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ABSTRACT
Within the context of upcoming full-sky lensing surveys, the edge-preserving non-linear
algorithm ASKI (All-Sky κ Inversion) is presented. Using the framework of Maximum A
Posteriori inversion, it aims at recovering the optimal full-sky convergence map from noisy
surveys with masks. ASKI contributes two steps: (i) CCD images of possibly crowded galactic
fields are deblurred using automated edge-preserving deconvolution; (ii) once the reduced
shear is estimated using standard techniques, the partially masked convergence map is also
inverted via an edge-preserving method.

The efficiency of the deblurring of the image is quantified by the relative gain in the quality
factor of the reduced shear, as estimated by SEXTRACTOR. Cross-validation as a function of the
number of stars removed yields an automatic estimate of the optimal level of regularization
for the deconvolution of the galaxies. It is found that when the observed field is crowded, this
gain can be quite significant for realistic ground-based 8-m class surveys. The most significant
improvement occurs when both positivity and edge-preserving �1 − �2 penalties are imposed
during the iterative deconvolution.

The quality of the convergence inversion is investigated on noisy maps derived from the
HORIZON-4π N-body simulation with a signal-to-noise ratio (S/N) within the range �cut =
500–2500, with and without Galactic cuts, and quantified using one-point statistics (S3 and
S4), power spectra, cluster counts, peak patches and the skeleton. It is found that (i) the
reconstruction is able to interpolate and extrapolate within the Galactic cuts/non-uniform
noise; (ii) its sharpness-preserving penalization avoids strong biasing near the clusters of the
map; (iii) it reconstructs well the shape of the PDF as traced by its skewness and kurtosis;
(iv) the geometry and topology of the reconstructed map are close to the initial map as traced
by the peak patch distribution and the skeleton’s differential length; (v) the two-point statistics
of the recovered map are consistent with the corresponding smoothed version of the initial
map; (vi) the distribution of point sources is also consistent with the corresponding smoothing,
with a significant improvement when �1 − �2 prior is applied. The contamination of B modes
when realistic Galactic cuts are present is also investigated. Leakage mainly occurs on large
scales. The non-linearities implemented in the model are significant on small scales near the
peaks in the field.

Key words: gravitational lensing – methods: N-body simulations – methods: statistical –
techniques: image processing – surveys – large-scale structure of Universe.

�E-mail: pichon@iap.fr

1 IN T RO D U C T I O N

In recent years, weak shear measurements have become a ma-
jor source of cosmological information. By measuring the bend-
ing of the rays of light emerging from distant galaxies, one can
gain some knowledge about the distribution of matter between the
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emitter and us, and thus probe the properties and evolution history
of dark matter (Bartelmann & Schneider 2001). This technique has
led to significant results in a broad spectrum of topics, from mea-
surements of the projected dark matter power spectrum (for the
latest results, see Fu et al. 2008), 3D estimation of the dark matter
spectrum (Kitching et al. 2006), studies of the higher order moments
of the dark matter distribution, selection of source candidates for
subsequent follow-ups (Schirmer et al. 2007) and the reconstruction
of the mass distribution from small (Jee et al. 2007) to large scales
(Massey et al. 2007). In view of these successes, numerous surveys
have been planned specifically to use this probe either from ground-
based facilities (e.g. VLT Survey Telescope-the Kilo-Degree Survey
(VST-KIDS),1 Dark Energy Survey (DES),2 the Panoramic Survey
Telescope and Rapid Response System (Pann-STARRS),3 Large
Synoptic Survey Telescope (LSST)4) or from space-based observa-
tories (EUCLID,5 Supernova Acceleration Probe (SNAP)6 and The
Joint Dark Energy Mission (JDEM)7). More generally, it is clear that
weak lensing will be a major player in the future, as it has been iden-
tified by different European and US working groups as one of the
most efficient way of studying the properties of dark energy.8 Data
processing is an important issue in the exploitation of weak lensing
of distant galaxies. The signal comes from the excess alignment of
the ellipticities of the observed galaxies. Assuming one can ignore
or deal with spurious alignments due to intrinsic effects (Pichon &
Bernardeau 1999; Aubert, Pichon & Colombi 2004; Hirata & Seljak
2004), or due to spurious lensing effects (Bridle & Abdalla 2007),
the weak lensing signal will thus come from a small statistically
coherent ellipticity on top of the random one of each object. Any
result obtained with weak lensing on distant galaxies is thus condi-
tioned by the quality with which shape parameters of the galaxies
are recovered. This issue has of course been raised by the weak lens-
ing community and tackled by the SHear Testing Program working
group (Heymans 2006; Massey 2007) whose efforts have allowed
for a fair comparison of the existing techniques. Schematically, the
measurement of the shape parameters of the galaxies can be seen
as a two-step process. First, one must correct for the non-idealities
of the images due to atmospherical seeing (for ground-based tele-
scopes), and telescope and camera aberrations. Indeed, these effects
translate into an asymmetrical beam, which is varying between two
images, and even possibly in the field of one image. Typically, the
asymmetry induced by the instrumental response is much larger
than the ellipticity to be measured. After this preprocessing step, a
shape determination algorithm can be applied, and some estimation
of the ellipticity of the object recovered. Stars, defects in the images
and objects too close to each other after deconvolution have to be
removed from the final catalogue so as to avoid contamination from
erroneous shape measurements.

After these operations, one obtains a catalogue of position and
shape parameters. Many techniques exist for recovering the weak
shear signal from this catalogue. For example, a lot of efforts have
been devoted to the measurement of the shear two-point functions.

1 http://www.astro-wise.org/projects/KIDS/
2 https://www.darkenergysurvey.org/
3 http://pan-starrs.ifa.hawaii.edu/
4 http://www.lsst.org/
5 http://www.dune-mission.net/
6 http://snap.lbl.gov/
7 http://universe.nasa.gov/program/probes/jdem.html
8 See on the European side http://www.stecf.org/coordination/ and on
the US side http://www.nsf.gov/mps/ast/aaac.jsp and http://www.nsf.gov/
mps/ast/detf.asp

The most used method is the two-point functions; however, the
measurement of the so-called Mass Aperture averaged two-point
function, which is the result of the convolution of the shear two-
point functions by a compensated filter (Schneider, van Waerbeke,
Kilbinger & Mellier 2002), is becoming the preferred method (Fu
et al. 2008). This scheme includes the separation between the curl-
free convergence-field two-point function, and the residual curl
mode that can arise from incomplete point spread function (PSF)
correction or intrinsic galaxy alignment (Crittenden et al. 2002).
For three-point functions, different resummation schemes have been
proposed, either using direct measurement of the shear (Bernardeau,
Mellier & van Waerbeke 2002; Benabed & Scoccimarro 2005) or
using the Mass Aperture filter (Takada & Jain 2003; Kilbinger &
Schneider 2005).

Other applications (source detection and fit, some tomography
algorithms) call for an estimation of the map of the convergence
field. A convergence map can also be used to measure the two- and
three-point functions as well, even if, as we will see later, this is not
optimal. For these reasons a lot of work has already been devoted to
the reconstruction of the convergence map (Bartelmann et al. 1996;
Seitz, Schneider & Bartelmann 1998; van Waerbeke, Bernardeau
& Mellier 1999). The problem in this reconstruction lies in the in-
version of the non-local equations linking the convergence field κ ,
and the ellipticities of the galaxies, while controlling the noise and
avoiding pollution from the spurious curl modes. Moreover, even
assuming that the ellipticity catalogue was a noise-free estimation
of a curl-free underlying shear, the inversion could only be exact
up to a global translation given the functional form of the equa-
tion. Thus, Bayesian techniques that use a priori properties on the
solution to regularize the inversion problem are well suited to the
reconstruction of κ . Previous works on the topic have explored dif-
ferent sets of a priori and regularization techniques (Marshall et al.
2002; Starck, Pires & Refregier 2006; Bridle et al. 1998; Seitz,
Schneider & Bartelmann 1998). The primary goal of those investi-
gations being the measurement of the mass distribution in clusters,
most of them are dealing only with finite regions of the sky. For the
same reason, those papers have been extended to include strong-
lensing effects that can be observed around the cluster whose mass
is being reconstructed using their lensing effect (Bradac et al. 2005;
Cacciato et al. 2006; Halkola, Seitz & Pannella 2006; Jee et al.
2007).

In this paper, we will focus on the optimal reconstruction of the
κ field from very large, and possibly full-sky, maps of the sky. We
will thus only be interested in the weak lensing regime including
the onset of the quasi-linear regime, where the non-linearities of the
relation linking the ellipticities of the galaxies to the shear cannot
be safely neglected. We will propose a self-calibrated regularization
technique that can be compared to multi-resolution methods or
wavelet approach (Starck et al. 2006; Abrial et al. 2008), and use a
�1 − �2 regularization scheme to perform a sharp feature preserving
inversion. One of the biggest issues we will have to cope with is the
incomplete coverage of the sky. We will show how our technique
can deal with irregular coverage and masked portions of the sky.

Specifically, Section 2 shows how self-calibrated non-parametric
�1 − �2 deblurring can improve the construction of reduced shear,
hence convergence maps. Section 3 describes the model for the
reduced shear, the corresponding inverse problem and the opti-
mization procedure. Section 4 investigates the quality of the global
reconstruction; in particular, it probes the asymmetry/kurtosis of the
recovered maps, its topology (total length and differential length of
the skeleton), the recovered power spectra, the point source cata-
logue with and without galactic star cut. The leaking of B modes
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induced by the Galactic cut is also investigated. Finally, Section 5
discusses implications for upcoming full-sky surveys and wraps up.

Appendix A describes the star removal algorithm (implemented
for the cross-validation estimation of the optimal level of smoothing
required to deconvolve the crowded images); Appendix B details
the κ inverse problem on the sphere while Appendix C derives the
local plane corresponding approximation. Appendix D describes the
construction of realistic κ maps from large N-body simulations.

2 D E B L U R R I N G O F C ROW D E D FI E L D S

The first step involved in reconstructing a full-sky map of the conver-
gence on the sky requires estimating ellipticity and orientation maps
from wide angle CCD images of large patches of the sky. Whether
the experiment is ground-based, or space-born, it is advisable to
correct for the effect of the instrumental response, in particular
when mapping more crowded regions closer to the Galactic plane.
Indeed, the PSF-induced partial overlapping of galaxies within the
field of view will bias the estimation of the reduced shear. What
we will describe here would correspond to a method belonging to
the ‘orange’ quadrant of the classification proposed in table 3 of
Massey (2007). Current methods have been designed for deblurring
of isolated objects and are consequently less efficient in deblurring
blended objects. As a first step towards building a full-sky map
maker, let us therefore address the issue of deblurring crowded
fields via regularized non-parametric model fitting, and assess its
efficiency in the weak lensing context.

In particular, we will show that cross-validation as a function
of the number of stars removed yields an automatic estimate of the
optimal level of regularization for the deconvolution of the galaxies.
When the observed field is crowded, this gain can be quite signifi-
cant for realistic ground-based 8-m class surveys. The most signifi-
cant improvement occurs when both positivity and edge-preserving
�1 − �2 penalties are imposed during the iterative deconvolution.

2.1 Deblurring as an inverse problem

2.1.1 Regularized solution

Since observed objects are incoherent sources, the observed image
depends linearly on the sky brightness distribution:

y(ω) =
∫

h(ω, ω′) x(ω′) dω′ + e(ω) ,

where y(ω) is the observed distribution in the direction ω, h(ω, ω′)
is the atmospheric and instrumental PSF which is the distribution of
observed light in the direction ω due to light coming from direction
ω′, x(ω′) is the true sky brightness distribution and e(ω) is the noise.
After discretization

y = H · x + e , (1)

where y is the vector of pixel intensities in the observed image
(the data), H is the matrix which accounts for the atmospheric
and instrumental blurring, x is the (discretized or projected on to
a basis of functions) object brightness distribution and e accounts
for the errors (pixelwise noise and modelization approximations).
Deblurring requires estimating the best sky brightness distribution
given the data. Since the atmospheric and instrumental PSF re-
sults in a smoother distribution than the true one, it is well known
that de-blurring is an ill-conditioned problem (Richardson 1972;
Skilling, Strong & Bennett 1979; Tarantola & Valette 1982; Pichon
& Thiébaut 1998; Pichon et al. 2001). In other words, straight-
forward deblurring by applying H−1 to the data y would result in

uncontrolled amplification of noise: a small change in the input data
would yield unacceptably large artefacts in the solution. Regular-
ization must be used to overcome ill-conditioning of this inverse
problem. This is achieved by using additional prior constraints such
as requiring that the solution be as smooth as possible, while being
still in statistical agreement with the data and while imposing that
the brightness distribution is positive. Following this prescription,
the Maximum A Posteriori (MAP) solution xμ is the one which
minimizes an objective function Q(x):

xμ = arg min
x≥0

Q(x) , with: Q(x) = L(x) + μR(x) , (2)

where L(x) is a likelihood penalty which enforces agreement of
the model with the data, R(x) is a regularization penalty which
enforces prior constraints set on the model and μ > 0 is a so-called
hyper-parameter which allow the tuning of the relative weight of
the prior with respect to the data. Hence, the MAP solution is a
compromise between what can be inferred from the data alone
and prior knowledge about the parameters of interest. Assuming
Gaussian statistics for the errors e in equation (1), the likelihood
penalty writes

L(x) = (H · x − y)
T · W · (H · x − y) , (3)

where the weighting matrix W is equal to the inverse of the covari-
ance matrix of the errors: W ≡ Cov(e)−1.

The most effective regularization for ill-conditioned problems
such as deconvolution of blurred images consists in imposing a
smoothness constraint (Thiébaut 2005). Then, the regularization
penalty writes

R(x) =
∑

j

φ(�xj ) , (4)

where �xj is the local gradient of x and φ is some cost function.
The local gradient of x can be approximated by finite differences:
�x = D · x where D is a linear finite difference operator. For
instance, in 1D: �xj = (D · x)j = xj+1 − xj . To enforce smooth-
ness, the cost function φ must be an increasing function of the
magnitude of its argument. Very common choices for φ are: the �2

norm, the �1 norm or an �1 − �2 norm. For our deblurring problem,
we have considered different priors (quadratic or �1 − �2 smooth-
ness) possibly with an additional positivity constraint. We have
used generalized cross-validation (GCV; Wahba 1990) applied to
the circulant approximation of the quadratic problem to estimate
the optimal regularization level μ. These different possibilities and
their effects on the recovered images are discussed in details in what
follows.

Finally, to solve for the constrained optimization problem (2), we
used the VMLMB algorithm from OPTIMPACK (Thiébaut 2002). VMLMB

(for Variable Metric, Limited Memory, Bounded) makes use of a
BFGS (Nocedal & Wright 2006) update of the approximation of
the Hessian (matrix of second partial derivatives) of Q(x) to derive
a step to improve the parameters at every iteration. This strategy only
requires computing the objective function, Q(x), and its gradient
(partial derivatives) ∇xQ(x) with respect to the parameters x. The
BFGS update is limited to a few last steps so that the memory
requirements remain modest, that is a few times the number of
sought parameters, and the algorithm can be applied to solve very
large problems (in our case, there are as many parameters as the
number of pixels in the sought image). Finally, VMLMB accounts
for bound constraints by means of gradient projections (Nocedal &
Wright 2006). For a convex penalty Q(x), VMLMB is guaranteed to
converge to the unique feasible minimum of Q(x) which satisfies
the bound constraints; for a non-convex penalty, VMLMB being based
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on a descent strategy, it will find a local minimum depending on the
initial set of parameters.

2.1.2 Quadratic regularization and Wiener proxy

Using the finite difference operator D and an �2 norm for the regu-
larization and ignoring for the moment the positivity constraint, the
MAP solution is the minimum of a quadratic penalty which simply
involves solving a (huge) linear problem:

xμ = arg min
x

{
(H · x − y)

T · W · (H · x − y)

+μ (D · x)
T · (D · x)

}
= (HT · W · H + μDT · D)−1 · HT · W · y , (5)

providing the Hessian matrix HT ·W ·H+μDT ·D is non-singular,
which is generally the case for μ > 0. Owing to the large size of
the matrices involved in this equation (there are as many unknown
as the number of pixels), the linear problem has to be iteratively
solved (by a limited memory algorithm such as VMLM) unless it
can be diagonalized as explained below. The solution, equation (5),
involves at least one parameter, μ, which needs to be set to the
correct level of regularization: too low would give a solution plagued
by lots of artefacts due to noise amplification, and too high would
result in an oversmoothed solution with small details blurred. The
optimal level of smoothing can be computed by GCV by minimizing
with respect to μ the function (Golub, Heath & Wahba 1979; Wahba
1990)

GCV(μ) =
(
Aμ · y − y

)T · W · (
Aμ · y − y

)
[
1 − tr(Aμ)/N

]2 , (6)

where N is the number of data (size of y) and Aμ = ∇ y(H · xμ) is
the so-called influence matrix, in our case

Aμ = H · (
HT · W · H + μDT · D)−1 · HT · W . (7)

Computing the value of GCV (μ) involves (i) solving the problem to
find the regularized solution xμ and computation of Aμ · y = H ·xμ;
(ii) estimation of the trace of Aμ perhaps by using Monte Carlo
methods (Girard 1989) since the influence matrix is very large. The
computational cost of Stages (i) and (ii) is similar to that of a few
solvings of the quadratic problem. Since this has to be repeated for
every different value of the regularization level, finding the optimal
value of μ by means of GCV can be very time consuming unless
the problem can be approximated by a diagonal quadratic problem
(for which matrix inversions are both fast and trivial).

For this purpose, we introduce the proxy problem correspond-
ing to white noise and circulant approximations of the operators
H (convolution by the PSF) and D (finite differences). Then the
weighting matrix becomes

Wi,j = δi,j /σ
2 , where σ 2 = Var(ni),

where σ 2 = Var (ei) is the variance of the noise. In the special
case where the PSF is shift-invariant, H is a convolution operator
which can be approximated by a block Toeplitz with Toeplitz block
matrix that can be computed very quickly by means of Fast Fourier
Transforms (FFTs):

H · x � F−1 · diag(F · h) · (F · x) , (8)

where h is the PSF (the first row of H), F is the forward DFT
operator and diag (v) is the diagonal matrix with its diagonal given
by the vector v. This discrete convolution equation assumes that

Fu,j = exp(−2 i π
∑

n un jn/Nn) where Nn is the length of the n

th dimension, jn = 0, . . . , Nn − 1 and un = 0, . . . , Nn − 1 are
the indices of the position and discrete Fourier frequency along this
dimension. In this case, the inverse DFT is simply F−1 = FH/Ntot

with N tot the total number of elements in x and the H exponent
standing for the conjugate transpose. With these approximations
and definitions of the DFT, the likelihood term writes

L(x) = 1

σ 2
‖H · x − y‖2 � 1

Ntot σ 2

∑
u

|ĥu x̂u − ŷu|2 , (9)

where ĥu is the transfer function (the DFT of the PSF) and ŷu and
x̂u, respectively, the DFT of the data and of the sought image. Note
that the exact normalization factor, here 1/N tot, depends on the
particular definition of the DFT.

Similarly, ignoring edges effects, the finite difference operator D
along n th direction can be approximated by

Dn · x � F−1 · diag(d̂n) · (F · x) , (10)

where d̂n is the DFT of the first row of Dn; then the quadratic
regularization writes

R(x) = ‖D · x‖2 =
∑

n

‖Dn · x‖2 � 1

Ntot

∑
u

ru |x̂u|2 , (11)

with

ru =
∑

n

|d̂n,u|2 = 4
∑

n

sin2

(
π un

Nn

)
, (12)

for the first-order finite differences and our choice for the DFT. Note
that any ru ≥ 0 being an increasing function of the length |u| of the
spatial frequency could be used instead and would result in imposing
a smoothness constraint although with a different behaviour. Finally,
putting all these circulant approximations together, the quadratic
problem to solve is diagonalized in the DFT space and trivially
solved to give the DFT of the MAP solution:

x̂μ,u = ĥ�
u ŷu

|ĥu|2 + μ σ 2 ru

, (13)

the asterisk exponent denoting the complex conjugate. Note that
this circulant approximation of the solution is very fast to compute
as it involves just a few FFTs. This expression of the MAP solution
is very similar to what would give the Wiener filter which would
be exactly achieved by setting the term μ ru equal to the reciprocal
of the expected image power spectrum in equation (13). Since,
in our case, the image power spectrum is unknown a priori, we
have to choose the regularization shape ru and derive the optimal
level of smoothing, for instance, by means of GCV. Thanks to the
circulant approximation made here, GCV criterion is now very easy
to compute as

Aμ � F−1 · diag(âμ) · F , with : âμ,u = |ĥu|2
|ĥu|2 + μσ 2 ru

,

and tr(Aμ) = ∑
u âμ,u/Ntot, hence

GCV(μ) = Ntot
∑

u t2
μ,u |ŷu|2

σ 2 [
∑

u tμ,u]2
, (14)

with

tμ,u = 1 − âμ,u = μ σ 2 ru

|ĥu|2 + μσ 2 ru

. (15)

In practice, for the optimization of equation (2), equation (13) is
taken as a starting point together with the choice of μ given by the
minimum of equation (14). Then, the optimization of equation (2)
is carried with possibly non-stationary weights, while iterating back
and forth between model and data space.
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Figure 1. Hyper-parameter chosen by GCV as a function of the number of
stars removed by our star removal algorithm (Appendix A). Note that this
curve reaches a maximum corresponding to the moment when all the stars
have been removed. Indeed, stars correspond to high frequency-correlated
signal, while the wings of galaxies (for which the core has been erroneously
removed) also give rise to such signal. In between, when all stars have been
removed, while no galaxy has yet been deprived of its core, the amount of
correlated high-frequency signal reaches a minimum, or equivalently the
GCV estimated value of μ reaches a maximum.

2.1.3 Crowded fields and star removal

Even though the estimation of the ellipticities does not require per
se the deconvolution of the galaxies, it is shown below that this
estimation is significantly improved by deconvolution when the
fields of view are crowded and polluted by foreground stars: indeed
galaxies and stars overlap less when deconvolved, which reduces
the fraction of erroneous measurements. Unfortunately, when these
stars are present, they significantly bias the estimation of the hyper-
parameter, μ, since stars correspond to high frequency-correlated
signal which leads to an underestimation of the optimal level of
smoothing (for the galaxies) by cross-validation. This is best seen
in Fig. 1 which displays the evolution of the hyper-parameter which
minimizes GCV as a function of the number of stars removed by our
star removal algorithm (see Appendix A). Interestingly, it suggests
that GCV could be used as a classifier.

2.1.4 �1 − �2 penalty and positivity

The drawback of using a quadratic (�2) norm in the regulariza-
tion is that it tends to oversmooth the regularized map especially
around sharp features as point-like sources (i.e. stars) and the core
of galaxies. This is because the regularization prevents large inten-
sity differences between neighbouring pixels and result in damped
oscillations (the Gibbs effect). Such ripples hide any faint details
in the vicinity of sharp structures. To avoid this, it would be better
to use a regularization which smoothes out small local fluctuations
of the sought distribution (here the deblurred image), presumably
due to noise, but let larger local fluctuations arise occasionally (see

Aubert & Kornprobst 2008 and references therein). This can be
achieved by using a �1 − �2 cost function φ in equation (4). A
possible �1 − �2 sparse cost function is (Mugnier, Fusco & Conan
2004)

φ(r) ≡ 2 ε2
[∣∣∣ r

ε

∣∣∣ − log
(

1 +
∣∣∣ r
ε

∣∣∣)]
. (16)

For a small, respectively large, pixel differences r , φ(r) has the
following behaviour:

φ(r) ∼
{

r2 when |r| 
 ε ,

2 |ε r| when |r| � ε ,

which shows that, as required, the �1 − �2 penalty behaves quadrat-
ically for small residualsrs (in magnitude and w.r.t. ε) and only
linearly for large rs. The derivative, needed for the optimization
algorithm, of the �1 − �2 penalty writes

φ′(r) = 2 ε r

ε + |r| .

An additional possibility to improve the restitution of faint details
with level close to that of the background is to apply a strict positivity
constraint. This is achieved by using VMLMB, a modified limited
memory variable metric method (Thiébaut 2002), which imposes
simple bound constraints by means of gradient projection. This
yields a reduction of aliasing by bounding the allowed region of
parameter space which can be explored during the optimization.

2.2 Numerical experiments

The public package SKYMAKER (Erben et al. 2001) was used to
generate galactic and stellar fields from ellipticity and magnitude
catalogues. Table 1 summarizes the main parameter corresponding
to the VLT with a Visible Multi-Object Spectrograph (VIMOS)
instrument, a worse case situation compared to upcoming space
missions.

A regular grid of 12 × 12 galaxies of magnitude 20 with random
orientation is produced twice (with the same random seed), one
corresponding to a fixed seeing and a given exposure time, while
the other assuming zero noise and zero seeing for a set of 512 ×
512 pixels images (see Fig. 2).

Table 1. SKYMAKER parameters used to generate the VIMOS/VLT images.

Object Value

Gain (e-/ADU) 30.11
Full well capacity in e- 300 000
Saturation level (ADU) 60 000
Read-out noise (e-) 1.3
Magnitude zero-point (ADU per second) 21.254
Pixel size in arcsec 0.2
Number of microscanning steps 1
SB (mag arcsec−2) at 1 arcmin from a 0-mag star 16.0
Diameter of the primary mirror (m) 8.0
Obstruction diameter from second mirror in metre 2.385
Number of spider arms (0 = none) 4
Thickness of the spider arms (in mm) 5.0
Pos. angle of the spider pattern 45.0
Average wavelength analyzed (μm) 0.80
Back. surface brightness (mag arcsec−2) 21.5
Nb of stars/� brighter than MAG LIMITS 1e5
Slope of differential star counts (dexp mag−1) 0.3
Stellar magnitude range allowed 12.0,19.0
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710 C. Pichon et al.

Figure 2. An example of virtual fields generated with SKYMAKER to be fed to SEXTRACTOR before and after deconvolution using the different regularizations
described in the text. From top to bottom and left to right: a galaxy field image and the corresponding ‘true’ field, galaxies field with stars and a crowded galaxy
field with stars (106 stars arcmin−2). The exposure time is 10 s and the seeing is 1 arcsec for the VLT with VIMOS. The background field corresponds to the
actual size of the corresponding observed images.

The background level and the amplitude of the background noise
are first estimated automatically from the histogram of the pixel
values and fed to SEXTRACTOR (Bertin & Arnouts 1996) which then
estimates the position, the flux, the orientation and the ellipticity
for all the galaxies in the field. Here, the ellipticity is defined as
1 − b/a, where a and b are the long and short axes. This procedure
is reproduced 50 times with different realizations. The measured
and the recovered ellipticity are compared, together with flux and
orientation for all the galaxies in the field. In this set of simula-
tions, the prior knowledge of the position of the galaxy is used to
minimize errors which might arise while using SEXTRACTOR: the
recovered galaxy is chosen to be that which is closest to the known
input position. The median and interquartile of the error (difference
between the ‘true’ and recovered) in ellipticity versus the ellipticity
is computed for a range of exposure time; this procedure is iterated
for the three deconvolution techniques used in this paper (Wiener,
�2 with positivity, �1 − �2 with positivity). An example of such
a plot is shown in Fig. 3. Clearly, the bias in the recovered ellip-

ticity increases with the ellipticity and the amount of noise in the
image (via poorer seeing or shorter exposure time). As expected,
the Wiener deconvolution is the least efficient of the three methods,
since the linear penalty does not avoid some level of Gibbs ringing.
In contrast, the �2 penalty with positivity avoids partially such ring-
ing, while the �1 − �2 penalty works best at recovering the input
eccentricity with a consistent level of bias below 10 per cent for
an ellipticity in the range [0.1, 0.8[. Note that this bias is relative,
not absolute. If an alternative shear estimator that does not consider
deconvolution is accurate to a level of, say, 1 per cent, the expected
bias after deconvolution will be below 0.1 per cent.

Interestingly, there is also a residual bias (even for longer ex-
posure times) for small ellipticity galaxies, which arises because
noise-induced departure from sphericity is amplified by the decon-
volution. Note that the Wiener deconvolution is significantly faster
than the iterative deconvolution with positivity (with �2 or �1 − �2

penalties). Positivity improves significantly the deconvolution, but
will depend critically on the ability to estimate the background. In
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Figure 3. The error in ellipticity as a function of the ellipticity (measured
by SEXTRACTOR) for a set of 50 images (such as those shown in Fig. 2) either
directly on the image (medium diamonds), deconvolved with �2 gradient
penalty function with enforced positivity (light squares) and �1 − �2 gradient
penalty function with positivity (dark circles). For each set, the ellipticity is
also measured directly on the raw image. Note that, as expected, the error
on the bias is largest for circular galaxies, since deconvolution will tend to
overamplify departure from circular symmetry.

the present simulations, the level of background is automatically
estimated while looking at the histogram of the pixels. Finally, the
�1 − �2 regularization significantly improves the restoration of fields
of stars and galaxies, because the stars and the cores of galaxies are

very sharp. These non-linear iterative methods are slower than the
Wiener filtering, but can account at no extra cost for non-uniform
noise, or saturation and masking. Their convergence can be consid-
erably boosted when they are initiated by the Wiener solution.

For any such plot, two numbers are defined which summarize
the trend. The mean error (averaged over the various ellipticities),
ε̄, and the mean of the interquartile, �ε̄, were measured. The qual-
ity factor, QF, is defined to be the ratio of the sum of this mean
error and the mean interquartile for the image without deblurring,
divided by the sum of the mean error and the mean interquartile
for the deconvolved image for the three techniques (Wiener, �2 and
�1 − �2). This reads

QFmethod = ε̄image + �ε̄image

ε̄method + �ε̄method
.

The evolution of the quality of the ellipticity measurement is traced
versus seeing conditions and signal-to-noise ratio (exposure time) in
two regimes: a galaxy-only field and a galactic field with a crowded
star content where the number of stars per square degree reaches
105 stars arcmin−2. These two regime represent high and low Galac-
tic region, respectively. Fig. 4 displays the evolution of QF Wiener

(diamonds), QF�2 (triangles), and QF�1−�2 (circles), as a function
the exposure time of 1, 10, 100 and 1000 s, respectively, and two
seeing conditions of 1.2 and 0.7 arcsec. No stars are present in
the field on the left-hand panel of Fig. 4, whereas its right-hand
panel displays the three QF estimators for a field with a realistic
105 stars per square degree. ASKI achieves efficient deblurring in
this regime. It remains to be shown that regularized deconvolution
obtained through (sparse) parametric local decomposition of both
PSF and objects (as done e.g. with shapelet-based methods) can
properly deblur blended objects.

Now that we have shown that the state-of-the-art automated posi-
tive edge-preserving deconvolution of deep sky images is mandatory
to get good-quality shear estimates (most importantly in the context
of crowded fields), let us conclude this section by a leap forward,
and assume from now on that not only we have access to discrete

Figure 4. Left-hand panel: the relative error quality factor (see main text) as a function of the log exposure time for the three methods, respectively the Wiener
filtering (diamonds), �2 gradient penalty function with enforced positivity (triangles) and �1 − �2 gradient penalty function with positivity (circles). Two seeing
conditions are investigated, corresponding to a good (0.7 arcsec) and a fair (1.2 arcsec) seeing condition. These simulations assume that no star is present in the
field, and correspond to a set of non-overlapping galactic discs with random orientation and magnitude 20 in V (see Fig. 2). The telescope setting corresponds
to the VIMOS instrument on an 8-m VLT. Right-hand panel: the quality factor as a function of the log exposure time, but this time while allowing for stars in
the field. The star count is 105 stars per arcmin2. As discussed in the text, the penalty weight is estimated via GCV on a temporary image where all stars are
automatically removed via blind cleaning as described in Appendix A. Here, the removal of stars is essential since the GCV hyper-parameter (which sets the
level of smoothing in the deconvolved image) varies by orders of magnitudes in the process (see Fig. 1 for a discussion) and would be otherwise underestimated.
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712 C. Pichon et al.

measurements of ellipticities over a significant fraction of the sky,
but also this point-like process has been re-sampled. Indeed, since
it is beyond the scope of this paper to carry out a full-sky decon-
volution and reconstruction at the resolution of 0.7 arcsec (This
would amount to about 1012 pixels!), it is assumed from now on
that a full-sky catalogue of vector-reduced shear exists and that the
interpolation/re-sampling of the corresponding map on a uniform
grid over the sphere has been done, together with an estimate of the
corresponding shot noise. In other words, we skip the critical step
of optimal shear estimation, which has already been addressed by
the STEP (Heymans 2006; Massey 2007) working group. In this
paper, we extract the virtual catalogue from a state-of-the-art simu-
lation (see below); we make use of the HEALPIX Pixelization (Górski
et al. 1999), a hierarchical equi-surface and iso-latitude pixelization
of the sphere, which was developed to analyze polarized cosmic
microwave background (CMB)-type data.

3 A FULL-SKY MAP MAKER

3.1 The inverse problem

Our purpose is now to solve for the non-linear inverse problem
of recovering the κ(n̂) map corresponding to a noisy incomplete
measurement of the 2D field (g1(n̂), g2(n̂))T of the ellipticity and
orientation on the sphere (in the local tangent plane):

gk(n̂) = γk(n̂)

1 − κ(n̂)
+ ek(n̂) , for k = 1 or 2 , (17)

where n̂ is the sky direction, γ and κ are, respectively, the shear
and the convergence, while e is a tensor field of the errors which
accounts for the measurement noise (including the shot noise in-
duced by the finite number of galaxies within that pixel) and model
approximations.

3.1.1 Spherical formulation

On the sphere, the scalar field κ and the tensor field γ are linear func-
tions of the unknown complex field a = Y · κ whose coefficients
are the spherical harmonic coefficients of κ . After discretization and
using matrix notation, κ and γ write

κ ≡ K · a and γ ≡ G · a , (18)

where K = Y and G = pY · J,Y denoting the scalar spherical
harmonics and pY = (EY,B Y) the parity eigenstates based on spin-
2 spherical harmonics. These eigenstates are defined in such a way
that

γ1 ± iγ2 = −
∑
�m

(a�,m,E ± ia�,m,B )±2 Y�m ,

so that we have(
γ1

γ2

)
=

∑
�,m

(
−W+

�,m

+i W−
�,m

)
a�,m,E +

∑
�,m

(
−i W−

�,m

−W+
�m

)
a�,m,B

with W±
�,m = (2Y�,m ± −2Y�,m)/2. Here, J operates on a as

(J · a)�,m,E =
√

(� + 2)(� − 1)

(� + 1)�
a�,m , (19)

(J · a)�,m,B = 0 . (20)

Appendix B gives more explicit formulations of the operators K
and G, using index notation on the sphere.

3.1.2 Flat-sky formulation

The flat-sky limits (corresponding to large �s) of equations (18)–
(19) are (see Appendix C)

J ≈ (1, 0) and Y ≈ exp(i� · n̂) , (21)

while the parity eigenstates read locally, in the fixed copolar basis
ex, ey:

W+ ≈− cos(2 φ�) exp(i � · n̂) = − l2
x − l2

y

l2
x + l2

y

exp(i � · n̂) ,

W− ≈−i sin(2 φ�) exp(i � · n̂) = −i
2 lx ly

l2
x + l2

y

exp(i � · n̂). (22)

In this limit, the unknowns, a, represent the Fourier coefficients of
the convergence field, κ . Note that our definition of γ and κ warrants
that they are consistent with the lens equation on the tangent plane
– solving for κ in equation (18) and plugging the solution into
equations (22) – which reads locally in real space:

∇2κ(n̂) = (
∂2

x − ∂2
y

)
γ1(n̂) + 2 ∂x∂yγ2(n̂) , (23)

where γ 1(x, y) and γ 2(x, y) are the two components of the E and
B modes of the shear field. Also note that thanks to equation (20)
the recovered map will not have B modes by construction. It can
nevertheless be checked that the amplitude of the B modes in the
residuals is small compared to the amplitude of the signal in the E
modes (see Section 4.2.3).

3.1.3 Cost function

The considered problem can be stated as recovering a given the data
g according to the model in equation (17). In the same way as done
for deblurring the images (Section 2), finding the solution of this
inverse problem in the MAP (Pichon & Thiébaut 1998; Thiébaut
2005) sense involves minimizing a two-term cost function:

Q(a) = L(a) + μR(a) , (24)

with respect to the parameters a. In the right-hand side of equa-
tion (24), the term L(a) enforces agreement of the model with the
data, whereasR(a) is a regularization term used to enforce our prior
knowledge about the sought fields, and μ ≥ 0 is a Lagrange multi-
plier used to tune the relative importance of the prior with respect
to the data.

For errors with a centred Gaussian distribution, the likelihood
term writes

L(a) =
∑
j,k

Wj1,k1,j2,k2 ek1 (n̂j1 ) ek2 (n̂j2 ) ,

with ek(n̂j ) = gk(n̂j ) − γk(n̂j )/[1 − κ(n̂)] and W = C−1 with
Cj1,k1,j2,k2 = 〈ek1 (n̂j1 ) ek2 (n̂j2 )〉. If the errors are further uncorre-
lated, the likelihood simplifies to

L(a) =
∑
j,k

wj,k

[
gk(n̂j ) − γk(n̂j )

1 − κ(n̂j )

]2

, (25)

where the sum is carried over the index j of the sampled sky direc-
tions n̂j (so-called sky pixels) and index k of the two components of,
say, the Q and U polarization fields, respectively (see Appendix B
for an explicit formulation with all the relevant indices), and the
weights are related to the variance of the noise:

wj,k = Var(ek(n̂j ))−1 . (26)

This allows us to account for non-uniform noise on the sky and
also cuts (the galaxy, bright stars, etc.) for which the variance can
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ASKI: full-sky lensing map-making algorithms 713

be considered as infinite and thus the corresponding weights set to
zero. Note that setting the weights in this statistically consistent way
yields no such biases as those which would result from interpolation
or inpainting methods used to replace missing data [Pires et al. 2009;
see also Abrial et al. (2008) for such implementation in the context
of CMB experiments]. For this recovery problem, our prior is that
the field κ must be as smooth as possible in the limit that the model
remains compatible with observables within the error bars, that
is equation (17) must be valid. To that end, the regularization is
written as a penalty based on the second-order spatial derivatives
(Laplacian) ∇2κ of the field κ:

R(a) = ‖∇2κ‖ . (27)

Equation (B12) in Appendix B gives the expression of ∇2κ as a
function of the unknown a. In order to enforce smoothness while
preserving some sharp features in the κ map, quadratic and non-
quadratic norms of the Laplacian have been considered for the
regularization (see Appendix B).

3.2 Generating the virtual data set

Let us first describe in turn the simulation used to model the full-sky
κ map, and the generation of the corresponding map.

3.2.1 The simulation

The HORIZON-4� (Prunet et al. 2008; Teyssier et al. 2009) simulation
was used, a � cold dark matter simulation using the WMAP 3
cosmogony with a box size of 2h−1 Gpc on a grid of 40963 cells.
70 billion particles were evolved using the Particle Mesh scheme
of the RAMSES code (Teyssier 2002) on an adaptively refined grid
(AMR) with about 140 billions cells, reaching a formal resolution
of 262 144 cells in each direction (roughly 7 kpc h−1 comoving).
The simulation covers a sufficiently large volume to compute a full-
sky convergence map, while resolving Milky Way size haloes with
more than 100 particles, and exploring small scales deeply into the
non-linear regime. The dark matter distribution in the simulation
was integrated in a light cone out to redshift 1, around an observer
located at the centre of the simulation box.

3.2.2 Mock data

This light cone was then used to calculate the corresponding
full-sky lensing convergence field, which is mapped using the
HEALPIX pixelization scheme with a pixel resolution of �θ �
0.74 arcmin2(nside = 4096). Specifically, the convergence κ(n̂) at
the sky coordinate n̂ is computed from the density contrast, δ(x, z),
in the Born approximation using

κ(n̂) = 3

2
�m

∫ zs

0

dz

E(z)

D(z)D(z, zs)

D(zs)

1

a(z)
δ

(
c

H0
D(z)n̂, z

)
, (28)

which is valid for sources at a single redshift zs = 1, and D(z) =
H0 χ (z)/c is the adimensional comoving radial coordinate, hence
dD = dz/E(z). The detailed procedure to construct such maps
from the simulation using equation (28) is described in Appendices
D1 (choosing the sampling strategy) and D2 and in Teyssier et al.
(2009). In practice, a set of degraded maps of κ was generated from
the full resolution, nside = 4096 down to nside = 128 in powers of
2, together with the corresponding masks (see Fig. 5). Different
levels of noise (corresponding to 700 ≤ �cut < 2500) and maps
with/without Galactic masks are considered. The corresponding
simulations are labelled as nnsideS

�cut
FS/GC . Cartesian maps are also

Figure 5. Top panel: full-sky view of the mask; bottom panel: a zoom at
coordinate (l, b) = (30◦, 30◦) showing the distribution of stellar cuts. This
cut corresponds to the inner central region of the reconstruction shown in
Fig. 12.

used, labelled as npixelC
S/N
NL/lin corresponding to Cartesian sections of

the full-sky maps, where for commodity, the experiments involving
high resolution were calibrated. Here, the flag NL/lin refers to
whether or not the non-linear model is accounted for.

3.2.3 Penalty weight

In this paper, the weight of the penalty, μ, in equation (24) is chosen
so that the �2 cut-off corresponds to the scale, �crit, at the intersec-
tion of the signal and the noise power spectra (see e.g. Fig. 6).
Specifically

μ ∝ 1/�2
crit .

In a more realistic situation, when the power spectrum of the
signal is unknown, GCV could be used to find this scale. When
�1 − �2 penalty is implemented (see Section 2.1.4), the �1 param-
eter ε entering equation (16) is chosen so that it cuts off the tail of
the PDF of the Laplacian of the recovered field at the 3σ level.

3.3 Optimization and performance

Let us now turn to the optimization procedure and the performance
of the algorithm.

3.3.1 Optimization

Recall that the procedure assumes here a sampling strategy, since
the noisy g field is given on a pixelization of the sphere. To solve the

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 705–726

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/401/2/705/1145186 by guest on 22 M
ay 2022



714 C. Pichon et al.

Figure 6. A zoom on the power spectra of the three reconstructions of

2048S
�cut
FS for �cut = 722, 1083 and 1569 (respectively 24, 44 and 78 ngal/�

arcmin), together with the power spectra of the noise. Note that the level
of smoothing decreases with increasing S/N, in parallel to the bias in the
corresponding power spectrum.

optimization problem, we used the algorithm VMLM from OPTIMPACK

(Thiébaut 2002) which only involves computing the objective func-
tion Q(a) and its partial derivative with respect to the parameters a.
VMLM is an unconstrained version of VMLMB which has been used
for the deblurring problem and which is described in some details
in Section 2.1. The optimization of equation (24) is carried out by
computing in turn equation (18) and equations (28) and (B7) using
HEALPIX (Górski et al. 1999) in OPENMP or MPI.

3.3.2 Overall performance

Each back and forth transform takes, respectively, 0.1, 0.5, 2, 8,
32 and 128 s on an octo OPTERON for nside equal to 128, 256, 512,
1024, 2048 and 4096 (see Table 2). The linearized problem without
mask converges typically in a dozen iterations (which typically only
involve a back and forth transform, unless the convergence is poor).
The linearized mask problem takes a few hundred iterations (see
Table 3), and so does the non-linear problem (or the linearized
problem with a non-linear �1 − �2 penalty function).

Table 2. The performance of the optimization of the linearized inversion
problem nsideS

�cut
FS as a function of nside for an octo opteron in OPENMP.

nside 128 256 512 1024 2048

Time for one step (s) 0.13 0.59 2.13 8.48 34.3
Number of steps (s) 13 12 9 13 24

Total time (s) 2.6 10.4 33.4 171.1 1129.3

Table 3. Same as Table 2 with Galactic masks.

nside 128 256 512 1024 2048

Time for one step (s) 0.121 0.121 0.502 1.88 8.53
Number of steps (s) 252 313 315 377 325

Total time (s) 40.1 50.3 200 989 3340

4 VALIDATION A ND POST-ANA LY SIS

Let us illustrate on a sequence of statistical tests several crucial fea-
tures of the ASKI map-making algorithm: its ability to fill gaps, its
ability to preserve the geometry and sharpness of clusters, and main-
tain the gravitational nature of the signal in the presence of masks,
and the freedom to choose strong/weak prior on the two-point cor-
relation. These properties are important in various contexts of the
weak lensing studies, such as the estimation of cosmological param-
eters, the physics of clusters, the interpretation of tomographic data
from upcoming surveys, constraining the dark energy equation of
state through the redshift evolution of statistical and topological
tracers. We chose a selection of statistical tests that are sensitive to
different aspects of map-making.

4.1 One-point statistics

4.1.1 Cluster counts

One of the main assets of high-resolution full-sky lensing maps is
to probe multiple scales: it then becomes possible to sample the
non-linear transition scale and, for example, study the shape of
clusters. Fig. 7 illustrates this feature while displaying the result of
the inversion with �2 and �1 − �2 penalties. For this experiment,
a Cartesian subset at galactic coordinates (l, b) = (0◦, 0◦) was
extracted. The corresponding non-linear shear field g was generated
via Fourier transform, and noised with a white additive noise of S/N
of 1. This set was then inverted while assuming �2 (bottom right)
and �1 − �2 (top right) penalties. The choice for the two penalty
weights, μ and ε, was made on the basis of least-square residual in
the inverted κ maps. The improvement of �1 − �2 over �2 penalty
is significant. This statement is made more quantitative in Fig. 8

Figure 7. Top-left panel: a zoom of the original map at coordinates
(l, b) = (0◦, 0◦); top-right panel: reconstruction with �1 − �2 penalty using
the non-linear model. Bottom-left panel: input map smoothed at an FWHM
of 1.5 pixels. Bottom-right panel: reconstruction with �2 penalty using the
non-linear model. The colour table is linear. The edge-preserving penalty
appears qualitatively to preserve much better the amplitude and the number
of high peaks in the κ map, as shown quantitatively in Fig. 8.
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ASKI: full-sky lensing map-making algorithms 715

Figure 8. The PDF of point source as defined in Section 4.3.1 corresponding
to the maps of Fig. 7 recovered with �1 − �2 penalty, and �2 penalty, respec-
tively. The improvement with an edge-preserving penalty is significant.

which displays the PDF of the peaks within that image for the initial
map (top-left panel of Fig. 7) computed following the peak patch
prescription described in Section 4.3.1. The agreement between the
input and the recovered distribution is significantly enhanced by the
optimal �1 − �2 (top right) penalty.

4.1.2 Skewness and Kurtosis

The simplest statistics to explore the non-linear transition are the
skewness, S3, and the kurtosis, S4, of the PDF of the recovered
maps. Furthermore, it has been shown that these parameters provide
a powerful tool to measure the underlying cosmological parameters
(Bernardeau, van Waerbeke & Mellier 1997; Takada & Jain 2002,

2004). Fig. 9 displays the evolution of these numbers as a function
of scale in the initial and recovered maps, with and without galactic
masking. The top hat filter used here is of width [2i, 2i+1], while
the harmonic number of each band is the mean of its boundary:
ī = (2i + 2i+1)/2. The recovery of skewness and kurtosis is good
in the case of unmasked data. Of course, it degrades with the scale
as we reach �cut. Using the reconstructed map is not the optimal
way of measuring the three- and four-point functions at small scale.
However, an optimal dedicated estimator can be built upon the same
regularization technique. The masked case is not as good. There, a
dedicated estimator, acting only on small, clean, pieces of the sky
will probably yield better results.

4.1.3 Accounting for a non-linear model

Fig. 10 shows the effect of accounting for the non-linearity in equa-
tion (17). Here, a set of Cartesian simulations is used 256 C1

NL/lin. This
map represents (a 100 times) the difference between the recovered
map while accounting for 1 − κ in equation (17) in the inversion,
and the recovered map while neglecting this factor. The difference
is small in amplitude, but shows as expected the strongest bias near
the clusters and the filaments, where κ is largest. The bottom panel
represents the corresponding relative power spectrum, C�[NL −
lin]/C�[input], as a function of �. Again, the larger discrepancy
occurs at higher �, corresponding to the sharp peaks at the posi-
tions of the clusters. Hence, the non-linearity should be accounted
for in the model if the shape of the cluster is an issue (see also
White 2005; Dodelson & Zhang 2005; Shapiro 2009). For all prac-
tical purposes, we have therefore demonstrated that at scales below
�max < 4096, solving the linearized problem is de facto equiva-
lent to the general non-linear problem when κ is neglected at the
denominator in equation (17).

4.2 Two-point statistics

Since ASKI was constructed to provide the optimal map given the
measured shear, we do not expect that it will yield the optimal
estimator for non-linear functions of these maps, such as the power
spectrum, bispectrum, etc. Nevertheless, it is of interest to compare
the two-point statistics of input and recovered maps to see how

Figure 9. Left-hand panel: skewness, S3 and kurtosis, S4 as a function of scale (using sharp top hat filtering) for the model (plane line) and the recovered κ

maps of a simulation 2048S
�cut
FS (dotted, dot–dashed, dot-dot–dashed line for �cut = 722, 1083 and 1569, respectively, 24, 44 and 78 ngal/� arcmin); right-hand

panel: same as top panel, but for the 2048S
�cut
GC set. Note that the kurtosis of the cut is significantly different at small �.
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716 C. Pichon et al.

Figure 10. Top panel: a map of the 100 times difference between the recov-
ered map with the non-linear model and �1 − �2 penalty, and the recovered
map without accounting for the non-linearity. As expected the difference is
largest at high frequencies near the cluster and along the filaments. Bottom
panel: the power spectrum of the relative difference as a function of �.

ASKI deals with masks and how it affects the occurrence of spurious
B modes.

4.2.1 Optimal Wiener filtering

Throughout this paper, the prior C� ≡ �−1(� + 1)−1 (‘Laplacian
prior’) is used in equation (B.11). Let us briefly investigate how
a customized (Wiener) prior for C� changes the reconstruction at
small scales. Fig. 11 shows that the corresponding power spectra
of the reconstructed κ maps, as expected, differ mostly for scales
where the S/N is smaller than 1. However, when the smoothing
(Laplacian) prior amplitude (see equation 27) is tuned to mini-
mize the reconstruction error as in the figure, the power spectra of
the reconstructed maps for the two different priors (Laplacian and
Wiener) are quite similar.

It is interesting to note that the power of the reconstructed map
with the Wiener prior (light brown line in Fig. 11) is systematically
biased low as compared to the input power spectrum. This reflects
the fact that an optimal (minimum variance) estimation of the power
spectrum is not equivalent to a power-spectrum estimation on an
optimal (minimum variance) reconstructed map. However, in the
simple case where we have noisy data without masks, the bias of
the power spectrum of the minimum variance map reconstruction is
known, it is simply given by C�/(C� + N�) where C� is the power

Figure 11. The power spectrum of the input and recovered κ [with smooth-
ing and C� prior, see equation (B8)] as a function of �, together with the
power spectrum of the noise and the noisy equivalent κ using a simulation,

512 S224
FS (i.e. ngal/� arcmin = 5). Note that the recovered power spectrum

departs from the power spectrum of the input field roughly at the cut-off
frequency when a quadratic smoothing penalty is applied.

spectrum of the underlying κ map (without noise), and N� is the
noise power spectrum in ‘kappa’ space, which is given approxi-
mately in our case by σ 2�pix, where σ 2 is the noise variance per
pixel in the shear field and �pix is the solid angle of a pixel.

In Fig. 11, the noise level is shown by the horizontal dark blue
line. One can see in particular in the figure that when the model
power spectrum (without noise) crosses the noise power spectrum,
the power spectrum of the minimum variance map (golden line)
is lower than that of the model by a factor of 2, as expected from
the considerations above, even in the presence of masks. Thus, an
approximate, but simple, way to get an unbiased estimate of the
kappa power spectrum is to correct the minimum variance map
power spectrum by the ratio C�/(C� + N�). Note, however, that
a true minimum variance power-spectrum estimation of the kappa
field is not the aim of the present method (see e.g. Pen 2003 for the
flat-sky case).

Nevertheless, elsewhere in this paper, a smoothing prior which is
not customized to the specific problem is preferred.

4.2.2 Filling gaps within masks

Let us first compare visually the recovered map to the input map.
Fig. 12 illustrates a feature of the penalized reconstruction: it inter-
polates quite well and provides means to fill the gaps corresponding
to the galactic cuts. For a more quantitative comparison, we also
plot in this figure the ridges of both fields (using the skeleton, see
below), which match very well up to the very edge of the mask. The
smoothing penalty also induces a level of extrapolation, best seen
in the residuals (see Fig. 13). The masking (or more generally, non-
uniform weights, wi) nevertheless biases the reconstructed map, as
seen in Figs 9 and 14. Note finally that when masks are accounted
for, it is straightforward to correct for them when computing the
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ASKI: full-sky lensing map-making algorithms 717

Figure 12. Left-hand panel: the initial κ map in the region with bright stars masking shown in Fig. 5 at coordinates (l, b) = (30◦, 30◦); middle panel: the
corresponding recovered κ map of a simulation 2048 S2212

GC . Note that the gaps have been nicely filled up to the very edge of the mask; right-hand panel: the
corresponding two skeletons (colour coded by κ in purple: input skeleton; in orange: recovered skeleton) for the inner region (marked as a square on the middle
panel), when masking is present. Note the clear gradient away from the mask in the quality of the match between the two skeletons; recall that most of this
field is partially shielded by stars, as seen in Fig. 5.

Figure 13. An example of full-sky leak of the B modes when masks are
accounted for; top panel: the residuals corresponding to σB = σ + σ ; the
inner box corresponds to a zoom near the edge of the galactic cut at (b, l) =
(30, 20); bottom panel: same residual and box for σB = σ + 32σ . Note that
for the latter case, the extent of the leakage is much larger and coherent.

power spectrum as the harmonic transform of the autocorrelation,
which in turn is derived by correcting for the autocorrelation of the
masks (see Szapudi, Prunet & Colombi 2001; Hivon et al. 2002;
Chon et al. 2004 for details). When seeking the three-point cor-
relations, one could also proceed accordingly, and divide by the
three-point correlation of the mask. Indeed, a three-point-reduced
correlation is simply one plus the excess probability of finding
triplets, which in turn is computed by counting the number of found
triplets and dividing by the expected number of such triplets given
the shape of the mask (Chen & Szapudi 2005). This also applies
if the mask is grey.

Figure 14. The power spectra of three high-resolution reconstructions cor-
responding to Fig. 12 for �cut = 796, 1368 and 2212 (respectively 28, 63
and 130 ngal/� arcmin corresponding to a low-, intermediate- and high-end
values) together with the power spectra of the noise. Note that the recovered
power spectrum has extra power at large scales and less power at intermedi-
ate scales, an artefact of the mask which can be corrected for by accounting
for the prior knowledge of the auto-correlation of the mask.

4.2.3 Residual B modes

Let us investigate the effect of leaking of B modes with the following
experiment: the noise in the transform of the B channel is boosted
by some fixed amount over a map which has Galactic cuts. This
corresponds to the case where the B is significantly larger than
the noise, yet uncorrelated with the E mode, corresponding to, for
example, a systematic bias in the ellipticity extraction. It is expected
that, due to masks, this B mode will leak in E. An example of such
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718 C. Pichon et al.

Figure 15. Power spectrum of the mask weighted residual error on κ as
a function of the harmonic number, �. The different curves correspond to
boost the B modes of increasing relative strength. The low-order modes
are polluted by leaks from the masks (see also Fig. 13); here lcut = 752
(60 ngal/� arcmin).

leak, for B modes as large or up to 32 times larger than the noise,
is shown in Fig. 13. The power spectrum of the residuals in the
corresponding κ map is computed while masking in the residual
the exact regions corresponding to the cuts. When this boost is zero
(bottom curve in Fig. 15), the power spectrum of these residuals
is flat and corresponds to the noise power spectrum. In contrast,
the stronger the boost the larger the scale below which this power
spectrum is coloured. Note that it was checked that, as expected,
these coherent residuals disappear completely if the galactic cuts

are ignored. It would also be interesting to compare the distribution
of the shape of dark matter in input/recovered clusters.

Finally, note that Appendix C2 discusses briefly the effect of
noise in power-spectrum estimation.

4.3 Alternative statistics: critical sets

Let us close this section with a quantitative comparison of the input
and the recovered map using more exotic probes to estimate the
quality of the reconstruction, and the prospect it offers for dark
energy measurements. Indeed, the predictions of the perturbative
hierarchical clustering model are often given through the hierarchy
of the differences between the moments to their Gaussian limit.
Yet higher order moments are generally difficult to test directly in
real-life observations, due to their sensitivity to very rare events. As
argued in Pogosyan, Gay & Pichon (2009a) the geometrical analysis
of the critical sets in the field (extrema counts, Genus, critical lines,
etc.) may provide more robust measures of non-Gaussianity, and
is becoming elsewhere an active field of investigation (Park et al.
2005; Gott et al. 2009).

4.3.1 Peak patch counts and area

Even though many tools are available to identify peaks within the
reconstructed map, let us validate here our reconstruction using a
segmentation of both the initial and the recovered maps using peak
patches on the sphere, which are a segmentation of the map based
on the attraction patches of the κ map when following its gradient
(see Sousbie, Colombi & Pichon 2009). Within each peak patch
(see Fig. B1), the brightest pixel is assigned a mass correspond-
ing to the enclosed mass within the peak patch. This quantity is
gravitationally motivated (as the patch corresponds to the attrac-
tion region of the cluster) and is both robust (as the geometry of
the patch only depends on the imposed smoothing length, which in
turn is fixed by the resolution of the survey) and sensitive to small
features in the map; it is therefore a good indicator of the quality
of the reconstruction. Fig. 16 (left-hand panel) displays the corre-
sponding PDFs before and after reconstruction. As expected, the
recovered point source PDF has a shifted mode and is less skewed

Figure 16. Left-hand panel: the PDFs of κmax at point sources before and after reconstruction of a set of simulations 2048S
�cut
FS [dashed, dotted, dot–dashed

line for �cut = 722, 1083 and 1569 (respectively 24, 44 and 78 ngal/� arcmin)]; right-hand panel: the PDFs of the area of peak patches (see Fig. B1) before
and after reconstruction for the same set of simulations. Note that, as expected, the recovered distribution of peaks is less skewed than the original, whereas
conversely, the PDF of the area of the peak patches for the low S/N reconstruction is more skewed towards larger patches.
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ASKI: full-sky lensing map-making algorithms 719

than the original distribution. This trend decreases with increasing
S/N. For realistic galaxy counts of 40 ngal/� arcmin, the agreement
between the input and the recovered PDF is fairly good, and the cor-
responding residual bias can be modelled (as the reconstruction is
essentially a smoothing of the underlying map). This could lead
to interesting constraints on �m and D(z) when used in conjunc-
tion with weak lensing tomography in order to probe its redshift
evolution. The right-hand panel of Fig. 16 focuses on a different
quantity, the area of the patches, which when compared to the area
of the corresponding void patches could also be used as a measure
of the gravitationally induced non-Gaussianities, together with their
shape (higher moments of κ within a patch). Again, the reconstruc-
tion seems to recover this distribution well enough to suggest that
such a tool could be used in the future to study the cosmic evolution
of the projected web.

4.3.2 Topology & geometry: critical lines

Let us now compare the shape of the recovered map to the initial
map from the point of view of its critical lines. For this purpose, let
us use here the skeleton as a geometric probe (Novikov, Colombi &
Doré 2006; Sousbie et al. 2008b). It is defined in 2D as the boundary
of the void patches, which in turn are a segmentation of the map
based on the valleys of the κ map [corresponding to the peak patches
(defined above) of minus the field]. The skeleton of the initial field
and the recovered fields for simulation 2048S

�cut
GC is computed, and

represented in Fig. 12. The recovered skeletons are qualitatively
fairly close to the original skeleton, which demonstrates that the
local topology and geometry of the field are well recovered. Let us
make this comparison more quantitative. The differential length per
unit area of the recovered field (the set2048S

�cut
FS with �cut = 722, 1083

and 1569 as labelled)9 over the initial κ map (thin line) as a function
of density threshold is also shown in Fig. 17, while Fig. 18 shows
the corresponding maps for similar runs, together with a map of the
orientation of the ssg field. The agreement increases at larger den-
sity thresholds, which suggests that the topology of dense regions is
well recovered.10 The total length was shown (Sousbie et al. 2009)
to trace well the underlying shape parameter of the power spectrum
and has been used in 3D to constrain the dark matter content of
the Universe (Sousbie et al. 2008a). As shown in Pogosyan et al.
(2009b) this would work for 2D maps, and could therefore be used
with κ maps such as those reconstructed via the present method.
The redshift evolution of this differential count, when tomographic
data are available, could complement, for example, Genus measure-
ments as means of constraining the dark energy equation of state
in a manner which could be more robust than direct cumulant esti-
mation. Eventually, the skeleton could also be used to characterize
the connectivity of clusters (i.e. the number of connected projected
filaments), as it will also depend on the cosmic dark energy content
of the universe (Pichon al. 2009).

This rapid review has shown that depending on the final objec-
tive (cosmological parameters, cross-correlation with other maps,
etc.), a variety of estimators can be extracted from the recovered
maps. ASKI was shown to perform rather well with respect to these
estimators. Defining the best combination of these estimators – and
the optimal penalty associated – will be one of the key topics for
lensing research for the coming years.

9 Note that ngal/� arcmin = 40(lcut/1000)1.5.
10 In fact, the relative distance between the recovered and the input skeleton
could also be used as an alternative to the differential length (see Caucci
et al. 2008).

Figure 17. The input skeleton differential length (a tracer of �m) with its
recovered counterparts as a function of the normalized κ contrast, ν ≡ (κ −
κ̄)/σκ for the set 2048S

�cut
FS with �cut = 722, 1083 and 1569 (respectively 24,

44 and 78 ngal/� arcmin). Here, the PDF of the normalized κ contrast was
subtracted to the differential length for clarity. As expected, the agreement
is best at large convergence. This figure is complementary to Fig. 12 which
shows that the geometry of the field is well preserved on average.

Figure 18. A zoom of the full-sky recovered κ maps of a simulation 2048S
�cut
FS

with �cut = 722 (top-left panel) and 1569 (top-right panel) (respectively 24
and 78 ngal/� arcmin) at coordinates (φ, θ ) = (0, 0) (the colour table cor-
responds to a histogram equalization); bottom-left panel: the corresponding
data (the hue colour table codes the shear orientation); bottom-right panel:
the corresponding underlying κ map.

5 C ONCLUSI ON A ND DI SCUSSI ON

This paper sketched possible solutions to issues that a full-sky
weak lensing pipeline will have to address, and presented an in-
verse method implementing the deblurring of the image and the
map-making step.
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Weak lensing surveys require measuring statistical distributions
of the morphological parameters (ellipticity, orientation, . . .) of a
very large number of galaxies. This paper demonstrated that these
parameters can be measured with a better accuracy and strongly
reduced bias if the deep sky images are properly deblurred prior to
the shape measurements. Using a relative figure of merit (the re-
covered SEXTRACTOR ellipticity) we have shown that this deblurring
could in crowded fields improve more than tenfold the accuracy
of the recovered ellipticities. This deblurring is critical in crowded
regions, where the overlapping of stars and galaxies otherwise pre-
vents accurate morphological estimation. Henceforth, dealing with
such regions is important for a full-sky survey. Since such surveys
will require the processing of a great number of large images, the
calibration of these techniques is automated on the images them-
selves via cross-validation after the identification and removal of the
stars within the field (see Fig. 1). In particular, the level of regular-
ization, μ and the �1 − �2 threshold are automatically tuned in order
to deal with the noise level and the dynamics of the raw images.
The gap-filling interpolation feature of the inversion would apply
even more efficiently in this regime than in the map reconstruction
regime described in Section 3. The algorithm described here scales
well since it only relies on DFTs: hence it could be applied to very
large images such as those produced by modern surveys. ASKI uses
the efficient variable metric limited memory algorithm OPTIMPACK,
which allows both optimizations to scale to high resolutions. The
deblurring is implemented on Cartesian maps as large as 16 3842

pixels. GCV was shown to yield a quantitative threshold in order
to accurately remove the point sources within the field, hence im-
posing the optimal level of smoothing for the galaxies only. In this
paper, the focus was put on blurred 8-m ground-based observations,
but the implementation for EUCLID-like space missions should be
straightforward. The above-described improvements could clearly
be reproduced if alternative state-of-the-art shear estimators were
to be used (as compared by the SHear Testing Program).

This paper also demonstrated that optimization in the context of
MAP provided a consistent framework for the optimal reconstruc-
tion of κ maps on the sphere. The main asset of the ASKI algorithm is
that the penalty can be applied in model space, while the optimiza-
tion iterates back and forth between data space and model space.
This freedom allows it to deal simultaneously with masks (in data
space) and edge-preserving penalties. Providing κ maps is critical in
its own right, as it maps the dark matter distribution of our universe,
and gives access to the underlying power spectrum on large scales.
Such maps are also interesting when cross-correlated with other
surveys (optical surveys, CMB maps, lensing reconstruction and
distribution of SZ clusters from the Planck mission, redshift evolu-
tion of X-ray sources counts, etc.) in order to explore the evolution
of the large-scale structure, and in the case of the surveys map-
ping the baryonic matter, to better understand biasing as a function
of scale. Finally, though not optimally, it can be used to compute
second and higher order statistics, and noticeably the three-point
statistics, the Genus, cluster counts or the skeleton, which may con-
strain more efficiently the dark energy equation of state, as they
are less sensitive to rare events. It should be stressed once more
that while the reconstructed κ maps yield biased estimates of the
power-spectrum and higher order statistics, the technique described
in this paper can be adapted to build dedicated optimal estimators
for each of those observables.

Section 4 demonstrated the quality and limitations of the recon-
struction using various statistical tools on a full-sky simulation of g
with resolutions of up to 12 × 40962 = 201 326 592 pixels thanks
again to the efficiency of OPTIMPACK. In particular, it identified point

sources of the fields, analyzed their PDF and showed that �1 − �2

penalty was critical at small scales. It also investigated the effect
of leakage of B modes when Galactic cuts are present. It presented
a method to probe the topology and geometry of a field on the
sphere, the peak patches and the skeleton, and applied it to compare
the recovered field to the initial field. Such tools allow us to quan-
tify the differences between the two maps and act as an efficient
source segmentation algorithm. Indeed, the degeneracy between the
cosmological parameters (�M, σ 8) is, for instance, best lifted with
cluster counts. They may also turn out to be of importance when
probing the dark energy equation of state as they are less sensitive
to rare events. The Cartesian dual formulation of ASKI was also im-
plemented and may prove useful for surveys where sky coverage is
sufficiently small.

In short, ASKI accounts for the possible building blocks that a
full-scale pipeline aiming at sampling the dark matter distribution
over the whole sky should provide. Specifically, it allows for (i) au-
tomatically deblurring very large images using non-parametric self-
calibrated edge-preserving �1 − �2 deconvolution with positivity;
(ii) carrying the large non-linearinverse problem of reconstructing
the convergence κ from the shear g using equation (17): the back
and forth iterations between model and data are consistent with con-
straints in both spaces, and allow for an accurate recovery of cluster
profiles and shapes; (iii) non-uniform weighting and masking: con-
sistent with realistic Galactic cuts (and bright stars masking) and
non-uniform sampling of the different regions of the sky, dealing
transparently with the issue of the boundary; (iv) edge-preserving
�1 − �2 penalty yielding quasi-point-like cluster reconstruction. Fi-
nally, (v) it introduced peak patches and the skeleton on the sphere,
together with its statistics.

Possible improvements/investigation beyond the scope of this
paper involve: (i) comparing the absolute gain in shear estimation
using alternative tools to SEXTRACTOR (such as Massey et al. 2007)
with more realistic galactic shapes; (ii) deblurring the images with a
variable PSF within the field; (iii) building optimal estimators for the
power spectrum Cκ

� , or the asymmetry S3 (a possible option would
be to rely on perturbation theory, and invert the non-linear problem
for both Cκ

� and S3); (iv) inverting for γ and κ simultaneously and
checking a posteriori the amplitude of the B modes [an alternative
to the model described in equation (19); the issue of unicity of the
solution will be a challenge]; (v) carrying the deprojection while as-
suming prior knowledge of a complete distribution of source planes
in equation (28) (the corresponding inverse problem remains linear,
with an effective kernel which depends on the optical configura-
tion and the distribution of galaxies as a function of redshift); (vi)
moving away from the Born approximation, which involves solv-
ing Poisson’s equation for each slice, and ray-tracing back to the
source while solving for the lens equation though all the slices; (vii)
implementing a more realistic noise modelling [which amounts to
changing the cost function, equation (24)]; (viii) studying the shape
of dark matter distribution in clusters and groups: typically this
would also involve cross-correlating the corresponding distribution
with the light at various wavelengths, (ix) defining the post-analysis
which is most sensitive to dark energy, given the feature of the
surveys to come and finally (x) propagating the analysis up to the
cosmic figure of merit for the dark energy parameters.
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Górski K. M. et al., 1999, in Banday A. J., Sheth R. K., da Costa L. N., eds,

Proc. MPA-ESO Cosmology Conf., Evolution of Large Scale Structure:
From Recombination to Garching. ESO, Garching, p. 37

Gott J. R., Choi Y.-Y., Park C., Kim J., 2009, ApJ, 695, L45
Halkola A., Seitz S., Pannella M., 2006, MNRAS, 372, 1425
Heymans e. A., 2006, MNRAS, 368, 1323
Hirata C., Seljak U., 2004, Phys. Rev. D, 70, 063526
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Soulez F., Denis L., Thiébaut E., Fournier C., Goepfert C., 2007, J. Opt.

Soc. Am. A, 24, 3708
Sousbie T., Pichon C., Courtois H., Colombi S., Novikov D., 2008a, ApJ,

672, L1
Sousbie T., Pichon C., Colombi S., Novikov D., Pogosyan D., 2008b,

MNRAS, 383, 1655
Sousbie T., Colombi S., Pichon C., 2009, MNRAS, 393, 457
Starck J., Pires S., Refregier A., 2006, A&A, 451, 1139
Szapudi I., Prunet S., Colombi S., 2001, ApJ, 561, L11
Takada M., Jain B., 2002, MNRAS, 337, 875
Takada M., Jain B., 2003, MNRAS, 340, 580
Takada M., Jain B., 2004, MNRAS, 348, 897
Tarantola A., Valette B., 1982, Rev. Geophys. Space Phys., 20, 219
Teyssier R., 2002, A&A, 385, 337
Teyssier R. et al., 2009, A&A, 497, 335
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APPENDI X A : EFFI CI ENT STA R R EMOVA L

We have observed that for realistic deep field images, GCV yields
a hyper-parameter value which is relevant to regularize the higher
part of the dynamic (mainly due to stars, i.e. point-like objects
which concentrate their luminous energy in a very small area) but
which is much too low to regularize the lower parts of the dynamic
where galaxies remain. Indeed, when dealing with images with a
large dynamical range, GCV yields a value of the regularization
level μ which is necessarily a compromise between not smoothing
too much the sharp features and sufficient smoothing of low con-
trasted structures to avoid noise amplification. The solution to the
problem of underestimating the regularization weight can be solved
by applying the GCV method on to the image with no stars. We
want to find structures of known shape s(x) but unknown position
and intensity in the image y. In our case, s(x) is the PSF since we
want to detect stars. This reasoning could, however, be generalized
to other kind of objects. If a single object of this shape is present
in the image, this could be achieved by considering the objective
function:

φfull(α, t) =
∑

k

wk [α s(xk − t) − yk]2
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to be minimized w.r.t. the weight α and the offset t, here a 2D
vector. In fact, since y may be crowded with similar structures (or
with other fainter structures), a better strategy is to limit the local
fit to a small region of interest (ROI) around the structure. This is
achieved by minimizing

φ(α, t) =
∑

k

wk r(xk − t) [α s(xk − t) − yk]2 ,

where r(δx) is equal to 1 within the ROI and equal to 0 outside the
ROI. Minimization of φ(α, t) w.r.t. α yields the best intensity for a
local fit around t:

∂φ

∂α
= 0 ⇐⇒ α� =

∑
k wk r(xk − t) s(xk − t) yk∑
k wk r(xk − t) s(xk − t)2

.

Inserting α� in the objective function yields

φ�(t) � φ(α, t)|α=α� ,

=
∑

k

wk r(xk − t) y2
k −

(∑
k wk r(xk − t) s(xk − t) yk

)2∑
k wk r(xk − t) s(xk − t)2

.

Since r(δx)2 = r(δx), by defining sROI(δx) ≡ r(δx) s(δx), the local
criterion and local best intensity can be rewritten as

φ�(t) =
∑

k

r(xk − t) wk y2
k −

(∑
k sROI(xk − t) wk yk

)2∑
k sROI(xk − t)2 wk

,

α�(t) =
∑

k sROI(xk − t) wk yk∑
k sROI(xk − t)2 wk

.

These parameters can be computed for all shifts by an integer num-
ber of pixels by means of FFTs (cross-correlation product). Unfor-
tunately, the overall minimum of φ�(t) is not the best choice for
removing the brightest structures since there is no warranty that this
minimum corresponds to a bright object. It is better to select the
location which yields the brightest structure, i.e. the maximum of
α�(t). After the removal of the contribution α�(t �) s(x − t �) from the
data, this technique can be repeated to detect the second brightest
source, and so on. The corresponding algorithm is very similar to
the CLEAN method (Högbom 1974; Schwarz 1978) with the further
refinement of accounting for non-stationary noise and missing data.
It has been shown that it achieves sub-pixel precision (Soulez et al.
2007) and that it could be used to detect (and remove) out of field
sources (Soulez et al. 2007).

A P P E N D I X B: MO D E L O N T H E SP H E R E

Let us describe in more details the model used for the inversion of
Section 3.1.

B1 Discretization and sampling

After discretization and using explicit indices, the model in equa-
tion (17) writes

gj,k = γj,k

1 − κj

+ ej,k ,

where the index j runs over the sky coordinates n̂j = (xj , yj ), index
k corresponds to the two components U and Q of the polarization,
whereas � and m are the harmonic indices and p refers to the two
components of the spinned two-harmonic. In words, the discretiza-
tion yields

gj,k ≡ gk(n̂j ), γj,k ≡ γk(n̂j ), κ ≡ κ(n̂j ), ej,k ≡ ek(n̂j ) .

Figure B1. Peak patch of the recovered κ map. The inner box zooms the
central region. The colour coding corresponds loosely to the density of the
different peak patches. The PDF of the area of these patches is described
in Fig. 15 while the maxima mentioned in this figure are found within each
patch.

Here, the fields κ and γ are linear functions of the complex field a of
the spherical harmonic coefficients of κ . Using the matrix notation
of the paper, κ and γ write

κ = K · a , γ = G · a ,

where K = Y and G = pY · J; with explicit index notations:

κj =
∑
�,m

Kj,�,m a�,m =
∑
�,m

Yj,�,m a�,m ,

and

γj,k =
∑
�,m

Gj,k,�,m a�,m =
∑
�,m,p

pYj,k,�,m,p (J · a)�,m,p .

To get the detailed expression of the operator J we start from the
relationship between the lensing potential, the convergence and the
shear fields on the sphere. To do this, we need first to define the null
diad, based on the polar coordinates unit vectors:

m± = (êθ ∓ iêφ)√
2

. (B1)

Given this diad, the lensing potential, convergence and shear are
related through

∇i∇j� = κgij + (γ1 + iγ2)(m+ ⊗ m+)ij

+ (γ1 − iγ2)(m− ⊗ m−)ij ,

where gij is the spherical metric tensor, and ∇ the spherical covari-
ant derivative. Now, using the following expression of the second
covariant derivative of a scalar spherical harmonic:

∇i∇jY�,m = 1

2

√
(l + 2)!

(l − 2)!
[2Y�,m(m+ ⊗ m+)

+ −2Y�,m(m− ⊗ m−)]ij − �(� + 1)

2
Y�,mgij ,

we can relate the convergence and shear fields to the spherical
harmonic coefficients ��m of the lensing potential:

κ(n̂) = −
∑
�m

1

2
�(� + 1)��,mY�,m(n̂) , (B2)

(γ1 ± iγ2)(n̂) =
∑
�m

1

2

√
(l + 2)!

(l − 2)!
��,m±2Y�,m(n̂) , (B3)

= −
∑
�m

(a�,m,E ± ia�,m,B )±2Y�,m(n̂) , (B4)

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 705–726

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/401/2/705/1145186 by guest on 22 M
ay 2022



ASKI: full-sky lensing map-making algorithms 723

where the last equality defines the E and B mode coefficients. Relat-
ing the latter coefficients to the spherical harmonics decomposition
of κ written above, we get the following expression for the J oper-
ator coefficients:

(J · a)�,m,E =
√

(� + 2)(� − 1)

(� + 1)�
a�,m , (B5)

(J · a)�,m,B = 0 , (B6)

where a�,m are the spherical harmonic coefficients of the conver-
gence field.

B2 Likelihood

The data related term in the cost function is

L =
∑
j,k

wj,k

(
γj,k

1 − κj

− gj,k

)2

.

The gradient of this term is needed to find the solution of the inverse
problem:

∂L(a)

∂a�,m

= 2
∑
j,k

H�,m,j,k

rj,k

1 − κj

+ 2
∑

j

Y∗
�,m,j

∑
k γ ∗

j,krj,k

(1 − κj )2
,

where

rj,k = wj,k

(
γj,k

1 − κj

− gj,k

)

are the weighted residuals, and where

H�,m,j,k =
√

(� + 2)(� − 1)

(� + 1)�
pY

∗
�,m,1,j ,k . (B7)

B3 Regularization

The aim of the regularization is to avoid ill-conditioning and noise
amplification in the inversion. Following a Bayesian prescription,
this can be achieved by requiring the field κ to obey some known a
priori statistics, or while assuming a roughness penalty for R.

B3.1 Wiener filter and �2 penalty

Assuming the field κ has Gaussian distribution with mean κ̄ = 〈κ〉
and covariance Cκ = 〈(κ − κ̄) · (κ − κ̄)T〉, the prior penalty should
write

μ ≡ 1 and R = (κ − κ̄)T · C−1
κ · (κ − κ̄) .

For a field with zero mean (κ̄ = 0) and stationary isotropic statis-
tics, the regularization can be expressed in terms of the harmonic
coefficients:

R(a) = ‖C−1/2 · a‖2 =
∑

�

∑
m |a�,m|2
C�

, (B8)

with

C� = 〈|a�,m|〉2 , (B9)

where the angular brackets denote here the expected value taken
over the index m of the harmonic coefficients. The gradient of the
stationary isotropic Gaussian regularization in equation (B8) is

∂R(a)

∂a�,m

= 2
a�,m

C�

.

Note that the regularization in equation (B8) with a known power
spectrum C� for the field κ yields the so-called Wiener filter.

When the power spectrum of κ is not exactly known, a quadratic
prior can alternatively be used. For instance,

R(a) = ‖R−1/2 · a‖2 =
∑

�

∑
m |a�,m|2
R�

. (B10)

In our framework, effective regularization is achieved by requiring
the field κ to be somewhat smooth. In practice, this is obtained by
requiring R� to be a positive non-decreasing function of the index
�. Note that, from a Bayesian viewpoint, the regularization in equa-
tion (B10) corresponds to the prior that κ is a stationary isotropic
centred Gaussian field with mean power spectrum C� = R�, which
is similar to the Wiener filter except that the exact statistics are not
known in advance (because some parameters of the regularization
have to be tuned; for instance, μ need not be equal to one). The
gradient of R in equation (B10) reads

∂R(a)

∂a�,m

= 2
a�,m

R�

.

The quadratic prior in equation (B10) can be expressed in terms
of κ

R = ‖R−1/2 · a‖2 = ‖D · κ‖2 ,

where D = R−1/2 · Y# is some finite difference operator which
gives an estimate of the local fluctuation of the field, and Y# is
the (pseudo-)inverse of the scalar spherical harmonics matrix. In
our framework, we choose to measure the amplitude of the local
fluctuations of the field κ by its Laplacian ∇2 κ and to express the
regularization penalty as

R(a) =
∑

j

φ
(
(∇2κ)j

)
, (B11)

where the cost function φ(r) is an increasing function of |r|. When
φ(r) = r2, our regularization is a quadratic penalty similar to equa-
tion (B10). Using matrix notation, the Laplacian of the field κwrites

∇2κ = Y · L−1/2 · a , with
(
L−1/2 · a

)
�,m

= a�,m√
L�

,

where L� ≡ �−2(� + 1)−2. In order to perform the minimization, the
gradient of the regularization must be computed. By the chain rule

∂R(a)

∂a�,m

=
∑

j

φ′ ((∇2κ)j
) ∂(∇2κ)j

∂a�,m

,

=
∑

j

Y∗
�,m,j√
L�

φ′ ((∇2κ)j
)
, (B12)

where φ′ (r) is the derivative of φ(r).

B3.2 �2 − �1 penalty

As for the image restoration, quadratic regularization yields spuri-
ous ripples in the regularized κ map. To avoid them, we propose to
use a �2 − �1 cost function φ applied to the Laplacian of κ . The
details of the �2 − �1 cost function are discussed in Section 2.1.4.
Taking R(a) = ∑

j φ
(
(∇2κ)j

)
, with φ given in equation (16),

yields

∂R(a)

∂a�,m

=
∑

j

2 ε (∇2κ)j
ε + ∣∣(∇2κ)j

∣∣ ∂(∇2κ)j
∂a�,m

,

= 2 ε
∑

j

Y∗
�,m,j√
C�

(∇2κ)j
ε + ∣∣(∇2κ)j

∣∣ .
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In practice, we use GCV to set the level of the regularization,
possibly after cluster removal (as explained in Appendix A) and the
�1 − �2 threshold is set to be ε = α σ where α ∼ 2–3 and σ is the
standard deviation of the histogram of spatial finite differences.

APPENDIX C : FRO M THE SPHERE TO
T H E PL A N E

In Section 3.1.2, we sketched the correspondence between the full-
sky and the flat-sky approximation of the lens equation. Let us
derive it here precisely and use it to investigate the effect of shot
noise in the estimation of κ .

C1 Derivation

Following closely Hu (2000), let us start with a scalar field on the
sphere, and its decomposition on the usual spherical harmonics:

X(n̂) =
∑
�m

X�,mY�,m , (C1)

and let us define

X(l) =
√

4π

2� + 1

∑
m

i−mX�,meimφ� , (C2)

together with the inverse relation

X�,m =
√

2� + 1

4π
im

∫
dφ�

2π
X(l)e−imφl ,

where φ� is the polar angle of the l vector in Fourier space. Let
us show that X(l) corresponds to the Fourier decomposition of the
field in the flat-sky limit (small angles near the pole). Indeed, taking
the asymptotic behaviour of the spherical harmonics

Y�,m ≈ Jm(�θ )

√
�

2π
eimφ ,

together with the plane-wave expansion in terms of Bessel functions

eil.n̂ =
∑

m

imJm(�θ )eim(φ−φ�) ≈
√

2π

�

∑
m

imY�,meimφl .

We get from equation (C1)

X(n̂) ≈
∑

�

�

2π

∫
dφ�

2π
X(l)

∑
m

Jm(�θ )imeim(φ−φ�) ,

≈
∫

d2�

(2π )2
X(l)eil.n̂ .

For a spin-2 field, let us proceed similarly. We start from the all-sky
definition of a spin-2 tensor field, and its decomposition in spin-2
spherical harmonics:

±X(n̂) =
∑
�m

±X�,m±2Y�,m , (C3)

where ±X(n̂) is defined in the spherical tangent coordinates eθ , eφ .
We define, as in equation (C2), the Fourier modes of the components
of the spin-2 field as ± X(l). We have in the flat-sky limit the
following asymptotic form for the spin-2 spherical harmonics:

±2Y�,m ≈ 1

�2
e∓2iφ(∂x ± i∂y)2Y�,m . (C4)

Plugging equation (C3) into equation (C4) yields

±X(n̂) ≈
∑

�

�

2π

∫
dφ�

2π
X(l)e∓2iφ 1

�2
(∂x ± i∂y)2eil·n̂ ,

≈ −
∫

d2�

(2π )2 ±X(l)e±2i(φ�−φ)eil·n̂ .

Redefining the spin-2 field in the fixed coordinate system such that
the first axis (ex) is aligned with φ = 0, we obtain

±X′(n̂) ≈ −
∫

d2�

(2π )2 ±X(l)e±2iφ� eil·n̂ , (C5)

where �x + i�y = �eiφ� . Expanding ±X(l) = E(l) ± iB(l), we
can relate these rotationally invariant quantities to the Fourier trans-
forms of the spin-2 field individual components. In the case of weak
lensing, we get the following flat-sky limits:

κ(n̂) ≈ −1

2

∫
d2�

(2π )2
�2�(l)eil.n̂ (C6)

(γ1 ± iγ2)′(n̂) ≈ −1

2

∫
d2�

(2π )2
�2�(l)e±2iφ� eil.n̂. (C7)

After identification, we thus get the limits for the operator J:

J = (1, 0) (C8)

independently of the Fourier mode modulus.

C2 S/N investigation in the plane

Let us briefly investigate the effect of noise on the recovery of
the κ power spectrum arising from the finite number of sources
per unit area. For this purpose, let us consider the simplest setting
corresponding to a Cartesian map without mask which can therefore
be inverted linearly following equations (22)–(23). In this regime,
the regularized solution is simply given in Fourier space by

κ̂ = 1

1 + μ
(
�2

x + �2
y

)
[
ĝx

(
�2

x − �2
y

)
(
�2

x + �2
y

) + 2�x�y(
�2

x + �2
y

) ĝy

]
, (C9)

where ĝx , ĝy and κ̂ are the Fourier transform of the observed shear
and convergence, and μ the penalty hyper-parameter. In Fig. C1, we
make use of the simulation 1024 C�

lin, whose residues (after non-linear

Figure C1. The effect of noise on the reconstruction of the power spectrum
for a set of 50 realizations of the noise for the map 1024 C�

lin (�max = 1200).
Note that at these scales, the spread in the recovered power spectra for the
different realizations is only visible above the cut-off frequency.
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inversion) are shown in Fig. 8. Here, 50 Monte Carlo realizations
of the noise corresponding 40 galaxies/�arcmin are averaged to
produce an estimate of the corresponding errors. Clearly, the shot
noise remains small at all considered frequencies.

A P P E N D I X D : C O N V E R G E N C E M A P S

The inversion technique described in the main text was validated
using the mocks extracted from the HORIZON-4π simulation (Prunet
et al. 2008). Let us briefly describe here how this simulation was
used to generate mock slices and κ maps.

D1 Light cone generation

The generation of a light cone during run time can be performed
easily at each coarse time-step of the simulation. Given a choice of
the observer position in the simulation box, that we suppose here
for simplicity to be at the origin of coordinates, it is easy to select
the particles that belong to the slice in between redshifts z2 < z1

corresponding to two successive coarse time-steps: if (x, y, z) are
the comoving coordinates of a particle, and d = √

x2 + y2 + z2

its comoving distance from the observer, we must have ddist(z2)
< d ≤ ddist(z1) for the particle to be selected, where ddist(z) is
the comoving distance that a photon covers between redshift z and
present time in the simulation box: ddist = ∫

cdt/a(t), where c is
the speed of light and a the expansion factor. The problem is that
structures evolve during a coarse time-step, so there are necessarily
some discontinuities at the border between two successive light
cone slices. These discontinuities are due to large-scale motions of
particles plus their thermal velocity within dark matter haloes. Given
the large size of the simulation considered here, thermal motion
within the largest cluster is expected to bring the most significant
effects of discontinuity. For a particle with peculiar velocity v,
the largest discontinuity to be expected, i.e. the largest possible
difference between expected and actual position of the particle, is
given by

� = (v/c)[ddist(z1) − ddist(z2)]. (D1)

In equation (D1), we performed a linear Lagrangian approximation,
i.e. we neglected variations of the velocity of the particle during
the coarse time-step. Using the Press & Schechter formalism, or
the improved formula of Sheth & Tormen (1999), the mass of the
largest cluster in the HORIZON simulation solves approximately the
implicit equation

�0ρcL
3F [Mmax(z), z]/Mmax(z) = 1, (D2)

where ρc is the critical density of the Universe and F is the fraction
of mass in the Universe in objects of mass larger than M. Basically,
this equation states that the mass in objects of mass larger than M
is equal to M, which means that we are left with only one cluster of
mass M, the largest detectable cluster in our cube of size L. We can
compute F (M , z) with the usual formula, e.g.

F (M, z) =
∫

μ>ν(M,z)
f (μ)dμ, (D3)

with ν = 1.686/σ (M , z) where σ (M , z) is the linear variance
at redshift z corresponding to mass scale M, and f (μ) is given
by equation (10) of Sheth & Tormen (1999). Performing these
calculations, we find that the largest cluster at present time in a cube
of size L = 2000 h−1 Mpc should have a typical mass of Mmax(z =
0) � 1.47 × 1015 M�. With a standard Friend-of-Friend algorithm
using a linking parameter b = 0.2, we find that the most massive

Figure D1. The expected maximum uncertainty on particle positions due
to the method used to create the light cone as a function of the expansion
factor. It is computed according to equation (D1) with a velocity v estimated
to be three times the Virial velocity of the largest cluster in the simulation.

halo detected in the simulation presents a somewhat larger mass,
M = 5.4 × 1015 M�. Yet, in that rare events regime, we cannot
expect our theoretical estimate to be more accurate. What matters,
though, is the thermal velocity rather than the mass. Applying the
Virial theorem, we have (e.g. Peacock 1999) v2 � GMmax/Rvir,
with
4

3
πR3

virρvir = Mmax, ρvir � 178�0ρc(1 + z)3/�(z)0.7,

where �(z) is the density parameter as a function of redshift
(�(0) ≡ �0). These expressions are given in physical coordinates
hence the factor (1 + z)3 in the expression of ρvir. This reads, at
z = 0, v � 1570 km s−1 for Mmax(z = 0) � 1.47 × 1015 M�. In the
largest cluster of the simulation, the overall velocity dispersion is of
the order of 2100 km s−1, a slightly larger value that reflects the ac-
tual value of the mass. To be conservative, we estimate the expected
errors in equation (D1) with the Virial velocity rescaled by a factor
of 2100/1570, and with a further multiplication by a factor of 3 to
be in the 3σ regime. The corresponding maximal expected discon-
tinuity displacement is shown in Mpc as a function of the expansion
factor in Fig. D1. As expected from the dynamically self-consistent
calculation of the coarse time-step (which is basically determined
by a Courant condition using the velocity field), the comoving error
does not change significantly with redshift and remains below the
very conservative limit of 200 kpc. Obviously, we expect in practice
the errors brought by discontinuities to be in general much smaller
than that, as for z = 0 the present errors correspond to unrealistic
velocities as large as about 6000 km s−1!

D2 From slices to κ maps

In the main text, the expression for κ as a function of the density
contrast in the simulation is given in equation (28) in the geometric
optic approximation. Let us rearrange this formula in a form that is
more suited to integration over redshift slices in a simulation.

κ(n̂pix) ≈ 3

2
�m

∑
b

Wb

H0

c

∫
�zb

cdz

H0E(z)
δ

(
c

H0
D(z)n̂pix, z

)
,

where

Wb =
(∫

�zb

dz

E(z)

D(z)D(z, zs)

D(zs)

1

a(z)

) / (∫
�zb

dz

E(z)

)
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is a slice-related weight, and the integral over the density contrast,
δ, reads

I =
∫

�zb

cdz

H0E(z)
δ

(
c

H0
D(z)n̂pix, z

)
,

=
∫

�χb

dχδ(χn̂pix, χ ) ≈ V (simu)

Npart(simu)

(
Npart(θpix, zb)

Spix(zb)
− 1

)
,

where

Spix(zb) = 4π

Npix

c2

H 2
0

D2(zb)

is the comoving surface of the spherical pixel. Putting all together,
we get the following formula for the convergence map:

κ(θpix)=3

2
�m

Npix

4π

(
H0

c

)3
V (simu)

Npart(simu)

∑
b

Wb

Npart(θpix, zb)

D2(zb)
.

Once the κ map is available, it is straightforward to build the corre-
sponding ssg using equation (17).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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