this work.

We first start by a brief description of this algorithm. We
then discuss the advantages and disadvantages arising from
three natural but different methods to select subhaloes with

AdaptaHOP: the density profile method (DPM), the Most mas-
sive Sub-node Method (MSM) and the branch history method
(BHM).

2.1. Dark matter halo detection

In this section, we will be concerned with the way one can split
an ensemble of particles in N-body simulation snapshots into
DM haloes and subhaloes. In other words, we want to group
together particles on the basis of the instantaneous values of their
positions (and velocities) alone, using the a priori knowledge
gleaned from the N-body simulation itself that positions contain
the most accurate information. However, already at this point,
we emphasise that the merger history of haloes are imprinted in
the particle distribution. For instance, after a merger with another
halo, a structure can survive as a subhalo which will be present
as a local density maxima within the particle distribution of its
host halo.

In the appendix, we compare in details the most widely used
halo finder FOF to the AdaptaHOP algorithm that we will use to
monitor substructure. Here, we simply point out that FOF con-
sists in grouping together particles which are closer than a dis-
tance ε = b×(mean inter-particle distance). Usually b is chosen
to be 0.2, which closely matches an average halo over-density
of 178 × ρc (where ρc is the critical density, i.e. the matter den-
sity necessary for the Universe to be flat in the absence of other
energy sources), obtained when solving the classic spherical col-
lapse of a “top-hat” density perturbation in an Einstein-de Sitter
universe. To optimise the mass resolution of the N-body simu-
lation, haloes containing at least 20 particles are considered as
bound objects. Obviously, using such a threshold is not the best
way to select bound structures, because (i) it ignores the kinetic
and potential energy of particles (ii) even if it was energetically
justified, a halo sitting exactly on the threshold could still “lose”
a particle by interacting with its environment and not be detected
in the following snapshot of the simulation. However, comput-
ing the potential energy of each particle belonging to a halo is
very expensive CPU wise, and at the same time inaccurate due
to both the pre-selection process of the halo members, which is
necessarily based on a somewhat arbitrary spatial/velocity den-
sity cut, and the necessity to make do with a small number of
particles per halo to maximise the halo mass range spanned by
the simulation. This experimental threshold of 20 is justified a
posteriori by the fact that provided the time span between snap-
shots is not much larger than 200 Myr, less than 30% of haloes
with this many particles are lost between two consecutive out-
puts (see e.g. Fig. A.4).

In principle, the simple FOF algorithm can be used to detect
substructures, simply by running with smaller and smaller values
for the linking length (Klypin et al. 1999). However, this method
is quite inefficient because a whole range of values for b needs to
be explored since real substructures (i) are embedded within one
another and (ii) have different density contrasts due to a different
epoch of collapse and tidal encounters. Furthermore, there exists
no obvious physical criterion to pick the “best” value of b cor-
responding to a global level of substructure, as such a criterion
would depend on merging history and therefore is prone to vary
from object to object.

Instead of relying directly on single particle positions to
identify substructure as the FOF would do, we can go a small
step further and remark that substructures are going to be lo-
cated at local maxima of their host halo density field, so that
the natural way to detect them is to compute this density field.
This simple assertion constitutes the core of the AdaptaHOP
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algorithm (as well as that of many others that we listed earlier)
which can roughly be summarised by the following steps (see
Appendix B of Aubert et al. 2004, for details):

1. For each particle in the N-body simulation, find the n closest
neighbours using your favourite oct-tree algorithm (n has a
typical value comprised between 20 and 64, we use 20 in this
paper). The density ρi, associated to particle i of mass mi is
then computed using the following equation:

ρi =
Vbox

Vr

⎛⎜⎜⎜⎜⎜⎝mi +

n∑
1

m j ∗ spline
(ri j

r

)⎞⎟⎟⎟⎟⎟⎠ (1)

here m j is the mass of particle j (one of i’s n closest neigh-
bours), ri j is the distance between particles i and j, and
r = 0.5 × max(ri j, j ∈ {1, n}) is the SPH smoothing length
for particle j. Vbox and Vr are the volumes of the simula-
tion box and of a sphere of radius r respectively, so their
ratio yields the normalisation of the density across the box.
The spline function is the well-known Smoothed Particle
Hydrodynamics (SPH) kernel:

spline(x) = 1 − (3/2)x2 + (3/4)x3 for 0 < x ≤ 1

spline(x) = (1/4)(2− x)3 for 1 < x ≤ 2

spline(x) = 0 for 2 < x.

2. Walking from particle to particle, identify local maxima
throughout the density field. Apply a first density threshold
ρt = 80 (which roughly corresponds to b = 0.2 used as stan-
dard by the FOF algorithm) to all particles, and link parti-
cles with a density above ρt to their closest local maximum.
These groups of particles are defined as (sub)structures.

3. Identify saddle points in the density field between these
groups. Use these saddle points to create branches connect-
ing maxima together, in order to build a structure tree i.e. a
hierarchy of nodes where each node contains a collection of
particles whose associated density is enclosed between two
values. The lowest value is the density threshold used to cre-
ate the first node; the highest is the density associated to the
lowest saddle point (if any) detected inside it. The lowest
(“first”) level nodes are created by linking groups together
whose saddle point is above the first threshold ρt. The node
structure tree is then created by sorting groups in ascending
order according to the value of the density associated with
their saddle points.

This last item is best explained by Fig. 1 where the nodes are
represented by an ellipse, and sorted according to their order of
creation. The arrows represent how nodes are linked to one an-
other: the first node to be created in this example is node 1, with
all its particles having a density higher than ρt; then the lowest
saddle point density is ρ23 which separate nodes 2 and 3. The
particles of node 1, whose density is greater than ρ23 are then
split between node 2 and node 3 depending on how close they
are from the density maxima of these 2 nodes. The same proce-
dure is then repeated to create nodes 4 and 5 from node 3 using
a new density threshold ρ45. This eventually leads to defining
nodes 5, 6, 7, 8, 9 as substructures or “leaves” because their par-
ticles cannot be cannot be split anymore between higher level
nodes.

Whereas we can logically define a AdaptaHOP halo as the
collapsed node structure tree corresponding to a group of par-
ticles above the ρt density threshold, its decomposition into a
main halo and a collection of subhaloes is more tricky. The main
problem lies in the fact that nodes are not in general associated
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Fig. 1. Example of a node structure tree as computed with AdaptaHOP.
Ellipses are nodes. The arrows show relationship between nodes. In a
branch of the tree two levels are separated by a saddle point (indicated
by a dashed line) in the density profile. Leaves in the node structure
tree are shown in grey. More massive leaves are represented by larger
circles. Density of nodes decreases from top to bottom.

with physical objects. Only end-of-chain nodes, i.e. leaves, have
a physical meaning, so we have to re-arrange the node structure
tree in order to build the main halo and the subhaloes. We tackle
this issue in the next subsection (subhalo detection).

2.2. Dark matter subhalo detection: one step methods

These last remarks naturally lead us to address the issue of sub-
structure identification, i.e. the detection of subhaloes within
haloes as well as subhaloes within subhaloes. The main prob-
lem we are faced with concerns the node structure built with
AdaptaHOP and described at the very beginning of the previous
section: nodes are not in general associated with physical ob-
jects. Only the end-of-chain nodes, i.e. the leaves, have a physi-
cal meaning as they are the only true local density maxima in the
density profile of their host halo. Since we need to define physi-
cal objects as subhaloes, a method is needed to create a tree com-
prised of a main halo and its subhaloes from the node structure
tree computed by AdaptaHOP. We propose several such meth-
ods in this section, and compare/contrast their advantages and
disadvantages in the next (Merger Histories).

The obvious choice would be to define as subhaloes all the
leaves in the node structure tree. Still referring to the example
shown in Fig. 1, this means that we would define nodes 5, 6,
7, 8, 9 as subhaloes (shown in grey in this figure) and associate
nodes 1, 2, 3 and 4 (in white) to the main halo. However, this
method is not very satisfying because it leads to the loss of the
hierarchy of subhaloes: we would be left with only 2 levels of
structures, making it impossible to account for the presence of a
subhalo within another subhalo. Moreover not all density max-
ima can be defined as subhaloes, as one naturally expects the
main halo itself to be centered on a density maximum.

For this reason, one is forced to lay down two simple, intu-
itive rules to build a halo tree:

1. the main halo and each of the subhaloes of the halo tree must
contain one unique leaf from the node structure tree;

2. the hierarchy between nodes of the node structure tree must
be turned into a hierarchy of halo, subhaloes, sub-subhaloes
etc. i.e. when a node contains two leaves, one of the leaves

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911787&pdf_id=1
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Fig. 2. Halo tree obtained from the node structure tree shown in Fig. 1
using the DPM method. Haloes and subhaloes are created by collapsing
several nodes together. More massive leaves are represented by larger
circles. Density of nodes decreases from top to bottom. Nodes and con-
nections removed from the node structure tree are shown with dashed
lines.

is defined as the subhalo and the other one, together with the
node, forms the host (sub)halo of this subhalo.

Even though these two rules are enough to define a halo tree,
they do not by any means, guarantee the unicity of the solution.
In order to remain consistent with the basic principle of detec-
tion algorithms, we only consider methods involving particle po-
sitions to build our halo trees in this paper. In other words, we
only authorise ourselves to distinguish between (sub)structures
based on two physical quantities: density or mass.

Arguably, the most natural thing consists in building this
halo tree by collapsing the node structure tree along a branch
containing the most dense leaf: the particles contained in this leaf
are (arbitrarily) chosen to be part of the main halo itself, along
with all the particles contained in the lower node levels in which
the leaf is included, until we reach the first node (lowest level).
We then define subhaloes by repeating this procedure for the
second most dense leaf, and so on and so forth, until all leaves
have been accounted for. We call this method the Density Profile
Method (DPM) and illustrate how it works in Fig. 2, which is to
be compared to Fig. 1 depicting the original tree node structure.
As node 8 is the leaf with the highest density, and is spatially
included in node 4, itself being included in node 3, itself be-
ing included in node 1, we simplify the tree node by collapsing
branch 8-4-3-1 into a single, main halo (1 ∪ 3 ∪ 4 ∪ 8), and re-
place solid lines and arrows around nodes 8, 4, 3 with dashes in
Fig. 2 to mark that their particles are now part of a unique object.
Note that the centre of the main halo is therefore located in leaf
8. Moving on to the second highest density leaf 9, we find that
it is now only included in node 1 since nodes 3 and 4 have been
removed, and therefore we have to count it as a subhalo of halo
(1 ∪ 3 ∪ 4 ∪ 8). Leaf 7 comes next, which is contained in node 2
which is itself included in the main halo: we therefore collapse
the branch starting from leaf 7 into a unique subhalo (7 ∪ 2) of
halo (1∪3∪4∪8). Leaf 6 is spatially included in this new (7∪2)
subhalo, it is therefore a subhalo of this subhalo. Finally, leaf 5
stands alone in halo (1 ∪ 3 ∪ 4 ∪ 8) since we removed node 3:
it becomes yet another of its subhaloes. It is obvious that this
solution follows the two rules we layed out for defining haloes
and subhaloes as objects with different levels in the structure tree
because each of the main halo (1∪ 3∪ 4∪ 8) on level 1, its three
subhaloes (9,7 ∪ 2,5) on level 2, and the unique sub-subhalo (6)
on level 3, contain a single leaf from the original node tree.

Table 1. Simulation details.

Number of bodies 2563

Particle mass 8.03 × 109 M�
Box size 150 Mpc

Omega matter ΩM 0.333
Omega lambda ΩΛ 0.667
Hubble parameter h 0.667

σ8 0.880
Initial redshift 35.6

Moreover, from this simple example, we can easily under-
stand how changing the criterion to pick the first leaf – for ex-
ample picking the most massive one instead of the most dense –,
we would have defined 1 ∪ 2 ∪ 7 as the main halo , and found it
had two subhaloes, 3 ∪ 4 ∪ 8, and 6. Finally, instead of having
node 6 as the only level 3 structure of the halo structure three,
both leaves 5 and 9 would be subhaloes of subhalo 3 ∪ 4 ∪ 8.
We call this second method the Most massive Sub-node Method
(MSM). A fundamental difference between halo trees built using
DPM and MSM is that the centre of the main halo is now located
in leaf 7 (MSM) instead of leaf 8 (DPM). We also emphasise that
the criterion used to group nodes to form haloes and subhaloes
has an effect not only on the mass of the main halo but on the
hierarchy (level number) of subhaloes as well.

2.2.1. Individual examples

Both methods are then run on the same N-body simulation de-
scribed in paper GalICS I (Hatton et al. 2003). This simulation
contains 2563 particles of 8.03 × 109 M� enclosed in a volume
of 150 comoving Mpc on a side, with periodic boundary condi-
tions. Values for cosmological parameters are given in Table 1.

We now present two example of haloes using the MSM
method to define halos and their hierarchy of subhaloes. Our
goal is to check by eye (arguably the best tool to do the job)
that we can detect all the subhaloes.

As shown in Fig. 3, the MSM can detect subhaloes quite
well, for a quite relaxed halo of mass 1.2 × 1014 M� with its 15
subhaloes, and of mass 1014 M� without them. It is able to neatly
remove all subhaloes as shown in the top right panel: no spurious
holes appear in the density field where these subhaloes have been
removed. The main halo (top right panel) has a smooth profile
even though the subhaloes shown on the bottom left panel come
in various shapes and sizes. Most of the subhaloes shown here
have the main halo as host. It is easier to observe the size of the
various subhaloes by drawing their “virial” region (defined here
as a sphere centered on the centre of the halo or subhalo and
whose radius is such that the average density is 〈ρr〉 = ρ200 =
200 × ρc) which are shown on the bottom left panel.

More revealing is how MSM performs when the halo is still
perturbed by a major merger with another object (i.e. when the
mass ratio between the two haloes is higher than 1:3). Such a
case is detailed in Fig. 4. The mass of the AdaptaHOP halo (with
subhaloes) is 1.2 × 1014 M�, but this time the mass of the main
(MSM) halo is only 5.7 × 1013 M�, i.e. its 23 subhaloes con-
tain slightly more mass than it does. Moreover, since one of the
subhaloes is about the same size as the main halo we can ex-
pect it to contain quite a few subhaloes itself. Indeed, we are not
disappointed: as shown in the top right panel of the figure, the
main halo even harbours a plume of low density particles whose
origins probably lie in the tidal stripping of material between
the bigger subhalo and the host halo. As expected the biggest

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911787&pdf_id=2
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Fig. 3. Top left: original AdaptaHOP halo with subhaloes, top right:
main (MSM) halo (without subhaloes), bottom right: subhaloes, bottom
left: circles marking the “virial” region of the halo and its subhaloes.

Fig. 4. Top left: original AdaptaHOP halo with subhaloes, top right:
main (MSM) halo (without subhaloes), bottom left: subhaloes of the
main halo, bottom right: subhaloes of the subhaloes.

subhalo hosts a few subhaloes of its own, which are large and
dense enough to be seen in the bottom right panel of Fig. 4.
Usually level 3 subhaloes are much smaller and more difficult
to spot on these kind of plots, but the main conclusion is that the
MSM method seems to perform well independently of the state
of relaxation of the AdaptaHOP halo.

Fig. 5. For both methods DPM (diamonds) and MSM (triangles), the
mass functions of haloes, subhaloes of haloes and subhaloes of sub-
haloes are plotted with solid, short-dashed and long-dashed curves re-
spectively. The error bars correspond to Poisson uncertainty. The verti-
cal dotted line corresponds to the 20 particles detection threshold.

2.2.2. Density vs. mass criteria

At this point, we have to decide which of the two methods is the
best suited to reach the goal that we set for ourselves at the begin-
ning of this paper: to build the most reliable (sub)halo merging
history tree possible. Is it the DPM, where each subhalo has a
lower peak density than its host? Or is it the MSM where each
subhalo is less massive than its host? We now compare these two
methods.

The mass functions obtained for both DPM (diamonds) and
MSM (triangles) methods at z = 0 are represented in Fig. 5. For
each method, the mass function of main haloes (level 1 struc-
tures), subhaloes of haloes (level 2 structures) and subhaloes
of subhaloes (level 3 and above structures) are represented re-
spectively with solid, short-dashed, and long dashed curves re-
spectively. From the figure it is apparent that the mass func-
tions of haloes are very similar in both methods, with small dif-
ferences barely perceptible to the naked eye. These differences
are only due to the fact that the mass of haloes can vary from
one method to the other, when the most massive and the most
dense leaves do not coincide. So even though the total num-
ber of haloes detected at redshift 0 is the same, the number of
main haloes per mass bin is expected to vary slightly. The same
comment holds for the mass function of subhaloes, except at the
high mass end where the difference becomes noticeable and it
seems that slightly less subhaloes of halos are detected with the
MSM method. Differences between methods only become ap-
parent in the mass function of subhaloes of subhaloes (so called
level 3 and above). Among the 9124 subhaloes detected with
both methods we count 2170 subhaloes of subhaloes: 1201 sub-
haloes detected with the DPM method and 969 with the MSM
method. We believe that these numbers are large enough to trust
that the trend of the DPM always producing a higher number of
subhaloes of subhaloes is real. This is especially true since it is
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Fig. 6. For both methods DPM (diamonds) and MSM (triangles), the
average number of subhaloes per halo (plain curve), and subhaloes per
subhalo (dashed curve vertically translated by 2 dex downwards for
clarity) are shown. The error bars correspond to the mean quadratic dis-
persion. The dotted vertical line corresponds to the 20 particle detection
threshold.

verified for every mass bin, even if the number of these subhaloes
is small for masses above 7.7× 1012 M�, (18 for the DPM, 5 for
the MSM), and from these bins alone we would be hard pressed
to draw any conclusion.

The number of subhaloes per halo or subhalo is another as-
pect of substructure selection methods that is worth quantifying.
This data is shown in Fig. 6. For each method (DPM marked
with diamonds and MSM with triangles), we show here the aver-
age number of subhaloes per halo (plain curves) and the number
of subhaloes per subhaloes (dashed curves vertically translated
2 dex downwards for clarity). Once again, the average number
of subhaloes per halo is nearly the same when using either the
DPM or MSM method. As expected, this number is very low
10−3 at 2 × 1011 M�. Haloes of these masses are close to the de-
tection threshold and are unlikely to host any subhaloes. In both
cases, we reach an average number of at least 1 subhalo per halo
from 1013 M� onwards. Close to 1014 M�, we obtain on aver-
age 12 subhaloes per halo. The number of subhaloes per subhalo
follows the same trend, but the difference between the two meth-
ods is more marked in that case, with DPM subhaloes hosting
slightly more subhaloes than MSM subhaloes. This result con-
firms the impression we got from the mass function (Fig. 5) that
the number of subhaloes of subhaloes is indeed higher with the
DPM method.

Coming back to the AdaptaHOP haloes (the haloes orig-
inally detected by AdaptaHOP before subhaloes are removed
from them), which, unlike the main haloes are the same for
both methods, we select those for which the main halo has a
different mass in each method and compute the mass fraction
contained in all its subhaloes. By definition this mass fraction
is always smaller than 1 since an AdaptaHOP halo contains all
its subhaloes. The result of this exercise is presented in the top
panels of Fig. 7, where the average mass fraction for the DPM

Fig. 7. For each halo under 1014 M� that differ in the DPM (diamonds)
and MSM (triangles) method, two mass fractions were computed. The
first mass fraction is the total mass found in subhaloes over the total
mass of the halo (the main halo plus its subhaloes). This fraction is
shown in the top panels. The second mass fraction is the mass of the
largest subhalo over the mass of its host main halo. This fraction is
shown in the bottom panels. The average results are shown on the left
panels, the results for each halo are shown in the right panels. The error
bars correspond to the mean quadratic dispersion. The dashed vertical
line corresponds to the 20 particle detection threshold.

(diamonds) and the MSM methods (triangles) (left panel) and
the individual values (right panel) are shown. The mass fraction
found in DPM subhaloes is close to 0.5 for the smallest haloes
and decreases down to 0.3 near 1013 M�, to rise again and reach
0.5 at 1014 M�. The mass fraction in MSM subhaloes follows
the same trend but the mass fraction is always about 0.1 lower.
The error bars are smaller as well for the MSM results and this
can be viewed more clearly on the top left panel: the scatter in
mass fraction is more pronounced for the DPM method. When
using the DPM or MSM method on an AdaptaHOP halo, we
obtain the same number of subhaloes, which is the number of
density maxima (leaves in the node structure tree) minus one
that is defined as the center of the main halo itself. For each of
these AdaptaHOP haloes the number of subhaloes therefore is
initially the same. However, when the DPM and MSM methods
differ on the choice of the center leaf, a higher mass fraction of
the AdaptaHOP halo is found in DPM subhaloes than in MSM
subhaloes, which is somewhat expected since MSM picks the
most massive center leaf to define it as part of the main halo.
What is more worrisome, is that looking at the bottom panels of
Fig. 7, we realise that the mass ratio between a subhalo and the
main halo can be greater than one with the DPM method across
the entire mass range spanned by the N-body simulation. Among
the 33718 DPM main haloes with a mass lower than 1014 M�,
455 differ when using the MSM method. Among these, 93 have
a subhalo-halo mass ratio greater than 1 and 35 greater than 1.5.
This never happens for MSM haloes, which have a maximum
subhalo-halo mass ratio lower than 1 by construction. In the left
panel, we see that this mass fraction is on average lower than 0.7
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for the MSM haloes and much smoother than the DPM curve,
with a reduced scatter. It decreases from 0.7 for the smallest
haloes to around 0.2 at 2 × 1013 M�, and rises again to reach
0.5 for haloes with masses close to 1014 M�.

The DPM method (density criteria) and the MSM method
(mass criteria) do not differ in most cases as the most mas-
sive leaf in the node structure tree generally is the densest as
well. However, when they do differ, the hierarchy of subhaloes is
modified (we obtain more subhaloes in subhaloes with the DPM
method) and the mass ratio between a subhalo and its host halo
is also modified. This latter can reach unphysical (greater than
unity) values with the DPM method which leads us to use the
MSM method as our preferred one step method in the rest of
this paper.

Having selected a robust (in the sense that it uses an inte-
gral quantity, i.e. the mass, rather than its spatial derivative, i.e.
the density) and intuitively satisfying method (MSM haloes are
more massive than any of their subhaloes) as well as assessed
its ability to describe the instantaneous structure of dark matter
haloes and subhaloes (i.e. the analysis of an isolated snapshot of
an N-body simulation), we now proceed to study how it fares at
capturing their much more complex time evolution.

3. Merger histories

3.1. Constructing a merger tree

Although over the course of a numerical N-body simulation
most (sub)haloes lose mass and disappear, it is customary to re-
fer to the “growth” of haloes since these mass losses also feed the
formation of larger objects. Tracking how and when a (sub)halo
acquires its mass is called building a merger history tree for this
specific (sub)halo. The further complication with respect to the
detection of subhaloes previously discussed is that this mass as-
sembly is a dynamical and continuous process, which is only
captured by a finite number of discrete time outputs (typically
50 between redshifts 20 and 0, see e.g. Hatton et al. 2003) of an
N-body simulation. This means that time resolution issues super-
impose on mass resolution issues that were our sole limitation up
to now.

Once again, all the information available to build the merg-
ing trees is carried by particles, and more specifically by their
belonging to a particular (sub)halo at a given time output st and
another one at the previous/subsequent snapshot. In other words,
by monitoring the exchange of particles between haloes or sub-
haloes detected in two consecutive snapshots of an N-body sim-
ulation, one can build “simplified” merger trees by laying down
the following set of rules:

– each (sub)halo i at step st can only have 1 son at step st + 1,
i.e. fragmentation is not taken into account, hence the “sim-
plified” adjective used to describe the merging tree;

– assuming mi j is the common mass between a (sub)halo i of
mass mi at step st and a (sub)halo j of mass m j at step st+ 1,
the son of i is chosen as the (sub)halo j for which mi j/mi is
maximal;

– conversely, the (sub)halo i of mass mi at step st is a progeni-
tor of the (sub)halo j of mass m j at step st + 1 if, and only if
j is the son of i. The main progenitor of j is the (sub)halo i
for which the ratio mi j/m j is maximal.

Merger trees built from N-body simulations in a similar way for
haloes only (with DENMAX: Roukema et al. 1997; or FOF:
Kauffmann et al. 1999; Hatton et al. 2003; Helly et al. 2003;
Nagashima et al. 2005), and more recently for subhaloes as well

fraction of the halo mass transmitted

h2(st−1)h1(st−1)

h(st)
s(st)

step st − 1

step st

host − subhalo relation

son − progenitor relation

halo subhalo

Fig. 8. In a simplified tree built as described in the text (Sect. 3.1), a
subhalo may appear without seemingly having a progenitor. Whenever
possible, the simplified merger tree is therefore modified so that the
subhalo s(st) in the figure becomes the main son of halo h2(st − 1),
even though h2(st − 1) has given most of its particles to h(st) and not
s(st).

(using SKID, Okamoto & Habe 2000; or SUBFIND, Springel
et al. 2005; De Lucia & Blaizot 2007; Fakhouri & Ma 2008)
are quite common. Note that these merger trees are not binary.
Each (sub)halo only has one son, but mergers can occur between
more than two (sub)haloes, depending on time resolution. Also
when two haloes merge, if the first one survives as a subhalo the
merger does not appear immediately as a “real” merger event
(two branches become one) since the son of this first halo is a
subhalo which is distinct from the son of the second halo which
we call the main halo. A merger only really occurs when the
subhalo has completely dissolved in the main halo at a later
time output. Finally, a twist to the previous rules, and specific
to mergers trees including subhaloes has to be introduced. The
reason for this, as illustrated in Fig. 8, is that often a subhalo,
s(st), is not the main son of any halo. Assume for instance that
its host halo h(st) has two (or more) progenitors h1(st − 1), the
main one, and h2(st − 1). If h2(st − 1) has given most of its
mass to h(st), but at the same time s(st) got most of its particles
from h2(st−1) then s(st) is an orphan according to the rules. We
therefore choose, in these cases, to modify the merger tree so that
s(st) becomes the main son of h2(st− 1) and h2(st− 1) the main
progenitor of s(st). In short, this modification accounts for the
fact that when two haloes merge, the smallest one can lose most
of its mass to the newly identified main halo while still retaining
a clear identity by becoming a subhalo. Another, arguably bet-
ter, way to proceed would be to use the most bound particle(s)
to define which of the possible sons should be the main one (e.g.
Okamoto & Habe 2000).

In the remaining subsections of the paper we will be talking
about tree branches. What we define as a branch is a succession
of haloes and subhaloes linked together between two outputs of
an N-body simulation by a main progenitor – main son relation-
ship. It means that there is only one (sub)halo per branch at any
given step, and that a branch starts with a (sub)halo which has
no progenitor and ends (i) when a merger occurs with another
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Fig. 9. Example of a merger tree computed with MSM subhaloes ac-
cording to the rules described in the text (Sect. 3.1). Circles represent
main haloes, squares subhaloes. The main halo at redshift 0 is the one
shown in Fig. 3. Its merger tree is shown in the left hand side of the
figure, whereas the merger trees of its subhaloes are shown on the right
hand side. Main haloes are connected to their subhaloes using horizon-
tal solid lines and mergers between (sub)haloes are indicated by hori-
zontal dotted lines. A mass threshold was applied not to show the less
massive (thick) branches and limit this tree to less than 50 branches.
Only the 40 most massive branches of the full merger tree are shown in
this figure.

branch or (ii) when a (sub)halo has no son at the next output or
(iii) when the current output is the last one (e.g. z = 0).

3.2. Example of a merger tree built with and without
subhaloes

Figure 9 shows the full merger tree of the halo shown in Fig. 3,
with subhaloes determined via the MSM, albeit for this partic-
ular halo, little difference would occur if this merger tree was
constructed with the DPM. In this figure, haloes are represented
as circles, subhaloes as squares. The main halo and its subhaloes
are on the first line, and all of their progenitors on subsequent
lines as time flows from the bottom to the top of the figure. Each
column is a branch of the tree either linked to the halo or one of
its subhaloes. The main progenitor is always in the same column
as its son. When a merger occurs one branch ends (no more ob-
jects in this column) and a line connects it to the branch it has
merged with. In this plot we show that 16 branches directly lead
to the main halo at redshift 0. The first one is the main branch
(the trunk), and the 15 other ones which end before redshift 0
are called secondary branches. The other 22 “sub”-branches de-
fine the merger histories of subhaloes hosted by the main halo
at redshift 0. The relationships between haloes and subhaloes
are indicated by a line at the top of each branch. They show
whether a subhalo is hosted by the main halo itself (solid lines
connecting the two objects) or, as for the branch in Col. 29, an-
other subhalo (dashed lines connecting the two objects). Some

Fig. 10. Same as Fig. 9 except that the subhaloes have not been taken
into account (i.e. it is the merger tree of an AdaptaHOP halo which
includes but does not separate subhaloes). A mass threshold was applied
so as not to show the less massive (thick) branches and limit this tree
to less than 50 branches. Only the 42 most massive branches of the full
merger tree are shown in this figure.

lines linking branches are dotted: these mark mergers between
(sub)haloes which resulted in both objects retaining their identi-
ties (one becomes the subhalo of the other). When this happens
either of two things can occur at later times: (i) the branch of
the subhalo merges with the branch of its host or (ii) the sub-
halo becomes a stand alone halo again. Both cases are present in
the halo merger tree of Fig. 9, with case (i) being more frequent
(branches in Cols. 2, 3, 7, 8, 9, 10, 15, 27, 28, 31, 32, 33, 35)
than case (ii) (branches in Cols. 13, 14, 23, 25, 34). Physically,
case (i) corresponds to progressive mass stripping of the subhalo
through dynamical friction, and case (ii) to structures which fly
by one another several times on elongated orbits before merging
together for good.

If we do not keep track of the subhaloes, as shown in Fig. 10
where we plot the merger tree of the AdaptaHOP halo (the halo
which includes the main halo and all subhaloes) the same phe-
nomenon of multiple fly-bys before merger leads to branches
being cut into pieces. The lower part of the branch will merge
with the halo at the first encounter, and the top part of the branch
will reappear as a new branch each time the “subhalo” jumps
down a level in the halo tree, e.g. becomes a halo again if it had
become a “level 2 subhalo” during the first encounter (branches
in Cols. 18 and 20). However, the general impression one gets
from glancing at Fig. 10 is that the AdaptaHOP halo merger tree
is quite close to the MSM one (Fig. 9). More specifically, if we
ignore the squares and replace the dashed lines by solid lines
in this figure it is clear that many mergers observed in Fig. 10,
are also found in Fig. 9 (branches in Cols. 2 and 3 are identi-
cal, branch 4 in Fig. 10 is branch 13 in Fig. 9, and so on and so
forth...).

One of the main ideas behind this paper is to construct “well
behaved” merging trees from N-body simulations, on which we
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the host halo becomes the subhalo.

Anomaly of the third kind:

the subhalo becomes the host halo,

Anomaly of the first kind:

subhalo with no progenitor.

Anomaly of the second kind:

of the resulting halo.
the subhalo is the main progenitor
when it merges with its host,

halo subhalo
son − progenitor relation

host halo − subhalo relation

Fig. 11. The three main anomalies that one can run into when building
a merger tree with subhaloes (see text, Sect. 3.2, for details).

can graft semi-analytic models (SAM: e.g. Roukema et al. 1997;
Kauffmann et al. 1999; Hatton et al. 2003) of galaxy formation
and evolution on top of them. In order for this to be possible, we
expect our trees to be devoid of certain features. For instance,
subhaloes should only appear after a merger involving main
haloes has taken place. This means that any subhalo should have
at least one progenitor. We then expect a subhalo to be either
stripped of its mass and merge with its host structure, or become
temporarily distinct again (see discussion above). Which means
that, in principle, it should not be possible for a subhalo to ever
be part of a main branch. A thorough analysis of our merging
tree building method(s) therefore leads us to define three types
of anomalies that are to be avoided, or at least reduced to a min-
imum of occurrences:

1. anomaly of the first kind: a subhalo has no progenitor;
2. anomaly of the second kind: a subhalo merges with its host

but its branch does not end;
3. anomaly of the third kind: a subhalo swaps identity with its

host.

These are depicted in Fig. 11. Measuring the occurrence of these
anomalies within merger trees built with different methods is a
good way not only to assess the relative performance of these
methods at capturing the complex dynamics of the halo merging
process, but also to estimate the suitability of these merger trees
to be used as backbones for SAMs. We now proceed to perform
this comparison.

3.3. A two time step method: the branch history method
(BHM)

The occurrence of anomalies in the merger history of haloes
is caused by the (poor) finite time resolution necessarily used
to store the wealth of information contained in N-body simu-
lations. It therefore seems natural to try to include information
coming from various time outputs to get rid of them. In this sec-
tion, we present a method that uses information over two such
time outputs, but it can in principle be extended beyond this (at
the expense of computational power and complexity) to build
truly “perfect”, i.e. virtually anomaly free, trees. Like the other
methods, the Branch History Method (BHM) starts with the node

origin of most of the subnode’s particles

st−1

st

P P

n

1211

sn sn1211

1

halo or subhalo at step st−1

node or subnode at step st

Fig. 12. Illustration of the BHM method (see text, Sect. 3.3, for details),
where a node, n1, and two of its subnodes, sn11 and sn12 at step st, are
linked to the progenitors of subnodes (either haloes or subhaloes) at step
st − 1 (named P11 and P12).

structure tree computed with AdaptaHOP, but it works in the fol-
lowing way:

– Load the (sub)halo distribution of the previous time output
in memory. If there is none (first snapshot), use the MSM
method to detect (sub)haloes.

– Construct the halo tree from the highest level of the node
structure tree to the lowest one (which is the main halo itself:
see Sect. 2 “structure detection” for details) for the current
time output.

– When a node n1 contains two subnodes sn11 and sn12, check
that the mass of (n1 + sn11) is greater that the mass of sn12.
Similarly when using sn12 instead of sn11, check that the
mass of (n1 + sn12) is greater that the mass of sn11, to en-
sure that if one of the subnodes is defined as a subhalo, its
mass will be lower than that of its host.

– Compute the main progenitor of each of the objects sn11,
sn12, (n1 + sn11) and (n1 + sn12), i.e. the halo or subhalo
with which these objects have most mass in common at
the previous time output. We shall name those progenitors
P11,P12,P1+11 and P1+12. See Fig. 12 for illustration.

– Apply the following criteria:
1. if P11 = P1+11 and P12 � P1+12, then sn12 is a subhalo

and (n1 + sn11) its host. Vice versa if P11 � P1+11 and
P12 = P1+12, sn11 is a subhalo and (n1 + sn12) its host;

2. if P11 = P1+11, P12 = P1+12, and P11 and P12 are both
haloes, use the same criteria as the MSM method: if the
mass of sn12 is lower than the mass of sn11, then sn12 is
a subhalo and (n1 + sn11) its host;

3. if P11 = P1+11, P12 = P1+12, P11 is a subhalo and P12
a halo then sn11 is a subhalo and (n1 + sn12) its host.
Vice versa if P11 is a halo and P12 a subhalo then sn12 is
a subhalo and (n1 + sn11) its host: i.e. make sure that a
subhalo remains a subhalo whenever possible;

4. if P11 � P1+11 and P12 � P1+12, then both sn11 and sn12
are subhaloes and n1 is their host: the masses of sn11 and
sn12 are small compared to that of n1, so there is no rea-
son to decide that one subnode is a subhalo and not the
other.

Note that the method we have just outlined differs from that used
by Springel et al. (2005) as these authors only take advantage of
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Fig. 13. Percentage per mass bin of subhaloes without progenitor, i.e.
of the occurrence of the first anomaly, for the three merging tree build-
ing methods described in the text: DPM (diamonds), MSM (triangles),
BHM (squares). The error bars correspond to Poisson uncertainties. The
vertical dotted line corresponds to the 20 particles detection threshold.

information from previous/subsequent time steps to build their
merging trees, not to decide on particle (sub)halo appartenance.
We now proceed to check all merging trees built using the BHM
and both one step methods DPM and MSM, for the anomalies
defined in the previous subsection.

Figure 13 shows results obtained for the anomaly of the first
kind, i.e. the number of subhaloes for which no progenitor could
be assigned. These results follow the same trend as a function of
subhalo mass whatever the tree building method (DPM, MSM,
BHM) used. Up to 26% of the smaller subhaloes do not have
a progenitor but this fraction quickly decreases as the mass of
the subhalo increases, falling below the 10% mark for DPM,
MSM and BHM subhaloes more massive than 5 × 1011 M�,
4.5 × 1011 M� and 4 × 1011 M� respectively. For the DPM,
this percentage stays between 5.3 and 4.3% from 1.4 × 1012 M�
to 1.2 × 1013 M�, then decreases below the 3% mark from
2.8 × 1013 M� onward. For the MSM and BHM methods the
5% level is reached at 9.2 × 1011 M� and 5.6 × 1011 M� and the
2% mark at 3.3×1012 M� and 1.4×1012 M�. In the last mass bin,
all methods detect only 1 subhalo with no progenitor, but since
the number of subhaloes is higher in this bin for the DPM (77
compared to 41 for MSM and BHM) the percentage is slightly
lower for this method.

We conclude that as far as anomalies of the first kind are
concerned, both the MSM and BHM yield significantly better
results, as their fraction of subhaloes without progenitors is sys-
tematically a few % lower than with the DPM. The fact that 26%
of the smallest subhaloes have no progenitor is not too worrying,
as these subhaloes are more prone to contamination by Poisson
noise: they mostly disappear from a time output to the next sim-
ply because they lose a few particles and drop below the detec-
tion threshold of 20 particles. For the larger subhaloes, the main
reason for the anomaly to occur is that a subhalo with a simi-
lar maximal density than its host and coming close to the center
of the latter on a radial orbit can be blended with it1. At the
time output when the blending occurs, one then detects just one
structure: the host. This anomaly can be understood as a fly-by

1 A great advantage of 6D detection is for instance that 2 structures
colliding with each other, that would be indistinguishable in 3D at the
moment of crossing remain well separated in phase-space.

Fig. 14. For the three merging tree building methods DPM (diamonds),
MSM (triangles), BHM (squares), haloes at redshift 0 have been sorted
into 15 mass bins. The merger trees of each of these haloes were anal-
ysed, to detect occurrences of the anomaly of the second kind, i.e. a
subhalo merging with its host halo but becoming the main progenitor
of the resulting main halo. For each mass bin, the percentage of trees in
which this anomaly occurred at least once is given. The error bars cor-
respond to Poisson uncertainties. The vertical dotted line corresponds
to the 20 particles detection threshold.

Fig. 15. Same as Fig. 14 but for anomalies of the third kind, i.e. from
one step to another, a subhalo is detected in its host halo branch, and
the host halo is detected in the subhalo branch. In each bin the number
of trees where this anomaly occurred at least once is displayed. The
vertical dotted line corresponds to the 20 particles detection threshold.

process occurring for subhaloes, also occurring with the
SUBFIND algorithm and detailed by Wetzel et al. (2009).

However, at the next time output this need not be the case,
and since we do not allow a (sub)halo to have more than one
son, a structure is left without a progenitor. Depending on the
method one uses to define (sub)haloes, this can happen more
(DPM) or less (BHM) often, as different haloes can be picked as
main progenitors.

In Figs. 14 and 15, we searched the merger trees of each z =
0 halo built using all three methods for occurrences of anomalies
of the second and third kind respectively. These trees were sorted
into 15 mass bins corresponding to the mass of the final halo and
its subhaloes at redshift 0, meaning that for all method any tree
is in the same bin.
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Contrary to the first kind of anomaly, the second kind is
quite scarce. It occurs only in 219, 4 and 31 trees for the DPM,
MSM and BHM respectively. Looking at the DPM results in
Fig. 14, we can verify that our a priori expectation to detect
more anomalies of the second type when the merger trees be-
come quite complex (i.e. trees of massive z = 0 haloes composed
of many branches) is borne out. For the largest DPM haloes,
this anomaly is bound to appear at least once: the percentage of
merger trees containing an anomaly of the second kind is close to
0 for the smallest haloes, and reaches 100% for the largest ones.
This rise is quite slow until 4.8 × 1014 M� where the 10% mark
is reached, but quickly accelerates until, from 5.9 × 1014 M�
onward, all DPM trees contain the second kind of anomaly at
least once. With the MSM, the second type of anomaly hardly
ever occurs, meaning that the percentage of trees containing this
anomaly is always close to 0, except for the 4.5 × 1014 M�
mass bin where 1 tree out of 6 contains this anomaly. For the
BHM, until 9 × 1013 M�, the percentage of trees containing this
anomaly is below 5%. Interestingly enough, the number of sec-
ond type anomalies for the BHM is higher than for the MSM.
Around 4.5×1014 M�, one third of the trees are plagued with this
anomaly and above 6 × 1014 M� this fraction rises to one half.
This seemingly dramatic difference must be somewhat tempered
by the small number of events as the two final mass bins contain
eight trees in total. However, we conjecture that this behaviour
of the BHM is the result of the propagation in time of a small
fraction of the much more frequent anomalies of the third kind.
To be more specific, it so happens that the in-built tendency of
the BHM to preserve the level of subhaloes from one output to
the next leads, in some cases, to confuse subhalo and halo when
the branches finally merge together.

As a matter of fact, looking at the occurrence of anomalies
of the third kind displayed in Fig. 15, we notice that they ap-
pear much more frequently than the anomalies of the second
kind (error bars at a given percentage are much smaller than in
Fig. 14). Here again, as expected, these anomalies become more
frequent as merger trees become more complex. For the largest
haloes, this anomaly is bound to appear at least once, whatever
the method used to build the merger tree. For the DPM this rise
is quite steady, the 50% threshold being reached for trees with
final haloes of mass ∼7 × 1012 M�, and from 9 × 1013 M� on-
ward, all trees contain this anomaly at least once. For the MSM
method, the transition is more pronounced, with the fraction of
trees containing the anomaly rising quite slowly until 1013 M�,
reaching the 50% threshold for 2.5× 1013 M� haloes, and 100%
at 1.7 × 1014 M�. However, the discrepancy between MSM and
BHM is in favour of the latter this time around: the fraction of
trees containing anomalies of the third kind gently rises from 0
to 20% when final haloes masses attain 4.8 × 1013 M�, reaches
50% at 1.7×1014 M� and 100% at 3.2×1014 M�. In other words,
the number of trees containing this anomaly is reduced by a fac-
tor 4 on average when going from the MSM to the BHM, so that
the conversion of a few of these anomalies into anomalies of the
second kind seems a small price to pay. Also, we have good rea-
sons to believe that an extended BHM over more than two time
outputs could definitively resolve the issue.

The conclusions we can draw from these three anomaly tests
are that (i) the method used when creating the halo tree has
an important impact on the merger tree (ii) the most obvious
anomalies can be avoided by using an MSM like method (iii)
further improvement is possible using BHM like methods but it
does not reduce all anomalies to the same extent and comes at
quite an expensive cost in terms of complexity of algorithm and
CPU requirement. In the remaining of the paper we examine

Fig. 16. Zoom on merger trees obtained for the same final halo using
three methods of subhalo selection. The DPM tree is shown on the
left hand side, the MSM tree in the middle and the BHM tree on the
right hand side (see text, Sects. 3.1 and 3.3, for detail). Circles rep-
resent haloes, squares subhaloes. Solid lines show progenitor-son re-
lationships, dashed lines stand for mergers that resulted in one of the
merging haloes surviving as a subhalo.

how the shape of individual merger trees is affected when one
uses these three different tree building methods, illustrating how
these differences can affect SAMs which are grafted on the trees.

3.4. Examples of individual merger trees and their
consequences in terms of halo formation epoch

We pick merger trees where the three methods DPM, MSM and
BHM differ and zoom in on the portion of the tree where these
differences take place. For each Figs. 16, 17, 18 the left hand
side displays the tree obtained using the DPM, the middle spot
is occupied by the MSM tree and the BHM tree is shown on the
right hand side. As in the previous plots throughout the paper,
haloes are represented by circles and subhaloes by squares, solid
lines show relationships between main progenitor and main son,
dashed lines stand for mergers where a halo survives as a subhalo
and they link the main subhalo progenitor to its new host. For
an easier analysis, each branch has been indexed from 1 to 9
(number below each branch).

The first example (Fig. 16) illustrates the dreadful effect the
DPM can have on a merger tree. In the first (main) branch of the
DPM tree, we can see an inversion between halo and subhalo
(anomaly of the third kind) between branches 1 and 6 around
redshift 0.15. Branch 1 also starts awkwardly as a small halo
around redshift 3.9, keeps its mass for about seventeen outputs,
and suddenly becomes a much larger subhalo around z = 1.7
without undergoing an obvious merger. This subhalo should be
the remnant of the merger of branch 1 with branch 2, but instead
an anomaly of the third kind appears.

The MSM tree for the same halo (middle tree in Fig. 16) be-
haves in a much more civilised manner: the first (main) branch
starts as expected with haloes growing in size regularly from one
time output to the next. However, we still find a subhalo in the
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Fig. 17. Same as Fig. 16, for another halo.

Fig. 18. Same as Figs. 16 and 17, for a different halo.

main branch around redshift 0.2. Looking back at the DPM tree,
we can see that this is due to an identification problem with a
branch that ends as a subhalo at redshift 0 in the MSM tree but
not in the DPM tree (equivalent of DPM branch 6), and for this
reason is not shown here (we only plot the merger tree of the
main halo for each method). We notice that branch 3 has two
merger events with branch 5, leading to its main halo turning
into a subhalo for one output on both occasions. Branch 6 merges
with branch 7: it is a subhalo-subhalo merger where the resulting
subhalo eventually merges with the main branch around redshift
0.5. We can also see that branch 9 starts as a quite large sub-
halo around redshift 0.8, and thus can be defined as an anomaly
of the first kind. Nevertheless, we still conclude that for this
halo, the MSM method is better than the DPM as the most ob-
vious anomalies present in the DPM main branch are greatly
suppressed by the MSM and the time evolution of subhaloes
seems to be more accurate overall as well. Moving to the right
hand side of the figure, which shows the tree obtained with the
BHM, we first notice that the subhalo in the main branch has
disappeared. Further comparing the BHM main branch to that of
the MSM, we clearly see that (as was already the case for DPM
and MSM), these differ from the origin onward, with the MSM
branch appearing at z = 7 and the BHM one later at z = 5.8.
The main branch of the MSM tree has become branch 5 of the

BHM tree, and branches 4, 5, 6 and 7 of the MSM tree corre-
spond to branches 6, 7, 9 and 8 of the BHM tree respectively.
The BHM main branch is not seen in any of the other two main
halo trees (it is a branch of one of their subhaloes identified at
z = 0 whose trees are not represented on this plot) but we recog-
nise that branches 3 and 7 in the BHM tree are branches 4 and 7
in the DPM tree.

The second example proposed in Fig. 17 is also a zoom of
a main branch but only from redshift 8 down to redshift 1.4 this
time. Once again subhaloes are present in the main branch of the
DPM tree as a result of a merger with branch 3 around z = 2.4.
The subhalo in the MSM main branch at redshift 2, however is
due to a type 3 anomaly involving branch 4. This latter is also
branch 3 of the DPM tree and the main branch of the BHM
tree, which explains why the anomaly disappears in that case.
The main branch of the MSM tree can be partly identified with
branch 2 of the BHM tree, even though their first haloes (from
z = 5 to z = 3.2) differ. Apart from this, MSM and BHM trees
are very similar overall: we can identify branches 2, 7 ,8 and 9
of the MSM tree with branches 3, 6,7 and 9 of the BHM tree.

The last example (Fig. 18) illustrates that the BHM is not en-
tirely fool proof, in the sense that not all anomalies in its merger
trees can be eradicated. This example is a zoom on the main
branch of a halo between redshifts 1.85 and 0. As we can see
in the figure, several subhaloes appear in the main branch of the
DPM tree. Their presence is caused by an exchange between
haloes and subhaloes first with branch 2 (z = 1.85) then with
branch 5 (z = 0.42). The second occurrence of this anomaly lasts
3 steps. In the MSM tree only one subhalo appears in the main
branch. Except for branch 4 that does not appear and branch 3
which is branch 4 in the MSM tree, all the branches have the
same index in both DPM and MSM trees.

The first occurrence of the anomaly (between DPM branches
1 and 2) is prevented by going to the MSM method, however
one occurrence of an anomaly of the third kind persists between
branches 1 and 5. In both cases there is an anomaly of the first
kind in branch 8. As these branches broadly have the same thick-
ness, the merger between their haloes is a major one, which ex-
plains why the MSM fails. Looking at the main branch of the
BHM tree we see that it contains two subhaloes, which is surpris-
ing since this result is worse than that obtained with the MSM
method. It is, in fact not such an unexpected turn of events: the
BHM simply performed as well as the MSM in the first instance
when the subhalo appeared due to the major merger between the
two haloes. However at the following time output, it took into
account the information that the halo of the main branch had be-
come a subhalo and since it was possible, decided to maintain
its subhalo status. At the following output, this possibility had
vanished, and the subhalo was restored to its main halo status.
Another difference between the MSM and the BHM trees is quite
noticeable: branch 5 of the BHM tree corresponds to both MSM
branches 5 and 8. The BHM method managed to preserve the
progenitor-son link of the subhalo involved in the major merger
two time outputs further than the MSM.

Turning to a statistical measure to quantify the impact of us-
ing different methods to build halo merger trees, we now focus
on measuring the “downsizing/upsizing” nature of the forma-
tion process of dark matter haloes. This is an important issue
for galaxy formation as observations reveal (e.g. Thomas et al.
2005) that most massive galaxies, which are generally located in
the most massive DM haloes, are composed of older stars than
their less massive counterparts. Our results are plotted in Fig. 19
for the 3 different methods we use to build merging trees. There
are 2 sets of curves in this figure, the first one (lower curves)
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Fig. 19. Formation and assembly epoch of z = 0 main haloes accord-
ing to the different merging tree building methods described in the text
(Sects. 3.1 and 3.3). Dashed (upper) curve shows formation redshift (de-
fined as the redshift when the sum over the mass of all progenitors at a
given time output reaches 50% of the final z = 0 main halo mass) as a
function of halo mass, and solid (lower) curve shows assembly redshift
(defined as the redshift where 50% of the mass of the final main halo is
assembled in the main branch for the first time).

showing what we call the “redshift of assembly” (za) as a func-
tion of halo mass, and the second one (upper curves) showing
the “redshift of formation” (zf ). za is defined as the redshift when
50% of the mass of the z = 0 main halo is assembled in the main
branch (the branch of the main progenitor or trunk) for the first
time. zf is the redshift at which the sum of the masses of all pro-
genitors (independent of the branch they are part of) first reach
50% of the mass of the z = 0 main halo2.

The first thing to note is that all three methods yield very
similar results with the exception of the formation redshift in the
one before last mass bin, where the different identification of a
single main halo by the methods is blown out of proportion by
poor statistics. It is interesting to compare Fig. 19 to Fig. 5 of
Neistein et al. (2006), who plot the same quantities for Monte-
Carlo merging trees based on the EPS formalism, as we can use
their calculations to infer the impact of mass resolution on our
results. As these authors point out, for haloes of a few 1011 M�
at z = 0, i.e. close to our resolution limit, the number of progeni-
tors is small, and the full merger tree is not much more complex
than the main branch. This has two effects we can see: the val-
ues of za and zf are (i) not very different from one another (ii)
artificially drop at low masses. When the mass gets higher, the
scatter in both za and zf slowly decreases, even though it is not
so clear from Fig. 19 because using the main halo instead of
the AdaptaHOP halo naturally increases the dispersion. Finally,
whereas za is very similar, zf in Fig. 19 is much lower than the
average zf value plotted by Neistein et al. (2006) in their Fig. 5,
peaking at zf = 1.7 instead of zf = 5. This possibly reflects the
fact that our mass resolution is lower than theirs by two orders
of magnitude at 1011 M� compared to 109 M�. If so, it is very
instructive in terms of the impact of mass resolution on down-
sizing: if the epoch of half-mass formation is such a sensitive
function of mass resolution as it seems to be, it means that one
could easily be a few billion years off when estimating the mean

2 If we use AdaptaHOP haloes instead of main haloes, i.e. include all
substructure inside the main halo, the 2 curves we obtain are almost
identical to these shown here for the main (substructureless) haloes,
albeit the error bars are smaller in the higher mass bins for the redshift
of formation.

age of stellar population of galaxies from a poorly resolved N-
body simulation. We note however that the theoretical estimate
these authors plot in the same figure is flatter and peaks at a
lower redshift of zf = 3.5, in much better agreement with our
N-body simulation results. Obviously this is less of a problem
for za since this measures the moment when 50% of the mass is
assembled in a unique object which is well resolved as soon as
haloes are massive enough.

In light of all the tests we have performed, we conclude that
the MSM purges merging trees of many of the anomalies which
take place when building them with the DPM. This simply con-
firms that when choosing a subnode to create a halo, one is best
advised to use the most massive one instead of the densest. The
BHM itself generally yields similar results as the MSM, how-
ever the extra information it gleans from the previous time out-
put helps to get rid of most anomalies of the third kind, even
though it does propagate an anomaly of the same kind in the
tree from time to time. Statistical quantities like the average for-
mation time and the mean redshift of assembly of dark matter
haloes are fairly insensitive to the method used to build the trees,
but this is less true of the dispersion around this value.

4. Discussion and conclusions

We have presented a comprehensive study of the problems one
necessarily encounters when building dark matter halo and sub-
halo merger trees directly from N-body simulations. We have
also suggested methods to greatly reduce them, if not solve them
perfectly. To the best of our knowledge, the first trees of this kind
were used by Springel et al. (2005); De Lucia & Blaizot (2007)
to populate the millennium cosmological simulation with galax-
ies. However, the issues we have described in this paper are not
the main focus of any of these papers, and we strongly believe
they needed to be addressed in detail, especially since a lot of
recent work has been devoted to comparisons between Monte-
Carlo merger trees to the millennium trees (Neistein & Dekel
2008; Parkinson et al. 2008; Forero-Romero 2009).

The first part of the paper was focused on the difference be-
tween dark matter (sub)haloes and their properties (mass and
number of objects) identified using AdaptaHOP and simple cri-
teria to separate subhaloes from haloes (DPM, MSM). We also
demonstrated that whereas the halo mass function is robust to a
change in subhalo identification criteria, there exists a relatively
important effect of the latter on the estimate of the mass frac-
tion contained in subhaloes. We concluded this study by arguing
that, in keeping with the philosophy of using information con-
tained in particle positions only to define haloes and subhaloes,
one should use a mass criterion over a density one to split the
internal structure of haloes apart.

This ensures not only that subhaloes identified in this way are
always less massive than their host, but also that the time evo-
lution of the subhalo (mass loss, encounters with multiple fly-
bys) can be better understood. Indeed using subhaloes in merger
history trees helps to resolve issues such as halo fragmentation.
Massive haloes which would have appeared to have no progeni-
tors at the previous time output can now be traced as well identi-
fied subhaloes in most cases. We also pointed out that using sub-
haloes in the merger history of haloes, apart from the obvious
trend to make the merger history trees more complex because
they have more branches, have an impact on the merger histories
of main haloes, in the sense that different methods to identify
subhaloes will yield different merging trees for the main halo
as well. Finally, we demonstrated that as the physical meaning
of a (sub)halo is linked to the merger history itself, using part
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of the past merger history of a (sub)halo to construct its future
yields the best results of all methods used to build merging his-
tory trees.

As far as mass resolution is concerned, while we did not
make use of the most resolved simulations available to us, we
feel that we were justified in doing so, as the problems we iden-
tified will simply be exacerbated when moving to higher resolu-
tion simulations. An interesting side issue that mass resolution
raises is if/how much merging trees are preserved when it in-
creases. It was beyond the scope of this first paper, but will be the
main focus of our next one. We also could have presented results
where we varied time resolution (i.e. the number of outputs of
the N-body simulation one uses to build the trees) but whilst oc-
currences of anomalies in the resulting merger trees would have
increased with decreasing time resolution, our conclusions as to
the best method to be employed to build the trees would stand.

Although we did not comment much about this point in
the main body of the text, our work presumably has non-
negligible implications on semi-analytic models of galaxy for-
mation and evolution. More specifically, the anomalies which
occur in merger trees built using the different methods (DPM,
MSM, BHM) will interact with recipes employed to estimate the
cooling rate of hot gas and feedback from active galactic nuclei
in these models. Whilst this may not be important statistically
for the population of galaxies considered as a whole, calcula-
tions of properties of specific sub-populations may be sensitive
to the issue. In particular, galaxies hosted by massive haloes will
very likely suffer as these are the places where these anomalies
are most common: we plan to address this question in a future
work.

Finally, the main advantage to be gained using trees directly
constructed from N-body simulations to graft on SAM of galaxy
formation and evolution, is clustering information. Monte-Carlo
merging trees not only do not contain position information but
they also fail to describe environment effects on low mass halo
assembly (Sheth & Tormen 2004; Wechsler et al. 2006; Reed
et al. 2007; Zhu et al. 2006). Positioning SAM galaxies within
subhaloes allows one to both compute merging timescales more
accurately, but also to measure the intra halo correlation func-
tions predicted by the model with great accuracy (Blaizot et al.
2006). These previous statements need to be somewhat toned
down since baryons exert a gravitational effect on dark matter
and this will very likely impact the survival of subhaloes, how-
ever these effects can be quantified using the framework we have
developed in this paper and we plan to address the issue in the
near future.
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Appendix A: Comparing halo finders: AdaptaHOP
and FOF

We first proceed in Sect. A.1 of this appendix to compare
AdaptaHOP haloes as defined at the end Sect. 2.1 to haloes iden-
tified using the popular FOF algorithm with a standard value of
b = 0.2 for the linking length parameter. To be consistent, we
also choose 20 as the minimum number of particles a halo de-
tected by the FOF algorithm can contain. The halo finder algo-
rithms are then run on the same N-body simulation described
in paper GalICS I (Hatton et al. 2003). We also find necessary
to compare the haloes and subhaloes obtained with AdaptaHOP
using the MSM method to the halos detected using the FOF al-
gorithm, this task is summarised in Sect. A.2.

A.1. Comparing halos

A.1.1. Individual examples

Our first goal is to “calibrate” AdaptaHOP. To do so, we simply
collapse the node structure tree onto its first node to define a
single halo as a group of particles with a density above the ρt
threshold.

In this appendix we refer to objects detected with
AdaptaHOP and whose hierarchy of inner local density max-
ima has been collapsed as described in Sect. 2.1 as AdaptaHOP
haloes. Similarly FOF haloes are objects detected using the FOF
algorithm.

Intuitively, we expect haloes detected with FOF and
AdaptaHOP to resemble one another, provided they are fairly re-
laxed and well resolved, i.e. they are close to spherical in shape
and contain a large enough number of particles. This is the case
for the halo represented in Fig. A.1. The projected positions of
dark matter particles belonging to this halo in the (xy) plane
are shown in both panels of this figure, with the centre of the
halo located at point (0, 0). On the left hand side panel we can
see the FOF halo, on the right hand side panel, we can see the
AdaptaHOP halo. At first glance, one can easily be convinced
that they are mostly the same halo, but, looking a bit closer,
one gets the impression that the AdaptaHOP halo contains a few
small overdensities which are not included in the FOF halo.

This impression is confirmed by going to the next halo ex-
ample displayed in Fig. A.2. This one is “peanut” shaped as it
has just undergone a merger. Again both haloes are quite similar
but the AdaptaHOP halo clearly shows overdensities which are
not part of the FOF halo.

From these two examples, we conclude that haloes detected
by the two algorithms do not seem to be very sensitive to the
dynamical state the halo is in. This is understandable since
both methods rely on particle positions only to define haloes.
However, the smoothing process used by algorithms which com-
pute the density field (AdaptaHOP in our case) seems responsi-
ble for the systematic inclusion of more overdensities within the
haloes than percolation algorithms (FOF here), especially when
haloes are less relaxed. Even though this last point seems mi-
nor, it is more important than it seems: if we wished to compare
the SUBFIND and AdaptaHOP subhalo distribution for instance,
SUBFIND would not detect these extra AdaptaHOP overdensi-
ties since it performs a FOF first step, and this would, in turn,
influence the computation of the potential energy of the particles
that SUBFIND performs, possibly resulting in a different strip-
ping of particles not bound to the halo.

Fig. A.1. Example of a “relaxed” halo detected in our test simulation,
the left panel is the halo detected using friend-of-friend (FOF) algo-
rithm, the right panel is the same halo detected using AdaptaHOP. The
left panel corresponds to the example shown in the top right panel of
Fig. 3 before the subhalo decomposition of the AdaptaHOP halo.

Fig. A.2. Example of a “merging” halo detected in our test simulation,
the left panel is the halo detected using friend-of-friend (FOF) algo-
rithm, the right panel is the same halo detected using AdaptaHOP. The
left panel corresponds to the example shown in the top right panel of
Fig. 4 before the subhalo decomposition of the AdaptaHOP halo.

A.1.2. Comparing halo finders: statistics

The two individual halo examples discussed in the previous sec-
tion naturally lead us to wonder about how general the conclu-
sions we have drawn really are. In other words:

– How well does the mass distribution of resolved haloes ob-
tained with both halo finders agree?

– How frequent is the splitting of single AdaptaHOP haloes
into several FOF haloes? Does it depend on resolution/mass?
Are all pieces detected?

– How do the smallest, poorly resolved, AdaptaHOP and FOF
halo (which do not show internal overdensities) populations
compare?

The mass distributions of haloes at redshift 0 are shown in
Fig. A.3. In both panels squares correspond to the FOF halo dis-
tribution and triangles to the AdaptaHOP halo distribution. The
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Fig. A.3. For both halo finders, haloes detected at redshift 0 were sorted
into 25 mass bins. The top panel shows the number of haloes detected
with FOF (triangles) and AdaptaHOP (squares) in each mass bin. Using
their particle content, we then cross-identify FOF haloes with their
AdaptaHOP counterparts, as described in the text (Sect. 2.1.3). In other
words, we enforce that each FOF halo is identified with at most one
AdaptaHOP halo and that the identification yields the same result when
performed in the reverse order. The bottom panel displays the percent-
age of haloes per mass bin thus cross identified. The error bars corre-
spond to Poisson uncertainties. The vertical dotted line present on both
panels corresponds to the 20 particle detection threshold.

mass threshold of 20 particles is represented by a vertical dashed
line. The first impression one gets from the top panel of the fig-
ure is that the mass distributions of haloes are very close indeed.
Looking a bit closer, we find that the number of FOF haloes
is more than 5% higher than the number of AdaptaHOP haloes
in the first 5 bins, with about 15 000 FOF haloes against 11600
AdaptaHOP haloes of a mass lower than 2.67 × 1011 M�. For
masses above 4.5 × 1011 M�, both algorithms converge within
0.5%, as we count 1842 FOF haloes and 1856 AdaptaHOP
haloes.

To compare FOF haloes to their AdaptaHOP counterparts,
we simply use the list of particles belonging to each halo as fol-
lows: (i) an AdaptaHOP halo is identified with at most one FOF
halo, the one which contains the highest fraction of its parti-
cles (ii) the same procedure is applied to identify a FOF halo to
its one and only AdaptaHOP counterpart. A FOF halo and its
AdaptaHOP counterpart are then deemed to be the same object
when both the highest fraction of the AdaptaHOP halo particles
are found in the FOF halo, and the highest fraction of the FOF
halo particles are found in the AdaptaHOP halo. For each mass
bin we then compute the number of haloes which are found to
be “identical” in that sense. The curves in the bottom panel are
obtained by dividing this number by the number of FOF haloes
in the bin (triangles) or by the number of AdaptaHOP haloes in
the bin (square), for each mass bin. This yields the percentage
of haloes from each algorithm (FOF or AdaptaHOP) also identi-
fied as single haloes by the other. In the case of the least resolved

Fig. A.4. Percentage per bin (of width 1 particle) of haloes with less
than 50 particles which are not detected in two consecutive snapshots
between redshifts 0 and 10, i.e. among a total of 70 snapshots. The
error bars correspond to Poisson uncertainties. The vertical dotted line
corresponds to the 20 particle detection threshold.

haloes, 90% of AdaptaHOP haloes are identified as FOF haloes,
but this percentage drops to 77% for FOF haloes identified as
AdaptaHOP haloes. Also in the former case, the percentage hits
the 100% mark from 5 × 1012 M� onward, whereas for the lat-
ter the percentage rises more slowly, reaching 90% for haloes
around 5 × 1012 M�, and 100% for haloes of 1014 M� only.

Whilst one can argue that the comparison of the two al-
gorithms is irrelevant in a regime where results should not be
trusted because of a too small number of particles per halo, we
believe it is nevertheless important for two reasons: (i) it better
underlines the differences between the algorithms and (ii) semi-
analytic models of galaxy formation do populate such low res-
olution haloes with galaxies (e.g. Hatton et al. 2003; Springel
et al. 2005). The consequent discrepancy at the low mass end is
quite worrisome, and while it is well known that all halo find-
ers will be incomplete when the number of neighbours used to
smooth the density field is close to the minimum number of par-
ticles per halo, one may wonder whether a significant fraction of
these haloes is in any case marginally bound.

A good indicator of this (other than the measure of the total
energy of the halo which has quite a large error bar attached to
it) is their stability in time. This data is shown in Fig. A.4. We
find that 27% of the haloes containing 20 particles detected by
FOF at a given time output are not found at the next. This num-
ber drops to 17% for AdaptaHOP haloes. For both halo finders
this fraction decreases quickly when the number of particles per
halo increases. In other words, when using the FOF, we need to
reach a resolution of at least 34 particles to lose less than 1%
of the haloes between time outputs. In the case of AdaptaHOP,
with a resolution of 24 particles or more, less than 1% of haloes
are lost. From these numbers, we conjecture that only a small
part of the discrepancy between the two algorithms at the low
mass end of the halo mass function comes from the fact that
AdaptaHOP (and in general algorithms using density criteria) is
more efficient than FOF (i.e. algorithms using percolation crite-
ria) for selecting bound objects.

To further substantiate this claim, we now proceed to check
the other possible source of discrepancy, i.e. we address the issue
of how many of the smallest FOF haloes are not identified as
individual haloes by AdaptaHOP, but simply detected as parts of
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Fig. A.5. Every FOF halo detected at redshift 0, with less than 100 par-
ticles, is identified with its AdaptaHOP counterpart using the method
described in the text (Sect. 2.1.3). Solid curves show the case where we
enforce that a unique FOF halo (the one which contains the largest num-
ber of particles of its AdaptaHOP counterpart) be identified with its best
AdaptaHOP counterpart (the one which contains the highest fraction of
the FOF halo particles), as in Fig. A.3. Dashed curves show what hap-
pens when we relax this constraint, and allow several FOF haloes to be
identified with the same AdaptaHOP counterpart. The error bars corre-
spond to Poisson uncertainties. The vertical dotted line corresponds to
the 20 particles detection threshold.

other (larger) haloes. We therefore apply the same technique we
used to produce Fig. A.3 but only to FOF haloes with less than
100 particles since we are interested in the low mass end, and
relaxing the constraint that an AdaptaHOP halo must necessarily
have a unique FOF counterpart.

Results of this experiment are shown as dotted curves in
Fig. A.5. Examination of this figure reveals that:

– when the constraint of unicity is enforced (solid curve),
the percentage of FOF haloes identified as individual
AdaptaHOP haloes never reaches 100%, even for haloes con-
taining 100 particles. Instead, this percentage rises slowly
from 68% for FOF haloes in the first (20–24 particles) mass
bin to reach 90% (+/−1%) for FOF haloes more massive than
4 × 1011 M� (44 particles or so);

– when the constraint of unicity is relaxed (dashed curve) –
meaning that one AdaptaHOP halo can have several FOF
counterparts –, only 14% of FOF haloes in the first mass
bin (20–24 particles) are not identified at all by AdaptaHOP
as being part of a halo, and this percentage drops to less than
1% in the next mass bin (24–28 particles). Furthermore, from
a FOF halo mass of 2.65 × 1011 M� (32 particles) onward,
not a single FOF halo remains undetected by AdaptaHOP.

These numbers lead us to conclude that most of the discrepancy
of the halo mass function between halo finders at the low mass
end can indeed be attributed to a different integration of small
objects into larger ones, i.e. to different numbers of small over-
densities being included in FOF haloes and their AdaptaHOP
counterparts.

One cannot help to wonder how mass dependent such a state-
ment is, i.e. if these small haloes preferentially get included in
the outskirts of large clusters, or if their “mis”-classification hap-
pens uniformly across the whole halo mass range spanned by the
N-body simulation. This information is presented in Fig. A.6,

Fig. A.6. Average number of FOF haloes at redshift 0 per AdaptaHOP
halo. The error bars correspond to the mean quadratic dispersion. The
vertical dotted line corresponds to the 20 particles detection threshold.
The diamond and the square correspond to the 2 example haloes shown
in Figs. A.1 and A.2 respectively.

where we counted the number of FOF haloes detected at the last
time output (z = 0) inside each halo found by AdaptaHOP. The
AdaptaHOP halo population was then split into 25 mass bins,
and for each of these bins we computed the average number
(and associated mean quadratic dispersion) of FOF haloes de-
tected as counterparts of the AdaptaHOP haloes. For smallish,
galaxy size AdaptaHOP haloes (less massive than 4 × 1012 M�
or about 400 particles), we find that the average number of
FOF haloes per AdaptaHOP halo stays close to the minimal
value of one, but starts increasing quite steeply as a function
of AdaptaHOP halo mass after that, scaling as N ∝ M3/4. This
implies that cluster size haloes detected by AdaptaHOP with
masses comprised between 1014 and 1015 M� contain up to sev-
eral tens of FOF haloes. Since the halo mass function decays
as N ∝ M−1 (see Fig. A.3) in this mass range, this means that
cluster size AdaptaHOP haloes get in total roughly the same
number of small “undetected” FOF haloes as galaxy/group size
AdaptaHOP haloes, only they are redistributed over a smaller
number of objects. As an illustration of the scatter around the av-
erage value, the two example haloes of similar masses displayed
in Figs. A.1 and A.2 are marked with a diamond and a square in
Fig. A.6 respectively, with the diamond AdaptaHOP halo con-
taining 3 FOF haloes and the square one 16. Note that this ex-
plains why in those two cases, most, if not all the extra “clumps”
of particles seen in the AdaptaHOP halo are not present in the
FOF halo to which it was identified, but are detected by FOF as
stand alone haloes.

The two group finding algorithms we have studied (FOF
and AdaptaHOP) give similar results. The discrepancies mea-
sured between them occur principally at the low mass end of
the halo mass function and can be brought down to the percent
level when one considers that haloes detected using AdaptaHOP
generally contain several FOF haloes. Alternatively, one could
use (as in the HOP algorithm, see Eisenstein & Hut 1998),
multiple/adaptive density thresholds to separate haloes from the
background to reduce discrepancies with percolation algorithms.
However it is unclear that the various thresholds to use can be de-
termined using physical arguments, so we believe it makes more
sense to limit the number of “free” parameters and use a single
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Fig. A.7. Top right panel: AdaptaHOP halo shown in the right panel of
Fig. A.2. Top left panel: the 16 FOF haloes whose particles are found in
this AdaptaHOP halo (the best FOF halo match is shown in the left
panel of Fig. A.2). Bottom left panel: virial regions of the 16 FOF
haloes. Bottom right panel: virial regions of the MSM halo and sub-
haloes as detailed in Fig. 4.

density threshold, as implemented in AdaptaHOP. One can then
take advantage of the embedded hierarchy of density maxima
within each of the haloes identified that way to define subhaloes.
Finally, we emphasise that it is hard to decide which of the al-
gorithms (percolation or density based) is closer to the “true”
gravitationally bound halo, as poorly resolved substructures lo-
cated in the outskirts of massive haloes are neither isolated, nor
fully relaxed objects, and as such, a reliable estimate of their total
energy is not easy to achieve, making it very difficult to decide
whether they are bound to the larger halo.

A.2. Comparing halo finder MSM vs. FOF

A.2.1. Individual example

As mentioned in the previous subsection of this appendix, by
mapping particles contained in an AdaptaHOP halo onto the
FOF halo distribution, one realises that these particles often be-
long to several FOF haloes. This is illustrated in Fig. A.7, where
we see in the top left panel the 16 FOF haloes which contain
particles from the single AdaptaHOP halo plotted in the top right
panel. Recall that this means that for each of these 16 FOF haloes
most of their particles are cross identified as particles belong-
ing to the AdaptaHOP halo. Each circle in the bottom left panel
represents the virial sphere of one of these 16 FOF haloes. The
circles on the bottom right panel represent the virial sphere of
the main halo and its subhaloes defined using the MSM method.
We point out that the largest FOF halo in the cluster (shown in
Fig. A.2) includes both the main MSM halo and its largest sub-
halo. It means that from the FOF point of view the major merger
between halo and largest subhalo has occurred as well. We also

Fig. A.8. Cross identification of FOF haloes with less than 100 particles
at z = 0 and MSM haloes or subhaloes (see text Sect. 2.1.3 for details).
In the first case (solid curves), only one FOF halo is allowed to be iden-
tified with a MSM halo or subhalo. In the second case (dashed curves),
several FOF haloes can be identified with a single MSM halo or sub-
halo. The error bars correspond to Poisson uncertainties. The vertical
dotted line corresponds to the 20 particles detection threshold.

see that the 15 extra FOF haloes are detected as MSM subhaloes
of the main halo. As a matter of fact this cluster of 16 FOF haloes
is identified with a single structure tree containing 23 subhaloes
by AdaptaHOP/MSM.

A.2.2. Statistics

Turning now to the issue of the identification of several FOF
haloes with a single AdaptaHOP halo, we use the MSM method
to check how often FOF haloes are detected as subhaloes rather
than main haloes.

As we did in Sect. A.1.2 of this appendix, we now pro-
ceed to check that the conclusions we have just drawn for a
single, well resolved halo are valid for the whole distribution
of haloes, and especially for the poorly resolved ones. In or-
der to do so, for each time output of the N-body simulation,
we check whether each halo detected by the FOF is detected
either as a halo or as a subhalo with the MSM. This data is pre-
sented in Fig. A.8 for all haloes between 1.66 × 1011 M� and
8.33 × 1011 M� (i.e. 20 to 100 particles). The solid curves in
this figure are obtained when we allow only one FOF halo to
be cross-identified with a MSM halo or subhalo. The percent-
age of FOF haloes identified as AdaptaHOP haloes (i.e. con-
taining their subhaloes) is the same as in Fig. A.5, but the main
difference is that now the smallest FOF haloes can be identi-
fied as subhaloes of larger haloes instead of having to be cross-
identified with a single small AdaptaHOP halo. So the new in-
formation that we get from this figure, as compared to Fig. A.5 is
that the percentage of FOF haloes identified as MSM subhaloes
(triangles) is quite small (5%) at the 20 particles mass thresh-
old, increases until 3 × 1011 M� and remains steady around the
10% level up to 8 × 1011 M�. When we allow for the fact that
several FOF haloes can be found in one MSM halo or subhalo
we obtain the dashed curves, i.e. if one MSM halo or subhalo
was cross-identified with at most one FOF halo the dashed and
solid curves would perfectly match. The interesting result here
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is that this actually happens to be the case for all but the low-
est FOF halo mass bins for MSM subhaloes (triangles), but not
for MSM main haloes (diamonds) which means that small FOF
haloes are preferentially fused into the smooth component of the
main halo found by the MSM method rather than with MSM
subhaloes.

To quantify this behaviour a bit further, we plot in Fig. A.9,
the average number of FOF haloes per MSM main halo. This
figure was obtained in the same way as Fig. A.6 except that
we excluded FOF haloes cross-identified with MSM subhaloes.
We notice that the average number of FOF haloes per MSM
halo is close to 1 until we consider MSM haloes with masses
greater than 1013 M�. Then the average number of FOF haloes
per MSM halo rises quickly as a function of MSM halo mass. At
4 × 1014 M� we obtain on average 17.6 FOF haloes per MSM
haloes. This means that small FOF haloes (less than 50 par-
ticles or so) are preferentially blended with the smooth main
halo component of group to cluster size main MSM haloes:
they are not dense enough to be detected as separate local
maxima which is the necessary condition to be identified as
subhaloes.

Fig. A.9. Number of FOF haloes at redshift 0 whose particles are found
in a single main MSM halo (i.e. in an AdaptaHOP halo without its MSM
subhaloes). The error bars correspond to the mean quadratic dispersion.
The vertical dotted line corresponds to the 20 particles detection thresh-
old. The diamond and the square correspond to the examples shown in
Figs. A.1 and A.2 respectively.
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