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We investigate bouncing solutions in the framework of the nonsingular gravity model of Brandenberger,

Mukhanov and Sornborger. We show that a spatially flat universe filled with ordinary matter undergoing a

phase of contraction reaches a stage of minimal expansion factor before bouncing in a regular way to

reach the expanding phase. The expansion can be connected to the usual radiation- and matter-dominated

epochs before reaching a final expanding de Sitter phase. In general relativity (GR), a bounce can only

take place provided that the spatial sections are positively curved, a fact that has been shown to translate

into a constraint on the characteristic duration of the bounce. In our model, on the other hand, a bounce

can occur also in the absence of spatial curvature, which means that the time scale for the bounce can be

made arbitrarily short or long. The implication is that constraints on the bounce characteristic time

obtained in GR rely heavily on the assumed theory of gravity. Although the model we investigate is fourth

order in the derivatives of the metric (and therefore unstable vis-à-vis the perturbations), this generic

bounce dynamics should extend to string-motivated nonsingular models which can accommodate a

spatially flat bounce.

DOI: 10.1103/PhysRevD.81.023511 PACS numbers: 98.80.Cq

I. INTRODUCTION

Observations, especially those of the cosmic microwave
background by WMAP [1], strongly suggest the occur-
rence of a primordial inflationary period [2–4]. Inflation
not only provides an explanation for the homogeneity,
flatness and horizon problems of the standard hot big
bang cosmology, but it also offers a consistent mechanism
under which metric fluctuations are stretched beyond the
Hubble radius with a nearly invariant power spectrum.
However, in spite of its successes, the theory of inflation
does not solve the problem of the initial singularity.
Although the weak energy condition is likely to be violated
in such models, Borde, Guth and Vilenkin have shown [5]
that inflating spacetimes are in general geodesically in-
complete to the past [6,7].

Mostly inspired by the string-motivated pre-big bang
scenarios [8,9], bouncing models [10–14], i.e., models in
which the Universe undergoes a phase of contraction fol-
lowed by expansion, have been proposed as alternatives to
the inflationary paradigm. A bounce could solve the flat-
ness problem of standard cosmology if the contracting
phase lasted much longer than the expanding one, and it
could also solve the homogeneity problem by making the
past light cone large so that thermalization could occur.

The problem of the initial singularity, however, is still
generic. In the pre-big bang scenario the cosmological field

equations exhibit a new symmetry, the scale factor duality,
which maps the pre-big bang, contracting dilaton-
dominated era (in the Einstein frame) to the usual
Friedmann-Robertson-Walker cosmology (post-big bang
phase) [15]. Nonetheless, it has been shown that the two
branches cannot be connected to each other smoothly [16].
This means that, while the pre-big bang era has a future
singularity, the post-big bang phase emerges from a past
singularity.
The issue of how metric perturbations could be affected

by the bounce has also been addressed, mostly in the
framework of general relativity (GR). The low energy
approach represented by GR is natural if we consider the
fact that high energy corrections coming from, say, string
theory, are negligible before and after the bounce. Of
course, this is no longer the case if we want to fully
describe the bounce mechanism itself. This uncomfortable
situation has led to the postulate that, in analogy to other
short transitions in standard cosmology, such as preheating
[17] or radiation to matter-dominated epochs [18], the time
scale of the bounce is such as to permit fluctuations to
evolve through it in a scale-invariant way [8,19]. In the GR
framework, however, this assumption is far from being
generic. On the contrary, it has been shown [20] that large
wavelengths do suffer the influence of a such cosmological
transition. Hence the need to understand the way the
characteristic bounce time is constrained (or not) by the
field equations.
In addition, because GR forbids the bounce to occur as

long as the null energy condition holds, setting up such an
evolution for the scale factor can be a challenge. For
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instance, in a scenario with a single scalar field and positive
spatial curvature [13], the spectrum in the large scale limit
exhibits k-mode mixing. Models without spatial curvature
but with a generic scalar field—or k-essence field [21]—as
matter content have also been built [22]. In that case,
besides the fact that physical observables are still affected
by the bounce, those scenarios all lie in the phantom sector.
Thus, in order to connect the k-bounce to an expanding
radiation era, a decay mechanism similar to preheating
would be necessary.

In this work, we neither look for regularizations of the
pre-big bang scenario nor for some other matter/curvature
configuration in the classical realm. Rather, we will adopt
an alternative approach, focused on a modified, higher-
order derivative gravity model proposed in [23,24]. In this
approach, an effective action for gravity is constructed in
such a way that all curvature invariants are limited. This is
done via nondynamical Lagrange multipliers whose poten-
tials ensure that the theory approaches Einstein’s gravity at
low curvature and that all solutions are well behaved at
high curvature. We should note at this point that this
category of theories is not the most general one could think
of, having as high curvature limit the de Sitter solution. In
particular, it has been argued that PP-wave spaces, i.e.
spacetimes admitting a covariantly constant null Killing
vector field, should represent such a limit [25–27]; in this
case, then the bounce exemplified here could not take
place, as PP-waves states annihilate all the curvature
invariants.

In a subsequent paper [28], as an attempt to regulate
singularities in the pre-big bang cosmology, Branden-
berger, Easther and Maia studied a nonsingular dilaton
cosmology in the framework of the model presented in
[23,24]. They found solutions corresponding to a contract-
ing, dilaton-dominated universe which evolves toward a
bounce and emerges as a Friedmann universe. Here we
propose another solution: we will consider a homogeneous
and isotropic universe filled with ordinary radiation. The
choice of curvature invariants will dictate the dynamics for
the scale factor, which develops from a regular bounce to a
Friedmann expanding universe, ending up with a quasi-
de Sitter expansion phase which could mimic the present
acceleration of the Universe. We also address the problem
of the duration of the bounce in this model, and show that,
as opposed to the classical treatment [13], it turns out to be
completely unconstrained by the field equations.

Extensions of GR involving higher powers of curvature
invariants are well justified, as calculations of one-loop
divergences in quantum gravity generate terms propor-
tional to R2, R2

�� and R2
���� [29,30]. As shown by Stelle

in 1977 [31], although such actions can lead to a renorma-
lizable theory, they all have a shortcoming, namely, the
presence of ghosts—degrees of freedom with negative
kinetic energy [32,33]. This fact makes the theory highly
unstable, in the sense that the vacuum (empty) state can

decay into a collection of both positive and negative energy
states. Also, at the classical level, one should expect that
such instability will lead to growing gravitational pertur-
bations carrying both positive and negative energy modes.
This phenomenon is known in the literature as
Ostrogradsky’s instability [34,35]. It is in close relation-
ship with the fact that the Hamiltonian, due to the presence
in the Lagrangian of derivative terms of order greater than
one, is unbounded from below.
In this work we will consider a simple quadratic theory,

namely, a theory for which the higher-order derivative
terms appear only linearly. As a consequence, the back-
ground field equations will be of second order at the
background level. This fact, however, does not suffice to
prove stability, as the perturbations would still possess
higher-order equations of motion. The terms we consid-
ered, however, are expected to arise from an expansion in
the curvature which, once resummed in the complete
underlying theory (e.g. string), should be free from
Ostrogradsky’s instabilities and thus well behaved.
Whether the full theory will also contains, as high curva-
ture solutions, PP-waves (as indeed many theories do) is, as
far as we can tell, an open question.
This paper is organized as follows. In the next section,

we outline the model and write the full equations of
motion, in terms of both the cosmic and conformal times.
In Sec. III we show how the Universe can pass through a
nonsingular bounce and then connect to the usual expand-
ing phases of standard cosmology. The final phase ap-
proaches asymptotically to an ever-expanding de Sitter
period. At the end of Sec. III we show how the time
duration of the bounce can be made arbitrarily short. We
conclude in Sec. IV, opening to the possibility that the
matter component, needed to actually smoothly realize
the bounce, could be coming from anisotropies (as in
conventional GR, an isotropic metric with a stiff matter
can mimic a Bianchi I space, the shear energy density,
behaving as the inverse sixth power of the scale factor,
playing the role of the stiff fluid) [36,37].

II. THE MODEL

Our goal is to investigate bouncing cosmological solu-
tions in a nonsingular, higher-order derivative gravity pro-
posed in Refs. [23,24]. In this model combinations of the
Riemann tensor are introduced into the action via non-
dynamical Lagrange multipliers. The potentials associated
to each of the multipliers ensure that the theory approaches
the Einstein limit at low spacetime curvature, and that the
solution to the field equations is nonsingular (typically, a
de Sitter solution) at high curvature. More generally, for
the gravitational action, we have

Sgrav ¼ 1

16�GN

Z �
RþXN

i¼1

’iI
ðiÞ � Vð’iÞ

� ffiffiffiffiffiffiffi�g
p

d4x;

(1)
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where G�1
N ¼ 8�m2

Pl is the Newton constant defining the

Planck mass mPl, ’i (i ¼ 1; � � � ; N) are Lagrange multi-

pliers depending on space-time coordinates, and IðiÞ are
functions of the curvature invariants

IðiÞ ¼ IðiÞðR; R��R
��; R����R

����; . . .Þ; (2)

which we would like to limit.
In order to understand how these limits are imple-

mented, let us restrict ourselves to the case where a single

field ’1 � ’ is present, and only one invariant, Ið1Þ � I, is
limited. Variation of the action (1) with respect to ’ then
provides the constraint equation

I� dV

d’
¼ 0: (3)

At low curvature, we demand that ’ be small and the
theory to approach GR. Hence the action in this limit
should be approximated by

lim
’!0

Sgrav ¼ 1

16�GN

Z
½RþOð’;’2; � � �Þ� ffiffiffiffiffiffiffi�g

p
d4x; (4)

which implies, from Eq. (3), that the potential should
behave as

lim
’!0

Vð’Þ � ’2 þ ’3 þ � � � : (5)

On the other hand, at high curvature, which we take to
mean j’j � 1, the correction term for the Einstein-Hilbert
action becomes important. The potential must then be
chosen in such a way that the solution of the field equations
approaches the de Sitter solution, thereby effectively limit-
ing the curvature. From Eq. (3), we see that this require-
ment can be fulfilled provided that

lim
’!1Vð’Þ ¼ 2�; lim

’!1IðR; R
2
��; . . .Þ ¼ 0; (6)

where � is a constant. Thus, the action in the high curva-
ture regime can be written as

lim
’!1Sgrav ¼

1

16�GN

Z
ðR� 2�Þ ffiffiffiffiffiffiffi�g

p
d4x: (7)

We thus recover the Einstein-Hilbert action with a cosmo-
logical constant term coming from the potential. A detailed
discussion of this de Sitter limit can be found in [24].

Here we are mainly interested in the particular case
where the Universe, otherwise filled with a perfect fluid
such as, e.g., dust or radiation, is originally undergoing a
phase of contraction where the spacetime curvature in-
creases. Since the curvature is now limited, the Universe
must reach a minimum radius, at which point it should
bounce and subsequently expand.

Such a cosmology should be realizable with a conve-
nient choice of curvature invariants. Assuming a
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric
of the form

d s2 ¼ �dt2 þ a2ðtÞ
�

dr2

1�Kr2
þ r2ðd�2 þ sin2�d	2Þ

�
;

(8)

we find that singularity-free second-order equations can be
obtained with the curvature invariant

IðR; R��R
��Þ � R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4R��R

�� � R2Þ
q

¼ 12ð _H þH2Þ;
(9)

where the Hubble expansion rate is H � _a=a, provided
that the potential obeys the twin conditions that Vð0Þ ¼ 0,
V0ð0Þ ¼ 0 and V 0ð�1Þ ! constant.
One simple example of a potential that satisfies the

conditions spelled above would be

Vð’Þ ¼ 2�’3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ’6

p ; (10)

and it is represented on Fig. 1. Inserting this potential into
Eq. (3), we obtain

_H þH2 ¼ 1

12

dV

d’
¼ �’2

2ð1þ ’6Þ3=2 : (11)

Equation (11) tells us that, at the bounce where H ¼ 0, we
can have _H > 0 provided we choose a positive cosmologi-
cal constant �. Besides, we want H to reach a maximum
value after the bounce, after which it should decrease
again—we put this extra ingredient in order to illustrate
the connection between the bounce era and the usual
cosmological setting of a decelerating ( _H < 0) universe.
In the next section we will show that this feature is realized
for a range of initial conditions.
The complete gravitational action we choose is therefore

Sgrav ¼ 1

16�GN

Z ffiffiffiffiffiffiffi�g
p

Lgravd
4x; (12)

2 1 0 1 2
2

1

0

1

2

FIG. 1. Scalar field potential Vð’Þ (solid line) and its deriva-
tive (dashed line), functions of the scalar field ’, as used for the
modified gravity field equations.
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where

L grav ¼ Rþ ’½R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4R��R

�� � R2Þ
q

� � Vð’Þ: (13)

Variation of the action (12) with respect to the metric then
leads to the modified Einstein equations

R�� � 1

2
g��R� g��

’I

2
þ ’IRR�� � ð’IRÞ;�;�

þ g��ð’IRÞ;�;� þ 2’IPR��R
�
� þ ð’IPR��Þ;�;�

þ g��ð’IPR�
Þ;
� � 2½’IPR

ð��

�
�Þ�;�;


þ 1

2
g��Vð’Þ ¼ 8�GNT��; (14)

where we have defined IR � @I=@R and IP �
@I=@ðR��R

��Þ; in Eq. (14), we also added a matter com-

ponent whose stress-energy tensor is T��. These equations

should be solved together with Eq. (11).
Equations (14) are, in general, of fourth order in the

metric variables, and therefore subject to Ostrogradsky’s
instability. However, in the special case of the maximally
symmetric FLRW metric (8), and for the particular choice
of the invariant I of Eq. (9), we find that the second
derivative of the scale factor appears only linearly in the
Lagrangian (13). As a result, the background equations of
motion stemming from (14) are second order. Indeed, for
the time-time component we obtain the modified
Friedmann equation

H2ð1þ 4’Þ þ 2H _’þK
a2

¼ V

6
þ 8�GN

3
�; (15)

with � the matter energy density of the perfect fluid. For
the spatial components the equations again lead to a gen-
eralization of the usual GR case, namely,

€’þ 4H _’þ
�
_H þ 3

2
H2

�
ð1þ 4’Þ þ K

2a2

¼ V

12
� 4�GNp; (16)

where p is the matter pressure. This last equation can also
be derived from Eq. (15) and the matter stress-energy
tensor conservation.

A simple way of obtaining these equations is by setting
g00 ¼ �N2ð�Þ, � being a general time coordinate. This
transforms the gravitational action into

Sgrav ¼ 3

8�GN

Z ffiffiffiffi


p
d4xLðN;’Þ; (17)

where
ffiffiffiffi


p ¼ r2 sin�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Kr2

p
is the square root of the

determinant of the metric on the spatial sections, and

L ¼ a3
�
N

�
K
a2

� V

6

�
� 1

N

��
da

ad�

�
2

þ 2
da

ad�

�
d’

d�
þ 2

da

ad�
’

���
: (18)

Varying Eq. (17) with respect to ’ and N yields Eqs. (11)
and (15), respectively, once one fixes the lapse function N
to unity, i.e., once one identifies � with the cosmic time t.
For later use it is convenient to rewrite the equations of

motion in terms of the conformal time �, defined in the
usual way as d� ¼ dt=a. Denoting by a prime the deriva-
tive with respect to conformal time, f0 � df=d�, we re-
write the constraint equation as

H 0 ¼ a2

12

dV

d’
; (19)

and the generalized Friedmann equation as

H 2ð1þ 4’Þ þ 2H’0 þK ¼ a2
�
V

6
þ 8�GN

3
�

�
:

(20)

These last two equations can also be derived from varia-
tions of (17), setting � ¼ �, i.e. N ¼ a. Together with
matter energy-momentum conservation

�0 þ 3H ð�þ pÞ ¼ 0; (21)

these equations can be combined to yield

H 0ð1þ 4’Þ þ ’00 þ 2H’0

¼ a2
�
V

6
� 4�GN

3
ð�þ 3pÞ

�
: (22)

Equations (19)–(21) provide a self-contained description
for the bounce, to which we shall now turn to.

III. BOUNCING UNIVERSE

Before studying the different cases of interest, let us use
the cosmological constant � to define a more convenient

time variable � ¼ ffiffiffiffi
�

p
t. Rescaling the Hubble parameter,

the scale factor and the energy density through

H ¼
ffiffiffiffi
�

p
hð�Þ; ~a ¼ �a and "ð�Þ ¼ 8�GN

3

�

�
;

(23)

we obtain a set of dimensionless equations as

d’

d�
¼ V

12h
� 1

2
hð1þ 4’Þ � K

2~a2h
þ "

2h
; (24)

and

dh

d�
¼ 1

12

dV
d’

� h2; (25)

where the potential is now V ¼ V=�.
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The matter stress-energy conservation then reads

d"

d�
þ 3hð"þ P Þ ¼ 0; (26)

where the pressure p is modified in the same way as the
energy density through P ¼ 8�GNp=ð3�Þ. These rescal-
ings also apply for the conformal time equations, with H
unchanged.

A. Dynamics of the field equations

We begin the section with a dynamical analysis of the
vacuum equations with zero spatial curvature (K ¼ 0), in
the case of the potential of Eq. (10). We find that the system

dh

d�
¼ ’2

2ð1þ ’6Þ3=2 � h2; (27)

d’

d�
¼ ’3

6h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ’6

p � 1

2
hð1þ 4’Þ; (28)

has six critical points (the number of crossings of the
curves defined by dh=d� ¼ 0 and d’=d� ¼ 0)—see
Fig. 1. One of these critical points, at ð’; hÞ ’
ð�0:3; 0:21Þ, is an asymptotically stable point—an attrac-
tor. This means that trajectories come to an end (at t ! 1)
at this point, which is hence a de Sitter attractor.

The point ð’; hÞ ’ ð�0:3;�0:21Þ, on the other hand, is
an unstable spiral point—where trajectories emerge from
at t ! �1. It corresponds to an antiattractor, in this case, a
contracting de Sitter solution. The other critical points, to
the left and right of Fig. 1, namely, ð’; hÞ ’
ð�1:25;�0:27Þ, ð�1:25; 0:27Þ, ð1:35;�0:22Þ and (1.35,
0.22), are all saddle points. Some particular solutions for
this system are sketched in Fig. 2.

The most important feature of this phase diagram, for us,
is that the origin (’ ¼ 0, H ¼ 0) is not a critical point—it
corresponds to the crossing of the two branches of the

curves dH=dt ¼ 0. In fact, trajectories coming from below
(H < 0) will necessarily have to go through the origin in a
finite interval of time. But the trajectories from below all
cross the same point (the origin), which means that (at least
for the autonomous system we considered thus far) this
point is somehow singular. This means, in our case, that the
trajectories passing through the origin will experiment a
discontinuous change in the rate of change of ’—in other
words, one cannot predict the value of d’=dt for trajecto-
ries that emerge from the origin at H ¼ 0.
To see that this is the case, we look for solutions near the

origin (’ ¼ 0, H ¼ 0) of the phase plane. In this limit, the
dynamical system can be approximated by

dh

d’
¼ h� ’2

h
þOðh2; ’2; h’Þ: (29)

We can rewrite the above equation in terms of h2, and then
find a first integral of the resulting differential equation.
The final result is that

hð’Þ ’ � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ae4’ þ 1þ 4’ð1þ 2’Þ

q
; (30)

where A is an arbitrary integration constant. This means
that the two-dimensional dynamical system is still
Lipschitz continuous at the origin (see, e.g., Ref. [38],
p. 53), which indicates that the two-dimensional trajecto-
ries can be seen as projections of trajectories in a higher-
dimension dynamical phase space. Hence, Eq. (30) indi-
cates that although the two branches (H > 0 and H < 0)
cannot be simply connected to each other in the case of the
two-dimensional phase space, any enlargement of that
phase space will lift the problematic degeneracies.
The saddle points divide the phase diagram in different

regions through their separatrices (not shown in Fig. 2,
although they can be inferred from the particular solu-
tions). In particular, the separatrices in the third and fourth
quadrants explain why there are solutions which never
reach theH ¼ 0 axis. This is a general feature, in the sense
that it does not depend on the matter content: indeed, it
follows directly from Eq. (11), which is independent of the
matter content for the constrained theory we are consider-
ing. However, the evolution of the right-hand side of
Eq. (11) being coupled to the matter content through
Eq. (15), one expects a similar general behavior in the
Hubble parameter for universes with any type of matter
content, but with only minor differences in the details of
the phase diagram.
Hence, we conclude that a bounce in this constrained

gravity theory does seem quite generic, but unfortunately
the contracting and expanding branches cannot be con-
nected in a continuous (unambiguous) way to each other,
because the dynamical system is two dimensional.
However, as we will show next, the introduction of even
a minuscule amount spatial curvatureK, or of any kind of
matter, both opening up the phase space into a third di-

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

FIG. 2 (color online). Phase-space diagram in vacuum. The
critical points are shown as filled circles, and are found at the
intersections of the curves corresponding to dH=d� ¼ 0 and
d’=d� ¼ 0 (solid lines). The dashed lines show some particular
solutions on this phase space. The arrows depict the arrow of
time.
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mension, is enough to regularize this bounce, so that every
physical variable in the system remains finite and no
singularity occurs.

B. Spatial curvature

By inspection of the phase diagram of Fig. 2, we can see
that for every trajectory in the lower plane (h < 0) there is a
similar trajectory in the upper plane. The only problem is
that apparently all these particular solutions cross at the
origin (’ ¼ 0, h ¼ 0), which, sadly for the two-
dimensional dynamical system we considered in the pre-
vious section, cannot make sense. As it turns out, spatial
curvature is one way to alleviate this problem.

Indeed, with even a small amount of spatial curvature,
trajectories coming up from the lower-right corner (’> 0,
d’=d� < 0 h < 0, dh=d� * 0) emerge from the origin on
the upper-left corner (’< 0, d’=d� < 0 h > 0, dh=d� *
0), and solutions coming up from the lower-left corner
emerge on the upper-right corner, so that the particular
solutions to the equations of motion are indeed perfectly
continuous. This can only happen because the presence of
spatial curvature turns our original (flat) two-dimensional
phase space into a three-dimensional phase space, where h
and a are effectively independent dynamical variables.
This means that the trajectories of Fig. 2 which cross ’ ¼
0 and h ¼ 0 can now do so freely, as the third dimension
(the scale factor a, shown on Fig. 3) opens the possibility
that the paths do not cross—in other words, in the three-
dimensional phase space these trajectories actually do not
intersect.

To see this, consider the dynamical system composed of
Eqs. (19) to (21). The problematic equation, which leads to
the difficulties exposed in the previous section, is Eq. (20).
In fact, by taking the limit H ! 0 at the putative bounce
we can see that this equation reduces to

’0 ’ 1

2H

�
a2V

6
�K

�
: (31)

The rate of change of the scale factor is naturally zero at the
bounce (H ! 0), hence, if the derivative of the field
above is finite, then ’ ! ’B and a ! aB at the bounce.
This means that Vð’BÞ ¼ 6K=a2B, which then implies, for
the potential given in Eq. (10), that

’6
B ¼

�
�2a4B
9K2

� 1

��1
: (32)

Clearly, asK ! 0�, ’B ! 0, which means that the physi-
cal system itself is perfectly well behaved for any nonzero
value of K.

Hence, we conclude that it is possible to connect the two
branches of the theory (the contracting and expanding
phases), provided that there is any amount of curvature,
however small. Since the limitK ! 0 is well behaved, we
can do without it entirely, and join the pieces of the

trajectories between the two branches, constructing zero-
curvature bounce models.
It is also interesting to notice that the condition (32)

implies that there is a maximum value for the spatial
curvature

jKmaxj ¼ �a2B
3

¼ H2
�a

2
B; (33)

which is in fact perfectly legitimate in our constrained
theory, since we limit the spacetime curvature at all
times—and that includes the time of the bounce itself.
These considerations are illustrated on Fig. 3, showing
the time evolution of the scale factor, the reduced Hubble
rate and the scalar field, for three scenarios with different
values of the spatial curvature.

C. Constrained gravity with a matter fluid

Having established that, qualitatively, spatial curvature
does nothing to our model, let us continue with the analysis
of the field equations in the flat case, but now in the
presence of matter. We will show in what follows that since
the introduction of matter enlarges the dimensionality of
the phase space, it similarly allows the trajectories in the
contracting and expanding branches to be joined—what-
ever the amount of matter present.
If � is the matter energy density, then the system will

acquire one more degree of freedom, that is, our dynamical
equations are Eqs. (24)–(26), which take the form

dh

d�
¼ �h2 þ ’2

2ð1þ ’6Þ3=2 ; (34)

d’

d�
¼ � 1

2
hð1þ 4’Þ þ ’3

6h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ’6

p þ "

2h
; (35)

d"

d�
¼ �3hð1þ wÞ"; (36)

where, as usual, w � p=� ¼ P=" is the equation of state
for the fluid (w ¼ 0 for dust, w ¼ 1

3 for radiation, and w ¼
� 1

3 for a curvaturelike matter.)

Before proceeding with the detailed analysis of the
phase space of this dynamical system, let us concentrate
on a particular class of solutions of the system (34)–(36)
which gives us some information on how matter affects the
bounce. For this purpose, let us return to the previous
vacuum case, Eqs. (27) and (28). We have seen that, in
our model, not only h ! 0 at the bounce, but also that
dh=d� and d’=d� vanish there. The evolution at the
bounce is therefore dominated by the higher time deriva-
tives—which can be tuned, through the initial conditions,
to small values, making the duration of the bounce very
large. This means that, depending on the initial conditions
of the Universe, the spacetime can stay in this quasi-
Minkowski (h ¼ 0) state for a long period of cosmic
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time before undergoing a phase of acceleration with
dh=d� > 0. However, we see that in the presence of matter
the Universe starts in a de Sitter contracting phase and
quickly evolves towards the bounce, emerging in a super-
inflationary period before reaching the ever-expanding
de Sitter phase. This is exactly similar to what we found
for the curvature case and exemplified in Fig. 4.

Notice that, as mentioned before, with matter we do not
have a phase plane anymore—the phase space has three
dimensions. The possible trajectories that can be achieved
in the projected phase space ð’; hÞ are essentially the same
as those obtained in the two-dimensional case of Fig. 2.
Thus we have been able to set up the cosmology for a

homogeneous, spatially flat and isotropic universe filled

150 100 50 0 50 100 150
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104

107

1010

1013

a

150 100 50 0 50 100 150

0.2
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0.0

0.1

0.2

0.3

150 100 50 0 50 100 150

0.4

0.2

0.0

0.2

0.4

FIG. 3. Scale factor að�Þ (top left panel), reduced Hubble parameter hð�Þ (top right panel) and scalar field ’ð�Þ (bottom center panel)
as a function of time for almost vanishing curvature (K ¼ 10�9, solid line) and small but non vanishing curvature (K ¼ 10�3 and
K ¼ 10�2, respectively, dashed and dotted lines). It is interesting to note that the vanishing curvature limit allows for a so-called
emerging universe model in which the scale factor is essentially constant for a long period of time after which expansion (in fact
inflation) takes place spontaneously. Pushing the calculation backwards in time shows that the vanishing of the Hubble rate is only
stable in the actual limit K ! 0: expansion begins after a finite amount of time, but the amount of past time during which h ¼ 0 can
only be made infinite provided K ¼ 0 strictly; otherwise, the Minkowski state always originates from a contracting de Sitter phase.
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uniquely with dust and radiation and that behaves as fol-
lows: the Universe starts contracting until it reaches a
minimum radius, when it bounces and expands afterwards.
The expansion period right after the bounce corresponds to
a superinflationary period (dh=d� > 0). When the Hubble
parameter reaches a certain maximum value (which de-
pends on the details of the spacetime constraints), it starts
to decrease, similarly as in the usual FLRW universe, until
it reaches either a de Sitter attractor or some other regime
as its final state.

The behaviors discussed above are generic and do not
depend crucially on the choice (10) for the potential. To see
this, we considered many different potentials, and, as a
matter of example, we show on Fig. 7 the phase diagram
obtained for the choice

V2ð’Þ ¼ 2�’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ’6

p ; (37)

which is represented on Fig. 8.

D. Bounce scale

In this subsection our aim is to calculate the character-
istic time scale of the bounce described by the above
model. More specifically, we will show that, in contrast

to the general relativistic description [13,22], the typical
bounce time scale can be made arbitrarily small in this
category of theories.
Let us start with the following expansion [13] for the

scale factor around the bounce:

50 0 50 100
0.6

0.4

0.2

0.0

0.2

0.4

FIG. 6. Effect of including matter on the scalar field as a
function of time. The solid line represents the scalar field
evolution in vacuum, while the dashed line includes a dust or
radiation component (both curves are indistinguishable).

50 0 50 100
10 45

10 38

10 31

10 24

10 17

10 10

FIG. 5. Time evolution of the densities when the fluid consists
of dust (w ¼ 0, solid line), radiation (w ¼ 1

3 , dashed line) and

curvature (w ¼ � 1
3 , dotted line).
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0.3
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0.1

0.0

0.1

0.2

FIG. 4. Time evolution of the Hubble rate in vacuum (solid
line) and with matter (dashed line). When a small quantity of
radiation is added to the system [�radð0Þ ¼ 10�5 in this ex-
ample], the scale factor evolves from a contracting de Sitter
phase to the bounce. The final state corresponds to an ever-
expanding de Sitter period. The results are exactly similar when,
instead of radiation, one considers dust or a curvaturelike fluid.
The three cases are shown in Figs. 5 and 6. It is worth noticing
that the presence of the fluid dramatically reduces the bounce
duration so that an emergent universe model in this case is very
unlikely.
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að�Þ ¼ a0

�
1þ 1

2

�
�

�0

�
2 þ �

�
�

�0

�
3 þ 5

24
ð1þ �Þ

�
�

�0

�
4
�
;

(38)

where we have set the bounce time as the origin of con-
formal time, i.e., �bounce ¼ 0. In Eq. (38), �0 provides the
bounce characteristic time scale. Similarly, any other quan-
tity with 0 as a subscript means that this quantity is to be
evaluated when the bounce occurs, i.e. for � ¼ 0. As
explained in Ref. [13], the parameters � and � control
the amplitude of the deviation from the de Sitter-like
bounce, whose scale factor is given by að�Þ ¼
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2ð�=�0Þ

p
, thereby explaining the factor 5=24

in front of the fourth term in Eq. (38).
In a similar way as for the scale factor, we assume that

the scalar field ’ð�Þ, its potential Vð�Þ and the energy
density �ð�Þ all have a Taylor expansion about � ¼ 0, that
is, we set

’ð�Þ ¼ ’0 þ ’1

�
�

�0

�
þ ’2

�
�

�0

�
2 þ ’3

�
�

�0

�
3 þ � � � ;

(39)

Vð�Þ ¼ V0 þ V1

�
�

�0

�
þ V2

�
�

�0

�
2 þ V3

�
�

�0

�
3 þ � � � ;

(40)

�ð�Þ ¼ �0 þ �1

�
�

�0

�
þ �2

�
�

�0

�
2 þ �3

�
�

�0

�
3 þ � � � ;

(41)

where the parameters ’i, Vi and �i are to be determined
below.
In order to determine the defining parameters of the

scale factor, and hence the bounce scale itself, it is suffi-
cient to verify in what manner they are constrained by the
field equations. In practice, we insert the expansion (38)
into Eqs. (19)–(21) and identify terms order by order in
�=�0 � 1. This leads to

�1 ¼ 0; (42)

�2 ¼ � 3

2
ð1þ wÞ�0; (43)

�3 ¼ �3�ð1þ wÞ�0; (44)

which expresses the first terms in the energy density. Note
at this point that a symmetric bounce, having � ¼ 0, leads
to an even behavior for the density, as expected. The first
equality merely expresses energy conservation at the
bounce conformal time.
The cosmic time bounce duration t0 can then be eval-

uated as

t20 � a20�
2
0 ¼

12’1

V1

¼ 12

�
dV

d’

��������0

��1
; (45)

where the last term is the derivative of the potential with
respect to ’ evaluated at the bounce conformal time � ¼
0; this remains a free parameter, as can be seen from
inspection of the following relations:

V0 ¼ 6K
a20

� 16�GN�0; (46)

V2 ¼ dV

d’

��������0
ð3�’1 þ ’2Þ; (47)

relating the parameters for the scalar field potential. Note at
this point that for negative or vanishing curvature K, the
potential needs to be negative at the bounce, so that, as in
GR, a simple massive scalar field cannot lead to a bouncing
phase unless the Universe is closed.
At the next orders, we obtain relationship between the

higher derivatives of the scalar field at the bounce and the
energy density at that point as well as the asymmetry of the
bounce, namely,

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

FIG. 8. The potential V2ð’Þ (solid line) and its derivative
(dashed line) used to derive the phase portrait of Fig. 7.
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0.0
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FIG. 7 (color online). Phase diagram for the potential V2 given
by Eq. (37) displayed on Fig. 8.
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’2 ¼ � 1

2
ð1þ 4’0Þ þ 6

�
dV

d’

��������0

��1

	
�
K
a20

� 4�GN�0ð1þ wÞ
�
; (48)

’3 ¼ ��ð1þ 4’0Þ � 2

3
’1; (49)

and finally one can identify the fourth order term in the
scale factor expansion � as

� ¼ 6

5

�
1

V1

�
V3 þ 24�GN��0ð1þ wÞ � 24�

K
a20

�

þ 2�ð1þ 4’0Þ � ’3

’1

�
: (50)

An important conclusion that can be drawn from these
simple relations is that the bounce scale can be made as
small as one wants. Clearly, we see that the larger the
derivative of the potential at the bounce or, put in another

way, the larger the constant
ffiffiffiffi
�

p
which defines the dimen-

sion of Vð’Þ is, the smaller the bounce characteristic
conformal time scale will be, for a given bounce length
scale a0. This result can be consistently checked by nu-
merical integration of system (20): consider the vacuum
equations of the last subsection, Eqs. (27) and (28). At the
point (’ ¼ 0, h ¼ 0), we recall that the derivative of the
potential is exactly zero. But, according to the relation
(44), this implies that the physical time duration t0 ¼
a0�0 of the bounce goes to infinity or, put in another
way, that there is no bounce at all. This confirms the results
for vacuum obtained in the last section.

IV. CONCLUSION

Cosmological inflation now probably deserves to be
included in the standard picture of the Universe.
However, as inflation cannot be directly observed, it is
desirable to find other, challenging models that could
similarly solve the problems of noninflationary cosmology
while at the same time making different predictions for
data sets—some of which may yet be observed as, e.g.,
non-Gaussianity or tensor modes of perturbations. Such a
noninflationary model could include a phase of contraction
followed by a bounce, leading to the current expansion.

Having a bouncing phase in the early Universe is a
highly nontrivial demand in the framework of general
relativity with well-behaved matter content. It usually
requires a strictly positive value for the spatial curvature,
in contradiction with the current observational data.
Therefore, unless a phase of inflation is invoked after the
bounce occurred, either the matter content or the gravity
theory must be changed.

The simplest way for a bounce to take place in a regular
matter theory consists in demanding a positive spatial
curvature to compensate for the positive energy density
of matter, allowing the Hubble parameter to vanish at the
bounce. But by doing so, it was found that the time
duration of the bounce was bounded from below so that
an arbitrary short bounce could not take place. It was
suggested that this was entirely due to the curvature, whose
value was indeed crucial in limiting the bounce duration.
In this paper our main purpose was to investigate a

nonsingular bounce in the framework of the modified
gravity model of [24]. We found solutions for which the
Universe is described by a period of contraction followed
by an expanding, superinflationary phase before connect-
ing to a more usual radiation- or matter-dominated epoch
of the FLRW universe. The final period then emerges as an
ever-expanding de Sitter universe. We have computed the
duration of the bounce for that model, and we found that,
whatever the bounce, irrespective of whether or not it is
symmetric, whether or not there is spatial curvature (inde-
pendently of the sign of this curvature), and whether in
vacuum or not, its typical duration is unconstrained.
This arbitrariness in the duration of the bounce could

have important consequences for the evolution of fluctua-
tions through the bounce. However, although the back-
ground models are ruled by second-order equations,
perturbations will almost surely show signs of the under-
lying instability of our higher-order gravity model, so at
this stage it is not clear that perturbations in the framework
of our models could be sensible.
Collapsing universes might see their anisotropies and

inhomogeneities grow. Although we have assumed in this
work that no such growth was taking place, thereby ruling
out the entire models, one should in principle evaluate their
influence. We argued that matter or spatial curvature was
required in order to smoothly pass from the contracting to
the expanding phases: one might expect that an initial
amount of anisotropy could actually play this role.
Indeed in the framework of conventional GR, it is well
known that a Bianchi I universe can be mimicked by a stiff
matter perfect fluid (with equation of state w ¼ 1) [36],
and this occurs because the shear behave as the inverse
sixth power of the expansion rates averaged over the three
spatial direction. This last result stems from the Gauss-
Codazzi equation, which is independent of the field equa-
tions, hence of the gravity theory. Moreover, the fact that
the shear can then be seen as an energy density source in
the Friedmann equation is derivable from the
Raychaudhuri equation, again independent of the field
equations. One might therefore expect a similar equiva-
lence between an anisotropic space (although not neces-
sarily Bianchi I) and a specific fluid (again, not necessarily
stiff) in the higher curvature kind of theories in which we
developed bouncing models here. One would then possibly
end up with a ‘‘complete’’ model in which an originally
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anisotropic space contracts to a minimal scale, bounces
thanks to this anisotropies, and then erases them away due
to the ensuing de Sitter phase, later to be smoothly con-
nected to a radiation and/or matter-dominated stage with
possibly an ultimate de Sitter (accelerated at the present
time) stage.
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