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ABSTRACT
The decomposition of the cosmic shear field into E and B mode is an important diagnostic in
weak gravitational lensing. However, commonly used techniques to perform this separation
suffer from mode-mixing on very small or very large scales. We introduce a new E-/B-mode
decomposition of the cosmic shear two-point correlation on a finite interval. This new statistic
is optimized for cosmological applications, by maximizing the signal-to-noise ratio (S/N) and
a figure of merit (FoM) based on the Fisher matrix of the cosmological parameters �m and σ 8.

We improve both S/N and FoM results substantially with respect to the recently introduced
ring statistic, which also provides E-/B-mode separation on a finite angular range. The S/N
(FoM) is larger by a factor of 3 (2) on angular scales between 1 and 220 arcmin. In addition,
it yields better results than for the aperture-mass dispersion 〈M2

ap〉, with improvements of
20 per cent (10 per cent) for S/N (FoM). Our results depend on the survey parameters, most
importantly on the covariance of the two-point shear correlation function. Although we assume
parameters according to the CFHTLS-Wide survey, our method and optimization scheme can
be applied easily to any given survey settings and observing parameters. Arbitrary quantities,
with respect to which the E-/B-mode filter is optimized, can be defined, therefore generalizing
the aim and context of the new shear statistic.

Key words: gravitational lensing – large-scale structure of Universe.

1 IN T RO D U C T I O N

Cosmic shear, the weak gravitational lensing effect induced on im-
ages of distant galaxies by the large-scale structure in the Uni-
verse, has become a standard tool for observational cosmology (see
Schneider 2006; Hoekstra & Jain 2008; Munshi et al. 2008, for
recent reviews). Large surveys have used cosmic shear to obtain
measurements of the matter density �m and the density fluctuation
amplitude σ 8. Recent constraints were obtained from ground-based
surveys such as CFHTLS1 (Benjamin et al. 2007; Fu et al. 2008)
and GaBoDS2 (Hetterscheidt et al. 2007). Space-based surveys like
COSMOS3 (Leauthaud et al. 2007; Massey et al. 2007) and parallel
ACS data (Schrabback et al. 2007) advanced cosmic shear observa-
tions to very small angular scales. Cosmic shear has contributed to
constraining dark energy (Jarvis et al. 2006; Kilbinger et al. 2009).
It is considered to be one of the most promising methods to shed

�E-mail: fu@oacn.inaf.it
1http://www.cfht.hawaii.edu/Science/CFHTLS
2http://archive.eso.org/archive/adp/GaBoDS/DPS_stacked_images_v1.0
3http://cosmos.astro.caltech.edu

light on to the origin of the recent accelerated expansion of the
Universe (Albrecht et al. 2006; Peacock et al. 2006), and is a major
science driver for many future surveys like KIDS, Pan-STARRS,
DES, LSST, JDEM or Euclid.

One of the (few) diagnostics for cosmic shear analyses is the
decomposition of the shear field into its E and B mode. Most com-
monly, the shear power spectrum or, equivalently, the shear correla-
tion function, is split into the gradient (E) and curl (B) component
(Crittenden et al. 2002; Schneider, Van Waerbeke & Mellier 2002).
Gravitational lensing produces, to the first order, a curl-free shear
field, and therefore the presence of a B mode is an indication of resid-
ual systematics in the point spread function (PSF) correction and
shape measurement analysis. To obtain competitive constraints on
cosmological parameters, in particular for dark-energy or beyond-
standard physics, galaxy shapes have to be determined to subper-
centage precision. This requires excellent correction of PSF effects
arising from the atmosphere, telescope and camera imperfections.

Apart from observational effects and measurement systematics,
the cosmic shear signal can be severely contaminated by intrinsic
correlations of galaxy orientation with other galaxies or their sur-
rounding dark matter structures (Heavens, Réfrégier & Heymans
2000). This occurs for galaxies at the same redshift, e.g. which
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reside in the same dark halo (intrinsic alignment). It also affects
galaxies at very different redshifts, where a background galaxy is
lensed by matter surrounding a foreground galaxy, therefore in-
ducing a shape-shear-correlation between the two galaxies. An
E mode, as well as a B mode, arises from intrinsic alignment
(Crittenden et al. 2002; Mackey, White & Kamionkowski 2002).

Standard methods to separate the E- and B-mode power spectra
(or correlation functions) involve integrals up to arbitrary small or
large angular scales (Schneider et al. 1998; Crittenden et al. 2002;
Schneider et al. 2002). However, shear correlations can be observed
only on a finite interval. Since the shear field is probed at galaxy
positions, the smallest usable scale is given by the confusion limit
for close galaxy pairs, which is typically several arcmin for ground-
based surveys. The largest observed distance for current surveys is
several degrees. These limits make the E-/B-mode separation im-
perfect, and a mixing of modes is induced at the 1–10 per cent level
(Kilbinger, Schneider & Eifler 2006). To circumvent this shortcom-
ing, a new second-order function, the so-called ‘ring statistic’, was
introduced which permits a clear E-/B-mode separation on a finite
interval (Schneider & Kilbinger 2007, hereafter SK07). In addition,
the authors developed conditions for general filter functions neces-
sary for an E-/B-mode decomposition for a finite angular range.

In this work, we present a method to find filter functions which
fulfil the SK07 conditions. We devise a scheme which provides
an optimized E-/B-mode decomposition on a finite interval. The
optimization is performed with regard to cosmological applications
of cosmic shear; the signal-to-noise ratio (S/N) and a Fisher matrix
figure or merit are the quantities to be maximized. This paper is
organized as follows. In Section 2, we briefly review the results
from SK07 before we present our optimization method. Results for
the S/N and the figure of merit (FoM) are shown in Section 3. We
conclude the paper with a summary (Section 4) and an outlook
(Section 5).

2 ME T H O D

2.1 E-and B-mode decomposition of the shear correlation
function on a finite interval

We define the general second-order cosmic shear functions RE

and RB,

RE = 1

2

∫ ∞

0
dϑ ϑ [T+(ϑ) ξ+(ϑ) + T−(ϑ) ξ−(ϑ)] ,

RB = 1

2

∫ ∞

0
dϑ ϑ [T+(ϑ) ξ+(ϑ) − T−(ϑ) ξ−(ϑ)] , (1)

as integrals over the shear two-point correlation functions ξ+ and
ξ− (e.g. Kaiser 1992) with arbitrary filter functions T + and T −.
These expressions correspond to equation (39) from SK07, with an
additional factor of 1/2 in our definition. In terms of the E- and B-
mode power spectrum, PE and PB, respectively, the shear two-point
correlation function is given as the following Hankel transforms
(Schneider et al. 2002):

ξ+(ϑ) =
∫ ∞

0

d� �

2π
J0(�ϑ)[PE(�) + PB(�)];

ξ−(ϑ) =
∫ ∞

0

d� �

2π
J4(�ϑ)[PE(�) − PB(�)], (2)

with Jν being the νth-order Bessel function of the first kind. Inserting
equation (2) into equation (1) yields

RE = 1

2

∫ ∞

0

d� �

2π

{
PE(�)[WE(�) + WB(�)]

+PB(�)[WE(�) − WB(�)]
}

, (3)

and an analogous expression for RB. The Hankel transforms of T +
and T − are defined as

WE,B(�) =
∫ ∞

0
dϑ ϑ T+,−(ϑ) J0,4(ϑ�). (4)

To provide an E- and B-mode decomposition, in the sense thatRE

only depends on the E mode of the shear field and RB only on its B
mode, the two Hankel transforms have to be identical, WE = WB.
After some algebra, one finds that the following equivalent relations
between the filter functions T + and T − must hold (Schneider et al.
2002):

T+(ϑ) = T−(ϑ) + 4
∫ ∞

ϑ

dθ θ

θ 2
T−(θ )

[
1 − 3

(
ϑ

θ

)2
]

, (5)

T−(ϑ) = T+(ϑ) + 4
∫ ϑ

0

dθ θ

ϑ2
T+(θ )

[
1 − 3

(
θ

ϑ

)2
]

. (6)

Therefore, for an arbitrary function T +, a corresponding filter T −
can be derived from T + to provide an E- and B-mode decomposi-
tion, and vice versa. In the absence of a B mode we have RB = 0,
and RE can be obtained from ξ+ or ξ− alone,

RE =
∫ ∞

0
dϑ ϑ T+(ϑ) ξ+(ϑ) =

∫ ∞

0
dϑ ϑ T−(ϑ) ξ−(ϑ). (7)

We further require RE and RB to depend on the shear correlation
given at angular scales ϑ in a finite interval, 0 < ϑmin ≤ ϑ ≤
ϑmax < ∞. Thus, we demand T − to have finite support [ϑmin; ϑmax]
and T +(ϑ) to vanish for ϑ < ϑmin; equation (5) then implies the
following integral constraints on the filter function T − (SK07):∫ ϑmax

ϑmin

dϑ

ϑ
T−(ϑ) =

∫ ϑmax

ϑmin

dϑ

ϑ3
T−(ϑ) = 0. (8)

In addition, it follows that T +(ϑ) = 0 for ϑ > ϑmax. Using the finite
support of T + in equation (6), we get integral constraints for T +:∫ ϑmax

ϑmin

dϑ ϑT+(ϑ) =
∫ ϑmax

ϑmin

dϑ ϑ3T+(ϑ) = 0. (9)

Then, RE and RB are functions of the two angular scales ϑmin

and ϑmax. We will discuss the scale-dependence in more detail in
Section 2.6.

SK07 constructed a set of functions, Z+, Z− in their notation,
which satisfy equations (8) and (9). Those functions were motivated
from a geometrical ansatz, by considering two concentric, non-
overlapping rings. If the shear correlation is calculated from galaxy
pairs of which one galaxy lies in the inner ring and the other galaxy
in the outer ring, the E-/B-mode decomposition on a finite interval is
guaranteed by construction. The form of the function Z+ originated
in a specific choice of the weight profile over the two rings. The
relation between T ± and Z± is

T±(ϑ) = ϑ−2 Z±(ϑ/ϑmax). (10)

Note that in SK07 the analogous integrals to equation (1) using Z±
are carried out over the integration variable ϑ/ϑmax and extend from
ϑmin/ϑmax to 1. The shear second-order functions corresponding to
equation (1) are denoted as 〈RR〉E and 〈RR〉B, respectively.
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There are infinitely many functions which fulfil the above in-
tegral constraints. Their choice can, of course, be detached from
the geometrical considerations of the ‘ring statistic’. In this paper,
we define a general filter function which we will optimize regard-
ing some specific criterion. This criterion will be related to the
cosmological information output from a cosmic shear survey. We
will use two cases, the S/N and the Fisher matrix of cosmological
parameters. The results are presented in Section 3.

2.2 Parametrization of the filter function

For the optimization problem, we focus on T + since T − can be
derived from T + (equation 6). First, we remap T + to the interval
[−1; +1] by defining

T̃+(x) = T+(Ax + B) = T+(ϑ) for x ∈ [−1; 1];

A = (ϑmax − ϑmin)/2; B = (ϑmax + ϑmin)/2.
(11)

With that the two integral constraints (equation 9) become∫ +1

−1
dx (x + R) T̃+(x) =

∫ +1

−1
dx (x + R)3 T̃+(x) = 0, (12)

where we have defined the ratio R as

R = B

A
= 1 + η

1 − η
; η = ϑmin

ϑmax
. (13)

Next, we decompose T̃+ into a finite sum of orthogonal polyno-
mials:

T̃+(x) =
N−1∑
n=0

an Cn(x). (14)

This representation allows us to find an optimal filter function by
varying the coefficients an (Section 2.7). The polynomials Cn can be
chosen freely; we use Chebyshev polynomials of the second kind,

Un(x) = sin[(n + 1) arccos x]

sin(arccos x)
. (15)

The optimization process is then performed by varying the coeffi-
cients an; this is described in detail in Section 2.7.

Apart from the integral constraints (equation 9), one could require
T + to be zero at the interval boundaries,

Continuity : T+(ϑmax) = T+(ϑmin) = 0. (16)

Additional constraints could be added, for example differentiability
at the boundaries. We will discuss their effects on the results in
Section 3.1.

2.3 Satisfying the constraints

In general, the function T +, or equivalently T̃+, is constrained by
K ≥ 2 equations in the form Fm[T̃+] = 0, m = 0 . . . K − 1. If the
functionals Fm are linear in T̃+, applying equation (14) leads to

N−1∑
n=0

fmn an = 0; fmn := Fm[Cn]. (17)

The matrix element fmn is the m th constraint applied to the orthog-
onal polynomial of order n. For example, taking the first constraint
in equation (12), we get

f0n =
∫ +1

−1
dx (x + R) Cn(x), (18)

which can be integrated analytically. The other matrix elements fmn

are obtained analogously.

K constraints fix K coefficients of the decomposition (equa-
tion 14), the remaining N − K coefficients can be chosen arbi-
trarily. We use the highest N − K coefficients as free parameters
(n = K . . . N − 1) and fix the first K coefficients (n = 0 . . . K − 1)
as follows. Defining

sm = −
N−1∑
n=K

fmn an; m = 0 . . . K − 1, (19)

equation (17) can then be written as

K−1∑
n=0

fmn an = sm; m = 0 . . . K − 1. (20)

This (K × K)-matrix equation is solved for the first K coefficients
an (n = 0 . . . K − 1) by inverting the square (sub)matrix (fmn)m,n<K

on the left-hand side of the above equation. If the constraints are
chosen such that they are linearly independent (which is this case),
this matrix equation has a unique, non-trivial solution.

In addition to the K constraints, we impose an integral normal-
ization of the filter function given by the L2-norm:

||T̃+||22 =
∫ 1

−1
dx w(x)T̃ 2

+(x) = 1, (21)

where w is the corresponding weight of the polynomial family,
w(x) = (1 − x2)1/2 in the case of second-kind Chebyshev poly-
nomials. This normalization does not affect the constraints which
are independent of a multiplication of all an with a common factor.
Note also that the quantities which we will optimize in Section 3 do
not depend on the normalization.

2.4 Calculation of T− from T+

To obtain the function T̃− := T−(Ax+B), we transform equation (6)
to

T̃−(x) = T̃+(x) + 4
∫ x

−1
dx ′ T̃+(x ′)

x ′ + R

(x + R)2

[
1 − 3

(
x ′ + R

x + R

)2
]

;

x = −1 . . . 1, (22)

which can be written as

T̃−(x) =
N−1∑
n=0

an [Cn(x) + αn(x)] ; (23)

αn(x) = 4
∫ x

−1
dx ′ Cn(x ′)

x ′ + R

(x + R)2

[
1 − 3

(
x ′ + R

x + R

)2
]

, (24)

inserting the decomposition (equation 14). We define

F (ν)
n (x) =

∫ x

−1
dx ′ (x ′)νCn(x ′); ν = 0, 1, 2, 3, (25)

and write equation (24) as

αn(x) = 4

3
r
[
R(r − R)F (0)

n + (1 − 2rR − rR2)F (1)
n

− rR(R + 2)F (2)
n − rF (3)

n

]
;

r = 3

(x + R)2
, (26)
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where we dropped the argument x from F (ν)
n and r. The integral

(equation 25) for ν = 0 and Cn = U n is

F (0)
n (x) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)n + x Tn(x) − (1 − x2)Un−1(x)

n + 1
(n 
= −1)

0 (n = −1)

,

(27)

where T n is nth-order Chebyshev polynomial of the first kind,

Tn(x) = cos(n arccos x). (28)

By using the recurrence relation of the Chebyshev polynomials,
we obtain the other functions,

F (1)
n = 1

2

[
F

(0)
n+1 + F

(0)
n−1

]
;

F (2)
n = 1

4

[
F

(0)
n+2 + 2F (0)

n + F
(0)
n−2

]
;

F (3)
n = 1

8

[
F

(0)
n+3 + 3F

(0)
n+1 + 3F

(0)
n−1 + F

(0)
n−3

]
.

(29)

Note that equation (27) is valid for integer n, since the expressions
for the orthogonal polynomials are well defined for negative n.

With that, it can be readily checked whether the coefficients an

obtained with the method described in Section 2.3 and the resulting
filter functions T̃± indeed provide an E-/B-mode decomposition, by
verifying that the B-mode RB (equation 1) is zero. In Section 3.6,
we discuss numerical issues when calculating the B mode.

2.5 Relation to the lensing power spectrum

Equation (3) shows the relation of RE to the power spectrum. As-
suming a pure E mode, this equation reads

RE = 1

2π

∫ ∞

0
d� �PE(�)WE(�), (30)

where the Fourier-space filter function WE can be written as

WE(�, ϑmin, ϑmax) =
N−1∑
n=0

anWn(�, ϑmin, ϑmax), (31)

Wn(�, ϑmin, ϑmax) =
∫ ϑmax

ϑmin

dϑ ϑ Cn[(ϑ − B)/A] J0(ϑ�), (32)

with A and B given in equation (11). Analogously,RB can be written
in terms of the B-mode power spectrum PB:

RB = 1

2π

∫ ∞

0
d� �PB(�)WB(�, ϑmin, ϑmax), (33)

with WE = WB (see Section 2.1).
Unfortunately, there is no simple analytical expression of equa-

tion (32), which would be desirable to calculate equation (30) using
a fast Hankel transform (FHT; Hamilton 2000). For the moment, the
most efficient method to calculateRE from a model power spectrum
is to obtain ξ+ from PE by FHT and to integrate it via equation (7)
which is fast since in our case T + is a rather low-order polynomial,
as we will see later.

2.6 Angular-scale-dependence

The two constraints (equation 9) depend on the ratio of angular
scales η = ϑmin/ϑmax. A filter function T̃+ with given coefficients
an satisfying those constraints does not in general fulfil the same

constraints for a different η. This therefore causes the inconvenience
of having a different filter function for each angular scale.

It should be noted that although formally RE is a function of two
angular scales, the information about cosmology and large-scale
structure is captured by a single parameter, let us call it λ. This
is because the large-scale matter power spectrum, of which RE is
a logarithmic convolution (Section 2.5), only depends on a single
scalar. We therefore expect a large covariance between many pairs
(ϑmin, ϑmax). Although there are infinitely many mappings (ϑmin,
ϑmax) → λ, two ways to handle the scale-dependence seem to be
suitable. (1) Leaving one scale constant, and varying the other scale,
e.g., ϑmin = const., λ = ϑmax. (2) Leaving the ratio of both scales
constant, λ = η. We will pursue both ways in this paper.

2.6.1 Fixed minimum scale, ϑmin = const.

The first mapping introduced above offers a rather efficient sampling
of the shear field. ϑmin can be fixed to the smallest observable
distance ϑmin,0 for which shear correlation data are measured. This
is given by the smallest separation for which galaxies do not blend,
to allow for reliably measured shapes. It provides the largest range
of angular scales accessible for a given ϑmax: the upper limit ϑmax

can be varied between ϑmin and the maximum observed scale given
by the data.

2.6.2 Fixed ratio, η = ϑmin/ϑmax = const.

The second mapping has the advantage that a single filter function
can satisfy the constraints (equation 9) for all scales. This makes it
more convenient to combine different scales, e.g. to obtain the Fisher
matrix, and might result in a universal optimal filter function. The
efficiency with respect to keeping ϑmin constant is however reduced:
a large ratio η, for which ϑmin and ϑmax are close, samples only a
small angular interval, resulting in a small S/N. A small η on the
other hand means that we cannot go to very small scales with ϑmax:
because of the minimum observable galaxy separation ϑmin,0, the
smallest ϑmax is min (ϑmax) = ϑmin,0/η.

In both cases, we will use ϑmax as the argument of RE and denote
it with the symbol 
, as in SK07.

In Appendix A, we introduce a simple generalization of this
scheme to obtain an optimized function T̃+ which fulfils the integral
constraints (equation 9) for all pairs (ϑmin, ϑmax). However, the
corresponding S/N is significantly lower than with the method used
here, which was presented in Section 2.3. We therefore do not
consider this option further.

A remark about the analogy to the aperture-mass dispersion 〈M2
ap〉

is appropriate here. 〈M2
ap〉 is obtained from the correlation function

in a similar way as RE in equation (1), with integration range be-
tween zero and twice the aperture radius. Its filter function depends
on the two scales ϑ (the integration variable) and θ (the aperture
radius). For different θ one could define a different filter function.
For convenience however, widely used filters are functions of the
ratio ϑ/θ , and therefore one functional form provides an E-/B-mode
separation for all radii simultaneously.

2.7 Optimization

The maximization of a quantity Q, to be defined in the next section
as S/N and Fisher matrix FoM, is done as follows. For a given
polynomial of order N , number of constraints K ≥ 2, we perform
the maximum search of Q using the conjugate-gradient method
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1268 L. Fu and M. Kilbinger

Table 1. Overview of quantities kept fixed when varying the scales 
, and
the corresponding method to determine the starting point for subsequent
scales.

Q Fixed quantity Starting point for subsequent scales

S/N ϑmin = const. Previous maximum function, T̄+
S/N η = const. Previous maximum coefficients an

FoM η = const. Previous maximum coefficients an

(Press et al. 1992) in the space of free coefficients aK , . . . , aN−1. At
each step, we calculate sm (equation 19) and invert equation (20) to
get the first K coefficients a0, . . . aK−1; from there we compute T̃+
(equation 14) and RE (equation 7).

We limit each of the coefficients aK , . . . , aN−1 to the box [−10;
10]. In some cases, the maximum-search fails, in particular if the
polynomial order is high. The algorithm might run into a local
maximum or hit the parameter boundary. To reduce the failure rate,
we proceed as follows.

If a maximum is found close to the parameter boundary, we
discard it and redo the maximization with larger box size for a
different starting point. To initialize the maximization for the first
of a range of angular scales, we draw a number of random points, on
the order of 100, and start the maximization with the point providing
the largest Q.

For subsequent angular scales, we use the information about the
previous maximum to start the next optimization. If the ratio η =
ϑmin/ϑmax is kept constant when increasing ϑmax = 
, we use the
previous maximum coefficients an as new starting value for the
maximization process. This renders the search for the maximum
point more efficient and more stable, since for small changes in 


the maximum will be close in a-space.
For constant minimum scale ϑmin, we devise a different strategy.

It can be shown that in this case, Q is monotonously increasing with

: let T

(i)
+ be the function for scale 
 i which maximizes Q(
 i).

For the subsequent scale 
 i+1 > 
 i, define the function T̄+(
) =
T

(i)
+ (
) for 
 < 
 i, and T̄+(
) = 0 otherwise. By construction,

the resulting Q for scale 
 i+1 is the same as for 
 i, Q(
 i+1) =
Q(
 i). Therefore, we choose as new starting point for scale 
 i+1

the coefficients resulting from the decomposition of the function
T̄+(
). This assures the subsequent maximum Q(
 i+1) found by
the search algorithm to be larger or equal to the previous one, at
least in the limit of large N. In practice, however, due to the finite
order N, the orthogonal polynomials are not a good representation
of T̄+ for 
 > 
 i where it is zero, and the resulting Q can actually
decrease with increasing scale.

We summarize the combinations of Q, the angular dependencies
and the choice of the starting point for subsequent scales in Table 1.

3 R ESULTS

In this section ,we define Q according to S/N and a Fisher-matrix
FoM, respectively, which we maximize to find the corresponding
optimized filter function T̃+. Before that, we comment on our choice
of K and N, the number of constraints and polynomial order, re-
spectively.

3.1 Number of constraints and polynomial order

We choose the minimum number of constraints K = 2 necessary
for a finite-interval E- and B-mode decomposition, corresponding to
the two integral constraints (equation 9). Adding the two continuity

constraints (equation 16) resulted in significantly lower values of
Q. Some of the resulting functions T̃± showed strong variations and
narrow peaks for |x| near unity. This indicates that the continuity
constraint is not very ‘natural’ but represents a strong restriction
on the optimized filter functions. The price that has to be paid for
continuity is then a function which fluctuates strongly, which may
be problematic when applied to noisy data.

Larger values of N improved Q to some extend but at the same
time increased the occurrence of local maxima found by the search
algorithm, reducing stability and reproducibility of the results. The
functions T̃± sometimes showed a high number of oscillations. A
good choice for the polynomial of order N was found to be six,
equivalent to four free parameters an for K = 2. A lower N resulted
in significantly smaller Q.

For the remainder of this paper, we therefore choose N = 6, K =
2, if not indicated otherwise.

3.2 Shear covariance and cosmology

For the optimization process, we rely on a model shear correlation
function and covariance. The fiducial cosmology for our model is
a flat � cold dark matter (CDM) Universe with �m = 0.25, �b =
0.044, h = 0.7 and σ 8 = 0.8. We use the non-linear fitting formula of
Smith et al. (2003) together with the Eisenstein & Hu (1998) transfer
function for the matter power spectrum. The redshift distribution of
source galaxies is the best-fitting model of Fu et al. (2008) which
has a mean redshift of 0.95.

We use the covariance matrix C++ of the shear correlation func-
tion ξ+ from Fu et al. (2008), corresponding to the third data re-
lease of CFHTLS-Wide. This includes ellipticity noise and cosmic
variance as well as the residual B mode added in quadrature. The
Gaussian part of the covariance was calculated using the method
from Kilbinger & Schneider (2004). Non-Gaussian corrections on
small scale were applied according to Semboloni et al. (2007).

The RE-covariance matrix, 〈R2
E〉, is an integral over C++:

〈
R2

E(
1, 
2)
〉 =

∫ 
1

ϑmin,1

dϑ ϑT+(ϑ)
∫ 
2

ϑmin,2

dϑ ′ ϑ ′T+(ϑ ′)C++(ϑ, ϑ ′).

(34)

We use the two upper scale limits 
1 and 
2 as arguments of 〈R2
E〉;

it also depends on the two lower scale limits ϑmin,1 and ϑmin,2.

3.3 Signal-to-noise ratio

The first criterion for which we optimize the filter function is the
S/N:

S/N(
) = RE(
)〈
R2

E(
,
)
〉1/2 . (35)

The variance 〈R2
E(
, 
)〉 is the diagonal of equation (34). As men-

tioned before, the S/N does not depend on the normalization of T̃+
(equation 21).

3.3.1 Signal-to-noise for fixed ϑmin

The S/N is calculated as a function of 
 = ϑmax, keeping ϑmin

constant. We choose ϑmin = 0.2 arcmin which is a typical (albeit
conservative) lower limit where galaxies from ground-based data
can be well separated. For each scale 
, we obtain an optimized
filter function T +, as discussed in Section 2.7 (see Table 1).

As can be seen in the left-hand panel of Fig. 1 the optimal filter
function with N = 6 and K = 2 results in a much higher S/N than
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Figure 1. Left-hand panel: S/N for fixed ϑmin = 0.2 arcmin, as functions of the maximum scale 
. The blue curve with circles and the cyan with triangles
correspond to polynomial of order N = 6 and 15, respectively. The red curve with squares shows the filter function from SK07. The black curve with crosses
corresponds to the aperture-mass 〈M2

ap〉 with 
 being equal to the aperture diameter. Right-hand panel: the comparison of RE obtained from the optimized
function T + with polynomial of orders N = 6 and 15.
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Figure 2. The normalized functions T̃+ and T̃− optimized for S/N at scales 
 = 19 and 91 arcmin, respectively. Left two panels: T̃+ decomposed into
polynomials of order N = 6 and 15, respectively, for fixed ϑmin = 0.2 arcmin. Right two panels: the comparison of fixed η = 1/10 and 1/50 in the case of
polynomials of order N = 6.

for original ring statistic function 〈RR〉E, using the filter function
Z+ from SK07. The new filter is superior to the aperture-mass
dispersion. Note that we plot S/N for 〈M2

ap〉 as a function of the
aperture diameter instead of the radius, to have the same maximum
shear correlation scale 
 as for RE.

Although the optimal S/N is expected to be monotonic as a func-
tion of 
, this is clearly not the case. However, when increasing the
polynomial of order N to 15, the S/N is nearly constant for 
 > 19
arcmin and larger than for N = 6 (see Fig. 1). As a drawback, the
S/N curve for N = 15 is less smooth due to the difficulty of find-
ing the global maximum. We did, in general, not find significantly
larger values for S/N with N larger than 15.

The similar shape of S/N for the different cases RE, 〈M2
ap〉 and

〈RR〉E is an imprint of the covariance structure of the shear corre-
lation function. The shape is modified stronger for high N, where
the peak at around 20 arcmin disappears.

The shear function RE is plotted in the right-hand panel of Fig. 1.
It has a similar shape as 〈RR〉E from SK07, and also as 〈M2

ap〉. This
is reflecting the fact that all functions correspond to narrow filters
and are bandpass convolution of the power spectrum.

The normalized optimal filter functions for two angular scales
are shown in the left two panels of Fig. 2. The similarity of the
functions for different scales shows the relatively weak dependence
of the filter shape on angular scale.

3.3.2 Signal-to-noise for fixed η

Instead of fixing ϑmin, we now leave η constant and change ϑmin

along with 
. The S/N increases with decreasing η (left-hand panel
of Fig. 3). This is not surprising since a larger η means a smaller
range of angular scales. For η = 1/50, the optimal S/N exceeds the
one using the aperture-mass dispersion. The optimal filter functions
have similar shape to the previous case of a fixed ϑmin (see the right
two panels of Fig. 2). We use the previous maximum coefficients an

as starting point for subsequent scales as discussed in Section 2.7
(see Table 1). Unlike in the previous case of fixed ϑmin, we do not
expect S/N to be monotonous as a function of 
, because ϑmin

increases with 
.
Since η is constant, each filter function provides a valid E-/B-

mode decomposition for any given scale. We use the filter optimized
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Figure 3. Left-hand panel: S/N as a function of 
, for fixed values of η with N = 6 and K = 2. The blue curves correspond to the optimized function T̃+.
The green curve is obtained by applying the optimal function T + of 
 = 19 arcmin to all scales, instead of optimizing each time separately, as done for the
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Filled and open symbols represent η = 1/50 and 1/10, respectively. Right-hand panel: RE for fixed values of η of 1/10 (open circles) and 1/50 (filled). For
the green line (with filled triangles), the optimal function T̃+ for 
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Table 2. Coefficients an of the optimized function T̃+ for (1) S/N, 
 =
19 arcmin, η = 1/50; (2) FoM, 
max = 222 arcmin, η = 1/10; (3) FoM,

max = 222 arcmin, η = 1/50.

S/N (
 = 19 arcmin) FoM (
 = 222 arcmin)
n an (η = 1/50) an (η = 1/10) an(η = 1/50)

0 0.1197730890 0.009877788826 0.1239456383
1 −0.3881211865 0.1061397843 −0.3881431858
2 0.5212557875 −0.4300211814 0.5579593467
3 −0.3440507036 0.5451016406 −0.3679282338
4 0.2761305382 −0.3372272549 0.1540941993
5 −0.07286690971 0.1716983151 0.01293361618

for 
 = 19 arcmin, where the highest S/N occurs, and apply it to
the other scales (see the green curve with triangles in the left-hand
panel of Fig. 3). As expected, the S/N for scales 
 
= 19 arcmin is
lower than in the previous case, where the optimization was done
for each scale individually. The difference, however, is not large
and this case of fixed η shows a S/N which is mostly larger than the
aperture-mass dispersion.

The shear function RE is plotted in the right-hand panel of Fig. 3;
it is very similar in shape as in the case of fixed ϑmin (Section 3.3.1).
Table 2 shows the polynomial coefficients of the corresponding filter
function T̃+.

3.4 Fisher matrix

To optimize the filter function, we take now the alternative approach
of minimizing the errors on cosmological parameters from our new
second-order shear statistic. To that end, we use the Fisher matrix
F, given by

Fαβ =
∑

ij

〈
R2

E(
i, 
j )
〉−1 ∂RE(
i)

∂pα

∂RE(
j )

∂pβ

. (36)

The cosmological parameters are comprised in the vector p. As
in the case of the S/N, the Fisher matrix is independent of the
normalization of the filter function T̃+.

The quantity Q to be maximized is the inverse area of the error
ellipsoid in parameter space, given by the Fisher matrix. In two

dimensions, this FoM (Albrecht et al. 2006) is

FoM−1 = π
(
σ11σ22 − σ 2

12

)1/2
; σ 2

ij = (F −1)ij . (37)

Eifler, Schneider & Krause (2009) used the quadrupole moment
determinant q of the likelihood function to quantify the size of
the parameter confidence region. In case of a Gaussian likelihood
(which correspond to our Fisher matrix approximation) in two di-
mensions, the relation FoM−1 = π q holds.

We keep η constant, allowing for a single filter function T̃+ to
provide the E- and B-mode decomposition for each scale 
 in
equation (36), and also for the covariance matrix. This requirement
is not a necessity since the covariance between scales can be easily
generalized to different filter functions. However, we choose this
approach for simplicity. The cosmological parameters we consider
are �m and σ 8.

In Fig. 4, we compare the FoM for the optimized filter func-
tion and the aperture-mass dispersion. For a given maximum scale

max, we vary 
 i in equation (36) between 4.0 arcmin and 
max.
With η = 1/50, the minimum angular scale is min (ϑmin) = 4.8
arcsec. For η = 1/10, we use the same angular scales, starting with
4.0 arcmin, for consistency with the case η = 1/50. Alternatively,
by using the same minimum angular scale of 4.8 arcsec, the smallest

 can be in principle as small as 4.8arcsec/η = 0.8 arcmin. This
addition of small scales results in a higher FoM which is comparable
to the one for 〈M2

ap〉.
We choose the same range of scales for the aperture-mass dis-

persion, i.e. we vary the aperture diameter between 4.0 arcmin and

max. Note that although the minimum angular scale is theoretically
zero, in practice we are limited by the smallest scale for which the
ξ+-covariance matrix is calculated which is 3 arcsec in our case.

The normalized optimal filter functions T̃± are shown in Fig. 5.
They have a similar shape as the functions optimized for S/N (see
Fig. 2). Table 2 shows the corresponding polynomial coefficients.

3.5 The covariance of RE

We calculate the covariance matrix C of RE using the optimal filter
function from the FoM maximization at the largest scale 
max =
222 arcmin, for a constant η = 1/50 (see Section 3.4). As can be
seen in Fig. 6, the covariance is diagonally dominated, similar to
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the one of the aperture-mass dispersion. The degree of correlation
is seen more clearly by regarding the correlation matrix

r(
1, 
2) =
〈
R2

E(
1, 
2)
〉〈

R2
E(
1, 
1)

〉 〈
R2

E(
2, 
2)
〉 , (38)

see the right-hand panels of Fig. 6. To quantify the correlation
length, we compute the following function:

τ (x) = 〈r(
, x
)〉
 , (39)

which is the correlation between two scales separated by the mul-
tiplicative factor x, averaged over all 
. This function is shown in
Fig. 7. Since the lines of equal r are mainly parallel to the diagonal,
the scatter is relatively small. The correlation of RE drops off faster
near the diagonal than the one for 〈M2

ap〉, and shows a slightly larger
correlation at intermediate distances x. The covariance of 〈RR〉E

has been studied in Eifler et al. (2009) and has significantly smaller
correlation length than the one for 〈M2

ap〉.

3.6 Numerical limits on the B-mode RB

We calculate the B-mode RB from equation (1) by using T̃− ob-
tained from the optimal function T̃+ (see Section 2.4). Theoretically,

RB vanishes but there could be a residual B mode because the E-/B-
mode decomposition might not be perfect. For example, there could
be numerical issues regarding the matrix inversion of equation (20).
Our values of RB are limited by the precision of the numerical inte-
gration of equation (1). RB goes to zero for decreasing integration
step size and we did not find evidence for a residual B mode. For a
step size of �ϑ = 5 × 10−4 arcsec, we find RB/RE < 2 × 10−5

for all angular scales. Even if a residual B mode should be present,
it is straightforward to make it vanish identically. One can increase
the polynomial order N of the decomposition by one, and determine
the corresponding coefficient aN−1 such that RB = 0.

3.7 Dependence on cosmology and survey parameters

The results presented in this paper have been obtained by using a
specific covariance matrix of C++, namely the one used in Fu et al.
(2008), and by choosing a specific cosmology. Here, we briefly
describe how our results change when we modify these parameters.

First, we illustrate the dependence on the covariance matrix. In-
stead of using the full covariance, as was done in the previous
sections, we repeat the S/N analysis by taking the diagonal shot-
noise component only. This noise origins from the intrinsic galaxy
ellipticity dispersion. As expected, the S/N and FoM increase sub-
stantially, mainly because of the missing cross-correlation between
angular scales in the shear correlation function. For all three cases,
RE, 〈M2

ap〉 and 〈RR〉E, the S/N increases monotonously with 


beyond the maximum scale and does not show a peak at around
20 arcmin. The relative trend between the three cases stays the
same.

We change the fiducial cosmological model by increasing σ 8 from
0.8 to 0.9. This results in an increase of S/N of a factor between
1.3 and 1.4, which is roughly the same for RE, 〈M2

ap〉 and 〈RR〉E.
Increasing the mean redshift from 0.95 to 1.19 caused the S/N to be
higher by 1.8 to 2, in the same way for all three cases. We conclude
that the relative difference is not dependent on cosmology or the
redshift distribution.

We repeat the calculation of S/N by choosing a fixed ϑmin which
is different from our standard value of 0.2 arcmin. The improve-
ment of RE over 〈RR〉E decreases for decreasing ϑmin, by about
�(S/N) = 0.1 for �ϑmin = 0.1 arcmin, averaged over all scales

. This might be because 〈RR〉E shows less cross-correlation be-
tween scales which leads to a larger gain when additional scales
are included. The gain of RE with respect to 〈M2

ap〉 increases when
lowering ϑmin, as expected, since the inclusion of more small scales
boosts the S/N. On average, the difference is 0.05 for each 0.1 arcmin
which leads to an asymptotic value of [S/N(RE)]/[S/N(〈M2

ap〉)] =
1.31.

To check the stability of the results, we add an independent,
uniform random variable between − p and p to each of the highest
N − K coefficients an after the optimum has been found. For each
randomization, we fix a0, . . . , aK−1 as described in Section 2.3 to
assure E-/B-mode separation. The S/N and FoM are very robust
against changes in the coefficients. For both p = 0.01 and 0.1, the
changes in S/N and FoM are of the order of p and less.

4 SU M M A RY

We have introduced a new second-order cosmic shear function
which has the ability to separate E and B modes on a finite in-
terval of angular scales. This function is a generalization of the
recently introduced ‘ring statistic’ (SK07). Providing the second-
order E-/B-mode shear field correlations, general filter functions
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1272 L. Fu and M. Kilbinger

Figure 6. Covariance matrix (left-hand panels) and correlation matrix (right-hand panel) of RE, optimized for the FoM (equation 37) with η = 1/50 (top),
and of the aperture-mass dispersion with 
 i being equal to the aperture diameter (bottom). The colours correspond to the same levels for RE and 〈M2

ap〉. In
the right-hand panels, the contour lines start from the innermost value of 0.9 and are spaced by 0.1.

are calculated and optimized for a specific goal. In this paper, we
considered the S/N as a function of angular scale, and an FoM based
on the Fisher matrix of the cosmological parameters �m and σ 8 as
optimization criteria.

Our method to find the optimal filter function consists in the
following steps:

(1) Choose the polynomial of order N and number of constraints
K ≥ 2 and define a quantity Q to be maximized (in this work, the
S/N and the Fisher matrix FoM).

(2) Draw a random starting vector of coefficients aK , . . . aN−1.
(3) For m = 0 . . . K − 1, calculate sm (equation 19).
(4) Invert the constraints matrix equation (20) to get the first K

coefficients a0 . . . aK−1.
(5) Compute the filter function T + (equations 11 and 14).
(6) Calculate the shear function RE (equation 7) and Q (in this

work, equations 35 and 36).
(7) Maximize Q. At each iteration of the maximization process,

repeat steps 3–6.

We were able to improve both S/N and FoM substantially with
respect to the SK07 ring statistic. Moreover, we obtained better
results than for the aperture-mass dispersion 〈M2

ap〉, even though
the latter formally extends to zero lag and includes therefore more
small-scale power.

We have adapted and optimized our new second-order statistic
RE to a specific cosmology and survey parameters such as area
and depth. We used a smallest scale of 0.2 arcmin which corre-
sponds to the smallest separation for which galaxy images can easily
be separated using ground-based imaging data. The cosmic shear-
correlation covariance corresponds to the CFHTLS-Wide third data
release used for weak cosmological lensing (Fu et al. 2008). The co-
efficients corresponding to the optimal filter functions can be found
in Table 2. A C-program which calculates the filter functions and
the shear statistic RE is freely available.4

4http://www2.iap.fr/users/kilbinge/decomp_eb/
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.

Our specific results can be applied to other requirements, al-
though the results will not be optimal. Alternatively, the optimiza-
tion method described here can easily be applied to any given sur-
vey setting. For space-based surveys, where the galaxy-blending
confusion limit is smaller than for ground-based observations, the
advantage of RE over 〈M2

ap〉 is more pronounced.

5 O U T L O O K

The new cosmic shear functions RE and RB can be applied in
various ways in the context of detecting systematics in cosmic shear
data and for constraining cosmological parameters.

The optimization for S/N is useful for detecting a potential B
mode in the data. In this case, the E-/B-mode decomposition serves
merely as a diagnostic of the observations. A significant B mode
can be a sign for residuals in the PSF correction or non-perfect
shape measurement. It might also hint to an astrophysically gener-
ated B-mode signal, for example, from shape–shear correlations or
shape–shape intrinsic alignment. In both cases, the B-mode signal
is expected to be small and it is of great importance to obtain a clear
E-/B-mode separation without mixing of modes.

In case of a suspected astrophysical B mode, the separation of
the shear field into E and B modes might be a decisive advantage.
If the power spectrum contains both an E and B mode, P tot =
P E + P B, both modes mix together into their Fourier-transform of
Ptot, the shear correlation function. Thus, the E and B mode may
not be uniquely reconstructed from the correlation functions. The
different astrophysical components giving rise to PE and PB can
then only be separated by a E-/B-mode separating filter.

The FoM optimization permits RE to be used for efficient con-
straints on cosmological parameters. The reason to use a filtered
version of the shear correlation function ξ± instead of the latter
directly can be manifold (Eifler, Kilbinger & Schneider 2008). A
filter can be chosen to be a narrow passband filter of the power
spectrum and is therefore able to probe its local features, unlike
the broad low-passband function ξ+. As a consequence, the cor-
relation length is much smaller and the covariance matrix close to
diagonal. This has numerical advantages in particular in the case of
many data points, e.g. for shear tomography. Finally, higher-order
moments (skewness, kurtosis, etc. ) of filtered quantities are eas-

ier to handle than higher-order statistics of the (spin-2) shear field
(Jarvis, Bernstein & Jain 2004; Schneider, Kilbinger & Lombardi
2005).

Apart from S/N and FoM maximization, one can think of other,
alternative quantities with respect to which the filter function can
be optimized. For example, if a model for the B mode is assumed,
the S/N of RB can be optimized to facilitate the possible detection
of a B mode. Further, if cosmic shear is combined with other probes
of cosmology, the relative gain from weak lensing could be max-
imized. This can be done for specific goals, for example a given
dark-energy parametrization or some alternative theory of modified
gravity. However, we emphasize that the possibilities are restricted
since the optimization is always limited by the information con-
tained in the lensing power spectrum.

In the case of shear tomography, where the shear signal from dif-
ferent redshifts is resolved (although only partially due to the broad
lensing efficiency kernel), one can perform a redshift-dependent
optimization of the filter function. This is expected to bring fur-
ther improvements: first, the projection of physical on to angular
scales varies with redshift; using a redshift-dependent filter function,
physical scales can be sampled optimally with redshift. Secondly,
the power spectrum changes with varying redshift; to optimize the
sampling of this redshift-dependent information might require a
redshift-varying filter.

RE is beneficial in particular on small scales, where the aperture-
mass dispersion suffers from mode-mixing. On scales less than
a few arcmin, there is a leakage of modes of about 10 per cent
(Kilbinger et al. 2006). Those scales contain information about halo
structure, substructure and baryonic physics. It is difficult to model
those effects; the use of those small scales to constrain cosmolog-
ical parameters is limited. On the other hand, lensing observations
on small scales will provide important constraints on the physical
processes involved and matter properties on small scales.
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A P P E N D I X A : SI M U LTA N E O U S
O P T I M I Z AT I O N FO R A R B I T R A RY SC A L E S

The optimization scheme introduced in this paper holds for a given
ratio of minimum and maximum scale η = ϑmin/ϑmax. In this sec-
tion, we introduce a simple generalization of the scheme to obtain an
optimized function T̃+ which fulfils the integral constraints (equa-
tion 9) for all (ϑmin, ϑmax). This comes at the expense of a poor
resulting S/N.

If we demand the following relation to hold

Iν ≡
∫ +1

−1
dx xνT̃+(x) = 0; for ν = 0, 1, 2, 3, (A1)

then the two integral constraints

RI0 + I1 = R3I0 + R2I1 + RI2 + I3 = 0 (A2)

are satisfied. However, instead of two conditions we have now four
equations (equation A1) which fix K = 4 coefficients of the de-
composition. In this case, the first four matrix elements are (cf.
equation 17)

fmn =
∫ +1

−1
dx xm Cn(x); m = 0 . . . 3. (A3)

Since there are two more integrals than in the previous case, the
resulting function has at least two more zeros. The corresponding
S/N is significantly lower than in the single-scale case; it is even
smaller than the one obtained for Z+. We therefore do not consider
this option further.
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