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We set constraints on moduli cosmology from the production of dark matter—radiation and baryon—

radiation isocurvature fluctuations through modulus decay, assuming the modulus remains light during

inflation. We find that the moduli problem becomes worse at the perturbative level as a significant part of

the parameter space m� (modulus mass)—�inf (modulus vacuum expectation value at the end of inflation)

is constrained by the nonobservation of significant isocurvature fluctuations. We discuss in detail the

evolution of the modulus vacuum expectation value and perturbations, in particular, the consequences of

Hubble scale corrections to the modulus potential, and the stochastic motion of the modulus during

inflation. We show, in particular, that a high modulus mass scale m� * 100 TeV, which allows the

modulus to evade big bang nucleosynthesis constraints is strongly constrained at the perturbative level. We

find that generically, solving the moduli problem requires the inflationary scale to be much smaller than

1013 GeV.

DOI: 10.1103/PhysRevD.80.123514 PACS numbers: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

The existence of scalar fields with gravitational coupling
to the visible sector appears to be a generic prediction of
particle physics beyond the standard model. This, how-
ever, may cause serious cosmological difficulties, as exem-
plified by the ‘‘cosmological moduli problem’’ [1,2].
Assuming that the mass m� of a modulus is of order of
the weak scale, as one would expect for soft masses in-
duced by supersymmetry breaking, this field should decay

after big bang nucleosynthesis, on a time scale t� �
108 secðm�=100 GeVÞ�3=2. The ensuing high energy elec-
tromagnetic and hadronic cascades would then ruin the
success of big bang nucleosynthesis predictions (see [3]
for a recent compilation and references therein) unless the
modulus energy density were extremely small at that time.
By ‘‘extremely small,’’ it is meant about 20 orders of
magnitude smaller than what is generically expected for
a scalar field oscillating in a quadratic potential with an
initial expectation value of order of the Planck scale.
Turned around, this cosmological moduli problem reveals
the power of big bang nucleosynthesis when used as a
probe of high energy physics and early Universe
cosmology.

Several classes of solutions have been proposed. The
first one argues that the vacuum expectation value (vev)
�inf of the modulus at the end of inflation is much smaller

than the Planck scale [4–8]. This is not a trivial require-
ment as it demands that the effective minima of the modu-
lus potential at low energy (i.e. well after post-inflationary
reheating) and at high energy (i.e. during inflation) coin-
cide with each other [2,8]. Furthermore, quantum fluctua-
tions of the scalar field will generally push the field away
from this minimum [9].
An alternative solution to the moduli problem proposes

that the modulus mass is so large that the modulus decays
before big bang nucleosynthesis, leaving enough time for
the high energy cascade to thermalize before the process of
nucleosynthesis actually starts [10–14]. This requires
m� * 100 TeV. Although this lies some 2 orders of mag-
nitude beyond the expected soft scale, such masses can be
accommodated in successful models of supersymmetry
breaking such as anomaly mediation or no-scale super-
gravity as argued in Refs. [10–14].
Finally, it has also been proposed to dilute the energy

density contained in the moduli through an epoch of low
scale inflation [15] or thermal inflation [16,17].
As formulated above, this standard moduli problem is

directly expressed as a constraint on the energy density of
the modulus field at the time of its decay. Meanwhile,
progress in observational cosmology has been such that it
is now possible to constrain the nature of density perturba-
tions to a high degree of accuracy. Most notably, the
analysis of microwave background temperature fluctua-
tions allows to constrain the fraction of isocurvature modes
to a quite low level [18–31]. As we argue in this paper (see
also [32]), such constraints on the spectrum and the nature
of density perturbations can be translated into constraints
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on moduli cosmology. We will find that the moduli prob-
lem becomes worse at the perturbative level. The main
reason is that a modulus, being uncoupled to fields of the
visible sector, inherits its own fluctuations through infla-
tion. At the time of reheating, there exists an isocurvature
fluctuation between the modulus and radiation, which is
transformed into a dark matter—radiation or baryon-
radiation isocurvature mode when the modulus decays
into radiation, dark matter, and baryons. In this way, one
may thus picture the modulus as a curvaton field, whose
phenomenology has been intensively scrutinized in the
past few years (see notably Refs. [33–47]).

The generation of isocurvature fluctuations by modulus
decay has been noted before (see [37]), but to our knowl-
edge, a detailed analysis of the ensuing constraints on
moduli cosmology has not been given up until now. The
present paper furthermore attempts at being general and
exhaustive with respect to modulus cosmology. In the
course of our discussion, we have thus obtained new results
in several places, such as those related to the evolution of
the modulus and its perturbations in the presence of super-
gravity corrections to the modulus potential, or generalized
existing discussions, for instance concerning the stochastic
behavior of the modulus during inflation. The layout of the
paper is as follows. In Sec. II, we describe in general terms
how constraints on isocurvature fluctuations can be turned
into constraints on moduli cosmology. In Sec. III, we then
calculate for various modulus effective potentials (time
independent, or accounting for supergravity corrections)
the cosmological consequences and present the constraints
in the modulus parameter space ðm�;�infÞ. We summarize
our findings and discuss how to evade the modulus problem
at the perturbative level in Sec. IV. Finally, the paper ends
with three technical appendices, which contain results of
importance to the present study but that also possess inter-
est of their own. The first one, Appendix A, is devoted to
the calculation of the quantum behavior of the modulus
field during inflation, for large field and small field models,
accounting for possible supergravity corrections to the
modulus potential. The second one, Appendix B, discusses
in greater details the evolution of the modulus vev when its
potential receives supergravity corrections. The third one,
Appendix C, presents some supergravity based, concrete
particle physics models for the modulus field. All through-
out this paper, MPl ¼ 2:42� 1018 GeV denotes the re-
duced Planck mass.

II. GENERATION OF ISOCURVATURE
PERTURBATIONS

This section sets the stage for the next section, which
performs a systematic study of the constraints obtained in
moduli parameter space. Here, we introduce the relevant
physical parameters and we describe how the amount of
isocurvature fluctuations produced through modulus decay
can be calculated analytically. The formulas obtained will

be useful to interpret the results of numerical calculations
presented in the following section.

A. Background evolution

Let us first sketch the cosmological scenario and the
outline of the calculation. We assume that inflation pro-
ceeds at the energy scale Hinf . At the end of inflation, the
slow-roll conditions are violated (or, in the case of hybrid
inflation, an instability occurs), the inflaton field � starts
oscillating rapidly at the bottom of its potential and the
reheating period begins. If the inflaton potential is qua-
dratic, then the universe becomes matter-dominated. At a
later stage, the inflaton field decays into radiation, dark
matter, and baryons. At this high energy scale, well above
the dark matter mass, baryons, radiation, and dark matter
are all part of the same ‘‘radiation’’ fluid and the universe is
effectively radiation-dominated. The temperature Trh of
the radiation fluid at the beginning of this era, the post-
inflationary reheating temperature, is a direct function of
the decay rate of the inflaton field.
Let us now consider the modulus field �. In the follow-

ing, we denote its vev at the end of inflation by �inf and
treat this quantity as a free parameter (however, see below
the considerations on the quantum behavior of � during
inflation). In the post-inflationary era, in order to follow the
evolution of�, the shape of the potential is needed. In what
follows, one considers two cases: one where the potential is
purely quadratic1 and one where the potential is affected by
Hubble scale contributions, meaning that a term of the
form c2H2ð�� �0Þ2 is added to the quadratic part. If the
potential is purely quadratic and if the modulus field is a
test field, then its vev remains constant (therefore equal to
�inf) until H ¼ m�. Let us notice that, when H ¼ m�, the
energy density of the background is 3M2

Plm
2
� while �� �

m2
��

2
inf . Then, the condition that � is a test field, that is to

say that its backreaction on the expansion rate is negligible,
i.e. �� < ��, implies that �inf & MPl. In the opposite limit

�inf * MPl, the modulus would induce a secondary stage
of inflation, as envisaged by Linde and Mukhanov [9],
leading to a situation similar to that encountered in mul-
tiple field inflationary scenarios, with a bunch of possible
nontrivial effects both on the spectrum and on the evolution
of the adiabatic and entropy perturbations in the postinfla-

1If the modulus has a more complicated potential, Vð�Þ, it will
remain constant as long as H2 � jV00ð�Þj, then start to move
toward the minimum and oscillate around it as this inequality is
violated. If this oscillation is dominated by higher-order terms
than the quadratic one, the energy density of the modulus would
redshift more rapidly than dust, and the cosmological evolution
of the modulus-radiation system would be more complicated. On
general grounds, one may expect higher-order terms to provide
negligible contribution to the modulus dynamics as soon as ��
MPl, in regards of the typical Planck scale suppressions, up to the
possible exception of the quartic term ��4. This particular case
deserves a dedicated study.
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tionary era. In this study, we restrict ourselves to the above
test field approximation, i.e. �inf & MPl.

On the other hand, if the Hubble scale corrections are
important, � can never be considered as light (unless c�
1) since its effective mass is always of the order of the
Hubble scale. As a result, the evolution of the modulus
between the end of inflation and the time H ¼ m� can
become rather involved since � has no reason to stay
constant anymore as it was the case in the purely quadratic
situation. For this reason, we postpone the detailed dis-
cussion of the modulus evolution to the following section
and we always express our results in terms of the modulus
energy density when H ¼ m�.

At late times H � m�, Hubble corrections to the mass
term indeed become, by definition, negligible. As a con-
sequence, the modulus potential is then given by m2

��
2=2.

At H ¼ m�, the modulus starts oscillating at the bottom of
this potential and �� / a�3. This occurs at an equivalent
temperature scale given by

Tosci ¼
�
�2g?;osci

90

��1=4ðm�MPlÞ1=2

’ 2:25� 1011 GeV

�
g?;osci
200

��1=4� m�

100 TeV

�
1=2

: (1)

Of course, Tosci can correspond to the temperature of the
radiation bath only if Tosci & Trh. Otherwise, it should be
thought of as the temperature that the radiation bath would
have were the energy density contained in radiation.
Typically, one has Tosci > Trh unless the reheating tempera-
ture is very high. At the onset of oscillations, the � field
carries a fraction ��;osci of the total energy density which

can be expressed in terms of �inf , the vacuum expectation
value of � at the end of inflation.

Modulus eventually decays into radiation, dark matter,
and baryons when H ¼ ��, �� being the gravitational
decay width of �

�� ¼ 1

16�

m3
�

M2
Pl

’ 3:51� 10�24 GeV

�
m�

100 TeV

�
3
: (2)

As a consequence, the decay of the � field occurs at a
temperature

Td ¼
�
�2g?;dec

90

��1=4ð��MPlÞ1=2

’ 2:77� 10�3 GeV

�
g?;dec
10:75

��1=4� m�

100 TeV

�
3=2

: (3)

Clearly, the decay occurs much after the onset of oscilla-
tions and the reheating.

Finally, let us end this short description of the back-
ground evolution by mentioning that we assume all
throughout this paper that dark matter originates from
freeze-out of annihilations. The dark matter freeze-out
occurs at a temperature of �m�=xf , where m� is the dark

matter particle mass and xf � 20–30. Since, typically,

m� �Oð100Þ GeV, one obtains a temperature of

�1–10 GeV. Therefore, provided m� & 107 GeV, the
modulus always decays after dark matter freeze out. On
the other hand, the freeze-out of the baryons takes place at
a temperature of�20 MeV. Therefore, whether the modu-
lus decay occurs before or after the baryons freeze-out
depends on the value of m�.
The previous considerations imply that two crucial var-

iables in this study are m� and �inf and, therefore, in the
following, we will express our constraints in the plane
ðm�;�infÞ. The mass scale m� should in principle be fixed
by high energy physics with a preferred range around
102–106 GeV. On the contrary, the vev �inf is determined
by the early cosmological evolution. The mass scale de-
termines, among others, the decay time of the modulus,
and together with the vev �inf , it also determines the
magnitude of the modulus energy density at the time of
decay, hence the amount of isocurvature perturbations
transferred to the dark matter and baryon fluids. The
modulus vev �inf can be expressed as the sum of two parts,
one corresponding to the classical trajectory �cl of the
modulus field in its potential during inflation, and the

typical spread h��2i1=2 around this trajectory due to quan-
tum effects [48–50]. The standard deviation on scales

larger than the Hubble radius h��2i1=2 has been discussed
recently by Linde and Mukhanov [9] and Lyth [51]. It is
discussed in greater detail in Appendix A, along with the
classical trajectory �cl during inflation.
For both large field and small field models, one may

summarize the situation as follows (the case of hybrid
inflation is also treated in Appendix A). Consider first the
case in which the modulus is effectively massless during
inflation, meaning

m�;eff � Hinf;inffiffiffiffiffiffiffi
NT

p ; (4)

where Hinf;in is the Hubble parameter at the beginning of

inflation andNT the total number of e-folds of inflation. Let
us notice that, strictly speaking, this condition is not
equivalent to m�;eff � Hinf if the Hubble parameter

evolves during inflation and/or if the total number of e-
folds is large. The modulus mass is written m�;eff to

encompass two different cases: a fixed mass m� or a
(supergravity induced) Hubble scale mass ciH, with 0<
ci < 1. Here, we have written ci in order to emphasize (see
also Appendix A and see Appendix C for concrete ex-
amples) that the effective mass during inflation is not
necessarily the same as the effective mass in the postinfla-
tionary era (in other words, a priori, ci � c). For large field

m2
��

2 inflation, Hinf;inN
�1=2
T ¼ ffiffiffiffiffiffiffiffi

2=3
p

m�’1:4�1013 GeV

is fixed by normalization to the cosmic microwave back-
ground anisotropies. Given the values m� < 107 GeV con-
sidered in this paper, this means that, in the pure quadratic
case, the modulus field is always massless. Of course,
when Hubble scale corrections are present and ci 6�1,
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this is no longer the case. For small field inflation, however,

the situation is different. Indeed, the quantity Hinf;inN
�1=2
T

can be very small or very large depending on the infla-
tionary scale (which can be as low as � TeV) and the
number of e-folds (NT * 60 but is otherwise essentially
unbounded, see Appendix A). Therefore, for small field
inflation, the pure quadratic case can or cannot correspond
to a massless situation. At the classical level, one finds that,
in this ‘‘massless’’ field case, �cl � �in, meaning that the
classical value has not changed during inflation.

Concerning the contribution of quantum effects, one
finds

h��2i1=2 ’ Hinf;in

2�
N1=2

T : (5)

This result holds for small field inflation; for large field

m2�2, it is a factor
ffiffiffi
2
p

smaller, see Appendix A. This value
does not depend on m�;eff and it diverges in the limit of

de Sitter spacetime (NT ! þ1), as expected for a mass-
less field. This value can actually be understood simply as
follows: every e-fold Hinft, the field performs a random
step of length �Hinf=ð2�Þ, which add up randomly, yield-
ing the above random walk behavior. Setting NT * 60
yields the following lower bound:

h��2i1=2 * 5� 10�6MPl

�
Hinf;in

1013 GeV

�
: (6)

For small field inflation, Hinf;in �Hinf , i.e. the Hubble

constant does not change much during inflation. For large
field m2

��
2 inflation however, as already noticed before,

the numerical prefactor is 1=
ffiffiffi
2
p

times smaller, butHinf;in ’ffiffiffiffiffiffiffiffiffi
2NT

p
Hinf , and Hinf � 1013 GeV, so that overall the above

bound is a factor ’ 8 larger [see Eq. (A33)].
Let us now consider the other limit of a massive field,

m�;eff � Hinf;inN
�1=2
T , yet not too massive in the sense that

m�;eff � Hinf . This is relevant for the pure quadratic case

during small field inflation (depending on the parameters,
see above) and when the Hubble scale corrections are
present in both cases. Then, at the classical level, one finds
that the field evolves and rolls down its potential during
inflation. Regarding the magnitude of quantum effects, one
obtains

h��2i1=2 ’
ffiffiffiffiffiffiffiffiffi
3

8�2

s
H2

inf

m�;eff

: (7)

For large field m2
��

2 inflation and typical moduli masses

� 1013 GeV, this case only applies if the modulus re-
ceives Hubble scale mass corrections m�;eff ¼ ciH, since

Hinf;inN
�1=2
T � 1013 GeV. Furthermore, the right-hand side

in the above equation should be multiplied by an extra

factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ c2i

q
=ci in this case [see Eq. (A44)]. Of

course, as ci ! 0 the field becomes light and one recovers
the previous result (see Appendix A). In the case of small

field inflation, the above value can be quite small and all
the more so as the scale of inflation is lowered. Note that

the above value of h��2i1=2 reproduces the well-known
Bunch-Davies expression for a massive field in de Sitter
spacetime [52–55]. As discussed in Ref. [9], one can
understand this result by considering the same random
walk as before, but noting that modes on large wavelengths
redshift away in proportion to exp½�m2

�;efft=ð3HinfÞ�,
which implies that the maximum contribution to the fluc-
tuations has been generated during the last �N �
3H2

inf=m
2
�;eff e-folds. The product �N �H2

inf=ð4�2Þ then
reproduces the Bunch-Davies result (squared) to within a
factor 2. In this respect, one should note that the previous
limit m�;eff � Hinf=

ffiffiffiffiffiffiffi
NT

p
that we considered corresponds

to a field so light that modes do not have time to redshift
away in NT e-folds. In this limit, �N is bounded by NT,
hence Eq. (5) is recovered.
Finally, the last case of interest is m�;eff � Hinf . In this

situation, the field is too massive to be excited, and con-

sequently h��2i1=2 is exponentially suppressed.

B. Evolution of perturbations

Let us now introduce the scenario at the level of pertur-
bations. As we have just done for the background quanti-
ties, one can also follow the perturbations of each species
throughout the cosmic evolution. To be more precise, we
are interested in the curvature perturbation for the species
‘‘�’’ defined by [56–59]

	� 	 ���H
���

_��

’ ��þ ��

3ð1þ!�Þ ; (8)

where � is the Bardeen potential, �� the gauge-invariant
density contrast, and !� 	 p�=�� the equation of state
parameter.
After the decay of the inflaton field, the fluctuations in�

have been transmitted to radiation, characterized by 	 ðiÞ
 ,

dark matter, 	 ðiÞ� , and baryons (and antibaryons), 	 ðiÞb , 	 ðiÞ�b .

Since these fluids share thermal equilibrium, one has [60]

	 ðiÞ
 ¼ 	 ðiÞ� ¼ 	 ðiÞb ¼ 	 ðiÞ�b . Let us notice that, at this stage,

dark matter and baryons are still relativistic fluids. Indeed,
dark matter becomes nonrelativistic at a temperature of
�m� ¼ Oð100Þ GeV. Regarding the baryons, the situation
is more complicated since, in principle, they become non-
relativistic at a temperature of�1 GeV (about the same as
the dark matter freeze-out temperature), that is to say well
below the reheating temperature, but in fact at that tem-
perature one still have a quark-gluon plasma.
We define the above initial conditions, indexed with ðiÞ,

well into the modulus oscillations era, atH� m� and T<
Trh, and before the modulus comes to dominate the energy
density. In this era, the modulus can be considered as a
pressureless fluid, supergravity contributions to its poten-
tial have become negligible, hence previous results on
curvaton phenomenology can be applied, as discussed
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further below. One needs however to relate the modulus

curvature perturbations at this time, 	 ðiÞ� to the modulus
perturbations acquired through inflation. This obviously
depends on the modulus potential at m� <H <Hinf .

For a simple time independent quadratic modulus po-
tential, one can use the results of Ref. [44], which give

	 ðiÞ� ¼ � 3

2
�inf þ 2

3

��inf

�inf

: (9)

The quantity �inf denotes the Bardeen potential at the end
of inflation, ��inf denotes the modulus perturbations on
large scales and the calculation assumes that the modulus
behaves as a test field, so that� is approximately constant:

�inf ¼ �ðiÞ. It also assumes that radiation dominates at the

time at which 	 ðiÞ� is defined. It is important to realize that
the radiation curvature perturbation is related to the

Bardeen potential through 	 ðiÞ
 ¼ �3�ðiÞ=2, so that the
initial modulus—radiation isocurvature perturbation can
be rewritten as

SðiÞ�
 ¼ 2
��inf

�inf

: (10)

In Sec. III B, we show that this result holds even when the
modulus potential receives a supergravity inspired þc2H2

quadratic mass term. This result is of importance for the
present discussion, since it shows that the modulus—ra-
diation isocurvature fluctuation disappears in the limit
��inf=�inf ! 0. One way to achieve this is to assume
that the modulus is heavy during inflation, either because
Hinf & m� or because the modulus receives an effective
mass term þc2iH2 during inflation. Furthermore, Ref. [61]

has shown that the isocurvature mode between the inflation
and any heavy field actually disappears during inflation
because the heavy field is drawn to the minimum of its
potential at every point in space, so that in this case, there
would not even be an isocurvature fluctuation to start with,
at the end of inflation. For this reason, we discard for now
this case and assume everywhere that the modulus has
remained light during inflation, in which case ��inf=�inf ’
Hinf=ð2��infÞ. In Appendix C, we present several concrete
models of inflationary model building in a supergravity
framework; for both models of D-term inflation, it is found
that the modulus remains light during inflation, but ac-
quires a Hubble effective mass after inflation.

In the following, we set 	 ðiÞ
 ’ 10�5. From the time at
which the initial conditions are defined, all the 	� remain
constant until dark matter freeze-out (in between, the dark
matter has become nonrelativistic, see before). During this
phase, the radiation, baryons, and modulus fluid perturba-
tions are not affected,

	>f

 ¼ 	 ðiÞ
 ; 	>f

b ¼ 	 ðiÞb ;

	>f

b ¼ 	 ðiÞ�b ; 	>f
� ¼ 	 ðiÞ� ;

(11)

but the dark matter perturbations are modified according to
[40,45]

	>f
� ¼ 	 ðiÞ� þ ð�f � 3Þ�>f

�

2ð�f � 3Þ þ�>f
�

½	 ðiÞ� � 	 ðiÞ
 �; (12)

with �f 	 xf þ 3=2. From the above equation, one sees

that the quantity 	� is not modified if �>f
� ! 0 (i.e. the

modulus is negligible at dark matter freeze-out) and 	 ðiÞ� ¼
	 ðiÞ
 in which case the freeze-out surface exactly coincides
with the uniform radiation surface.
Then, the 	�’s remain constant until the baryons freeze

out (assuming it occurs before modulus decay). Through
this stage, it is clear that 	
, 	�, and 	� remain unaffected.

On the contrary, one expects 	b and 	�b to evolve. One can
consider a ‘‘net baryon number’’ fluid, the energy density
of which is given by �b ���b. Before baryons freeze out,
this fluid is made of baryons and antibaryons in thermal
equilibrium (with a small excess of baryons) but after the
freeze out of annihilations, it is essentially made of bary-
ons. In the absence of any baryon number violating pro-
cess, this fluid of ‘‘net baryon number’’ is isolated, hence
its curvature perturbation remains constant. Therefore,

after baryons freeze-out, one has 	b ¼ 	>f

b ¼ 	 ðiÞb and 	�b ¼
0. Notice that the same reasoning would also be valid in the
case where the freeze-out occurred after modulus decay. In
fact, the above discussion would be modified only if
baryon number violation occurred after modulus decay.
Finally, the modulus decays in dark matter, radiation,

baryons and antibaryons and it is clear that all the corre-
sponding curvature perturbations are then modified. We
obtain (see Refs. [45,47] for details)

	>d

 ¼ 	<d


 þ r<dð	<d
� � 	<d


 Þ
¼ 	 ðiÞ
 þ r<d½	 ðiÞ� � 	 ðiÞ
 �; (13)

	>d
� ¼ 	<d

� þ B��
>f
�

�>f
� þ B��

>f
�

ð	<d
� � 	<d

� Þ

¼ 	>f
� þ B��

>f
�

�>f
� þ B��

>f
�

½	 ðiÞ� � 	>f
� �; (14)

	>d

b ¼ 	<d

b ¼ 	 ðiÞb : (15)

As explained in Refs. [45,47], in order to obtain these
relations, we have assumed that a fraction B� 	
���=�� � 1 of the � energy density goes into dark matter

particles. One can relate this parameter B� to the branching

ratio of modulus decay into dark matter particles as fol-
lows. Assuming that dark matter particles thermalize in-
stantaneously, then if one modulus produces through its
decay N� particles, one finds that B� ¼ N�m�=m�. In the

range of parameters that we are interested in, m� � m�

and N� & 1 (see Refs. [13,62] for a detailed discussion).
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Strictly speaking, the thermalization is quasi-instantaneous
only in the high modulus mass range, m� * 100 TeV,
while at lower masses some redshifting due to the cosmic
expansion occurs. This can be seen as follows. Using the
results of Refs. [63,64], one can write down the scattering
cross section of Compton-like processes �þ ‘! �þ ‘
(with ‘ an ultrarelativistic lepton of the thermal bath, e.g. a
neutrino or an antineutrino at the big bang nucleosynthesis
epoch)

��‘ ’ 3C

128�

ðs�m2
�Þ2

m2
�s

2
; (16)

with C a prefactor of order unity defined in Ref. [64], and s
the standard center of mass energy squared: s ’ 2E�E‘ þ
m2

� with E‘ ’ 3:15 T where T is the temperature of the

thermal bath. In the region of interest (at modulus decay),
one can check that 2E�E‘ � m2

�. The ratio of the interac-

tion rate, ��‘ 	 n‘��‘ to the Hubble rate at the time of

modulus decay can then be expressed as

��‘

H

��������d
¼ 1:4� 108C

�
E�

m�

�
2
�

m�

100 TeV

�
13=2

�
m�

100 GeV

��6
:

(17)

As a consequence, if m� *

30 TeVC�2=9ðm�=100 GeVÞ8=9, one has ��‘ * H for all

energies E� > m�, which implies that the � particle be-

comes nonrelativistic through multiple interactions in less
than a Hubble time. In this range, and for our purpose, one
can treat the dark matter fluid as a pressureless fluid

immediately after modulus decay. Inversely, if m� &

7 TeVC�2=13ðm�=100 GeVÞ12=13, ��‘ & H for all ener-

gies E� < m�=2: the particle never interacts and simply

redshifts to nonrelativistic velocities within ln½m�=ð2m�Þ�
e-folds. Finally, in the intermediate range, the � particle
loses its energy through interactions to some intermediate

value 90 GeVC�1=2ðm�=100 TeVÞ�9=4ðm�=100 GeVÞ3,
then redshifts away down tom� through cosmic expansion.

All in all, our above assumption of ‘‘instantaneous ther-
malization’’ amounts to neglecting this redshifting factor,
which in turn slightly overestimates the abundance of �
produced dark matter by a factor which never exceeds ’
35. This value applies at m� ’ 7 TeV and it rapidly de-
creases to unity away from this value. This only affects
very marginally the results derived below.

We have also assumed that the fraction of modulus
energy density Bbþ�b that goes into baryons and antibaryons
is very much smaller than unity, as one would expect. With
respect to Ref. [47], we have also assumed here that
modulus decay preserves baryon number. Finally, the pa-
rameter r<d that appears in the first of the above equations
has been introduced in Ref. [36]; if dark matter is entirely

produced by modulus decay (i.e. �>f
� 
 0), then 1� r<d

characterizes the amount of initial modulus—radiation

isocurvature mode that is transferred through modulus
decay. We use the simple formula

r<d ’ �<d
� ; (18)

which has been found numerically to be a good approxi-
mation [41].
After modulus decay, the 	�’s remain constant through-

out the subsequent cosmic evolution. The corresponding
values can be compared to cosmic microwave background
data.

C. Transfer of isocurvature modes

As we will see shortly, dark matter—radiation and
baryon—radiation isocurvature modes are generated in
different regions of the parameter space. The constraints
obtained are thus complementary to each other. For this
reason, and for the sake of clarity, we discuss the genera-
tion of each mode in turn. Let us also recall that the
isocurvature perturbations between two fluids ‘‘�’’ and
‘‘�’’ is defined by S�� 	 3ð	� � 	�Þ.
The dark matter—radiation and baryon isocurvature

modes on large scales are given by [45]

S>d
�
 ’ 1

1þ��

� ð�f � 3Þ�>f
�

2ð�f � 2Þ þ�>f
�

�>f
�

�>f
� þ B��

>f
�

þ B��
<d
�

�<d
� þ B��

<d
�

� r<d

�
SðiÞ�
; (19)

S>d

b
 ’ ��<d
� SðiÞ�
: (20)

These formulas can be straightforwardly deduced from the
results quoted in the previous section, except the presence

of the parameter �� in S>d
�
. This parameter represents the

ratio of the dark matter annihilation rate to the expansion
rate immediately after the decay of the modulus field. If
this latter produces sufficiently many dark matter particles,
these may annihilate with each other. As�� � 1, meaning

that annihilations are effective, the isocurvature perturba-
tion transfer is partially erased (see Ref. [45] for details).
One finds

�� ’ B�

m�

m�

n<d
�

1

��

g1=2?;f

0:076
exf

ffiffiffiffiffi
xf
p

m�MPl


 1:68� 10�8B��
<d
�

�
m�

100 TeV

�
3
�

m�

200GeV

��2
�

�
g?;f
100

�
1=2 � ffiffiffiffiffi

xf
p

exf : (21)

The above formula neglects the amount of dark matter
initially present; this is a good approximation insofar as
the annihilation rate of these dark matter particles is very
much smaller than the Hubble rate after freeze-out in the
absence of modulus decay, which would lead to �� � 1
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hence to a negligible correction to the equation for the
transfer of isocurvature mode. Note that the last factor
involving xf in the above equation may be quite large,
being �2:2� 109 for xf ¼ 20 and 5:9� 1013 for xf ¼
30. Finally, note that the above formula is only approxi-
mate (see Ref. [45] for details). The constraints that we
derive further below are obtained through the numerical
integration of the full set of equations of motion and are
therefore more accurate.

A significant dark matter—radiation isocurvature mode
is generated if both following conditions are satisfied:

B��
<d
� � �<d

� ; �<d
� � 1: (22)

The former condition expresses the fact that the amount of
moduli produced dark matter particles exceeds that coming
from freeze-out of annihilations, while the latter requires
that the modulus energy density is not sufficient to affect
the radiation content. All in all, this means that the modu-
lus perturbation is transferred to the dark matter fluid but
not to radiation. One could also imagine that the modulus
perturbations are transferred to the radiation sector but not
to the dark matter sector, thereby generating a net isocur-
vature perturbations. However, this would require either
blocking the decay of modulus to dark matter, which is
unlikely as the dark matter particle is always much lighter
than the modulus in the parameter space we are interested
in, or, having the modulus decay after matter—radiation
equality, which is forbidden by constraints on cosmic
microwave background distortions.

At this stage, we need to compute explicitly the parame-
ters appearing in Eqs. (19) and (20). In particular, from the
expression of the dark matter annihilation cross section,
one obtains

�>f
� ’ 1:67� 10�3x3=2f e�xf : (23)

One also needs to evaluate the quantity �>f
� and �<d

� .
From the fact that the energy density of the modulus scales
as a�3, one obtains that�� just after the dark matter freeze
out can be expressed as

�>f
� ¼ ��;osci

xf
m�

minðTosci; TrhÞ�>f

 : (24)

In this expression, the minimum of Tosci and Trh appears
because, if the oscillations start before the end of reheating,
then the inflaton and modulus energy densities have the
same scaling until the reheating stage is completed. Only
below Tosci or Trh, whichever is smaller, the energy density
of the� oscillations increases relatively to radiation energy
density. In order to obtain the above formula, we have also
assumed that the modulus can never start a new phase of
inflation. In the same manner, immediately prior to decay,
the ratio of the energy density contained in � oscillations
to that contained in radiation reads

�<d
� ¼ ��;osci

minðTosci; TrhÞ
Td

�<d

 : (25)

We are now in a position where one can calculate the
transfer of isocurvature perturbation from modulus—ra-
diation to dark matter—radiation and baryon—radiation.
This is done in the section that follows.

III. CONSTRAINTS IN THE MODULUS
PARAMETER SPACE

Our present goal is to compute the amount of isocurva-
ture perturbation produced through the differential decay
of the modulus into dark matter and radiation, as well as
between the baryon and the radiation fluid, which can then
be compared to existing bounds obtained through the
analysis of cosmic microwave background fluctuations
[18–30]. We have chosen to express the amount of isocur-
vature fluctuation in this matter sector as follows:

�m
 	
	m � 	

ð	m þ 	
Þ=2 ; (26)

where the subscript ‘‘m’’ comprises all of nonrelativistic
matter, i.e. dark matter and baryons (so that, for instance,
�m 	 �� þ�b). The quantity 	m can be written in terms

of the baryon and dark matter curvature perturbations 	b
and 	�:

	m 	 �b

�m

	b þ
��

�m

	�: (27)

The definition (26) can be justified by the fact that the data
are in fact sensitive to the quantity defined by Seffb
 ¼ Sb
 þ
��S�
=�b (see Ref. [65]). In this reference, the quantity

B 	 Seffb
=	
 is constrained using various cosmic micro-

wave background data (including WMAP1). At 95% C.L.
it was found that �0:53<B< 0:43 (see Ref. [65]). Our
quantity �m
 is related to B through

�m
 ¼ 2B

6�m=�b þ B
; (28)

which implies �0:12 & �m
 & 0:089 where we have

taken ��h
2 ’ 0:12 and �bh

2 ’ 0:0225. The choice (26)

is also motivated by the fact that the most recent analysis of
Wilkinson Microwave Anisotropy Probe fifth year
(WMAP5) data has constrained the same quantity for
dark matter only (i.e. m! �) [31]. These results give an
upper bound as low as 2.0% (95% C.L.) for fully anticorre-
lated isocurvature modes and 8.6% (95% C.L.) for uncor-
related modes. In the following, we will present contours
on the quantity �m
 and emphasize the loci of 1% and 10%.

The quantity �m
 must be calculated at the time of

recombination, well after baryon and dark matter freeze-
out of annihilations and curvaton decay (and big bang
nucleosynthesis). The individual gauge invariant curvature
perturbations 	b, 	�, and 	
 are then constant since the
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fluids can be considered as isolated at that time. Given the
results of the previous section, in order to compute the
constraints in modulus parameter space and to evaluate
�m
, the value of ��;osci, which directly controls the

energy density parameter of the modulus at the time of
decay, is the only remaining quantity which remains to be
specified.

Before embarking on a detailed discussion of these
above considerations, one should note that two other cos-
mological constraints are to be satisfied. One concerns the
present day abundance of dark matter and the other the
overall amplitude of the total curvature perturbation.
Regarding the former, dark matter is produced both ther-
mally (through the freeze-out of annihilations) with present

day abundance �f
�;0, and nonthermally (through modulus

decay) with present day abundance ��
�;0 (immediately

after decay ��
� ¼ B��

<d
� ). Hence, the final abundance is

controlled by the parameters xf ,m�, N�, and�
<d
� . In order

to minimize the dimensionality of our parameter space, we
have chosen to proceed as follows. We use a standard set of
values xf ¼ 21 and m� ¼ 100 GeV, which implies that

�f
�;0 ¼ 0:2; we then tune N� for each value of our main

parameters m� and �inf such that the total ��;0 lies within

a factor of 3 of its observed value. More precisely, we
maintain N� ¼ 1 (see above and Refs. [13,62]) whenever

��
�;0 < 0:5 and decrease it in order to saturate this last

bound otherwise. This is somewhat arbitrary, but given the
remaining freedom in xf and m�, one could always tune

slightly the parameters to achieve a better agreement with
the known value.

Let us discuss briefly how the results derived below are
affected by this choice. If the dark matter annihilation cross
section were larger than the standard value (assumed
above), then the amount of dark matter that originates
from annihilations would be reduced, consequently the
contribution from modulus decay would have to be in-
creased, hence the amount of dark matter isocurvature
fluctuation would also increase. In an extreme region of
parameter space, such that freeze-out of dark matter occurs
after modulus decay, the isocurvature constraints would
vanish (as discussed in detail in Ref. [45]); this requires a
modulus decay temperature Td � 1 GeV, hence m� �
107 GeV.

The above approach is conservative in the sense that we
forbid the nonthermal channel to exceed twice the thermal
channel which slightly reduces the isocurvature perturba-
tions. In this way, in all of the parameter space scanned in
the subsequent figures, the dark matter abundance is cor-
rect to within a factor of 2 to 3.

Concerning the overall amplitude of the curvature per-

turbation, one needs to require that 	>d

 ’ 10�5. This quan-

tity is determined by Eq. (13) and it can be rewritten as

	>d

 ’ 	 ðiÞ
 þ 1

3�
<d
� SðiÞ�
: (29)

Therefore the magnitude of the total curvature perturbation
is controlled by several parameters, including �inf andHinf

which determine the scalings of�<d
� and SðiÞ�
. In principle,

it would be possible to rescale Hinf in order to reach the

correct magnitude for 	>d

 at each value of �inf . However,

this would make the interpretation of the figures rather
complex. In the following, we have rather chosen to plot
the constraints obtained for two values ofHinf in each case,
in order to gauge the effect of Hinf on these constraints.
These two values are Hinf ¼ 1013 GeV, which provides a
natural scale for inflation since it corresponds to the sim-
plest inflaton potentialm2

��
2 (see also the discussion about

naturalness in Ref. [66]), andHinf ¼ 109 GeV. The latter is
chosen arbitrarily, but it is such that the total curvature
perturbation is of the right order of magnitude at every
point of the modulus parameter space. For the former value
of Hinf , a significant region of modulus parameter space is
excluded by the normalization of the total curvature per-
turbation; however, this region is entirely contained in the
region which is excluded by the isocurvature constraints.

A. Quadratic potential

Here, we assume that the potential of the modulus is a
simple quadratic potential Vð�Þ ¼ m2

��
2=2 from the end

of inflation onwards. At the onset of oscillations, the �
field carries a fraction ��;osci of the total energy density:

��;osci ¼ 1

6

�
�inf

MPl

�
2
: (30)

Therefore, one can now explicitly evaluate the quantities

�>f
� , �<d

� � r<d [see Eqs. (18) and (23)–(25)]. In particu-
lar, using Eqs. (3) and (25), immediately prior to decay, the
ratio of the energy density contained in � oscillations to
that contained in radiation now read:

�<d
� ’ 6� 1010�osc=rh

�
�inf

MPl

�
2
�

m�

100 TeV

��3=2�g?;dec
10:75

�
1=4

�
�

Trh

109 GeV

�
�<d


 : (31)

The parameter �osci=rh is defined as follows:

�osci=rh 	 min

�
1;
Tosci

Trh

�
: (32)

This parameter is most likely 1 if one relies on the con-
straints on the reheating temperature that result from the
influence of a moderately massive gravitino on big bang
nucleosynthesis. In models in which the gravitino is very
massive, m3=2 * 100 TeV, however, such constraints can

be evaded. We thus treat �osci=rh as a free parameter.

Obviously, looking at Eq. (31), unless �inf & 10�5MPl,
the modulus is bound to dominate the energy density of
the Universe at the time of its decay.
Let us now analyze the constraints presented in Fig. 1.

This figure shows the contours of the �m
 quantity calcu-

lated numerically, assuming Trh ¼ 109 GeV, Hinf ¼
1013 GeV in the left panel andHinf ¼ 109 GeV in the right
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panel, N� ¼ 1. This figure assumes initial (gauge invari-

ant) density contrasts �ðiÞ
 ¼ 2� 10�5 and ��inf=�inf ¼
Hinf=ð2��infÞ on large scales. The dashed yellow area is

excluded by big bang nucleosynthesis; in order to draw this
region, we used the results of Ref. [3] for a hadronic
branching ratio of 10�3 and initial jet energy 1 TeV. The

white dashed line indicates the place where�<d
� ¼ 0:5 and

separates roughly the regions in which either the dark
matter or the baryon isocurvature mode dominates (see
below). There is actually an accidental cancellation of
these two modes close to that line. It has also been assumed

that 	 ðiÞ� saturates at 0.5 in order for the numerical compu-
tations to proceed without errors. In any case, the region in

which 	 ðiÞ� � 1, corresponding to �inf � Hinf , is an ‘‘un-
likely’’ region, in the sense that �inf is expected to be
typically larger than Hinf=ð2�Þ due to quantum effects
[see Eqs. (5) and (7) for m�;eff <Hinf]. The dotted orange

lines in Fig. 1 show the standard deviations h��2i1=2 ex-
pected from the stochastic motion of the inflaton, following
Appendix A and the formulas Eqs. (5) and (7), for two
inflationary scenarios and two inflationary scales. It is
important to stress the following: these standard deviations
are measured relatively to the ‘‘instantaneous’’ classical
value of the modulus field.

Figure 1 provides a clear example of the power of
constraints obtained at the perturbative level on moduli

cosmology, as the region excluded by the production of
isocurvature fluctuations significantly exceeds that con-
strained by big bang nucleosynthesis. For instance, at a
natural scalem� � 1 TeV, the upper bound on �inf (equiv-
alently, on the modulus energy density) is more stringent
that those from big bang nucleosynthesis by some 2 orders
of magnitude. This figure also clearly shows that taking
m� * 100 TeV allows to evade the constraints from big
bang nucleosynthesis, but not those from cosmological
density perturbations if the inflationary scale is large,
Hinf � 1013 GeV. One may note that this region is also
constrained by the possible overproduction of gravitinos
through modulus decay [67–69]. It is thus mandatory to
require that the modulus potential suffers corrections, in
such a way as to reduce considerably the modulus energy
density at the time of decay, or that the inflationary scale is
much lower. Indeed, if Hinf � 1013 GeV, a region devoid
of constraints opens up at large values of �inf and large
masses m� * 100 TeV. The large modulus mass then
allows to evade the constraints on entropy injection around
big bang nucleosynthesis, while the large value of �inf

ensures that the initial modulus—radiation isocurvature
fluctuation has become negligible at such a small infla-
tionary scale. More specifically, using Eq. (10) one finds

that SðiÞ�
 � 	 ðiÞ
 when � * MPlðHinf=10
13 GeVÞ, and the

isocurvature fraction constrained by microwave back-
ground anisotropies is directly proportional to this ratio.

FIG. 1 (color online). Constraints in the ðm�;�infÞ plane. The yellow shaded region shows the region excluded by the effect of
moduli decay on big bang nucleosynthesis. The blue region give the contours of �m
 for the matter—radiation isocurvature mode (1%

and 10% contours indicated). The white dashed line indicates the place where �
<d
� ¼ 0:5. The orange dotted lines indicate the

standard deviation of the modulus expected from stochastic evolution in its potential during inflation, for new and chaotic inflation, as
indicated. Left panel: Hinf ¼ 1013 GeV and Trh ¼ 109 GeV. This value corresponds to the energy scale of inflation during chaotic
inflation. The same value is achieved for small field inflation if� ’ MPl. In the case of chaotic inflation, the standard deviation is given

by Eqs. (A29) and (A33) since the condition m� <HinfN
�1=2
T ’ 1:4� 1013 GeV is always satisfied for m� < 107 GeV. In the case of

small field inflation, the standard deviation is given by Eq. (A60) assuming the above mentioned condition is also satisfied in this case
which amounts requiring that NT < 1012. Right panel: Hinf ¼ 109 GeV and same reheating temperature. For small field inflation, this
corresponds to � ’ 0:22MPl assuming p ¼ 3. The chaotic inflation standard deviation does not appear in this panel because Hinf ¼
109 GeV cannot be realized in this case. For small field inflation the standard deviation is again given by Eq. (A60) which, this time,
requires NT < 104.
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The constraints obtained in the limit of a high inflationary
scale also exclude the possibility of late time entropy
production through modulus decay. This result is in itself
significant as such entropy production is often invoked to
dilute unwanted relics.

In order to understand the relative contributions of dark
matter—radiation and baryon—radiation isocurvature
fluctuations, it is useful to break Fig. 1 into two subfigures,
each showing one of the two contributions. In the left panel
of Fig. 2 we plot the same contours as in Fig. 1, assuming

arbitrarily (for the sake of demonstration) 	>d

b � 	>d

 (i.e.

setting the baryon isocurvature mode to zero). Similarly, in
the right panel of Fig. 2, we plot the contours of �m


assuming 	>d
� � 	>d


 (i.e. no dark matter isocurvature
mode). These two plots illustrate the complementarity of
the constraints coming from these two isocurvature modes.
It is possible to understand each of them as follows.

Assuming for the time being, that 	>d

b � 	>d

 (i.e. no

baryon isocurvature mode), the constrained fraction �m


can be written in the following way:

�m
 ’
��	

>d
� =�m ���	

>d

 =�m

½��	
>d
� =�m þ ð2���=�mÞ	>d


 �=2
¼ 2x�


6þ x�

;

(33)

where

x�
 	
��

�m

S>d
�


	>d



: (34)

Therefore, the actual quantity that constrains the magni-
tude of the final dark matter isocurvature mode is x�
. This

is not surprising since x�
 is, up to a factor ��=�m,

exactly equal to the quantity B introduced above. Using
Eq. (19), one can rewrite x�
 as:

x�
 ’ 3
��

�m

1

1þ��

�
B��

<d
�

�<d
� þ B��

<d
�

� r<d

�
	 ðiÞ� � 	 ðiÞ


	 ðiÞ

:

(35)

It is straightforward to verify that the conditions (22) for
the generation of isocurvature perturbations lead, if satis-
fied, to a nonzero value of x�
. It is however important to

note that the magnitude of x�
 also increases with the ratio

	 ðiÞ� =	 ðiÞ
 . One may rewrite the conditions of existence of a
dark matter—radiation isocurvature mode as follows, ne-

glecting the effect of 	 ðiÞ� =	 ðiÞ
 for clarity:

10�3x1=4f e�xf=2
�

m�

100 TeV

�
1=2

�
Trh

109 GeV

��1=2
� �inf

MPl

� 4� 10�6
�

m�

100 TeV

�
3=4

�
Trh

109 GeV

��1=2
:

(36)

Out of simplicity, the dependence on the numbers of
degrees of freedom has been omitted in these equations.
In the above expression, the upper bound comes from the

condition �<d
� � 1 using Eq. (31) while the lower bound

originates from the condition B��
<d
� � �<d

� [see the first

formula in Eqs. (22), using the definition of B�, the fact

that �<d
� ¼ �>f

� Tf=Td (with Tf �m�=xf), and Eqs. (3),

(23), and (31)]. These constraints delimit a stripe in the
ð�inf ; m�Þ plane which is consistent with what is observed
in Fig. 2. This stripe is actually broader at small values of

�inf due to the large ratio 	 ðiÞ� =	 ðiÞ
 which enhances the
modulus perturbations relative to those of dark matter.
The above formula also neglects the effect of annihilations,
which is a good approximation as long as �� � 1, or

FIG. 2 (color online). Same as the left panel of Fig. 1, but showing only the contribution of dark matter isocurvature modes in the left
panel (i.e. setting arbitrarily the baryon isocurvature mode to zero) and the baryon isocurvature mode only in the right panel (setting
the dark matter isocurvature mode to zero).
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�
�inf

MPl

�
� 0:7

�
m�

100 TeV

��1=4� Trh

109 GeV

��1=2

�
�

m�

200 GeV

�
1=2

x�1=4f e�xf=2: (37)

In practice, annihilations will play a role in suppressing the
amount of isocurvature mode in the high mass region
m� � 100 TeV and �inf � 10�6 � 10�4MPl, as can be
checked from the above formulas using xf � 20.

Turning to the generation of a baryon isocurvature

mode, we now assume that 	 ðfÞ� � 	 ðfÞ
 , in which case
Eq. (26) can be rewritten as

�m
 ’
2xb


6þ xb

; (38)

where

xb
 ’ �3 �b

�m

�<d
� ½	 ðiÞ� � 	 ðiÞ
 �

�<d
� ½	 ðiÞ� � 	 ðiÞ
 � þ 	 ðiÞ


: (39)

Therefore the magnitude of the isocurvature mode is pro-
portional to the fraction of energy density of the modulus at
the time of decay, times the ratio of initial modulus–radia-
tion isocurvature mode to the initial radiation curvature
perturbation. The baryon constraints thus lie at high values
of �inf , since the production of isocurvature fluctuations

become dominant when�<d
� is of order unity. However, as

�<d
� becomes smaller than unity, its weakness can be

compensated to some level by a large value of 	 ðiÞ� =	 ðiÞ
 .

B. Supergravity corrections to the potential

In supergravity, one expects the potential of the modulus
to be lifted by an effective term of the form �c2H2�2=2,
where the factor c2 may change between different eras of
the thermal history of the Universe (see Appendix C where
concrete models are discussed). Including such supergrav-
ity corrections, the postinflationary modulus potential may
be written as follows:

Vð�Þ ’ 1
2m

2
��

2 � 1
2c

2H2ð�� �0Þ2: (40)

One should recall that we assume the modulus field to be
light during inflation, hence the potential (40) refers to the
postinflationary epoch only. Moreover, in the following,
we denote by ‘‘high energy’’ the regime in which the
corrections proportional to c2H2 dominate the term pro-
portional to m2

��
2 (as mentioned before, although we use

the expression ‘‘high energy,’’ these considerations apply
to the postinflationary epoch only). Then, the quantity c
controls the mass of the field while �0 represents its
minimum, the so-called ‘‘high energy minimum.’’ One
may expect that the vev at the end of inflation (�inf) be
different from �0 since the effective potentials during and
after inflation a priori differ from one another. We also use
the terminology ‘‘low energy’’ to characterize the regime

in which the corrections c2H2 become subdominant and
where the potential reduces to m2

��
2=2. Let us recall that

we set the ‘‘low energy minimum’’ of the potential at � ¼
0. As a result, the high energy and low energy minima do
not coincide if �0 � 0 (as one should expect on general
grounds).
In order to derive the amplitude of the isocurvature

perturbations produced in the supergravity case, we need
to follow the evolution of the modulus vev and of its
perturbations from the end of inflation until the time at
which we set the initial conditions. In particular, we need to

calculate SðiÞ�
 in terms of the inflaton and modulus pertur-
bations during inflation. In order to do so, we model the
introduction of the effective Hubble mass through a poten-
tial that accounts for the coupling between the modulus and
the inflation, such as Vð�;�Þ ¼ m2

��
2=2þm2

��
2½1þ

c2�2=ð3M2
PlÞ�=2, which produces the desired þc2H2 ef-

fective mass squared. However, the discussion that follows
is not restricted to this particular potential. In order to study
this two field system, we use the formalism of Gordon,
Wands, Bassett, and Maartens [70] (notice that we have
changed notations with respect to Ref. [70] since, now, �
now longer represents the adiabatic field but the modulus
one). The entropy field is given by the following expres-
sion:

�s 	 cos��� sin�� ’ ��� _�
_�
��; (41)

where we have used that

cos 	
_�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_�2 þ _�2
q ’ 1; sin 	 _�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_�2 þ _�2
q ’ _�

_�
;

(42)

the last equalities following from the test field approxima-

tion: _�� _�. Then, using the perturbed Einstein equation
for the Bardeen potential on large scales

_�þH� ¼ 1

2M2
Pl

ð _���þ _���Þ; (43)

one can rewrite the entropy perturbation in terms of �� and
� only. One obtains

�s ’ ���HM2
Pl

_�2=2
_�� ¼ ��� 2 _�

3H
�; (44)

where we have used that _�2=2 ’ 3H2M2
Pl=2 on average. In

the above equation, one has neglected _�2= _�2 in front of
unity. On large scales, the equation of evolution of the
entropy perturbation reads [70]

�€sþ 3H� _sþ ðVss þ 3 _2Þ�s ¼ 0; (45)

where the expression of Vss can be found in Ref. [70]. In

the test field approximation _�� _�, and assuming power-
law behaviors of � and �, one can check that Vss ’ V��
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and _2 � V�� in Eq. (45), so that �s follows the same
quadratic equation than �, and therefore �s=� is con-
served. This implies�

��

�
� 2 _�

3H�
�

���������t
¼

�
��

�
� 2 _�

3H�
�

���������inf
; (46)

hence, with t ¼ 2=ð3HÞ, � ’ �inf and assuming _� ¼ 0
initially,

��

�

��������t
¼ ��inf

�inf

þ t _�ðtÞ
�ðtÞ �inf : (47)

This solution happens to match that obtained for a pure
time independent modulus potential (see Ref. [44]).
However, in the present case, it accounts for the sourcing
of the modulus perturbation by the effective Hubble mass.
To our knowledge, this result has not been obtained before.
In the limiting case �inf ! 0, one recovers the result
obtained in Ref. [42] that ��=� is constant. One can
now calculate the modulus—radiation isocurvature fluc-
tuation at the initial time, i.e. in the radiation era and after
the onset of modulus oscillations, and one recovers the
result given in Eq. (10).

Two additional remarks are in order here. First, in the
derivation above, we have neglected the preheating effects.
This is justified by the following considerations. It turns
out that the model investigated here is exactly similar to the
two field model g2�2�2 studied in Ref. [71] with a dimen-
sionless coupling constant given by g2 ¼ c2m2

�=ð6M2
PlÞ.

This means that the quantity g2�2=ð4m2
�Þ ¼

c2�2=ð24M2
PlÞ � 1 and that we are never in the ‘‘broad

resonance’’ regime where preheating effects are important
[71]. Second, we have also numerically integrated the
exact equations of motion for different cases and have
checked that the approximations used above are verified.
Above all, we have compared the numerical solution for
�� in the postinflationary epoch to the solution (47) and
have found an almost perfect agreement.

1. Case þc2H2=2

As mentioned previously, the details of the calculations
that follow can be found in Appendix B. In order to
recompute ��;osci, one must follow the evolution of �
between the end of inflation (where � ¼ �inf) and H ¼
m� in the situation where the potential is dominated by the
Hubble scale corrections. This evolution is characterized
by c,�0, and p, the latter defining the evolution of the scale
factor: a / tp, so that H ¼ p=t. These parameters enter in
the following combinations:

� ¼ 3p� 3

2
; �2 ¼ ð�þ 1Þ2 � p2c2; (48)

Depending on the magnitude of c, � may be real or
imaginary, which gives rise to different evolutions. We
examine each of these cases in turn.

Let us first start with the case c < ð�þ 1Þ=p (real �). In
Appendix B, it is shown that ��;osci can be expressed as

follows [see Eqs. (B19) and (B20)]:

��;osci ’ 1

6
A2

1

�
�0

MPl

�
2 þ 1

6
B2

1

�
�inf � �0

MPl

�
2

�
�
pMDm�

Hinf

�
2ð�MDþ1��MDÞ

;

Tosci > Trh; (49)

��;osci ’ 1

6
A2

2

�
�0

MPl

�
2 þ 1

6
B2

2

�
�inf � �0

MPl

�
2

�
�
Hrh

Hinf

�
2ð�MDþ1��MDÞ�pMDm�

Hrh

�
2ð�RDþ1��RDÞ

;

Tosci < Trh: (50)

The quantities indexed with ‘‘RD’’ (respectively, ‘‘MD’’)
refer to the radiation dominated (respectively, matter domi-
nated) era. These equations are the supergravity counter-
parts of Eq. (30) in the case where � is real. In the above
expressions, the first term is the contribution originating
from the particular solution of the equation of motion while
the second term is due to the homogeneous solution. A
crucial difference between the scalings of the homogene-
ous and the particular solution is the redshift factor

ðm�=HinfÞ2ð�MDþ1��MDÞ � 1 for the latter. The prefactors
A1, A2, B1, and B2 are all of order unity (see
Appendix B). The quantity ��;osci will be dominated by

the homogeneous solution contribution whenever

j�inf � �0j
�
m�

Hinf

�
�MDþ1��MD � j�0j; (51)

assuming for simplicity Trh < Tosci which is the most ge-
neric situation.
Let us now discuss the cosmological consequences for

the two cases in which the particular and the homogeneous
solution dominates at late times, starting with the former
case. Then, the constraints in modulus parameter space are
straightforward to derive. Using the results obtained for the
purely quadratic case, for which ��;osci ¼ ð�inf=MPlÞ2=6,
one can put an upper limit on �0 since, in the case consid-
ered here, ��;osci has the same form, �inf being simply

replaced with �0. In Eq. (36), we have established the
conditions for the existence of a dark matter isocurvature
mode. It is clear that if �0 [�inf in Eq. (36)] is smaller than
the lower bound, then there is no isocurvature mode and the
scenario is compatible with the cosmic microwave back-
ground data. For xf � 20, m� ¼ 105 GeV, and Trh ¼
109 GeV, this gives

�0 & 10�10MPl: (52)

From previous analytical calculations, one expects this

bound to scale with the parameters as H0
infT

�1=2
rh m1=2

� [see

Eq. (36) replacing �inf by �0]. However, such a value
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remains well below the typical displacement expected
from the quantum jumps of the modulus in its potential
during inflation, unless Hinf � 109 GeV [see Eq. (5)].

This brings us to the other extreme case, in which the
homogeneous solutions dominate the evolution at late
times. As a clear example of this situation, consider �0 ¼
0, but�inf � 0. Physically, this corresponds to the situation
in which the minima of the effective potential after infla-
tion coincides at high (Hinf >H >m�) and low energy
(m� >H). The vev �inf is here nonzero, either because the
effective minimum during inflation does not coincide with
that at latter times, or because �inf is subject to quantum
effects. We thus treat�inf as a free parameter as before, and
one obtains the constraints in the modulus parameter space
presented in Fig. 3.

This figure clearly confirms the power of constraints
obtained at the perturbative level. With respect to Fig. 1,
which corresponds to the purely quadratic case, one can
see that the constraints from big bang nucleosynthesis and
from the production of isocurvature perturbations have
moved towards higher values of �inf . This is understood
easily: in the purely quadratic case, the modulus energy
density remains constant between the end of inflation and
the onset of oscillations, while it decreases in the present
case. The white dashed line, which indicates the locus of

�<d
� ¼ 0:5, serves to delimit the constraints derived from

dark matter—radiation and from baryon—radiation iso-
curvature modes.

Nevertheless, the constraints obtained still preclude the
possibility of having a heavy modulus with an arbitrary vev
at the end of inflation. In particular, even if the effective
minima of the potential during inflation coincides with that
lower energy, j�inf � �0j should depart from zero by the
value expected from quantum motion during inflation. In

the left panel, for Hinf ¼ 1013 GeV, it is found that the
constraints from the production of isocurvature fluctua-
tions extend significantly below this bound, hence there
is no apparent solution to the moduli problem. As Hinf

becomes much smaller, some region of parameter space
opens up at large values of �inf and large values ofm� as in
the quadratic case, and the typical stochastic displacement
also decreases. For Hinf ¼ 109 GeV, corresponding to the
right panel of Fig. 3, there is however little room between
this lower limit for �inf and the region excluded by iso-
curvature fluctuations.
It is noteworthy to recall that the situation depicted in the

above figure is realized by two concrete models of inflation
discussed in Appendix C.
Let us now turn to the case c > ð�þ 1Þ=p (imaginary

�). For p ¼ 2=3, this case corresponds to c > 3=4. Writing
� ¼ i�̂, one has �̂ > 0 growing with c. In this case the
energy density stored in the modulus at the onset of oscil-
lations can be expressed as [see Appendix B, especially
Eqs. (B34) and (B35)]

��;osci ’ 1

6
A2

3

�
�0

MPl

�
2 þ 1

6
B2

3

�
�inf � �0

MPl

�
2

�
�
pMDm�

Hinf

�
2ð�MDþ1Þ

; Tosci > Trh; (53)

��;osci ’ 1

6
A2

4

�
�0

MPl

�
2 þ 1

6
B2

4

�
�inf � �0

MPl

�
2
�
Hrh

Hinf

�
2�MDþ2

�
�
pMDm�

Hrh

�
2�RDþ2

; Trh > Tosci: (54)

These equations are the counterparts of Eqs. (49) and (50)
in the case where the quantity � is complex. The coeffi-
cientsA3 andA4 are defined in Eq. (B36). The prefactors

FIG. 3 (color online). Same as Fig. 1, but considering positive squared Hubble scale corrections to the modulus potential, with
c2 ¼ 0:5 and �0 ¼ 0. The parameter � is given by �2

MD ’ 0:027 and �2
RD ’ �0:063. For the reheating temperature considered in this

figure, one always has Tosci > Trh and, hence, only the value of �
2
MD matters [see Eq. (49)]. Therefore, one is indeed in the case � > 0.

Left panel: Hinf ¼ 1013 GeV, Trh ¼ 109 GeV. Right panel: Hinf ¼ 109 GeV, Trh ¼ 109 GeV. This case is only relevant for small field
inflation. The standard deviations due to stochastic motion are calculated as in Fig. 1.
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B3 and B4 are defined in Eqs. (B37) and (B38) and are of
order unity. The difference with the case � > 0 (with
prefactors A1 and A2) comes from the fact that, now,
the numerical prefactors A3 and A4 may become quite
small if � is pure imaginary and its modulus is large. The
prefactor A3 indeed scales as

A 3 ’ 2�

�
�̂MD

2

�
�MDþ2

e��̂MD�=2��MD�3j�MDj � 1: (55)

Hence, as c grows beyond 1, the value of ��;part;osci de-

creases exponentially. As argued by Linde [72], this could
alleviate the moduli problem, although it is notoriously
difficult to construct explicit models in which c2 * 10.

Let us now study in more detail the physical consequen-
ces of the above expressions. Ignoring the factors of order
one for simplicity, and using the explicit expression of the
coefficient A3 [see Eq. (B36)], the particular solution
dominates whenever the following condition is valid:

j�inf � �0j
�
m�

Hinf

�
�MDþ1 � j�0j�

�
�MD þ 3

2
þ i

�̂MD

2

�

� �

�
�MD þ 3

2
� i

�̂MD

2

�
; (56)

assuming for simplicity Tosci > Trh. Then, one finds that
the bound on �0 obtained previously in the case of a real �
for Hinf � 1013 GeV is now loosened by

�0 & 10�10
�
ð2�Þ2

�
�̂MD

2

�
2ð�MDþ2Þ

� e��̂MD��2ð�MDþ3Þ
��1

MPl; (57)

for m� ¼ 105 GeV, scaling approximately as m1=2
� . To

provide concrete estimates, for c2 ¼ 10 (� ’ 2:04 assum-

ing matter domination), the right-hand side becomes 2�
10�7MPl; for c2 ¼ 20 (� ’ 2:94), it is 1:2� 10�6MPl.
Interestingly, these values always remain smaller or are
at most (for c2 ¼ 20) comparable to the standard deviation
expected from stochastic motion of the modulus if Hinf �
1013 GeV. Therefore, solving the moduli problem in this
way would require not only a large value of c2 in order to
lessen the modulus energy density, hence the transfer of
isocurvature perturbations, but also a small inflationary
scale � 1013 GeV in order to diminish the magnitude of
stochastic motion. Note also that, for smaller values of
Hinf , some parameter space opens up at large values of
�inf and large m�, as discussed before.
If, on the contrary, the homogeneous solution dominates,

then the situation is slightly different and the constraints in
the modulus parameter space are presented in Fig. 4. The
comparison with Fig. 3, which presented the constraints for
real � (and �0 ¼ 0) is straightforward. One still obtains an
upper bound on j�inf � �0j if Hinf � 1013 GeV, albeit
displaced to larger values due to the fact that �� now
scales as H�þ1 instead of H�þ1�2�, i.e. the energy density
contained in the modulus decreases faster. This upper
bound can be written as

j�inf � �0j & 3� 10�6MPl; (58)

with the following set of parameters: Hinf ¼ 1013 GeV,
Trh ¼ 109 GeV, c2 ¼ 2 (� ’ 0:8 assuming matter domina-
tion after inflation), and the prefactor has been evaluated
for m� ¼ 100 TeV. As before, one finds that this bound

scales as H1=2
inf m

0
�T
�1=2
rh . However, even for c2 ¼ 2, this

upper bound is smaller than the amplitude of stochastic
motion of the modulus in its potential during inflation, so
that this cannot be considered as a viable solution. One
therefore has to require Hinf � 1013 GeV, in which case

FIG. 4 (color online). Same as Fig. 1, but for a modulus potential receiving a positive Hubble mass squared correction with c2 ¼ 2,
and �0 ¼ 0. This implies �2

MD ’ �0:64 and �2
RD ’ �0:44. Left panel: Hinf ¼ 1013 GeV, Trh ¼ 109 GeV. Right

panel: Hinf ¼ 109 GeV, Trh ¼ 109 GeV. For this value of the reheating temperature, one always have Tosci > Trh in the parameter
space considered in this figure.
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some parameter space opens up at both small values of �inf

(because the amplitude of stochastic motion is smaller at
smaller Hinf) and at large values of �inf (where the iso-
curvature fluctuation becomes much smaller than the cur-
vature perturbation).

Finally, let us end this section with the following remark.
Above we have discussed the cases of � real or pure
imaginary in both the radiation dominated and the matter
dominated epochs. Of course, there are also two mixed
cases corresponding to a real � during the matter domi-
nated era and a pure imaginary � in the radiation domi-
nated era and the opposite situation. This would be relevant
for the discussion above only if Trh > Tosci, since the
matchings would have to be modified. Since this is not
the most generic case, we do not consider this situation in
this paper.

2. Case �c2H2=2

If the modulus receives a negative Hubble mass squared
contribution after inflation, the minimum of its potential is
destabilized and as a result, the modulus will move until
this negative contribution is balanced by higher order terms
in the potential, / �4 or even nonrenormalizable contribu-
tions. Let us assume for instance that the next term in the
modulus potential takes the form:

�n

ðnþ 4Þ!
�4þn

Mn
Pl

: (59)

Then, as shown in Ref. [42] the effective potential may be
approximated at high energy H� m�=c by

Vð�Þ ’ 1

2
~c2H2ð�� �nÞ2 þ �n

ðnþ 4Þ!
ð�� �nÞ4þn

Mn
Pl

; (60)

where the time-dependent quantity �n can be expressed as

�nðtÞ ¼
�ðnþ 3Þ!

�n

c2H2Mn
Pl

�
1=ðnþ2Þ

; (61)

and ~c2 	 ðnþ 2Þc2. The value �n corresponds to the local
minimum of the potential. Constant terms in Vð�Þ have
been omitted in Eq. (60), as well as subleading terms when
compared to the last term on the right-hand side (see
Ref. [42]). One crucial difference between this effective
potential and that obtained for þc2H2 is the fact that the
local minimum now depends on H and thus evolves in
time.

One should distinguish three phases of evolution de-
pending on which term in the potential dominates. If
�inf � �n;inf 	 �nðH ¼ HinfÞ, then the field initially

evolves in the high order part of the potential given by
Vð�Þ ’ �n�

4þn=½ðnþ 4Þ!Mn
Pl�. As shown in Appendix B,

the field is then driven to �n within a fraction of e-fold of

order ð�inf=�n;infÞ�ðnþ2Þ=2. At this stage, the effective
~c2H2ð�� �nÞ2 of the potential takes over the high order
part. In order to model this case �inf � �n;inf , we simply

assume that, starting from the end of inflation, the field
evolves in the ~c2H2ð�� �nÞ2 part with an initial value of
order �n;inf . In this situation, we also neglect the initial

kinetic energy since kinetic energy is strongly damped
when the field evolves in the high order part of the poten-
tial. Furthermore, this is conservative in the sense that it
underestimates the energy density contained in modulus
oscillations at late times, and therefore tends to loosen
slightly the constraints derived. If �inf & �n;inf , then one

should directly approximate the potential by ~c2H2ð��
�nÞ2 with �inf as the initial condition. All in all, it suffices
to solve for the evolution of � in the potential ~c2H2ð��
�nÞ2 with an initial condition �eff;min 	 minð�inf ; �n;infÞ.
Thus ignoring the high order part of the potential, at high

energyH� m�=c, the solution for� comprises a solution
to the homogeneous equation �hom and a particular solu-
tion �part, as before (see Appendix B). The scaling of the

homogeneous solution is similar to that obtained in the
previous section with a þc2H2 effective squared mass
term, but the particular solution scales differently due to
the time dependence of �n. As shown in Appendix B,
�part / �n with a prefactor �n of order unity. The explicit

expression of �n can be found in Appendix B [see Eq.

(B43)]. Then �part / t�2=ðnþ2Þ so that the energy density of
the modulus associated to this particular solution scales as

��;part / H2�2
part / H2ðnþ4Þ=ðnþ2Þ. Consequently, the par-

ticular solution contribution to the energy density at the
onset of oscillations can be written as

��;part;osci 
 1

6

�
�part;inf

MPl

�
2
�
m�

Hinf

�
4=ðnþ2Þ

; (62)

where we have ignored all factors of order one. In the
above expression, �part;inf represents the initial value of

the particular solution at the beginning of the era driven by
~c2H2ð�� �nÞ2, that is to say

�part;inf ¼ �n�n;inf ¼ �n

�ðnþ 3Þ!
�n

c2H2
infM

n
Pl

�
1=ðnþ2Þ

’ H2=ðnþ2Þ
inf Mn=ðnþ2Þ

Pl : (63)

Concerning the homogeneous solution, its evolution is the
same as in the previous section (see also Appendix B). This
means that one should again distinguish the case where � is
real or imaginary and should treat separately the situation
where the onset of oscillations occurs before or after the
reheating. Straightforward calculations, similar to the ones
already performed in the previous sections, lead to our final
expression of ��;osci

��;osci ’ 1

6

�
�part;inf

MPl

�
2
�
m�

Hinf

�
4=ðnþ2Þ

þ 1

6

�
�eff;inf � �part;inf

MPl

�
2
�
m�

Hinf

�
2½�MDþ1�Reð�MDÞ�

;

Tosci > Trh; (64)
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��;osci ’ 1

6

�
�part;inf

MPl

�
2
�
m�

Hinf

�
4=ðnþ2Þ

þ 1

6

�
�eff;inf � �part;inf

MPl

�
2
�
m�

Hrh

�
2½�RDþ1�Reð�RDÞ�

�
�
Hrh

Hinf

�
2½�MDþ1�Reð�MDÞ�

;

Tosci < Trh; (65)

where we have neglected the factors of order one and
where the appearance of the real part of � accounts for
both possibilities (� real or imaginary).

When discussing the case þc2H2, we considered two
cases, one in which the particular solution dominates, the
other in which the homogeneous solutions dominate. We
cannot do so here, because the particular solution is en-
tirely determined by Hinf and no longer dependent on the
magnitude of �0. Both contributions have to be considered
together. Furthermore, we recall that �eff;inf ¼
minð�inf ; �n;infÞ. Therefore, whether the particular or the

homogeneous solution dominates in Eqs. (64) and (65)
depends on n, �, �, and m�=Hinf (assuming Tosci > Trh).

Regarding the fluctuations of �, it is not possible to
follow analytically the evolution of ��=� from the end
of inflation until H ¼ m� due to the nonlinearity of the
potential. For the sake of the argument, we thus assume
that the initial conditions are the same as in the previous
cases, namely, Eqs. (9) and (10).

Let us first discuss the case n ¼ 0 and assume for the
sake of discussion that c2 ¼ 0:5. Then, �MD is imaginary
since ~c2 ¼ 1. Furthermore, 2ð�MD þ 1Þ ¼ 1 and 4=ðnþ
2Þ ¼ 2 in this case, so that the particular solution is always
negligible in front of the homogeneous solution. The con-
tribution of this latter to the energy density is nevertheless

suppressed by m�=Hinf and �<d
� is so small that the con-

straints from big bang nucleosynthesis are significantly
weakened (see Fig. 5); they now allow moduli masses
above 300 GeV for all �inf . This constraint does not

depend on �inf because �
<d
� hardly depends on �inf since

ð�eff;inf � �part;infÞ2 � �2
part;inf in both limits �inf �

�part;inf and �inf � �part;inf . However, the constraints

from the production of isocurvature fluctuations are quite
significant in this case because the modulus can perturb
significantly the perturbation spectrum of dark matter even
though it does not dominate the energy density at the time
of decay. Strictly speaking, this is true as long as Hinf �
1013 GeV, as these isocurvature constraints are less strin-
gent for Hinf ¼ 109 GeV.

When n � 1, ��;osci becomes large enough to produce

substantial isocurvature fluctuations in nearly all of the
parameter space (see Fig. 6). For n ¼ 1, the homogeneous
solution still dominates over the particular solution. The
constraints can be derived from the discussion of
Sec. III B 1 (i.e. þc2H2 potential, in the case in which
the homogeneous solution dominates) provided one repla-

ces ð�inf � �0Þ2 with ð�inf � �part;infÞ2 ’ �2
part;inf , which is

a function of n andHinf , but which does not depend on�inf .

Accordingly, �<d
� is sufficiently large to produce signifi-

cant isocurvature perturbations because of the scaling of
�part;inf with n: for n ¼ 0, �part;inf �Hinf , but for n � 1,

�part;inf � Hinf [see Eq. (63)]. As before, we find that the

isocurvature mode becomes small enough to satisfy the
constraints from cosmic microwave background data if
Hinf � 1013 GeV and �inf �MPl.

C. Modulus production by inflaton decay

The above discussion has implicitly assumed that no
modulus was produced after inflation. However it seems
reasonable to assume that the inflaton can decay into the
modulus sector, through possibly Planck suppressed inter-
actions. We take a branching ratio such that each inflaton
produces N� moduli. Unless the modulus and the inflaton
are coupled one to the other, one should expect N� &
1=g?;rh, which means that at most, moduli are produced

at the same rate than other light particles. If the inflaton is
more strongly coupled to the visible sector than to the
modulus sector, one should expect a much lower value of
N�.
Since the modulus mass is generically much smaller

than the inflaton mass, the moduli produced through in-
flaton decay are ultrarelativistic, with energy E� � �
m�=2. These particles do not thermalize but redshift to

nonrelativistic velocities. As their momentum redshifts
away according to p� ¼ m�=2ðarh=aÞ, the particles be-

come nonrelativistic, when p�m� or arh=an-rel ¼
2m�=m�. The corresponding temperature Tn-rel is given by

g1=3?n-relTn-rel ¼ g1=3?rhTrh

2m�

m�

: (66)

FIG. 5 (color online). Same as Fig. 1, for a potential receiving
a negative Hubble mass squared correction with c2 ¼ 0:5, and
n ¼ 0. Hinf ¼ 1013 GeV (for Hinf ¼ 109 GeV, constraints from
isocurvature fluctuations and from big bang nucleosynthesis
vanish).
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For temperatures T > Tn-rel, �� � / 1=a4 i.e. it scales as

radiation while for T < Tn-rel, it scales as a pressureless
fluid, �� � / 1=a3. Just after reheating, the energy den-

sity of the moduli that were produced by inflaton decay is
given by

�rh
� � ’ N�n�

m�

2
¼ N�

2
�rh
�: (67)

If the temperature Tn-rel is smaller than Td, then �� � will

scale as the radiation until the modulus decay. As a con-
sequence

�<d

� �

�<d



’ N�

2
; Tn-rel < Td: (68)

If, on the contrary, Tn-rel > Td, the energy density �� �

will then increase with respect to that of radiation in the era
following Tn-rel and preceding modulus decay. Therefore,
the ratio of inflaton produced moduli energy density to
radiation energy density immediately before modulus de-
cay can be written as

�<d

� �

�<d



¼ N�

2

Tn-rel
Td

’ 3:61

�
N�

10�3

��
g?;rh
g?;n-rel

�
1=3

�
g?;dec
10:75

�
1=4

�
m�

100 TeV

��1=2
�

�
m�

1013 GeV

��1� Trh

109 GeV

�
; Tn-rel > Td;

(69)

where one has used the expression (3) of Td. Let us notice
that, in most of parameter space, Tn-rel > Td.

The next step is to study how the previous considerations
will impact the calculations developed in the previous
sections. Obviously the amount of energy density stored

in the modulus oscillations remains unchanged. However
the amount of isocurvature fluctuation produced at a same

value of �<d
� is reduced [9]. Indeed, inflaton produced

moduli inherit the same spectrum of perturbations than
radiation, and therefore there is no initial isocurvature
perturbation between those moduli and the radiation fluid.
Including these inflaton produced moduli, the initial value
of the modulus curvature perturbation now reads

	 ðiÞ0� ¼ 
	 ðiÞ� þ ð1� 
Þ	 ðiÞ� : (70)

The quantities in this equation should be understood as

follows: 	 ðiÞ� and 	 ðiÞ� correspond to the curvature perturba-

tions of the modulus and the inflaton acquired during

inflation, as before. The curvature perturbation 	 ðiÞ0� is the
curvature perturbation for the modulus that should be used
in Eqs. (35) and (39) for the calculation of the final
isocurvature perturbations. Finally, 
 denotes the ratio of
the energy density of moduli initially present at decay to
the total amount of moduli at decay (those initially present
together with the inflaton produced moduli). The final
effect is to modify the initial modulus—radiation isocur-
vature perturbation by a factor 
 in Eqs. (35) and (39),

namely, x�
 ! 
x�
. It is also useful to define 
0 	
�<d

� �=�
<d
� (with �<d

� the amount of energy density stored

in the modulus oscillations immediately before decay)


 	 1


0 þ 1
; (71)

so that, if Tn-rel > Td:

FIG. 6 (color online). Same as Fig. 1, for a potential receiving a negative Hubble mass squared correction with c2 ¼ 0:5, and n ¼ 1.
Left panel: Hinf ¼ 1013 GeV. Right panel: Hinf ¼ 109 GeV. The standard deviations due to stochastic motion are calculated as in
Fig. 1.
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0 ’ 10�11
�
N�

10�3

�
1

��;osci

�
g?;rh
g?;n-rel

�
1=3

�
m�

100 TeV

�

�
�

m�

1013 GeV

��1
;

Tn-rel > Td:

(72)

In order to obtain this formula, we have used Eq. (69) in

order to express �<d

� � and Eq. (25) to express �<d
� [or,

alternatively, Eq. (31) with the term �2
inf=M

2
Pl replaced by

6��;osci in order not to be restricted to the quadratic case].

Notice that we have taken �osci=rh ¼ 1.
If, on the contrary, Tn-rel < Td, then the 
0 factor can be

expressed as


0 ’ 1:38� 10�15
�
N�

10�3

�
1

��;osci

�
g?;dec
10:75

��1=4

�
�

m�

100 TeV

�
3=2

�
Trh

109 GeV

��1
; Tn-rel < Td;

(73)

where, this time, �<d

� � has been obtained from Eq. (68). In

these equations, ��;osci should be understood as corre-

sponding to the oscillations of the modulus. It does not
include, in particular, the moduli produced through inflaton
decay.

To study the effect of such modulus production through
inflaton decay, we first assume that the potential is purely
quadratic, i.e. c ¼ 0. The results are presented in Fig. 7.
Compared to Fig. 1, one finds that the big bang nucleo-
synthesis constraints now exclude all moduli masses below
100 TeV. This is expected insofar as the amount of moduli
energy density produced through inflaton decay is suffi-
cient to disrupt big bang nucleosynthesis; since this
amount does not depend on �inf , contrary to the amount

of energy density stored in moduli oscillations, the big
bang nucleosynthesis constraints also do not depend on
�inf . Note that the inflaton may also decay into gravitinos,
with similar consequences for big bang nucleosynthesis
(see [73]).
The constraints from isocurvature fluctuations are

pushed to larger values of �inf , since the factor 
 becomes
small when the energy density produced through inflaton
decay far exceeds that stored in modulus oscillations.
Conversely, a larger value of �inf yields a larger value of
��;osci hence a larger value of 
. Assuming for simplicity

Tn-rel > Td, one can check that the suppression of isocur-
vature fluctuations becomes effective for

�inf � 3� 10�6MPl

�
m�

100 TeV

�
1=2

�
m�

1013 GeV

��1=2
�

�
N�

10�3

�
1=2

: (74)

In order to obtain this expression, we have used Eq. (72)
and have written the condition 
0 � 1 (which is equivalent
to 
� 1) in the quadratic case, namely,�osci � �2

inf=M
2
Pl.

This allows us to understand, at least qualitatively, the
trend shown in Fig. 7.
The effect in the case where the potential receives

supergravity corrections is rather straightforward to guess:
big bang nucleosynthesis constraints remain unchanged as
compared to the above Fig. 7, but the contours depicting
the amount of isocurvature fluctuations produced are
shifted toward higher values of �inf , as a result of the
redshifting of the energy density stored in modulus oscil-
lations after inflation, yielding a smaller value for 
. For
instance, considering the case c2 ¼ 2 as in Fig. 4, one
obtains the constraints depicted in Fig. 8.
Quite interestingly, the production of moduli through

inflaton decay, while reducing the overall amount of iso-

FIG. 7 (color online). Same as Fig. 1, for a quadratic modulus potential, but now accounting for inflaton produced moduli with
N� ¼ 10�3 and an inflaton massm� ¼ 1013 GeV. Left panel:Hinf ¼ 1013 GeV, Trh ¼ 109 GeV. Right panel:Hinf ¼ 109 GeV, Trh ¼
109 GeV.
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curvature fluctuation, does not allow us to find a solution to
the moduli problem with arbitrarily high [�OðMPlÞ in
particular] vev at the end of inflation if Hinf ’ 1013 GeV.
Strictly speaking, the amount of isocurvature fluctuations
produced for this value of the Hubble constant and �inf �
0:01� 1MPl is of the order of a few percent, therefore it is
not excluded by present cosmic microwave background
data. If present at this level, it could actually be detected
by the upcoming generation of instruments. One should
also emphasize that we have considered a rather conserva-
tive case, in the sense that the modulus is produced at a
comparable rate than other light particles; if N� is de-
creased, the amount of isocurvature fluctuations would
increase. At smaller values of Hinf , the isocurvature con-
straints have disappeared, due to the combined effect of the
partial erasure associated with moduli production in infla-
ton decay and a smaller initial isocurvature fluctuation.
Finally, independently of Hinf , the production of moduli
through inflaton decay significantly worsens the effect of
moduli on big bang nucleosynthesis. The success of big
bang nucleosynthesis now requires both m� * 100 TeV
for all �inf .

IV. SUMMARYAND CONCLUSIONS

Let us first summarize the results obtained. We have
shown that the decay of a generic modulus tends to produce
strong isocurvature fluctuations between dark matter and
radiation, or between baryons and radiation. The amount of
isocurvature fluctuations produced, relatively to the total
curvature perturbation, depends on several parameters: the
value of the initial modulus—radiation isocurvature per-
turbation (in units of the total initial curvature perturba-
tion), and the amount of energy density stored in the
modulus oscillations at the time of decay, relatively to

that contained in radiation, in particular. We have discussed
in some detail the evolution of the modulus energy density
and of its perturbations from the end of inflation onwards,
for a variety of possible moduli effective potentials, assum-
ing the modulus remains light during inflation. We have
then translated the constraints derived from the analysis of
cosmic microwave background data into constraints in the
modulus parameter space m� � �inf . We find that the
constraints associated with the production of isocurvature
fluctuations significantly exceed those from big bang nu-
cleosynthesis in this parameter space. One reason why the
constraints obtained cover most of the m� � �inf parame-
ter space is that the modulus will produce a large baryon

isocurvature mode if�<d
� � 1, while it will produce a dark

matter—radiation isocurvature fluctuation if �<d
� � 1

(but �<d
� large enough to affect the dark matter).

Evading the constraints from big bang nucleosynthesis
and from the generation of isocurvature fluctuations re-
quires one of the following conditions to be satisfied.
First, if the modulus potential is time independent (i.e. it

does not receive supergravity contributions at any time), it
is mandatory that: (i) Hinf � 109 GeV and the modulus
initially lies very close to the minimum of its potential,
within �10�10MPl (depending on the modulus mass, here
taken to be �1 TeV [see Fig. 1]); or (ii) m� * 100 TeV,
�inf * ðHinf=10

13 GeVÞMPl and Hinf � 1013 GeV.
Solution (i) ensures that the moduli energy density at the
time of its decay is sufficiently small to affect neither big
bang nucleosynthesis nor the dark matter perturbations
(which turn out to be more sensitive probes than the former
in this region of parameter space). The constraint on the
Hubble parameter corresponds to the requirement that the
stochastic motion of the modulus during inflation remains
small enough as compared to the bound on the final effec-
tive displacement of the modulus vev. Such a solution

FIG. 8 (color online). Same as Fig. 4, for a receiving a positive squared mass Hubble contribution with c2 ¼ 2, but now accounting
for inflaton produced moduli with N� ¼ 10�3 and an inflaton mass m� ¼ 1013 GeV. Left panel: Hinf ¼ 1013 GeV, Trh ¼ 109 GeV.

Right panel: Hinf ¼ 109 GeV, Trh ¼ 109 GeV. The stochastic effects are calculated with c2i ¼ 2.
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might be realized in models in which the modulus is bound
to remain close to an enhanced symmetry point in moduli
space due to the friction caused by its coupling to other
light degrees of freedom [8,74,75]. Solution (ii) is typical
of particle physics models which achieve a high modulus
mass scale. The constraints on �inf and most particularly
the bound onHinf directly come from the constraints due to
isocurvature fluctuations. If Hinf � 1013 GeV as required
by this solution, the tensor modes should be unobservable
by upcoming cosmic microwave background missions.

Second, if one assumes that the modulus potential re-
ceives supergravity corrections after inflation (but remains
light during inflation, as realized in some models of in-
flation discussed in Appendix C), one has to require
Hinf � 1013 GeV if the minima of the effective modulus
potential at high energy (H� m�) matches that at low
energy (H� m�). Then the moduli problem can be solved
either for large �inf �MPl, provided m� * 100 TeV, or
for vanishingly small �inf (in units of MPl [see the main
text for details]) and arbitrary m�. If the minima do not
coincide, the situation is very similar to that discussed for a
time independent modulus potential.

We have recalled that if the modulus is heavy during
inflation, either because Hinf & m�, or because the modu-
lus receives an effective Hubble mass during inflation, then
the isocurvature fluctuation between the inflaton and the
modulus disappears [61]. This provides a natural solution
for the moduli problem at the perturbative level, but it does
not automatically satisfy the constraints on entropy injec-
tion at the time of big bang nucleosynthesis. First of all,
either m� � 100 TeV, or the minima of the effective
modulus potentials during inflation, after inflation, and at
low energy (H� m�) match one another. In this latter
case, one also needs to ensure that the quantum jumps of
the modulus in its potential do not result in too large an
energy density at the time of big bang nucleosynthesis.
This can be done using the discussion of Appendix A,
which discusses the stochastic motion of the modulus in
the presence of a Hubble effective mass ciH. Strictly
speaking the results are valid in the slow-roll regime, which
requires ci < 3=4, but they should remain valid as long as
ci is of order unity. For chaotic inflation, the standard

deviation h��2i1=2 is given by the Bunch-Davies expres-
sion (A40). This leads to the bound of Eq. (A44) which

gives h��2i1=2 ’ 3:0� 10�6MPl (here for c2i ¼ 0:5). For
small field inflation, the Bunch-Davies expression is given
by Eq. (A74). In the case where� ’ MPl, which is the case
if Hinf ¼ 1013 GeV, then one can also use Eq. (A77) and

this leads to h��2i1=2 ’ 10�6MPl. These values are in con-
flict with the big bang nucleosynthesis constraints if m� �
1 TeV and the modulus potential becomes time indepen-
dent after inflation, since these constraints require �inf <
10�10MPl (see Fig. 1). When turned into a bound on the
Hubble constant during inflation, this becomes Hinf �
109 GeV; a low value indeed. Even if the modulus poten-

tial receives supergravity corrections after inflation, there
is a potential conflict, since the big bang nucleosynthesis
constraints impose �inf < 10�6MPl for c2 ¼ 0:5, but
�inf < 10�5MPl for c

2 ¼ 2 (see Figs. 3 and 4).
From the point of view of model building in the modulus

sector, the above constraints can also be seen as follows. If
the modulus has a vev ’ MPl at the end of inflation, then, in
order to escape the constraints associated to the production
of isocurvature fluctuations, one needs to achieve Hinf <
1013 GeV (or render the modulus heavy during inflation
[see above]). Interestingly enough, this suggests that this
standard expectation for the modulus behavior could yield
detectable isocurvature signals in forthcoming high accu-
racy cosmic microwave background experiments.
We have also considered the consequences of a possible

production of moduli through inflaton decay. Since those
moduli inherit the fluctuations of the inflaton, which cor-
respond to those of radiation, this tends to reduce the initial
modulus—radiation isocurvature fluctuation, all things
being equal. However, it also aggravates the effect of
moduli on big bang nucleosynthesis, and one generically
finds that all moduli must have masses m� * 100 TeV
independently of �inf . Furthermore, one must still require
that the effective minima of the modulus potential during
inflation, after inflation, and at low energy match one
another, or Hinf � 1013 GeV as above.
Finally, let us recall that the results obtained above rely

on some assumptions concerning the high energy under-
lying theory for the modulus. For instance, we have fo-
cused in this study on a quadratic modulus potential, most
notably in the low energy regime H <m�. It would be
certainly interesting to study the consequences with respect
to the above moduli problem of nonquadratic potentials. In
particular, it is not obvious whether the result that we have
obtained for the evolution of the entropy fluctuations in the
post-inflationary era, summarized by Eq. (47), would re-
main true for a nonquadratic potential. Another interesting
avenue of research is to consider the effect of a possible
direct coupling between the modulus and the inflaton on
the evolution of the modulus energy density and on the
entropy perturbations during the reheating phase. In the
present work, we have also assumed that baryogenesis
occurs well before modulus decay, as it seems most natural
from a high energy physics point of view; see Ref. [76] for
a detailed discussion of baryogenesis scenarios at low
temperatures. One can generalize the present conclusions
to the baryon violating late time decaying field, using the
techniques developed in Ref. [47].
In short, the moduli problem is worse at the perturbative

level. A clear trend emerges from the above calculation,
namely, the lower the inflationary scale, the easier it is to
solve the moduli problem. A significant amount of late
time entropy production could alleviate the moduli prob-
lem, provided baryon isocurvature perturbations are not
produced at the decay of the entropy producing compo-
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nent. As mentioned above, one needs to have a reheating
temperature (after entropy production) higher than the
baryogenesis scale; alternatively the fluctuations carried
by the entropy producing fluid could be similar to those
carried by the baryons.
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APPENDIX A: EXPECTED VALUE FOR �inf

We now analyze the stochastic (quantum) behavior of
the modulus field in the case where the total energy density
is still dominated by the vacuum energy of the inflaton
field. A similar analysis was performed in Ref. [9] but
focusing on the chaotic inflationary scenario and for neg-
ligible initial values of the modulus field. Moreover, the
stochastic nature of the inflaton field was also ignored.
Here, we relax these assumptions and generalize the results
of Refs. [9,51].

The problem treated here bears close resemblance with
the problem tackled in Ref. [77] where the behavior of the
quantum quintessence field during inflation was studied
(the quantum behavior of the inflaton field being also taken
into account). For this reason, we will follow a similar
treatment.

According to the formalism of stochastic inflation, the
coarse-grained inflaton field � obeys the following
Langevin equation [48,49]

d�

dt
þ V0�ð�Þ

3Hð�Þ ¼
H3=2ð�Þ

2�
��ðtÞ; (A1)

where �� is a white noise field such that h��ðtÞ��ðt0Þi ¼
�ðt� t0Þ and where a prime denotes a derivative with
respect to the field. The stochastic evolution of the modulus
field � is also controlled by a Langevin equation which, in
the slow-roll approximation, reads

d�

dt
þ V0�ð�Þ

3Hð�Þ ¼
H3=2ð�Þ

2�
��ðtÞ; (A2)

where �� is another white noise field such that

h��ðtÞ��ðt0Þi ¼ �ðt� t0Þ; h��ðtÞ��ðt0Þi ¼ 0: (A3)

The solution of the Langevin Eq. (A2) depends explicitly
on �� but also on the inflaton noise �� through the coarse-

grained field �. Since the modulus is considered as a test
field, H only depends on �, hence all primes superscript
mean differentiation with respect to �; obviously, all
primes superscript on V� (respectively, V�) denote differ-

entiation with respect to � (respectively, �).
In order to find an approximate solution to Eqs. (A1) and

(A2), one may try to use the same perturbative technique as
the one used in Refs. [78,79]. Therefore, we expand the

inflaton and modulus fields about their classical solution
and write

�ðtÞ ¼ �clðtÞ þ ��1 þ ��2 þ � � � ;
�ðtÞ ¼ �clðtÞ þ ��1 þ ��2 þ � � � ;

(A4)

where the first terms in the expansions are linear in the
noise, the second ones are quadratic in the noise, and so on.
As mentioned before, the approximation made in Ref. [9]
consists in ignoring the stochastic nature of the inflaton
field, � ¼ �cl.
Let us first examine the solution for the inflaton field.

Expanding up to second order in the equation of motion,
we obtain two linear differential equations for ��1 and
��2 (see Refs. [78,79]), namely,

d��1

dt
þ 2M2

PlH
00ð�clÞ��1 ¼ H3=2ð�clÞ

2�
��ðtÞ (A5)

and

d��2

dt
þ 2M2

PlH
00ð�clÞ��2 ¼ �M2

PlH
000ð�clÞ��2

1

þ 3

4�
H1=2ð�clÞH0ð�clÞ

� ��1��ðtÞ: (A6)

These equations can be solved by varying the integration
constant. Let us first consider the equation for ��1. If the
initial conditions are such that ��1ðt ¼ tinÞ ¼ 0, then the
solution reads

��1ðtÞ ¼ H0½�clðtÞ�
2�

Z t

tin

d�
H3=2½�clð�Þ�
H0½�clð�Þ� ��ð�Þ: (A7)

We are now in a position where the various correlation
functions can be calculated exactly. Since ��1 is linear in
the noise �, the mean value obviously vanishes h��1i ¼ 0.
The two-point correlation function for ��1 can be calcu-
lated as

h��1ðt1Þ��1ðt2Þi ¼ 1

4�2
H0ðt1ÞH0ðt2Þ

Z minðt1;t2Þ

tin

d�
H3ð�Þ
H02ð�Þ :

(A8)

Once the inflaton potential has been specified, it is more
convenient to carry out these integrals using the classical
value �cl as a variable instead of �, thanks to the relation
derived from the classical trajectory

d�cl ¼ �2H0M2
Pldt: (A9)

For instance, the two-point correlation function calcu-
lated at the same time, i.e. the variance, reads [78,79]

h��2
1i ¼

H02

8�2M2
Pl

Z �in

�cl

d’

�
H

H0

�
3
: (A10)
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Detailed calculations of these integrals will be given below
for various prototypical models of inflation.

We now turn to the equation of motion for the second
order perturbation ��2. It can be solved by following
exactly the steps that were described before. Then, the
solution can be written as [78,79]

��2ðtÞ ¼ �H0M2
Pl

Z t

tin

d�
H000

H0
��2

1ð�Þ þ
3H0

4�

�
Z t

tin

d�H1=2��1ð�Þ��ð�Þ: (A11)

As expected the second order perturbation is quadratic in
the noise. One can easily evaluate the mean value of
��2ðtÞ, taking into account a factor 1=2 which originates
from the fact that the Dirac � function appearing in the
noise correlation function is centered on an integration
limit (see Refs. [78,79]).

Let us now turn to the modulus case when it has a
sufficiently flat potential to acquire an independent quan-
tum noise besides the inflaton. As for the inflaton case, it is
easy to establish that the equations of motion for the
perturbed quantities ��1 and ��2 are given by the follow-
ing expressions [77]:

d��1

dt
þ V 00�ð�clÞ

3Hð�clÞ��1 ¼ V 0�ð�clÞH0ð�clÞ
3H2ð�clÞ

��1

þH3=2ð�clÞ
2�

��; (A12)

d��2

dt
þ V 00�ð�clÞ
3Hð�clÞ��2

¼ V 0�ð�clÞH0ð�clÞ
3H2ð�clÞ

��2þV 0�ð�clÞH00ð�clÞ
6H2ð�clÞ

��2
1

�V0�ð�clÞH02ð�clÞ
3H3ð�clÞ

��2
1þ

V 00�ð�clÞH0ð�clÞ
3H2ð�clÞ

��1��1

�V 000� ð�clÞ
6Hð�clÞ��

2
1þ

3H1=2ð�clÞH0ð�clÞ
4�

��1��:

(A13)

Although these equations look quite complicated, they can
be solved easily because (by definition) they are linear.
Assuming that the modulus potential does not depend
explicitly on time (that is, other by its dependence on �),
the solution for ��1 reads

��1ðtÞ ¼ V0�ð�clÞ
Z t

tin

�
H0ð�clÞ
3H2ð�clÞ

��1ð�Þ

þ H3=2ð�clÞ
2�V 0�ð�clÞ��ð�Þ

�
d�; (A14)

and, as required, is linear both in the quintessence noise ��

and (through ��1) in the inflaton noise �. The above
formula is not valid anymore if V� contains an explicit
dependence on time, for instance if the modulus mass
receives Hubble term corrections. In this particular case,
which will be discussed further below, one has to extract
the explicit time dependence out of the potential, then
proceed as above. Unless otherwise said, we assume in
the following that V� does not contain any such explicit
dependence on time.
As is obvious, ��1 has a vanishing mean value, h��1i ¼

0, but a nonvanishing variance given by the sum of two
contributions originating from the inflaton and quintes-
sence noise variances, namely, [77]

h��2
1i ¼

V02� ð�clÞ
9

Z t

tin

Z t

tin

H0ð�Þ
H2ð�Þ

H0ð�Þ
H2ð�Þ

� h��1ð�Þ��1ð�Þid�d�þ V02� ð�clÞ
4�2

�
Z t

tin

Z t

tin

H3=2ð�Þ
V 0�ð�Þ

H3=2ð�Þ
V 0�ð�Þ h��ð�Þ��ð�Þid�d�

(A15)

	 h��2
1ij��1��1

þ h��2
1ij����

: (A16)

Let us notice that there is no mixed contribution since the
cross correlation h��1��i ¼ 0. Using the correlation func-
tion of the modulus noise, the term h��2

1ij����
can be

further simplified, namely, [77]

h��2
1ij����

¼ V 02� ð�clÞ
4�2

Z t

tin

H3ð�Þ
V02� ð�Þ

d�: (A17)

Let us now turn to the second order correction. The
solution for ��2 can be written as [77]

��2ðtÞ ¼ V0�ð�clÞ
Z t

tin

�
H0ð�clÞ
3H2ð�clÞ

��2ð�Þ

þ
�
H00ð�clÞ
6H2ð�clÞ

� H02ð�clÞ
3H3ð�clÞ

�
��2

1ð�Þ

þ V00�ð�clÞH0ð�clÞ
3V 0�ð�clÞH2ð�clÞ

��1ð�Þ��1ð�Þ

� V000� ð�clÞ
6V 0�ð�clÞHð�clÞ��

2
1ð�Þ

þ 3

4�

H1=2ð�clÞH0ð�clÞ
V0�ð�clÞ ��1ð�Þ��

�
d�: (A18)

As expected, one sees that ��2 is quadratic in the noises.
From the above expression, one deduces that the mean

value of ��2 is nonvanishing and is the sum of various
terms [77]

h��2i ¼ h��2ij��2
þ h��2ij��2

1
þ h��2ij��1��1

þ h��2ij��2
1ð��Þ þ h��2ij��2

1ð��Þ; (A19)
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where the last term in Eq. (A18) does not contribute
because h��1��i ¼ 0. Had we not taken into account the
stochastic behavior of the inflaton, only the term
h��2ij��2

1
ð��Þ would have contributed.

At this stage it is interesting to compare the previous
considerations to Ref. [9]. In particular the above approach
is a perturbative one and a relevant question is its domain
of validity [78,79]. In fact, as shown in Ref. [9], it turns out
that, for the potential m2

��
2=2, the Langevin equation can

be integrated exactly. The solution reads

�ðtÞ ¼ �ine
�
R

t

tin
m2

�=ð3HÞd� þ 1

2�

�
Z t

tin

H3=2ð�Þ��ð�Þe
R

�

t
m2

�=ð3HÞd�d�: (A20)

From this expression, it is easy to compute the variance.
One obtains

h�2i ¼ 1

4�2

Z t

tin

H3ð�Þe2=3
R

�

t
m2

�=Hd�d�

¼ m4
��

2ðtÞ
4�2

Z t

tin

H3ð�Þ
m4

��
2ð�Þ d�: (A21)

This is exactly the result obtained in Eq. (A17). Therefore,
although perturbative in nature, the approach used before
has in fact a wider domain of validity and, in the specific
case treated above, can be used even if the corrections are
not small. The perturbative approach is also interesting for
two reasons: first, it allows us to take into account the
stochastic behavior of the inflaton field (even if, most of
the time, we will show that these corrections are negli-
gible). Second, the method of Eq. (A17) rests on one’s
ability to solve exactly the Langevin equation which is
possible only for a quadratic potential for�. If the potential
is different (that is to say, not quadratic), only the method
used here allows us to derive explicit results.

We now turn to the calculation of the various corrections
presented above in the following specific inflaton and
modulus potentials.

1. Chaotic m2
��

2 inflation

If we assume that V� ¼ m2
��

2=2, then, in the slow-roll

approximation, the classical evolution of the inflaton field
is given by the following expression:

�cl

MPl

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�in

MPl

�
2 � 4N

s
; (A22)

where N is the number of e-folds defined by N 	
lnða=ainÞ, ain being the initial value of the scale factor at
the beginning of inflation, and �clðN ¼ 0Þ ¼ �in. The
model remains under control only if the energy density is
below the Planck energy density. This amounts to the

following constraint on the initial conditions �in=MPl &

8�
ffiffiffi
2
p

MPl=m�. Inflation stops when the slow-roll parame-

ter "1 ¼ � _H=H2 is equal to unity corresponding to�end ¼ffiffiffi
2
p

MPl. As a consequence, one can easily check that the
argument of the square root in Eq. (A22) remains always
positive. The total number of e-folds during inflation is
simply given by NT ¼ ð�in=MPlÞ2=4� 1=2. This number
can be huge if the initial energy density of the inflaton field
is close to the Planck energy density. Finally, the inflaton
mass is fixed by the WMAP normalization

Q2
rms-PS
T2

¼ 1

480�2�1

H2
M2

Pl

¼ 1

1440�2�1

V�
M4

Pl

; (A23)

where the cosmic microwave background quadrupole is
given byQrms-PS=T ’ 6� 10�6 and a star denotes the time
at which the scales of astrophysical interest today crossed
the Hubble radius during inflation. Using the fact that
�1 ¼ 1=ð2N þ 1Þ, where N is the number of e-folds
between the time at which the physical scales left the
Hubble radius during inflation and the end of inflation,
one obtains

m�

MPl
’ 12�

ffiffiffiffiffiffi
10
p

2N þ 1

Qrms-PS
T

’ 7� 10�6; (A24)

where we have used N ’ 50. This also implies the Hubble

constant at the end of inflation, Hinf ¼ m�=
ffiffiffi
3
p ’

1013 GeV.
Using the perturbative presented before, one can solve

Eq. (A1) (let us notice that the Langevin equation can be
solved exactly only in the case of a quartic potential) and
determine the quantum behavior of the inflaton field.
Through straightforward albeit lengthy calculations, one
obtains [78,79]

h��2
1i ¼ �

m2
�

192�2M4
Pl

ð�4
cl ��4

inÞ: (A25)

Note that the classical trajectory obeys �<�in during
inflation, so that the above is positive as it should be.
Similarly, the correction to the mean value reads [78,79]

h��2i ¼ �
m2

�

192�2M4
Pl

ð�3
cl ��3

inÞ: (A26)

As before, since �<�in during inflation, the quantity
h��2i is positive.
Concerning the modulus, we will consider two possible

potentials, in the spirit of previous sections: one with fixed
mass V� ¼ m2

��
2=2, and one with typical supergravity

corrections.

a. Modulus potential: V� ¼ m2
��

2=2

Let us first determine the classical trajectory of the
modulus during inflation. Solving Eq. (A2) without the
noise term leads to the following solution:

CONSTRAINTS ON MODULI COSMOLOGY FROM THE . . . PHYSICAL REVIEW D 80, 123514 (2009)

123514-23



�clðNÞ ¼ �in

�
�clðNÞ
�in

�
m2

�=m
2
�
: (A27)

In practice, one has m� � m� and, therefore, the modulus

evolves slowly during inflation. Let us also notice that
m2

�=m
2
� ¼ 2=3ðm�=Hinf;inÞ2NT and, therefore, the limit

m�=m� ! 0 corresponds to m� � Hinf;inN
�1=2
T . Even

though the modulus is completely frozen in the limit
m�=m� ! 0, it is necessary to take into account its evo-

lution when computing the integrals in Eqs. (A16) and
(A18), since its displacement can be non-negligible if
inflation lasts long enough. One then finds

h��2
1i����

¼ � m2
�

192�2M4
Pl

1

1�m2
�=ð2m2

�Þ
� ð�4

cl ��
4�2m2

�=m
2
�

in �
2m2

�=m
2
�

cl Þ; (A28)

which, in the limit m�=m� ! 0 and �cl � �in reduces to

h��2
1i����

’ m2
��

4
in

192�2M4
Pl

¼ H2
in

8�2
NT: (A29)

Note that Hin refers to the Hubble constant at the onset of
inflation, which differs (by

ffiffiffiffiffiffiffiffiffi
2NT

p
) from the Hubble con-

stant at the end of inflation, noted Hinf and used in the rest
of our analysis. The two formulas (A28) and (A29) are
identical to Eqs. (23) and (24) of Ref. [9]. The interpreta-
tion of Eq. (A29) is as follows. If the field is light, then the
classical drift in the Langevin equation can be ignored.
Then, it is easy to show that the Langevin equation can be
integrated exactly and, as a consequence, that h�2i ¼R
H2dN=ð4�2Þ. If the Hubble parameter is approximately

constant, then the previous expression reduces to h�2i ¼
H2NT=ð4�2Þ. However, as well known in the case of
chaotic inflation, the Hubble parameter can change signifi-
cantly during inflation, therefore, the integral has to be
evaluated exactly. When this is done, this produces the
additional factor 1=2 present in Eq. (A29).

Let us now turn to the second contribution originating
from the inflaton noise. It reads

h��2
1i��1��1

¼ � m2
��

2
cl

576�2M4
Pl

m2
�

m2
�

� ð�cl ��inÞ3ð�cl þ 3�inÞ
�2

cl

’ m2
��

4
in

192�2M4
Pl

1

2

m4
�

m4
�

�2
cl

M2
Pl

; (A30)

where the last expression is valid at the end of inflation. As
a consequence, we note that h��2

1i��1��1
is negligible in

comparison with h��2
1i����

since m� � m� and

�cl=MPl � 1.
Let us now calculate the correction to the mean value of

the modulus field. The various contributions ��2 amount

to

h��2ij��2
¼ m2

��cl

192�2M4
Pl

�
1

2
�2

cl �
3

2
�2

in þ
�3

in

�cl

�
;

h��2ij��2
1
¼ � m2

��cl

192�2M4
Pl

�
1

2
�2

cl þ
1

2

�4
in

�2
cl

��2
in

�
;

h��2ij��1��1
¼ � m2

��cl

192�2M4
Pl

m2
�

m2
�

�
1

6
�2

cl þ
4

3

�3
in

�cl

� 1

2

�4
in

�2
cl

��2
in

�
;

h��2ij��2
1ð��Þ ¼ 0; (A31)

the last result being obtained because V 000� ¼ 0 in our case.
Using again the fact that, as inflation proceeds,�cl � �in,
one finally obtains

h��2i ’ � m2
��cl�

4
in

384�2M4
Pl�

2
cl

: (A32)

Noticing that h��2i is maximal at the end of inflation, i.e.

for �cl ¼
ffiffiffi
2
p

MPl, one can easily demonstrate that the first
order correction is always the dominant one.
Therefore, using the value of the inflaton mass obtained

from the WMAP normalization, the expression of the
initial value of the inflaton field in terms of the total
number of e-folds, and setting NT * 60, one obtains the
following lower bound:

h��2
1i1=2 * 3:9� 10�5MPl: (A33)

The above considerations are valid provided one does not
enter the regime of eternal inflation where the perturbative
treatment of the quantum behavior of the inflaton field

breaks down. Eternal inflation starts if �in * ð24Þ1=4�
ðm�=MPlÞ�1=2. Therefore, the above calculations are ap-

plicable if NT & 2:8� 106 which implies thatffiffiffiffiffiffiffiffiffiffiffiffiffi
h��2

1i
q

=MPl & 1:8. As was studied in this paper, such

values of � are anyway excluded since the amount of
entropy perturbations is too large to be compatible with
the cosmic microwave background data.
Finally, it is also interesting to investigate what happens

if one considers a more complicated potential for the
modulus. As mentioned before, the perturbative approach
used here allows us to determine the stochastic behavior of
� even if the potential is not quadratic. Therefore, let us
consider the case where

V�ð�Þ ¼ �n

n!

�n

Mn�4
Pl

; (A34)

where �n is a dimensionless constant. The integration of
the classical equation of motion leads to the following
solution:
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�cl

MPl
¼

��
�in

MPl

�
2�n þ ð2� nÞ �n

ðn� 1Þ!
M2

Pl

m2
�

� ln

�
�cl

�in

��
1=ð2�nÞ

: (A35)

In the limit �n ! 0, the modulus field is almost frozen.
Then, one can now compute the variance due to the modu-
lus noise. According to Eq. (A17), it reads

h��2
1ij����

¼ H2
in

8�2
NT

�
�cl

MPl

�
2�2n

4ð3n�4Þ=ð2�nÞ
4ðn� 1Þ!m2

�

�nð2� nÞM2
Pl

� exp

�
� 4ðn� 1Þ!m2

�

�nð2� nÞM2
Pl

�
�in

MPl

�
2�n�

�
�



�
4� 3n

2� n
;�4

�
�in

MPl

�
2�n�

� 


�
4� 3n

2� n
;�4

�
�cl

MPl

�
2�n��

; (A36)

where 
ð�; xÞ 	 R
x
0 t

��1e�tdt is the incomplete gamma

function.

b. Modulus potential: V� ¼ c2iH
2�2=2

In this subsection, one considers the case where the
modulus mass receives supergravity corrections of the
form c2iH

2, assuming ci < 3=4, during inflation. A com-

ment is in order at this point. One uses the notation ci in
order to emphasize the fact that the supergravity correc-
tions to the modulus potential are not necessarily the same
during inflation and during the postinflationary epoch. As a
consequence, one expects ci � c. This is of course the
same for the minimum of the potential which, during
inflation, is not necessarily equal to �0, the minimum of
the potential in the postinflationary epoch. In the rest of this
appendix, we work in terms of the field displacement (with
respect to the inflationary minimum) rather than in terms of
the field itself.

Then, if one assumes that the supergravity corrections
dominate, the modulus classical motion reads

�cl ¼ �in exp

�
� c2i

3

Z t

tin

d�Hð�Þ
�

¼ exp

�
c2i

3M2
Pl

Z �cl

�in

d’
Vð’Þ
V0ð’Þ

�
: (A37)

and for m2
��

2 inflation, this gives

�cl ¼ �in exp

�
c2i

12M2
Pl

ð�2
cl ��2

inÞ
�
: (A38)

Very quickly the argument of the exponential becomes
�c2i�2

in=ð12M2
PlÞ ’ �c2iNT=3 ’ �ðm�=Hinf;inÞ2NT=3 and,

therefore, as previously, one recovers that the massless

condition is given by m� � Hinf;inN
�1=2
T . Since NT > 60,

this condition is now always violated (at least provided that
ci * 0:22).
As mentioned above, Eqs. (A14) and (A18), need to be

corrected to account for the explicit time dependence of the
potential, which enters through the H prefactor. Making
this dependence more explicit in Eq. (A13), one solves
these equations as

��1 ¼ c2i
3
�cl

Z t

tin

d�H0ð�Þ��1ð�Þ þ
Z t

tin

d�
H3=2ð�Þ
2�

� exp

�
c2i
3

Z �

t
d�Hð�Þ

�
��ð�Þ;

(A39)

and hence

h��2
1i����

¼ m2
�

16�2M2
Plc

2
i

�
6M2

Pl

c2i
þ�2

cl �
�
6M2

Pl

c2i
þ�2

in

�

� e�ðc2i =6M2
Pl
Þð�2

in
��2

cl
Þ
�

’ 3H4

8�2c2iH
2

�
1þ 6M2

Pl

c2i�
2
cl

�
: (A40)

Therefore, one obtains the Bunch-Davies result (with the
mass c2iH

2) corrected by a factor the value of which at the

end of inflation is 1þ 3=c2i . This result agrees with that

obtained in Ref. [9]. In the limit ci ! 0, one of course
recovers the result Eq. (A29).
The contribution to the variance due to the inflaton noise

is given by

h��2
1i��1��1

¼ � c4i�
2
clm

2
�

3456�2M8
Pl

�
1

30
�6

cl �
1

2
�2

cl�
4
in

þ 4

5
�cl�

5
in �

1

3
�6

in

�
: (A41)

This term is negligible compared to the previous one since
the vev of the modulus is small (in Planck units).
Let us now turn to the corrections ��2 to the mean value.

As explained before, one needs to modify the results above
to take into account the fact that the mass is explicitly time-
dependent. Straightforward calculations lead to

h��2i��2
¼ c2i

3
�cl

Z t

tin

d�H0ð�Þh��2ð�Þi;

h��2i��2
1
¼ c2i

3
�cl

Z t

tin

d�

�
H00ð�Þ
2
�H02ð�Þ

Hð�Þ
�
h��2

1i

h��2i��1��1
¼ c2i

3

Z t

tin

H0ð�Þd�eðc2i =3Þ
R

�

t
d�Hð�Þ

� h��1ð�Þ��1ð�Þi;
h��2i��1�� ¼ 0: (A42)

This can be integrated to give
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h��2i��2
¼ c2i�clm

2
�

1152�2M6
Pl

�
1

4
�4

cl ��cl�
3
in þ

3

4
�4

in

�
;

h��2i��2
1
¼ � c2i�clm

2
�

1152�2M6
Pl

�
1

4
�4

cl ��4
in log

�
�cl

�in

�

� 1

4
�4

in

�

h��2i��1��1
¼ � c4i�clm

2
�

6912�2M8
Pl

�
1

30
�6

cl �
1

2
�2

cl�
4
in

þ 4

5
�cl�

5
in �

1

3
�6

in

�
;

h��2i��1��
¼ 0: (A43)

Given that �cl=MPl � 1, it is easy to see that these con-
tributions are subdominant. Therefore, the main contribu-
tion is the one given by Eq. (A40). Expressed at the end of

inflation (�end ¼
ffiffiffi
2
p

MPl) and normalized to the cosmic
microwave background, this expression leads to the fol-
lowing constraint on the value of the modulus:

h��2
1i1=2 * 0:79� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ c2i

q
c2i

MPl: (A44)

2. Small field and hybrid inflation

In this section, we turn to another type of inflationary
model. We now consider a potential of the form

V� ¼ M4

�
1þ �

�
�

�

�
p
�
; (A45)

with � ¼ �1. Such a potential gives rise to small field
inflation if � ¼ �1 or hybrid inflation if � ¼ þ1. Since all
integrals cannot be carried out exactly in this case, we
provide the results to leading order in �=�. Out of sim-
plicity, we use the notation � 	 �cl=� and similarly for
�in.

Let us now discuss small field inflation in more details.
For this model, the slow-roll trajectory is only known
implicitly. It can be expressed as

N ¼ 1

2p

�2

M2
Pl

�
�2

in ��2 þ 2

p� 2
�2�p

in � 2

p� 2
�2�p

�
:

(A46)

If p ¼ 2 the singular terms must be replaced by a loga-
rithm. From the above formula, one deduces that, given
that�in � �end, the total number of e-folds can be written
as

NT ’ �2

M2
Pl

1

pðp� 2Þ�
2�p
in : (A47)

In this class of models, the end of inflation occurs by
violation of the slow-roll conditions. If �=MPl � 1, it

happens at �end ’ ½2�2=ðp2M2
PlÞ�1=ð2p�2Þ. In this regime,

the two first slow-roll parameters are given by

�1 ’ exp

�
�4N

�
MPl

�

�
2
�
; �2 ¼ 4

�
MPl

�

�
2
; (A48)

for p ¼ 2, while, for p � 2, one has

�1 ’ p2

2

�
MPl

�

�
2
�
Npðp� 2Þ

�
MPl

�

�
2
��2ðp�1Þ=ðp�2Þ

;

�2 ¼ 2

N
p� 1

p� 2
: (A49)

If �=MPl * 1, then the above formulas are no longer valid
and the slow-roll parameters must be evaluated numeri-
cally. In particular, in the limit�=MPl � 1, one has�end ’
�.
Our next step is to deduce an expression of the mass

scale M. One obtains�
M

MPl

�
4 ¼ 720�2p2 Q

2
rms-PS
T2

½pðp� 2ÞN��2ðp�1Þ=ðp�2Þ

�
�
�

MPl

�
2p=ðp�2Þ

; (A50)

where we have assumed p � 2. This expression is valid
only if �=MPl � 1. If �=MPl * 1, one can show (see
Ref. [80]) that the end of inflation occurs when the vacuum
expectation value of the inflaton field is of the order of �
and, as a consequence, that ðM=MPlÞ4 �OðQ2

rms-PS=T
2Þ.

Let us also notice that, contrary to the case of chaotic
inflation, the Hubble parameter is approximately constant

during inflation and given by Hinf ’ M2=ð ffiffiffi
3
p

MPlÞ.
Therefore, if � * MPl, Hinf ’ 1013 GeV, but Hinf can be
much lower if �� MPl.
Let us now discuss the constraints on the free parameters

p and �. As shown in Ref. [80], there is no prior indepen-
dent constraint on the index p. However, if one adopts the
theoretical prejudice that the vacuum expectation value of
the inflaton field must be smaller than the Planck mass,
then � must be smaller than MPl and then one can dem-
onstrate that the case p ¼ 2 is slightly disfavored by the
cosmic microwave background data. In small field infla-
tion, the energy scale of inflation can be very low. But, it
can not be smaller than, say, the TeV scale, V=m4

Pl *
10�64. If p ¼ 2, this implies that �=MPl * 1:25. In this
case, the formulas (A48) are no longer valid but one can
show that the spectral index is still compatible with the data
in the regime �=MPl * 1 or even �=MPl � 1. If p � 2,
the parameter � is globally unconstrained. The constraint
mentioned before implies

�

MPl

*

�
4� 10�64

45p2

�
Qrms-PS

T

��2
� ½pðp� 2ÞN�2ðp�1Þ=ðp�2Þ

�ðp�2Þ=ð2pÞ
: (A51)
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This leads to �=MPl * 0:16 for p ¼ 2:1, �=MPl * 3:4�
10�5 for p ¼ 2:5, �=MPl * 1:5� 10�8 for p ¼ 3,
�=MPl * 9:9� 10�13 for p ¼ 4, etc. In this case, one
sees that �=MPl can be small. For p � 2, Eqs. (A49)
indicate that �2 no longer depends on �. The spectral
index remains compatible with the data in this regime
because �2 � 0:04ðp� 1Þ=ðp� 2Þ still lies in the 2�
contour whatever the value of p. As already mentioned,
if, on the contrary, �=MPl � 1, Eqs. (A49) are no longer
valid but one can also show that the model is still in
agreement with the data. The conclusion is that, provided
the energy scale of inflation is above the TeV scale, the two
regimes �=MPl � 1 and �=MPl * 1 are still compatible
with the data and, hence, the parameter � remains basi-
cally unconstrained [80].

Let us now briefly discuss hybrid inflation. A crucial
difference with small inflation is that inflation no longer
stops by violation of the slow-roll conditions but by insta-
bility. This means that there is one more additional pa-
rameter, namely, the value of the inflaton field at which the
instability occurs. This makes the analysis more compli-
cated since the parameter space is enlarged. For this rea-
son, although we give all the necessary expressions, we
have chosen in this paper to skip a detailed investigation of
this case.

Straightforward calculations lead to the following re-
sults for the variance and the mean value of the inflaton
field

h��2
1i ’ �

M4�2

12�2M4
Pl

1

�pð4� 3pÞ ð�
2�p ��4�3p

in �2p�2Þ:
(A52)

Similarly,

h��2i ¼ M4�

24�2M4
Pl

1

�pð4� 3pÞ
�
p� 2

2
�1�p

þ 4� 3p

2
�p�1�2�2p

in þ ðp� 1Þ�2p�3�4�3p
in

�
:

(A53)

These results agree with those of Ref. [78] to leading order.
As regards to the modulus, we again consider two pos-

sible potentials. We consider these two possibilities in the
following.

a. Modulus potential: V� ¼ m2
��

2=2

The classical trajectory of the modulus reads

�cl ¼ �in exp

�
�2m2

�

�pð2� pÞM4
ð�2�p ��2�p

in Þ
�
: (A54)

Let us notice that the argument of the exponential is always
negative. We now discuss the case of small field inflation.
The argument of the exponential in Eq. (A54) is always
dominated by the following term:

�2m2
�

pðp� 2ÞM4
�2�p

in ¼ 1

3

�
m�

Hinf

�
2
NT: (A55)

The argument of the exponential can be small or large
depending on the total number of e-folds during inflation
and on whether the modulus field is light or heavy. Using
the WMAP normalization, one can also express the argu-
ment of the exponential in terms of the parameters of the
model. In the regime �=MPl � 1, one obtains

�2m2
�

pðp� 2ÞM4
�2�p

in ¼ 1

3

�
m�

Hinf

�
2
NT

’ 6:6� 10�21NT

�
m�

105 GeV

�
2

� ½pðp� 2ÞN�2ðp�1Þ=ðp�2Þ
p2

�
�
�

MPl

��2p=ðp�2Þ
: (A56)

Let us give a few examples for different values of p with
m� ¼ 105 GeV and N ¼ 50. For p ¼ 2:1, this gives
43:78NTð�=MPlÞ�42; for p ¼ 2:5, one has 6:29�
10�11NTð�=MPlÞ�10; for p ¼ 3, one obtains 3:71�
10�13NTð�=MPlÞ�6; and for p ¼ 4, this leads to 2:64�
10�14NTð�=MPlÞ�4. Let us be more precise and give some
numbers. If p ¼ 2:5 one can easily check that the argument
of the exponential is always large. But this conclusion can
be modified if one considers other values of the parameters.

For instance, if p ¼ 3 and 1:5� 10�8 & �=MPl & 8:4�
10�3N1=6

T , then the argument of the exponential is large

but, if 8:4� 10�3N1=6
T & �=MPl � 1, it is no longer the

case. Let us also notice that the previous considerations are

valid only for values of NT such that the number 8:4�
10�3N1=6

T remains small otherwise the formulas used here
would not be valid. This means NT � 1:84� 106 which is
not so restrictive. The same analysis is true for p ¼ 4, the

corresponding intervals being 9:9� 10�13 & �=MPl &

4� 10�4N1=4
T and 4� 10�4N1=4

T & �=MPl � 1. In the
present case, the total number of e-folds must satisfyNT �
3:9� 109. On the other hand, in the regime where
�=MPl * 1, the argument of the exponential can now be
written as

�2m2
�

pðp� 2ÞM4
�2�p

in ’ 1:87� 10�18
�

m�

105 GeV

�
2
NT

(A57)

and is small, unless we choose very large values of NT .
We are now in a position where one can compute the

variance of the stochastic motion using Eq. (A16). This
leads to the following result:
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h��2
1i����

¼ M8

24�2M4
Plm

2
�

�
�
1� exp

�
2m2

��
2

�pð2�pÞM4
ð�2�p��2�p

in Þ
��
:

(A58)

Let us discuss this result. If the argument of the exponential
in Eq. (A54) is large (in absolute value), then the exponen-
tial becomes negligible and

h��2
1i����

’ M8

24�2M4
Plm

2
�

¼ 3H4
inf

8�2m2
�

; (A59)

where we used H2
inf ’ M4=ð3M2

PlÞ. It was suggested in

Ref. [9] that this formula describes the small field case.
But, as was noticed before, the argument of the exponential
in Eq. (A54) can also be small and, in this case, one has

h��2
1i����

’ M4�2

12�2pð2� pÞM4
Pl

ð�2�p
end ��2�p

in Þ

’ H2
inf

4�2
NT: (A60)

We notice that this last expression is similar to Eq. (A29).
The only difference is that we do not have the presence of
an additional factor 1=2 with respect to the standard case.
This is because, in the case of small field inflation, the
Hubble parameter is almost constant and, hence, one ob-
tains the de Sitter result. We conclude that if m� &
Hinf=

ffiffiffiffiffiffiffi
NT

p
, then the variance is given by Eq. (A60) while

if Hinf=
ffiffiffiffiffiffiffi
NT

p
& m� & Hinf , it is given by the Bunch-Davis

expression (A59). Finally, if m� >Hinf , then the variance
becomes negligible.

As was done for the case of chaotic inflation, one can
also express the variance in terms of the parameters of the
model. Let us start with the case �� MPl. In the regime
where the Bunch-Davis term dominates, the variance can
be written as

h��2
1i����

M2
Pl

’ 1:63� 1011p4½pðp� 2ÞN��4ðp�1Þ=ðp�2Þ

�
�

m�

105 GeV

��2� �

MPl

�
4p=ðp�2Þ

: (A61)

For p ¼ 2:5 and m� ¼ 105 GeV, this gives
h��2

1i����=M2
Pl ’ 1:79� 10�9ð�=MPlÞ20 which implies

that 7:6� 10�99 & h��2
1i����

=M2
Pl & 1:79� 10�29. On

the other hand, if p ¼ 3 and m� ¼ 105 GeV, this leads
to h��2

1i����
=M2

Pl ’ 5:15� 10�5ð�=MPlÞ12 which means

that 6:7� 10�99 & h��2
1i����

=M2
Pl & 6:35� 10�30N2

T.

Finally, if p ¼ 4 and m� ¼ 105 GeV, this means that
h��2

1i����=M2
Pl ’ 0:01ð�=MPlÞ8 which implies that 9:2�

10�99 & h��2
1i����

=M2
Pl & 6:5� 10�30N2

T. We see that

we always find a very small contribution. It is easy to see
that it originates from the fact that the energy scale of
inflation is very small and that we always haveM4=M4

Pl �
m�=MPl. Let us now consider the other regime, given by
Eq. (A60) and where the Bunch-Davis term is subdomi-
nant. In this case, the variance can be expressed as

h��2
1i����

M2
Pl

’ 2:16� 10�9NTp
2½pðp� 2ÞN��2ðp�1Þ=ðp�2Þ

�
�
�

MPl

�
2p=ðp�2Þ

: (A62)

Therefore, if m� ¼ 105 GeV and p ¼ 3, one obtains
h��2

1i����
=M2

Pl ’ 3:84� 10�17NTð�=MPlÞ6. This gives

the following range of values: 1:35� 10�29N2
T &

h��2
1i����

=M2
Pl & 3:8� 10�23NT. This leads to a signifi-

cant constraint only if the number of e-folds is large
(remembering that, for p ¼ 3, the formula applies only if
NT � 1:84� 106, see above). Taking this upper limit, one

arrives at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h��2

1i����

q
=MPl ’ 8:3� 10�9 which, besides

being an extreme case, remains small in comparison to
what was found in the case of large field models. If p ¼ 4,
one has h��2

1i����
=M2

Pl ’ 5:4� 10�16NTð�=MPlÞ4 and the
same conclusion can be reached. However, the extreme
case evoked before becomes more significant as one ob-

tains
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h��2

1i����

q
=MPl ’ 1:4� 10�5.

Let us also consider the regime where �=MPl * 1 or
�=MPl � 1. As mentioned above, in this situation, the
argument of the exponential in Eq. (A54) is always small
and Hinf � 1013 GeV. This means that one is always in the
case where the Bunch-Davies term is subdominant. Then,
given that NT > 60, one obtains the robust lower limit

h��2
1i1=2����

* 4:2� 10�6MPl: (A63)

Let us now turn to the other contribution to the variance
originating from the inflaton noise. It can be expressed as

h��2
1i��1��1

¼ � �4m4
��

2
cl

24�2M4
PlM

4

1

�pð4� 3pÞ
�

�
1

ð4� 2pÞð4� pÞ�
4�p

þ 4� 3p

p2ð4� 2pÞ�
p�4�2p

in � 1

2p2
�2p�4�3p

in

� 4� 3p

2p2ð4� pÞ�
4�p
in

�
: (A64)

The analysis is complicated by the fact that the dominant
term depends on whether p < 4 or p > 4. Since, previ-
ously, we have mainly considered situations where p < 4,
we will restrict ourselves to this case. In addition, very
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large values of p appear rather unnatural form a high
energy physics point of view. Therefore, in the case of
small field inflation, the dominant term can be written as

h��2
1i��1��1

’ �4m4
��

2
cl

24�2M4
PlM

4

� 1

pð4� 3pÞð4� 2pÞð4� pÞ�
4�p
end :

(A65)

In the regime where �=MPl � 1, the term can be re-
expressed as

h��2
1i��1��1

M2
Pl

’ 4:7� 10�50
½pðp� 2ÞN�2ðp�1Þ=ðp�2Þ

p3ð4� 3pÞð4� 2pÞð4� pÞ
�

�
2

p2

�ð4�pÞ=ð2p�2Þ� m�

105 GeV

�
4
�
�cl

MPl

�
2

�
�
�

MPl

�
pðp�4Þ=½ðp�2Þðp�1Þ�

: (A66)

If p ¼ 2:5 and m� ¼ 105 GeV, then one obtains
h��2

1i��1��1
=M2

Pl ’ 1:9� 10�41ð�cl=MPlÞ2ð�=MPlÞ�5.
But we have seen before that, if p ¼ 2:5, the argument of
the exponential in Eq. (A54) is always large (and negative).
This means that the modulus is exponentially killed during
inflation and, hence, negligible at the end of inflation. In
this case, the contribution h��2

1i��1��1
=M2

Pl is also negli-

gible. If p ¼ 3, the story is slightly different. Indeed, for

m� ¼ 105 GeV, one obtains h��2
1i��1��1

=M2
Pl ’

6� 10�44ð�cl=MPlÞ2ð�=MPlÞ�3=2. If 1:5� 10�8 <
�=MPl < 8:4� 10�8N1=6

T , the argument of the exponential
in Eq. (A54) is large and the same conclusion as before

applies. But when 8:4� 10�8N1=6
T <�=MPl � 1, the ar-

gument is small and the modulus is almost frozen, �cl ’
�in. In this case, this implies that 1:9� 10�42ð�in=MPlÞ2 &
h��2

1i��1��1
=M2

Pl & 7:8� 10�41N1=4
T ð�in=MPlÞ2. We see

that this contribution remains very small.
Let us now consider the case where �=MPl > 1. As

already mentioned, this means that �end ’ �. In addition,
we have shown before that, in this regime, the modulus is
almost frozen during inflation. As a consequence, the
variance due to the inflaton noise can be expressed as

h��2
1i��1��1

M2
Pl

’ 3:3� 10�66
1

pð4� 3pÞð4� 2pÞð4� pÞ
�

�
m�

105 GeV

�
4
�
�in

MPl

�
2
�
�

MPl

�
4
: (A67)

We conclude that this contribution is negligible unless one
takes very large and unrealistic values of �.

After having estimated the variance, one can now cal-
culate the correction to the mean value. The nonzero con-
tributions to h��2i read

h��2ij��2
¼�2m2

��cl

96�2M4
Pl

1

�pð4� 3pÞ
�

�
�2�p� 4� 3p

p
�p�2�2p

in

��2p�2�4�3p
in þ 4� 3p

p
�2�p

in

�
; (A68)

h��2ij��2
1
¼ �2m2

��cl

48�2M4
Pl

1

�pð4� 3pÞ
�
p� 1

2� p
�2�p

� 1

2
�2p�2�4�3p

in þ 4� 3p

2ð2� pÞ�
2�p
in

�
;(A69)

h��2ij��1��1
¼ � �4m4

��cl

48�2M4
PlM

4

1

�pð4� 3pÞ
�

�
1

ð4� 2pÞð4� pÞ�
4�p

þ 4� 3p

p2ð4� 2pÞ�
p�4�2p

in � 1

2p2
�2p�4�3p

in

� 4� 3p

2p2ð4� pÞ�
4�p
in

�
: (A70)

We notice that the corrections to the mean value are of the

same order of magnitude as h��2
1i1=2��1��1

. Therefore, fol-

lowing the above analysis, one can safely conclude that
these contributions are negligible.

b. Modulus potential: V� ¼ c2iH
2�2=2

If the modulus mass is dominated by a Hubble term
contribution from supergravity effects, one obtains the
following results for the classical trajectory and the quan-
tum corrections:

�cl ¼ �in exp

�
c2i�

2

3M2
Pl

1

�pð2� pÞ ð�
2�p ��2�p

in Þ
�
:

(A71)

At this stage, one can reproduce the discussion of the
previous section and study the argument of the exponential.
It is easy to show that it can be expressed as

� c2i�
2

3M2
Plpðp� 2Þ�

2�p
in ’ � c2i

3
NT: (A72)

We see that the above formula is nothing but Eq. (A54)
with the time-dependent mass ciH. The argument of the
exponential can be large or small depending on the pa-
rameter ci and the total number of e-folds. But, as already
mentioned in the section devoted to chaotic inflation, if
ci * 0:22, then it is always greater than one given the fact
that NT > 60.
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The variance of the first order correction is made of the
combination of the following two terms, as above. The
term due to the modulus noise reads

h��2
1i����

¼ M4

8�2M2
Plc

2
i

�
1� exp

�
2c2i�

2

3M2
Pl

1

�pð2� pÞ
� ð�2�p ��2�p

in Þ
��
: (A73)

If the argument of the exponential in Eq. (A71) is large,
then one has

h��2
1i����

’ M4

8�2M2
Plc

2
i

¼ 3H4
inf

8�2ðciHinfÞ2
; (A74)

and one recovers the Bunch-Davis term with a mass cHinf .
On the contrary, if the argument of the exponential in
Eq. (A71) is small, then the expression of the variance
reads

h��2
1i����

’ M4NT

12�2M2
Pl

¼ H2
inf

4�2
NT; (A75)

and one recovers the de Sitter result. In particular, the term
c2i has cancelled out, as, in the corresponding situation, the
modulus mass m� cancelled out in the previous section.

As before, one can also express the above results directly
in terms of the relevant parameters. Let us start with the
situation where the argument of the exponential is large. In
the regime �=MPl � 1, this gives

h��2
1i����

M2
Pl

’ 3:24� 10�9
p2

c2i
½pðp� 2ÞN��2ðp�1Þ=ðp�2Þ

�
�
�

MPl

�
2p=ðp�2Þ

: (A76)

If p ¼ 2:5, this gives h��2
1i����

=M2
Pl ’ 3:39�

10�19c�2i ð�=MPlÞ10 and if p ¼ 3, one has

h��2
1i����=M2

Pl ’ 5:76� 10�17c�2i ð�=MPlÞ6. Given that

the above estimates are valid in the regime where �=MPl

is small, we conclude that the variance is always very small
unless ci takes tiny and unrealistic values.

In the regime �=MPl * 1, one obtains

h��2
1i1=2����

’ 6:8� 10�7
MPl

c2i
: (A77)

Contrary to the previous case, the above formula indicates
that the quantum effects can now be significant, especially
when the parameter ci is small (ci < 0:22).

If the argument of the exponential in Eq. (A71) is small,
then it is easy to see that the variance is now equal to
2NTc

2
i =3 times the variance given in Eq. (A74). In the

regime �=MPl � 1, the factor NTc
2
i is unlikely to com-

pensate the smallness of the variance obtained in Eq. (A74)
(unless the total number of e-folds is huge), and we con-
clude that the quantum effects can become arbitrarily small
in this regime.
On the other hand, if �=MPl * 1, then one obtains

h��2
1i����

=M2
Pl ’ 3� 10�13NT and, given the fact that

the total number of e-folds must be larger than 60, one
obtains the following lower bound:

h��2
1i1=2����

* 4:2� 10�6MPl: (A78)

Let us now consider the second contribution to the
variance due to the inflaton noise. Its expression can be
written as

h��2
1i��1��1

¼ � c4i�
2
clM

4�4

216�2M8
Pl

1

�pð4� 3pÞ
�

�
1

ð4� 2pÞð4� pÞ�
4�p

þ 4� 3p

2p2ð2� pÞ�
p�4�2p

in � 1

2p2
�2p�4�3p

in

� 4� 3p

2p2ð4� pÞ�
4�p
in

�
: (A79)

As discussed in the previous section in a similar context,
the amplitude of this term depends on whether p < 4 or
p > 4. Here we restrict ourselves to the case p < 4.
Moreover, if the modulus significantly evolves during in-
flation, then the above contribution becomes negligible. So
we assume that c2iNT=3� 1which implies that ci is small.

In this situation, if �=MPl � 1, one has

h��2
1i��1��1

¼c4i�
2
clM

4�4

216�2M8
Pl

1

pð4�3pÞð4�2pÞð4�pÞ
� 1

ð4�2pÞð4�pÞ�
4�p
end

’1:2�10�10
pc4i

ð4�3pÞð4�2pÞð4�pÞ
�
�
2

p2

�ð4�pÞ=ð2p�2Þ½pðp�2ÞN��2ðp�1Þ=ðp�2Þ

�
�
�in

MPl

�
2
�
�

MPl

�ð5p2�8Þ=½ðp�2Þðp�1Þ�
M2

Pl:

(A80)

This term is obviously tiny, in particular, because the
power of the term �=MPl is positive. Hence, the contribu-
tion due to the inflaton noise can be neglected.
The case where �=MPl * 1 remains to be studied.

Straightforward considerations lead to
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h��2
1i��1��1
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’ 1:68� 10�14
c4i

pð4� 3pÞð4� 2pÞð4� pÞ
�

�
�in

MPl

�
2
�
�

MPl

�
4
: (A81)

This contribution is small unless �=MPl � 1.
Finally, the (nonzero) second order corrections to the

mean value of the modulus vacuum expectation value read:

h��2ij��2
¼ c2i�cl�

2M4

288�2M6
Pl

1

�pð4� 3pÞ
�
�2�p � 4� 3p

p
�p�2�2p

in ��2p�2�4�3p
in þ 4� 3p

p
�2�p

in

�
;

h��2ij��2
1
¼ c2i�cl�

2M4

288�2M6
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1
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�2�p ��2p�2�4�3p
in þ 4� 3p
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�2�p
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�
;

h��2ij��1��1
¼ � c4i�cl�

4M4

432�2M8
Pl

1

�pð4� 3pÞ
�

1

ð4� 2pÞð4� pÞ�
4�p þ 4� 3p

2p2ð2� pÞ�
p�4�2p

in � 1

2p2
�2p�4�3p
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� 4� 3p

2p2ð4� pÞ�
4�p
in

�
: (A82)

It is clear that the order of magnitude of those terms is
similar to h��2

1i1=2��1��1
. Hence one concludes that the

corrections to the mean value can be safely neglected, at
least when �=MPl is not too large.

APPENDIX B: DETAILS OF THE SOLUTIONS TO
THE EQUATIONS OF MOTION IN PRESENCE OF

HUBBLE SCALE MASS CORRECTIONS

In this appendix, we study in detail the solutions of the
modulus equation of motion in the postinflationary epoch
in the case where the potential receives supergravity
corrections.

1. Case þc2H2=2

The solution to the equation of motion has been obtained
by Lyth & Stewart [17]. The field equation can indeed be
put in the following form:

ðm�tÞ2 ~�00 þ ðm�tÞ~�0 þ
�
ðm�tÞ2 þ p2c2 � ð3p� 1Þ2

4

�
~�

¼ p2c2�0ðm�tÞð3p�1Þ=2; (B1)

with the following definition:

~� 	 ðm�tÞð3p�1Þ=2�: (B2)

A prime denotes derivative with respect to m�t, while p
characterizes the global equation of state of the Universe:
H ¼ p=t, with p ¼ 2=3 for matter domination or p ¼ 1=2
for radiation domination. The above field equations takes
the form of a Lommel equation. Out of convenience, we
write the general solution as the sum of a homogeneous
solution with constants �1 and�2, and a particular solution
given in terms of a hypergeometric function:

�ðtÞ ¼ �1ðm�tÞ�ð�þ1Þ½J�ðm�tÞ þ J��ðm�tÞ�
þ �2ðm�tÞ�ð�þ1Þ½J�ðm�tÞ � J��ðm�tÞ�

þ �01F2

�
1;
�� �þ 3

2
;
�þ �þ 3

2
;�ðm�tÞ2

4

�
;

(B3)

where we have defined

� ¼ 3p� 3

2
; �2 ¼ ð�þ 1Þ2 � p2c2: (B4)

The initial conditions are defined at t ¼ p=Hinf as follows:
� ¼ �inf and�

0 ’ 0. As a consequence, the coefficients�1

and �2 can then be expressed as

�1 ¼ ð�inf � �0Þ
�
pm�

Hinf

�
�þ1��ð1þ �Þ

22��

�
1þ�þ 1

�

�

�
�
pm�

Hinf

��� þ �ð1� �Þ
22þ�

�
1��þ 1

�

��
pm�

Hinf

�
�
�
(B5)

�2 ¼ ð�inf � �0Þ
�
pm�

Hinf

�
�þ1��ð1þ �Þ

22��

�
1þ�þ 1

�

�

�
�
pm�

Hinf

��� � �ð1� �Þ
22þ�

�
1��þ 1

�

��
pm�

Hinf

�
�
�
:

(B6)

Obviously, if �inf ¼ �0, meaning that the vev of � at the
end of inflation corresponds with the high energy mini-
mum, then �1 ¼ �2 ¼ 0. The solution then reduces to the
particular solution.
We now study the behavior of the solutions according to

the values of the parameters. Let us start with the situation
where � is real, namely, c < ð�þ 1Þ=p. At early times,
m�t� 1 (hence H� m�) and at late times, m�t� 1
(hence H� m�), the particular and homogeneous solu-
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tions evolve differently. At early times, the particular so-
lution remains constant,

�partðtÞ ’ �0; m�t� 1: (B7)

Therefore, before the onset of oscillations, the particular
solution does not undergo any redshift. On the contrary, at
late times, one obtains

�partðtÞ ’ �0ðm�tÞ���3=2 2
�þ3=2ffiffiffiffi
�
p �

�
�

2
þ�þ 3

2

�

� �

�
��

2
þ�þ 3

2

�
sin

�
m�tþ �

4
��þ 1

2
�

�
;

m�t� 1; (B8)

and, in this regime, one has that �partðtÞ / a�3=2 regardless
of p. Since, in the limit m�t� 1, the supergravity correc-
tions are by definition negligible, one can write �� ’
m2

��
2
part;osciða=aosciÞ�3=2. From the above formula, one

deduces that the quantity �part;osci can be expressed as

�part;osci ’ 2�þ3=2ffiffiffiffi
�
p �

�
�

2
þ�þ 3

2

�
�

�
��

2
þ�þ 3

2

�
�0:

(B9)

Let us notice that the modulus energy density at m�t� 1
(or H ’ m�) is not given by m2

��
2
part;osci=2 only. Indeed, at

m�t� 1, the term c2H2 can not be neglected and partici-
pate to the energy density at the onset of oscillations.
Therefore, strictly speaking, m2

��
2
part;osci=2 only represents

the contribution of the term m2
��

2=2 at H ¼ m�. However
what really matters is the modulus energy density at the
time of dark matter freeze-out. In this regime, the super-
gravity corrections are negligible. As a consequence, one
only needs to take into account the contribution due to the
term m2

��
2=2 and to express it in terms of its value at the

onset of oscillations. Then the contribution of the particular
solution to the energy density contained in the modulus is
given by

��;part;osci ’ 22�þ2

3�
�2

�
�

2
þ�þ 3

2

�

� �2

�
��

2
þ�þ 3

2

��
�0

MPl

�
2
: (B10)

Note that this result differs from that obtained for the
purely quadratic potential: in the latter case, ��;osci is

controlled by the value of � at the end of inflation, while
here, it is controlled by the value of the local minimum �0

generated by supergravity corrections.
Another issue concerns the values of the parameters �

and � that should be inserted in the above equation. If
Trh > Tosci, then one should use �RD and �RD, where
quantities indexed with ‘‘RD’’ (respectively, ‘‘MD’’) are
to be evaluated for a radiation dominated (respectively,
matter dominated) era, that is to say with p ¼ 1=2 (re-
spectively, p ¼ 2=3). The justification is the following
one. Just after inflation, the universe is matter dominated

and the solution (B3) with p ¼ 2=3 should be used in order
to describe the evolution of �. Since, in the present case,
we study a situation where the onset of oscillations hap-
pens after reheating, one is in fact in the regime m�t� 1
during the whole matter dominated era and, as a result, the
particular solution remains constant and equal to �0 during
this phase. Then, after the reheating is completed, the
universe becomes radiation dominated and, in principle,
one should solve again the equation of motion but, this
time, with p ¼ 1=2 rather than p ¼ 2=3 and with ‘‘new
initial conditions’’ inherited from the reheating era.
However, at the beginning of the radiation era, we are still
before the onset of oscillations (i.e. still in the regime
m�t� 1) and the solution with p ¼ 1=2 is still constant
since this asymptotic behavior does not depend on p.
Consequently, the matching of the two solutions is in fact
trivial. This is means that, in the radiation dominated era,
the relevant solution is nothing but the solution (B3) with
p ¼ 1=2. Therefore, at late times, it is sufficient to use
Eq. (B8) with p ¼ 1=2, hence the above claim.
If Tosci > Trh, the situation is slightly more complicated.

This time, the onset of oscillations occurs during the matter
dominated phase and the matching between the solution
with p ¼ 2=3 and p ¼ 1=2 should be done in them�t� 1
regime. However, as before, the two solutions are the same

because � scales as a�3=2 independently of p (see above).
As a result, one can ignore the matching and still work with
the solution with p ¼ 2=3 at late times in the radiation
dominated era. Therefore, if Tosci > Trh, one should use
�MD and �MD.
Let us now consider the homogeneous solution. At early

times, it can be approximated as

�homðtÞ ’ 1

2
ð�inf � �0Þ

�
1þ 1þ�

�

��
tHinf

p

����1þ�
m�t

� 1; (B11)

where one has used the expressions (B5) and (B6). In
particular, the last terms in Eqs. (B5) and (B6) become
negligible which implies �1 ’ �2 and, therefore, the terms
proportional to J�� cancel out. One notices that the homo-
geneous solution does not remain constant prior to the
onset of oscillations as it was the case for the particular

solution. One finds that ��;kin and ��;pot scale as /
t2ð���2þ�Þ. For a matter dominated era, one therefore finds

�� / a�9=2þ3�, while for a radiation dominated era one has
�� / a�5þ4�. On the other hand, the late time evolution of
� reads as follows:

�homðtÞ ’ ðm�tÞ���3=2
� ffiffiffiffi

8

�

s
�1 cos

�
m�t� �

4

�
cos

�
�
�

2

�

þ
ffiffiffiffi
8

�

s
�2 sin

�
m�t� �

4

�
sin

�
�
�

2

��
;

m�t� 1: (B12)
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As expected, one finds the standard evolution at late times,
with �� / a�3 since �þ 3=2 ¼ 3p=2. If one uses the
expressions of �1 and �2 given in Eqs. (B5) and (B6),
this can be rewritten as

�homðtÞ ’ ðm�tÞ���3=2ð�inf � �0Þ
�
pm�

Hinf

�
�þ1��

�
ffiffiffiffi
2

�

s
�ð1þ �Þ
21��

�
1þ�þ 1

�

�

� cos

�
m�t� �

4
� ��

2

�
;

m�t� 1: (B13)

As before, one should distinguish two different cases. If
Tosci > Trh, then the onset of oscillations occurs in the
matter dominated era. As a consequence, at the end of
the reheating stage (in the regime m�t� 1), the homoge-
neous solution is given by

�homðtÞ ’ ðm�tÞ��MD�3=2
ffiffiffiffi
2

�

s
ð�inf � �0Þ

�
�
pMDm�

Hinf

�
�MDþ1��MD �ð1þ �MDÞ

21��MD

�
�
1þ�MD þ 1

�MD

�
cos

�
m�t� �

4
� ��MD

2

�
:

(B14)

Then, one should match this solution to the solution valid
in the radiation dominated era. However, as in the case of
the particular solution, since one is in the regimem�t� 1,

the two solutions scale as a�3=2 and the matching becomes
trivial. As a consequence, one finds

��;hom;osci ’ 1

6

�
�inf � �0

MPl

�
2
�
pMDm�

Hinf

�
2ð�MDþ1��MDÞ

� 22�MD�1

�
�2ð1þ �MDÞ

�
1þ�MD þ 1

�MD

�
2
:

(B15)

Finally, the case Trh > Tosci remains to be treated. In this
situation, one needs to take into account the change in the
values of � and � and there is no other choice than
performing the matching explicitly at the time of reheating.
This time, the matching turns out to be nontrivial. The
whole matter dominated era occurs in the regimem�t� 1
and, to leading order [using again the expressions (B5) and
(B6)] one obtains that

�jrh ’ �inf � �0

2

�
1þ�MD þ 1

�MD

��
Hinf

Hrh

�
�MD��MD�1

;

(B16)

t
d�

dt

��������rh
’ �inf � �0

2

�
1þ�MD þ 1

�MD

�
ð��MD � 1þ �MDÞ

�
�
Hinf

Hrh

�
�MD��MD�2

: (B17)

In the radiation dominated era, the solution is given by� ¼
�1ðm�tÞ��RD�1J�RD

ðm�tÞ þ �2ðm�tÞ��RD�1J��RD
ðm�tÞ

and one should determine the coefficients �1 and �2 by
matching, at reheating, the above solution to the values
(B16) and (B17). Straightforward calculations show that
�1 � �2. Then, using the asymptotic behavior of the
Bessel function J�RD

ðm�tÞ that appears in the dominant

branch of the solution in the regime m�t� 1, i.e. after
the onset of oscillations, one can check that this solution

scales as a�3=2, the proportionality coefficient being, as
before, directly related to ��;hom;osci. One finds

��;hom;osci ’ 1

6

�
�inf � �0

MPl

�
2
�
pMDm�

Hrh

�
2ð�RDþ1��RDÞ

�
�
Hrh

Hinf

�
2ð�MDþ1��MDÞ 22�RD�3

�

�2ð1þ �RDÞ
�2
RD

�
�
1þ�RD þ 1

�RD

�
2

� ð�MD ��RD þ �MD þ �RDÞ2: (B18)

As expected, one can check that, in the limit where all the
quantities labeled ‘‘RD’’ becomes equal to their counter-
parts labeled ‘‘MD’’, the above expression exactly reduces
to Eq. (15).
Summarizing our result, one has

��;osci ’ 2
2�MDþ2

3�
�2

�
�MDþ 3þ �MD

2

�

��2ð�MDþ 3� �MD

2

��
�0

MPl

�
2þ 1

6
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�inf ��0
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2
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pMDm�
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�
2ð�MDþ1��MDÞ 22�MD�1

�

��2ð1þ �MDÞ
�
1þ�MDþ 1

�MD

�
2
;

Tosci >Trh; (B19)

��;osci ’ 2
2�RDþ2

3�
�2

�
�RDþ 3þ �RD

2

�

��2

�
�RDþ 3� �RD

2

��
�0

MPl

�
2þ 1

6

�
�inf ��0

MPl

�
2

�
�
pMDm�

Hrh

�
2ð�RDþ1��RDÞ�Hrh

Hinf

�
2ð�MDþ1��MDÞ

� 22�RD�3

�

�2ð1þ �RDÞ
�2
RD

�
1þ�RDþ 1

�RD

�
2

� ð�MD��RDþ �MDþ �RDÞ2;
Tosci <Trh: (B20)
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Let us emphasize that, in order to obtain the above ex-
pressions, we have assumed that the total energy density at
the onset of oscillations is only made of two pieces, one
originating from the particular solution and the other from
the homogeneous solution. This means that we have ne-
glected the cross terms that, in principle, should contribute.
This is justified by the fact that, in practice, one solution
always dominates the other. Which one is dominating
depends on the region explored in the parameter space. It
is also convenient to define

A 1 	 2�MDþ3=2ffiffiffiffi
�
p �

�
�MD þ �MD þ 3

2

�
�

�
�MD � �MD þ 3

2

�
;

(B21)

andA2 expressed in the same way asA1 above, but with
�MD and �MD replaced by �RD and �RD; The coefficients
B1 and B2 are given by

B1 	
ffiffiffiffi
2

�

s
�ð1þ �MDÞ

21��MD

�
1þ�MD þ 1

�MD

�
; (B22)

B2 	 2�RD�3=2ffiffiffiffi
�
p �ð1þ �RDÞ

�RD

�
1þ�RD þ 1

�RD

�
� ð�MD ��RD þ �MD þ �RDÞ: (B23)

With these definitions, the above expressions (B19) and
(B20) exactly match the ones used in the main text [see
Eqs. (49) and (50)].

The other possibility is when � is imaginary, namely,
c > ð�þ 1Þ=p. For p ¼ 2=3, this case corresponds to c >
3=4. Writing � ¼ i�̂, one has �̂ > 0 growing with c. This
brings in nontrivial modifications for the scaling of the
modulus energy density. Following the same reasoning as
before, one finds that the contribution due to the particular
solution can be expressed as

��;part;osci ’ 22�þ2

3�
�2

�
�þ 3

2
þ i

�̂

2

�

� �2

�
�þ 3

2
� i

�̂

2

��
�0

mPl

�
2
: (B24)

As before, in the above equation, one should use quantities
labeled ‘‘MD’’ or ‘‘RD’’ according to Tosci > Trh or Tosci <
Trh. The difference with Eq. (B10) comes from the fact that
the numerical prefactors, which are of order unity if � is
real, may become quite small if � is pure imaginary and its
modulus is large. This point is elaborated further in more
detail in the main text.

Turning to the homogeneous solution, we finds that it
scales as follows. At early times, one no longer finds �1 ’
�2 and this implies that

�ðtÞ ’ t���1; m�t� 1: (B25)

Keeping in mind that � is imaginary, this gives the follow-

ing scaling of the kinetic energy density: �kin;hom /
t2ð���2Þ, and it is easy to see that at early times, the

potential energy density scales similarly. At late times,
the homogeneous solution evolves as

�ðtÞ ’ ðm�tÞ���3=2
�
�1

ffiffiffiffi
8
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s
cos
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4
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�̂�
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ffiffiffiffi
8

�

s
sin

�
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4

�
sinh

�
�̂�

2

��
;

m�t� 1: (B26)

As expected and as it was the case before for the case of �

real, one can check that � scales as a�3=2 regardless of p.
At this point, as was done before in the case where � was
real, one has to distinguish the case where the onset of
oscillations occurs before or after the reheating. Let us start
with the case Tosci > Trh. Since the oscillations start in the
matter dominated era, one is interested in the regime
m�t� 1 with p ¼ 2=3. The corresponding solution is
given by Eq. (B26). Expressing the coefficients �1 and
�2 using Eqs. (B5) and (B6), one obtains the following
result:

� ’ ðm�tÞ��MD�3=2 �inf � �0
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��̂MD

2
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þ sin�MD sin

�
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4

�
sinh

�
��̂MD

2

��
; (B27)

where �MD 	 �̂MD ln½pm�=ð2HinfÞ� ��MD ��MD,
�MD being the phase of the complex number �ð1þ
i�̂MDÞ and �MD the phase of 1� ið�MD þ 1Þ=�̂MD. As

usual, this function scales as a�3=2. Then one should match
this solution with the solution in the radiation dominated
era (still in the regime m�t� 1). However, the solution in

the radiation dominated era also scales as a�3=2. As a
consequence, the matching is trivial. Therefore, using the
above equation in the limit where j�j � 1 (which simply
amounts to replace, in the above expression, sinhx and
coshx by ex=2), one obtains

��;hom;osci ’ 1

6

�
�inf � �0

MPl
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2
�
pMDm�

Hinf

�
2ð�MDþ1Þ

� �̂MD

�
1þ

�
�MD þ 1

�̂MD

�
2
�
;

Tosci > Trh; (B28)

where we have ignored the remaining trigonometric func-
tions since they give contributions of order one. It is
remarkable that all the exponential dependence in �̂ has
cancelled out in this expression.
When Trh > Tosci, the onset of oscillations occurs in the

radiation dominated era and one additional matching is
required as explained previously. At reheating, we have
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�jrh ’ ð�inf ��0Þ
�
Hinf

Hrh

���MD�1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(B29)
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��
:

(B30)

These equations should be compare with Eqs. (B16) and
(B17). As before, in the radiation dominated era, the
solution is given by � ¼ �1ðm�tÞ��RD�1J�RD

ðm�tÞ þ
�2ðm�tÞ��RD�1J��RD

ðm�tÞ, where �RD is now a complex

number. The coefficients �1 and �2 are determined by
matching the previous solution to the values (B29) and
(B30). Then, the solution is completely specified. In the
regime m�t� 1, one obtains
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: (B31)

As expected, this solution scales as a�3=2. Again, it is
interesting to observe how any exponential dependence
in �̂RD is in fact exactly cancels out. It is also interesting
to study the case where all the quantities labeled RD
becomes equal to their counterparts labeled MD. In this
case, lengthy calculations using trigonometric identities
show that the term in the curled bracket reduces to

f�g ¼ �̂MD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4

��
; (B32)

and recalling the definition of �MD (which implies that
cos�MD exactly cancels the square root in the above
formula), it is easy to demonstrate that Eq. (B31) exactly
reduces to Eq. (B27). Finally, one obtains

��;osci ’ 1

6

ð�inf � �0Þ2
M2

Pl

�
Hinf

Hrh

��2�MD�2�m�pMD

Hrh

�
2�RDþ2

� 1

�̂RD

�
1þ

�
�MD þ 1

�̂MD

�
2
�
f�g2;

Trh > Tosci: (B33)

This completes our analysis of the case where � is
complex.

As before, the total ��;osci is roughly given by the sum

of ��;hom;osci and ��;part;osci. Summarizing our results one

obtains
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Tosci>Trh; (B34)
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Trh >Tosci: (B35)

These equations are the counterparts of Eqs. (49) and (50)
in the case where the quantity � is complex. As was done
before, it is convenient to define a prefactor A3 (the
equivalent of A1, see before) by

A 3	 2�MDþ1ffiffiffiffi
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(B36)
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As before, if Tosci < Trh, one should rather use a prefactor
A4 defined as A3 above, but with all �MD and �MD

replaced by their values for the radiation dominated era,
�RD and �RD. Finally, for the homogeneous solution, one
introduces the coefficients

B 3 	 �̂1=2
MD

�
1þ

�
�MD þ 1

�̂MD

�
2
�
1=2

; (B37)

B4 	 1ffiffiffiffiffiffiffiffiffi
�̂RD

p
�
1þ

�
�MD þ 1

�̂MD

�
2
�
1=2f�g: (B38)

The above expressions (B34) and (B35) reduce exactly to
the expressions used in the main text, namely, Eqs. (53)
and (54).

2. Case �c2H2=2

As explained in the main text, the potential can be
written under the approximate form:

Vð�Þ ’ 1

2
~c2H2ð�� �nÞ2 þ �n

ðnþ 4Þ!
ð�� �nÞ4þn

Mn
Pl

;

(B39)

with

�n ¼
�ðnþ 3Þ!

�n

c2H2Mn
Pl

�
1=ðnþ2Þ

; ~c2 ¼ ðnþ 2Þc2:
(B40)

The vev �n indicates the (time-dependent) local minimum
of the effective potential.

As discussed in the main text, the potential can be
further approximated by Vð�Þ ’ �n�

nþ4=½ðnþ 4Þ!Mn
Pl�

in the limit �� �n. Then one can show, as follows, that
the field will evolve to values of order�n in a fraction of an

e-fold of order ð�=�nÞ�ðnþ2Þ=2. In the following, we write
�n;inf the value �nðH ¼ HinfÞ. Consider the field to be

initially at rest, _�inf ¼ 0. Then, neglecting the damping
term H _� in the equation of motion, one can rewrite this
latter equation as

H�2
€�

�
jH¼Hinf

’ �c2
�
�inf

�n;inf

�
nþ2

; (B41)

which shows that the field initially evolves on the e-folding
scale announced above. As soon as the field starts to
evolve, it converts its potential energy into kinetic energy;
since this occurs in a fraction of an e-fold, expansion
damping can be ignored and the conversion is nearly fully
efficient: ��;kin ’ Vð�infÞ � Vð�Þ. Once the kinetic energy
dominates over the potential energy, ��;kin / a�6, and one
finds the approximate solution:

� ’ �inf � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�infÞ

p
3Hinf

�
1� H

Hinf

�
; (B42)

assuming matter domination after inflation. The factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�infÞ

p
is introduced to approximate the value _� at

the time at which the kinetic energy of the modulus domi-

nates over the potential energy. The ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�infÞ

p
=Hinf 


�infð�inf=�n;infÞðnþ2Þ=2, therefore the above solution shows

that� evolves down to�n on the aforementioned e-folding
scale.
When �� �n (and H� m�=c), one can approximate

the potential (B39) with the low order term þ~c2H2ð��
�nÞ2. In this case, the solution of the equation of motion for
� is the sum of a particular and an homogeneous solution,
namely,

�ðtÞ ¼ �n�nðtÞ þ �homðtÞ; (B43)

with the definition

�n 	
�

4

ðnþ 2Þ2 þ
2

nþ 2
� 6p

nþ 2
þ p2~c2

��1
p2~c2:

(B44)

The homogeneous solutions can be expressed as follows.
Reintroducing the notation: �2 ¼ ð�þ 1Þ2 � p2~c2, the
solutions read differently according to whether � is real
or imaginary. Let us start with the case � real. In this case,
the solution normalized to negligible initial kinetic energy
and initial value of the modulus �1 reads [42]

�homðtÞ ¼ �1

�
H

Hinf

�
�þ1�1

2

�
1þ�þ 1

�

��
H

Hinf

���
þ 1

2

�
1��þ 1

�

��
H

Hinf

�
�
�
: (B45)

The time dependence is contained in the dependence of
HðtÞ. Of course �1 must be chosen so that the sum of
�hom þ �part takes the right value at the end of inflation.

The question of the initial conditions in this case is dis-
cussed in more detail in the main text (see Sec. III B 2).
Depending on the value of n, either the particular solution
or the homogeneous solutions may dominate at late times.
In general, however, one should expect the homogeneous
solution to decay less rapidly, since this corresponds to:
n < 2ð��þ �Þ=ð�þ 1� �Þ, and during matter domina-
tion, � ¼ �1=2.
Let us now study the case where � is imaginary. As

usual, we write � ¼ i�̂ and, then, the solution reads [42]

�homðtÞ ¼ �1

�
H

Hinf

�
�þ1�

cos

�
�̂ log

�
H

Hinf

��

��þ 1

�̂
sin

�
�̂ log

�
H

Hinf

���
: (B46)

The homogeneous solution scales less rapidly with time
than the particular solution if n <�2�=ð�þ 1Þ.
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APPENDIX C: SOME CONCRETE MODELS OF
MODULI EVOLUTION

In this appendix, we present specific supergravity ex-
amples of inflationary scenarios which give different pre-
dictions of modulus evolution. Since the moduli fields are
scalar fields with a flat potential which eventually get a
supersymmetry-breaking mass of order of the gravitino
mass m3=2, the simplest example is the supersymmetry-

breaking field or the Polonyi field itself (denoted S in what
follows). Therefore, we consider a system consisting of an
inflaton sector and a separate Polonyi sector. In the rest of
this appendix, we assume that the Polonyi sector is char-
acterized by a minimal Kähler potential, KS ¼ jSj2, and a
superpotential given by WS 	 M2

Sð�þ SÞ. Here � is a

constant chosen as � ¼ ð2� ffiffiffi
3
p ÞMPl so that the potential

energy vanishes at its minimum Smin ¼ ð
ffiffiffi
3
p � 1ÞMPl when

the inflaton sector is absent. At the potential minimum the

gravitino mass reads m3=2MPl ¼ heKSmin
=2WSmin

i ¼
M2

Se
2� ffiffi

3
p
. Below we mostly take MPl ¼ 1 but recover it

when appropriate.

1. Small-field inflation models induced by the F-term

First we consider the case inflation is driven by an F-
term according to a small-field scenario. We denote the
fields in the inflaton sector by I collectively although this
sector usually contains two or more fields. We assume a
minimal Kähler potential KI and a superpotential WI that
we do not specify in details. In the following, we define the
F-term scalar potential of each sector by

VðFÞj ¼ eKj½jDjWjj2 � 3jWjj2�; (C1)

where DjWl 	 @jWl þ @jKWl. Our fundamental assump-

tion is that the inflaton and modulus sectors are separated.
Technically, this means K ¼ KI þ KS andW ¼ WI þWs.
Then, the total potential reads

VðFÞtot ¼ eK½jDIWj2 þ jDSWj2 � 3jWj2�
¼ ejSj2VðFÞI ðIÞ þ eKIVðFÞS ðSÞ þ VðFÞint ðI; SÞ; (C2)

where the interaction potential is given by

VðFÞint ¼ ejSj2þKI ½DIWIð@IKIWSÞy þ ðDIWIÞy@IKIWS

þ j@IKIWSj2 þDSWSSW
y
I þ ðDSWSÞySyWI

þ jSj2jWIj2 � 3WyI WS � 3WIW
y
S �: (C3)

Note that the energy scales of VI and VS are given by
VIðIÞ 
 3H2

IM
2
Pl and VSðSÞ ¼ M4

S 
 m2
3=2M

2
Pl where HI

is the Hubble parameter during inflation. Let us also re-
mark that the structure of Eq. (C2) is in fact typical of
supergravity [81]: although the two sectors are separated,
there is an interaction between them because they ‘‘com-
municate’’ through gravity. In the minimal supersymmetric
standard model, this is a possible way to transmit the

breaking of supersymmetry to the observable sector [81].
The same mechanism has also been used to argue that the
quintessence and inflaton fields must interact [82] or to
compute the interaction of dark energy with the observable
sector (see Ref. [83]).
Since we are assuming a small field inflation here one

can easily see that jDIWIj> jWIj, and VI 
 jDIWIj2 

3H2

IM
2
Pl. In this case the modulus acquires a mass

�VI=M
2
Pl 
 3H2

I during inflation. After inflation, jIj takes
a value�MPl and oscillates around the potential minimum
I 	 Imin with VIðIminÞ ¼ 0, so thatWI and DIWI are of the
same order of magnitude on average. If the field oscillation
is dominated by a quadratic potential, we find the time

average of the potential energy VIðIÞ ¼ �totðtÞ=2 ¼
3H2ðtÞM2

Pl=2, so that we can parametrize DIWI 	
c1HMPl,WI 	 c2HM2

Pl with c1 and c2 parameters of order

of unity. If we take KI ¼ jI � Iminj2, the effective potential
for S averaged over an inflaton oscillation period reads

�VtotðS; IminÞ ¼
��

3

2
þ c22

�
H2� f1m3=2H

�
jS

� f2m3=2MPlH

ð3=2þ c22ÞH2� f1m3=2H

��������2

� jf2j2m2
3=2M

2
PlH

2

ð3=2þ c22ÞH2� f1m3=2H
þVSðSÞ þ � � � :

(C4)

Here f1 and f2 are numerical coefficients defined by f1 ¼
2�ðc2 þ c2Þe

ffiffi
3
p �2 and f2 ¼ 2c2e

ffiffi
3
p �2, respectively. Thus

in the early field oscillation stage when H is larger than
m3=2, the modulus has a mass larger than H and its mini-

mum is located at

Smin 

f2m3=2MPlH

ð3=2þ c22ÞH2 � f1m3=2H
: (C5)

As H decreases, it eventually settles down to the absolute

minimum Smin ¼ ð
ffiffiffi
3
p � 1ÞMPl with a mass

ffiffiffi
2
p

m3=2 as

determined by VSðSÞ. Hence this model can be regarded
as an example of models where the modulus acquires a
mass larger than the Hubble parameter during both infla-
tion and the subsequent field oscillation regimes with a
shift of the minimum of order of MPl typically.

2. D-term hybrid inflation

Next we consider the case in which inflation is induced
by the D-term potential. As the simplest realization we
consider a hybrid inflation model originally proposed in
Refs. [84,85]. Although this model is not observationally
viable any more due to the largeness of the cosmic string
tension produced after inflation, a number of remedies
have been proposed e.g. in Ref. [86]. In order to avoid
inessential complexity, we stick to the original model here
to adopt the superpotential with three chiral superfields
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WI ¼ �Q�þ�� together with WS ¼ M2
Sð�þ SÞ as in the

previous subsection. �� has a U(1) gauge charge �1,
whileQ is neutral. Assuming the minimal Kähler potential,
K ¼ jQj2 þ j�þj2 þ j��j2 þ jSj2, the scalar potential is

given by Vtot ¼ VðFÞtot þ VðDÞ, with

VðFÞtot ¼ eK½�2ðjQ�þj2 þ jQ��j2 þ j�þ��j2
þ 3jQ�þ��j2Þ þ ðj�þj2 þ j��j2 þ jSj2 þ jQj2Þ
� j�Q�þ�� þM2

Sð�þ SÞj2 � 3M4
S�

2 þM4
S

� 2M4
S�ðSþ SyÞ �M4

SjSj2 þ �M2
SSQ

y�yþ�y�
þ �M2

SS
yQ�þ���;

VðDÞ ¼ g2

2
ðj��j2 � j�þj2 � �Þ2; (C6)

where the last term is the D-term contribution with � > 0
being the Fayet-Illiopoulos term. For jQj> g

ffiffiffi
�
p

=� 	
Qcri, the potential minimum with respect to �� is found
at �� ¼ 0 and inflation is induced by the D-term energy
density g2�2=2. Without WS the F-term potential vanishes
in this regime and the motion of the inflaton is governed by
a potential generated by quantum corrections. Then terms
of the potential relevant to S are given by

VðFÞtot ðS;Q;�� ¼ 0Þ ¼ M4
Se
jSj2þjQj2½ðjSj2 þ jQj2Þj�þ Sj2

� 3�2 � 2�ðSþ SyÞ � jSj2 þ 1�;
(C7)

so that the modulus acquires an extra mass squared,

�m2
Seff �

M4
S

M4
Pl

jQj2 � jQj
2

M2
Pl

m2
3=2; (C8)

which is smaller than the original one as long as jQj is
smaller than MPl. The shift of the potential minimum of S
is of order of jQj2=MPl. Thus in this model the modulus
mass remains much smaller than the Hubble parameter
during inflation, and the shift of the minimum may also
be much smaller than MPl depending on the value of Q.
Note, however, that the field configuration of S is deter-
mined by long-wave quantum fluctuations in this case.

As Q becomes smaller than Qcri the instability occurs
with respect to �� and inflation is terminated. In this
regime the potential for S acquires an additional term,

�VSðSÞ ¼ ejSj2þ����2jQ��j2. This term induces a correc-
tion to the modulus mass term

�m2
Seff ¼

�2jQj2j��j2
M2

Pl

¼ �2jQj2
M2

Pl

�
�� �2

g2
jQj2

�
; (C9)

where we have inserted the minimum of j��j2 for Q<
Qcri. The last expression takes its maximum at jQj2 ¼
jQcrij2=2 and is given by �m2

Seff ¼ g2�2=4. This means

that after inflation the effective mass of the Polonyi field
rises significantly to the level comparable to the Hubble
parameter at that time. When this induced mass term is

operative, the potential minimum for jSj takes a value
Oðm2

3=2=H
2ÞMPl which departs from the eventual mini-

mum by �MPl.

3. Hybrid inflation with both F- and D-term
contributions

Next we consider a variant of D-term hybrid inflation
model with a nonvanishing F-term potential as an example
of models where the modulus mass remains much smaller
than the Hubble parameter during inflation but it acquires a
large correction of order H just after inflation. Specifically
we consider sneutrino hybrid inflation model proposed in
Ref. [87] with the minimal Kähler potential. The effects of
nonminimal Kähler potential are discussed, for example, in
Ref. [88] for the sneutrino inflation and in Ref. [89] for D-
term inflation.
The inflaton sector of the model consists of three species

of chiral superfields, Nc
i containing (s)neutrinos (i ¼ 1, 2,

3), and �� with U(1) gauge charge �1 as in the above
model. The relevant part of the superpotential reads

WI ¼ �

MPl

Nc
i N

c
i ���þ þ

1

2
MiN

c
i N

c
i ; (C10)

besides the interaction between Nc
i and lepton and Higgs

fields. One can always choose a basis for Nc
i so that their

mass matrix is diagonal, and we take Nc
i to be Majorana

mass eigenstate fields with real mass Mi. We assume,
without loss of generality, the inflaton sneutrino is the
lightest heavy sneutrino M1 � M2, M3 and we are inter-
ested in the lower range of the preferred values of heavy
neutrino massesMi ¼ 1010 � 1015 GeV. D-term contribu-
tion to the scalar potential with nonvanishing Fayet-
Illiopoulos term � > 0 is given by VDð�þ; ��Þ in
Eq. (C6) as before.
The large amplitude of inflaton sneutrino gives a large

effective mass to the slepton and the Higgs field Hu and
they stay at the origin and do not affect the inflation
dynamics.�þ has a positive mass during and after inflation
and it stays at the origin all the time. For the discussion of
inflationary dynamics, therefore, we discuss the evolution
of ~N1 and ��. The tree-level potential for the inflaton
sector is then given by

VðFÞI þ VðDÞI ¼ eKI

�
M2j ~N1j2 þ 1

4
M2j ~N1j4 þ 1

4
M2j ~N1j6

þ
�
�

MPl

�
2j ~N1j4j��j2 þ 1

4
M2j ~N1j4j��j2

�

þ g2

2
ð�� j��j2Þ2: (C11)

We expect �� M=MPl, and therefore find �� ¼ 0 for
j ~N1j4 > g2�M4

Pl=�
2 	 ~N4

cri during inflation. �� destabil-

izes for ~N1 < ~Ncri to reach its minimum at �� ¼
ffiffiffi
�
p

after
inflation. We find ~Ncri & 2MPl for cosmologically relevant
parameter values [87].
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The correction to the Polonyi mass during inflation can
be found from the F-term potential with �� ¼ 0. The
interaction term reads

VintðI; SÞ ¼ M2
Se

KIþjSj2
��
M ~N1 þ 1

2
Mj ~N1j2 ~N1

�
~N1ð�þ SyÞ

þ
�
M ~Ny1 þ

1

2
Mj ~N1j2 ~Ny1

�
~Ny1 ð�þ SÞ

þM2
Sj ~Ny1 ð�þ SÞj2 þ ½1þ Syð�þ SÞ�

� S
1

2
Mð ~Ny1 Þ2 þ ½1þ Sð�þ SyÞ�Sy 1

2
M ~N2

1

� 3

2
Mð ~Ny1 Þ2ð�þ SÞ � 3

2
M ~N2

1ð�þ SyÞ
�

þ eKIþjSj2 jSj2j 1
2
M ~N2

1j2: (C12)

For ~N1 �MPl we find the last term has the largest contri-
bution to the effective modulus mass, OðMÞ. This correc-
tion, however, is still much smaller than the Hubble
parameter during inflation thanks to the assumption that
inflation is driven by the D-term potential energy which
ensures that

VðDÞI ¼ g2

2
�2 � VðFÞI � M2j ~N1j2: (C13)

As ~N1 gets smaller than ~Ncri, a phase transition occurs to
make �� nonvanishing and inflation is terminated. Its
minimum is located at

j��j2 ’ ��
�

�

gMPl

�
2j ~N1j4: (C14)

We therefore find

ejSj2VðFÞI � ejSj2þKI

�
�

MPl

�
2j ~N1j4j��j2

¼ ejSj2þKI

�
�

MPl

�
2j ~N1j4

�
��

�
�

gMPl

�
2j ~N1j4

�

� ejSj2þKI
1

4
g2�2; (C15)

where the equality holds at j ~N1j4 ¼ j ~Ncrij4=2 in the last
inequality. Thus one can see that in the early field oscil-
lation regime after inflation, the modulus acquires an ef-
fective mass of order of the Hubble parameter during
inflation.

[1] G. D. Coughlan, W. Fischler, E.W. Kolb, S. Raby, and
G.G. Ross, Phys. Lett. B 131, 59 (1983).

[2] A. S. Goncharov, A.D. Linde, and M. I. Vysotsky, Phys.
Lett. B 147, 279 (1984).

[3] M. Kawasaki, K. Kohri, and T. Moroi, Phys. Rev. D 71,
083502 (2005).

[4] D. V. Nanopoulos and M. Srednicki, Phys. Lett. 133B, 287
(1983).

[5] M. Dine, W. Fischler, and D. Nemeschansky, Phys. Lett.
136B, 169 (1984).

[6] G. D. Coughlan, R. Holman, P. Ramond, and G.G. Ross,
Phys. Lett. 140B, 44 (1984).

[7] G. R. Dvali, arXiv:hep-ph/9503259.
[8] M. Dine, L. Randall, and S.D. Thomas, Phys. Rev. Lett.

75, 398 (1995).
[9] A. Linde and V. Mukhanov, J. Cosmol. Astropart. Phys. 04

(2006) 009.
[10] J. R. Ellis, D.V. Nanopoulos, and M. Quiros, Phys. Lett. B

174, 176 (1986).
[11] M. Kawasaki, T. Moroi, and T. Yanagida, Phys. Lett. B

370, 52 (1996).
[12] T. Moroi, Prog. Theor. Phys. Suppl. 123, 457 (1996).
[13] T. Moroi and L. Randall, Nucl. Phys. B570, 455 (2000).
[14] B. S. Acharya et al., J. High Energy Phys. 06 (2008) 064.
[15] L. Randall and S.D. Thomas, Nucl. Phys. B449, 229

(1995).
[16] K. Yamamoto, Phys. Lett. 168B, 341 (1986).
[17] D. H. Lyth and E.D. Stewart, Phys. Rev. D 53, 1784

(1996).
[18] R. Stompor, A. J. Banday, and K.M. Gorski, Astrophys. J.

463, 8 (1996).
[19] K. Enqvist, H. Kurki-Suonio, and J. Valiviita, Phys. Rev. D

62, 103003 (2000).
[20] L. Amendola, C. Gordon, D. Wands, and M. Sasaki, Phys.

Rev. Lett. 88, 211302 (2002).
[21] P. Crotty, J. Garcia-Bellido, J. Lesgourgues, and A.

Riazuelo, Phys. Rev. Lett. 91, 171301 (2003).
[22] C. Gordon and K.A. Malik, Phys. Rev. D 69, 063508

(2004).
[23] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and A.

Riazuelo, Phys. Rev. D 70, 103530 (2004).
[24] K. Moodley, M. Bucher, J. Dunkley, P. G. Ferreira, and C.

Skordis, Phys. Rev. D 70, 103520 (2004).
[25] H. Kurki-Suonio, V. Muhonen, and J. Valiviita, Phys. Rev.

D 71, 063005 (2005).
[26] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and M.

Viel, Phys. Rev. D 72, 103515 (2005).
[27] M. Bucher, J. Dunkley, P. G. Ferreira, K. Moodley, and C.

Skordis, Phys. Rev. Lett. 93, 081301 (2004).
[28] U. Seljak, A. Slosar, and P. McDonald, J. Cosmol.

Astropart. Phys. 10 (2006) 014.
[29] R. Bean, J. Dunkley, and E. Pierpaoli, Phys. Rev. D 74,

063503 (2006).
[30] R. Trotta, Mon. Not. R. Astron. Soc. 375, L26 (2007).
[31] E. Komatsu et al. (WMAP), Astrophys. J. Suppl. Ser. 180,

330 (2009).
[32] M. Lemoine, J. Martin, and J. Yokoyama,

arXiv:0903.5428.
[33] S. Mollerach, Phys. Lett. B 242, 158 (1990).
[34] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).

CONSTRAINTS ON MODULI COSMOLOGY FROM THE . . . PHYSICAL REVIEW D 80, 123514 (2009)

123514-39



[35] K. Enqvist and M. S. Sloth, Nucl. Phys. B626, 395 (2002).
[36] D. H. Lyth, C. Ungarelli, and D. Wands, Phys. Rev. D 67,

023503 (2003).
[37] T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001).
[38] T. Moroi and T. Takahashi, Phys. Rev. D 66, 063501

(2002).
[39] A. D. Linde and V. F. Mukhanov, Phys. Rev. D 56, R535

(1997).
[40] D. H. Lyth and D. Wands, Phys. Rev. D68, 103516 (2003).
[41] S. Gupta, K.A. Malik, and D. Wands, Phys. Rev. D 69,

063513 (2004).
[42] K. Dimopoulos, G. Lazarides, D. Lyth, and R. Ruiz de

Austri, Phys. Rev. D 68, 123515 (2003).
[43] F. Ferrer, S. Rasanen, and J. Valiviita, J. Cosmol.

Astropart. Phys. 10 (2004) 010.
[44] D. Langlois and F. Vernizzi, Phys. Rev. D 70, 063522

(2004).
[45] M. Lemoine and J. Martin, Phys. Rev. D 75, 063504

(2007).
[46] T. Multamaki, J. Sainio, and I. Vilja, arXiv:0710.0282.
[47] M. Lemoine, J. Martin, and G. Petit, Phys. Rev. D 78,

063516 (2008).
[48] A. A. Starobinsky, in Field Theory, Quantum Gravity and

Strings, edited by H. J. De Vega and N. Sanchez, Lecture
Notes in Physics Vol. 246 (Springer-Verlag, Berlin, 1986).

[49] A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50,
6357 (1994).

[50] F. Finelli, G. Marozzi, A.A. Starobinsky, G. P. Vacca, and
G. Venturi, Phys. Rev. D 79, 044007 (2009).

[51] D. H. Lyth, J. Cosmol. Astropart. Phys. 06 (2006) 015.
[52] T. S. Bunch and P. C.W. Davies, Proc. R. Soc. A 360, 117

(1978).
[53] A. Vilenkin and L.H. Ford, Phys. Rev. D 26, 1231 (1982).
[54] A. D. Linde, Phys. Lett. B 116, 335 (1982).
[55] A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).
[56] D. Wands, K.A. Malik, D.H. Lyth, and A. R. Liddle,

Phys. Rev. D 62, 043527 (2000).
[57] D. H. Lyth and D. Wands, Phys. Rev. D 68, 103515 (2003).
[58] D. H. Lyth, K.A. Malik, and M. Sasaki, J. Cosmol.

Astropart. Phys. 05 (2005) 004.
[59] J. Martin and D. J. Schwarz, Phys. Rev. D 57, 3302 (1998).
[60] S. Weinberg, Phys. Rev. D 70, 083522 (2004).
[61] M. Yamaguchi and J. Yokoyama, Phys. Rev. D 74, 043523

(2006).

[62] K. Kohri, M. Yamaguchi, and J. Yokoyama, Phys. Rev. D
72, 083510 (2005).

[63] S. Hofmann, D. J. Schwarz, and H. Stoecker, Phys. Rev. D
64, 083507 (2001).

[64] E. Bertschinger, Phys. Rev. D 74, 063509 (2006).
[65] C. Gordon and A. Lewis, Phys. Rev. D67, 123513 (2003).
[66] L. A. Boyle, P. J. Steinhardt, and N. Turok, Phys. Rev.

Lett. 96, 111301 (2006).
[67] S. Nakamura and M. Yamaguchi, Phys. Lett. B 638, 389

(2006).
[68] M. Endo, K. Hamaguchi, and F. Takahashi, Phys. Rev.

Lett. 96, 211301 (2006).
[69] M. Dine, R. Kitano, A. Morisse, and Y. Shirman, Phys.

Rev. D 73, 123518 (2006).
[70] C. Gordon, D. Wands, B.A. Bassett, and R. Maartens,

Phys. Rev. D 63, 023506 (2000).
[71] L. Kofman, A. D. Linde, and A.A. Starobinsky, Phys. Rev.

D 56, 3258 (1997).
[72] A. D. Linde, Phys. Rev. D 53, R4129 (1996).
[73] M. Kawasaki, F. Takahashi, and T. T. Yanagida, Phys. Lett.

B 638, 8 (2006).
[74] M. Dine, Phys. Lett. B 482, 213 (2000).
[75] L. Kofman et al., J. High Energy Phys. 05 (2004) 030.
[76] S. D. Thomas, Phys. Lett. B 356, 256 (1995).
[77] J. Martin and M.A. Musso, Phys. Rev. D 71, 063514

(2005).
[78] J. Martin and M. Musso, Phys. Rev. D 73, 043516 (2006).
[79] J. Martin and M. Musso, Phys. Rev. D 73, 043517 (2006).
[80] J. Martin and C. Ringeval, J. Cosmol. Astropart. Phys. 08

(2006) 009.
[81] H. P. Nilles, Phys. Rep. 110, 1 (1984).
[82] P. Brax and J. Martin, Phys. Rev. D71, 063530 (2005).
[83] P. Brax and J. Martin, Phys. Rev. D 75, 083507 (2007).
[84] E. Halyo, Phys. Lett. B 387, 43 (1996).
[85] P. Binetruy and G. R. Dvali, Phys. Lett. B 388, 241 (1996).
[86] J. Urrestilla, A. Achucarro, and A. C. Davis, Phys. Rev.

Lett. 92, 251302 (2004).
[87] K. Kadota and J. Yokoyama, Phys. Rev. D 73, 043507

(2006).
[88] H. Murayama, H. Suzuki, T. Yanagida, and J. Yokoyama,

Phys. Rev. D 50, R2356 (1994).
[89] O. Seto and J. Yokoyama, Phys. Rev. D 73, 023508

(2006).

LEMOINE, MARTIN, AND YOKOYAMA PHYSICAL REVIEW D 80, 123514 (2009)

123514-40


