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ABSTRACT

Traditionally, the degeneracy between the unknown radial profiles of total mass and velocity
anisotropy inherent in the spherical, stationary, non-streaming Jeans equation has been handled
by assuming a mass profile and fitting models to the observed kinematical data. However,
mass profiles are still not well known: there are discrepancies in the inner slopes of the density
profiles of haloes found in dissipationless cosmological N-body simulations, and the inclusion
of gas alters significantly the inner slopes of both the total mass and the dark matter component.
Here, the opposite approach is considered: the equation of anisotropic kinematic projection
is inverted for known arbitrary anisotropy to yield the space radial velocity dispersion profile
in terms of an integral involving the radial profiles of anisotropy and isotropic dynamical
pressure (itself a single integral of observable quantities). Then, through the Jeans equation,
the mass profile of a spherical system is derived in terms of double integrals of observable
quantities. Single integral formulas for both deprojection and mass inversion are provided
for several simple anisotropy models (isotropic, radial, circular, general constant, Osipkov–
Merritt, Mamon–Łokas and Diemand–Moore–Stadel). Tests of the mass inversion on Navarro,
Frenk and White (NFW) models with the first four of these anisotropy models yield accurate
results in the case of perfect observational data, and typically better than 70 per cent (in
four cases out of five) accurate mass profiles for the sampling errors expected from current
observational data on clusters of galaxies. For the NFW model with mildly increasing radial
anisotropy, the mass is found to be insensitive to the adopted anisotropy profile at 7 scale radii
and to the adopted anisotropy radius at 3 scale radii. This anisotropic mass inversion method is
a useful complementary tool to analyse the mass and anisotropy profiles of spherical systems. It
provides the practical means to lift the mass–anisotropy degeneracy in quasi-spherical systems
such as globular clusters, round dwarf spheroidal and elliptical galaxies, as well as groups and
clusters of galaxies, when the anisotropy of the tracer is expected to be linearly related to the
slope of its density.

Key words: stellar dynamics – methods: analytical – galaxies: clusters: general – galaxies:
haloes – galaxies: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

The major goal of kinematical modelling of a self-gravitating astrophysical system, observed at one instant, is to measure on one hand the
total mass distribution (visible and dark matter), and on the other hand the three-dimensional velocity streaming and dispersion moments.
In other words, the modeller wishes to deduce the distributions of dark matter and of orbital shapes. The modeller has at his disposal, at
best, maps of surface density (or surface brightness) and of the velocity field at each point, or else its moments (line-of-sight mean velocity,
dispersion, skewness and kurtosis).
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2434 G. A. Mamon and G. Boué

The basic equation for such kinematical modelling is the collisionless Boltzmann equation (hereafter CBE, but also often called Liouville
or Vlasov; see Hénon 1982), which states the incompressibility of the system in six-dimensional phase (position, velocity) space:

∂f

∂t
+ v · ∇f − ∇� · ∂f

∂v
= 0,

where � is the gravitational potential (hereafter potential) and f is the distribution function, that is the density in phase space. Unfortunately,
the resolution of the CBE is difficult, especially when projection equations are taken into account.1 In particular, the CBE presents a degeneracy
between the unknown potential and the unknown velocity field (given that observations usually limit the velocities to their projection along
the line-of-sight, measured through redshifts).

The traditional simpler approach has been to use the (first) velocity moments of the CBE, which are more easily related to observables,
the Jeans equations that pertain to local dynamical equilibrium

∂v

∂t
+ (v · ∇)v = −∇� − 1

ρ
∇ · (ρ σ 2), (1)

where ρ is the space density of the tracer used to observe the system, σ 2 is the tracer’s dispersion tensor, whose elements are σ 2
ij = vi vj −vi vj ,

and ρσ 2 is the anisotropic dynamical pressure tensor of the tracer. With the simplifying assumptions of stationarity and the absence of streaming
motions, equation (1) simplifies to the stationary non-streaming Jeans equations:

∇ · (
ρ σ 2

) = −ρ ∇�. (2)

Using the stationary non-streaming Jeans equations (2), one can relate the orbital properties, contained in the pressure term with the mass
distribution contained in the potential (through Poisson’s equation).

The small departures from circular symmetry of many astrophysical systems observed in projection, such as globular clusters, the
rounder elliptical galaxies (classes E0 to E2) and groups and clusters of galaxies, has encouraged dynamicists to assume spherical symmetry
to perform the kinematical modelling. The stationary non-streaming spherical Jeans equation can then be simply written

d
(
ρ σ 2

r

)
dr

+ 2
β

r
ρ σ 2

r = −ρ(r)
GM(r)

r2
, (3)

where M(r) is the total mass profile, while

β(r) = 1 − σ 2
θ + σ 2

φ

2 σ 2
r

= 1 − σ 2
θ

σ 2
r

is the tracer’s velocity anisotropy (hereafter anisotropy) profile, with σ r ≡ σ rr, etc, σ θ = σφ , by spherical symmetry, and with β = 1,
0, → −∞ for radial, isotropic and circular orbits, respectively. The stationary non-streaming spherical Jeans equation provides an excellent
estimate of the mass profile, given all other three-dimensional quantities, in slowly evolving triaxial systems such as haloes in dissipationless
cosmological simulations (Tormen, Bouchet & White 1997) and elliptical galaxies formed by mergers of gas-rich spirals in dissipative N-body
simulations (Mamon et al. 2006).

Again, one is left with having two unknown quantities, the radial profiles of mass and velocity anisotropy, linked by a single equation.
In other words, we have to deal with a serious mass–anisotropy degeneracy.

The simplest and most popular approach is to assume parametric forms for both the mass and anisotropy profiles. One can then express
the product of the observable quantities: surface density profile 	(R) and line-of-sight square velocity dispersion profile σ 2

los(R) versus
projected radius R through the anisotropic kinematic projection equation (Binney & Mamon 1982) expressing the projected dynamical
pressure P = 	σ 2

los:

P (R) = 	(R) σ 2
los(R) = 2

∫ ∞

R

[(
r2 − R2

)
σ 2

r + R2σ 2
θ

]
ρ

dr

r
√

r2 − R2
(4)

= 2
∫ ∞

R

(
1 − β

R2

r2

)
p

r dr√
r2 − R2

, (5)

where equation (5) is only valid for non-circular orbits, and where p = ρσ 2
r is the radial dynamical pressure.

Inserting the radial pressure2 (equation 5) in the spherical stationary Jeans equation (3), one determines the line-of-sight velocity
dispersions essentially through a double integration over ρ M dr . Mamon & Łokas (2005b, appendix) have simplified the problem by writing
the projected pressure as a single integral

P (R) = 	(R) σ 2
los(R) = 2 G

∫ ∞

R

Kproj[r, R|β(r)] ρ M
dr

r
= 2

∫ ∞

R

Kproj[r, R|β(r)] ρ v2
c dr, (6)

where they were able to determine simple analytical expressions for the dimensionless kernel Kproj for several popular analytical formulations
of β(r). Note that if one assumes isotropy, the equations are greatly simplified, and one finds (Tremaine et al. 1994; Prugniel & Simien 1997)
Kproj(r, R) = √

1 − R2/r2. Also, if β = cst �= 0, the kernel can be expressed either in terms of incomplete Beta functions (Mamon & Łokas

1 Note that for dynamical studies, a fast computer code has been recently developed by Alard & Colombi (2005) that solves the CBE in 1 + 1 dimensions, and
a 3+3 dimension code is under development by G. Lavaux and these authors.
2 For clarity, we hereafter drop the term dynamical before pressure.
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Mass inversion of spherical systems 2435

2005b), or in terms of the easier to compute regularized incomplete Beta functions (Mamon & Łokas 2006). With parametric choices of
the mass profile M(r) and anisotropy profile β(r), one can fit for the free parameters of these two profiles that lead to the best match of the
observed line-of-sight velocity dispersion profile. The drawback of this indirect method, even with the recent introduction of these simplifying
kernels, is that the analysis is doubly parametric, so that the derived parameters will be meaningless if one does not choose the correct form
for both the mass and anisotropy profiles.

The next step in complexity is to perform a single-parametric analysis: either isotropy is assumed to directly obtain the mass profile,
which we call the mass inversion, which is the focus of the present paper. Alternatively, a mass profile can be assumed and one directly
determines the anisotropy profile through the anisotropy inversion, first derived by Binney & Mamon (1982), with later and progressively
simpler solutions found by Tonry (1983), Bicknell et al. (1989), Solanes & Salvador-Solé (1990) and Dejonghe & Merritt (1992). One
can attempt to lift the mass–anisotropy degeneracy by considering together the variation with projected radius of the line-of-sight velocity
dispersion and kurtosis (Łokas 2002; Łokas & Mamon 2003). For haloes in cosmological simulations, which are not far from spherical
(Jing & Suto 2002 and references therein) and nearly isotropic (Mamon & Łokas 2005b and references therein), viewed in projection, this
dispersion–kurtosis analysis yields fairly accurate masses, concentrations and anisotropies (Sanchis, Łokas & Mamon 2004). Unfortunately,
the line-of-sight projection of the fourth-order Jeans equation, required in the dispersion–kurtosis method, is only possible when β = cst,
which does not appear to be realistic for elliptical galaxies formed by major mergers (Dekel et al. 2005).

An even more sophisticated and general approach is to adopt a potential and minimize the residuals between the predicted and true
observables, i.e. the distribution of objects in projected phase space (R, vlos) (where vlos is the line-of-sight velocity) by one of several methods
involving the distribution function.

(i) A general global form for the distribution function is adopted, in terms of known integrals of motions. For example, in spherical
systems with isotropic non-streaming velocities, the distribution function is a function of energy only, while in anisotropic non-streaming
spherical systems it is a function of energy and the modulus of the angular momentum. Alas, there is no known realistic form for f =
f (E, J) for anisotropic non-streaming spherical systems nor for non-spherical systems, although Wojtak et al. (2008) have recently shown
that cosmological haloes have distribution functions that can be written f (E, J ) = fE(E) J 2 (β∞−β0) (1+J 2/J 2

0 )−β0 , where we adopt hereafter
the notations β0 = β(0) and β∞ = limr→∞ β, where J0 is a free parameter related to the ‘anisotropy’ radius where β(r) = (β0 + β∞)/2.
Unfortunately, Wojtak et al. do not provide an analytical formula for fE(E).

(ii) A set of elementary distribution functions of E or (E, J ) is chosen, as first proposed by Dejonghe (1989), then Merritt & Saha (1993),
and applied to elliptical galaxies by Gerhard et al. (1998). One then searches the linear combination of these distribution functions, with
positive weights (to ensure a positive global distribution function) that minimizes the residuals between the predicted and true observables.
However, there is no guarantee that the set of elementary distribution functions constitute a basis set, so that some global realistic distribution
functions may be missed. Moreover, the distribution function may depend on an additional unknown integral of motion.

(iii) A set of delta-distribution functions, f = f (E, J) is chosen, in other words one considers orbits of given E and J (Schwarzschild 1979;
Richstone & Tremaine 1984; Syer & Tremaine 1996). Again one searches for a linear combination of these orbits that minimizes the residuals
between predicted and true observables, again enforcing positive weights. These weights are obtained either by averaging the observables
over an orbit (Schwarzschild) or by continuously updating them (Syer & Tremaine; de Lorenzi et al. 2007). This method is powerful enough
to handle non-spherical potentials. Despite concerns about convergence (Cretton & Emsellem 2004; Valluri, Merritt & Emsellem 2004), the
orbit-superposition method, if properly implemented, does reproduce the correct solutions (Richstone et al. 2004; Thomas et al. 2004).

The potential can be adapted from the observations, assuming constant mass-to-light ratio (M/L) if the observed density is a surface
brightness, or constant mass-to-number ratio (M/N) if the observed density is a surface number density. If spherical symmetry is assumed,
this involves a choice of M/L or M/N, the deprojection of the surface density map and then Poisson’s equation is easily inverted to obtain
the potential from the density. For axisymmetric systems, one can deproject the surface density maps into a potential assuming it to be the
sum of Gaussians (Emsellem, Monnet & Bacon 1994). One can add to the potential a possible dark component given in parametric form (see
e.g. Williams, Bureau & Cappellari 2009).

Alternatively, instead of using distribution functions, one can fit the distribution of objects in projected phase space by the multiple
parametric adjustment of the mass and anisotropy profiles, as well as possibly the velocity distribution in space (which could be non-Gaussian,
see Kazantzidis, Magorrian & Moore 2004; Wojtak et al. 2005; Hansen et al. 2006), as in the MAMPOSSt method (Mamon, Biviano & Boué,
in preparation).

Returning to direct single-parametric estimations, the mass profile of astronomical systems does not seem to be better established than
the anisotropy profile. Indeed, despite early claims (Navarro, Frenk & White 1996, hereafter NFW) of a universal density profile for the
structures (haloes) in dissipationless cosmological N-body simulations of a flat universe of cold dark matter with a cosmological constant
(hereafter 
CDM), there has been an ongoing debate on whether the inner slope is steeper (Fukushige & Makino 1997; Moore et al. 1999)
or shallower (Stoehr et al. 2002; Navarro et al. 2004; Stoehr 2006). Furthermore, the inclusion of gas in cosmological simulations can lead
to much steeper dark matter density profiles (Gnedin et al. 2004). Indeed, the dissipative nature of baryons leads them to accumulate in the
centres of systems, not only in spiral galaxies, as is well known, but also in elliptical galaxies, for otherwise the NFW-like mass distribution
as found in 
CDM haloes would lead to a local M/L and aperture velocity dispersion much lower than observed (Mamon & Łokas 2005a),
and the dominance of baryons in the centre and dark matter in the envelopes has been recently confirmed by X-ray measurements (Humphrey
et al. 2006). Moreover, the dark matter dynamically responds to the baryons that dominate in the inner regions, to reach steeper slopes than

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 2433–2450

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/401/4/2433/1127116 by guest on 22 M
ay 2022



2436 G. A. Mamon and G. Boué

they would have had without the presence of baryons (Blumenthal et al. 1986; Gnedin et al. 2004). However, the final density profile of dark
matter is expected to be very sensitive to the details of the baryonic feedback processes.

On the other hand, the anisotropy profiles of the haloes in dissipationless cosmological simulations appear to be fairly universal (see the
compilation by Mamon & Łokas 2005b and references therein, and Wojtak et al. 2008), although galaxy-mass haloes have somewhat more
radial orbits than cluster-sized haloes (Ascasibar & Gottlöber 2008). Also a similar shape of anisotropy profile holds in N-body+smoothed
particle hydrodynamics (SPH) simulations of merging spirals galaxies, including gas, but with a ratio of anisotropy to virial radius that
is 10 times smaller (Dekel et al. 2005). Moreover, dissipationless N-body simulations (cosmological and binary mergers) indicate that the
anisotropy is linearly related to the slope of the density profile (Hansen & Moore 2006), although the trend is less clear in elliptical galaxies
formed in N-body+SPH simulations as merger remnants of spiral galaxies (Mamon et al. 2006), because of the dynamical interaction of the
stellar, dark matter and dissipative gas components.

In this paper, we derive and test the mathematics of the mass inversion. We begin in Section 2.1 with a reminder on the kinematic
deprojection of isotropic systems, followed by the mass inversion of isotropic systems in Section 2.2. We then develop in Section 2.3 our
algorithm for the kinematic deprojection of anisotropic systems, and in Section 2.4 we deduce the mass profile with the Jeans equation (3).
In Section 3, we test our mass inversion methods.

The reader in a hurry might want to skip the mathematical details. (S)he will find the general anisotropic deprojection formulae in
equation (32), with special cases given in equations (39) [radial orbits], (44) [circular orbits] and in equations (62) [constant β < 1, Osipkov–
Merritt, Mamon–Łokas and Diemand–Moore–Stadel], with Cβ given in Table 2 and kernels K i given in equations (37) [constant β < 1], (48)
[Osipkov–Merritt], (53) [Mamon–Lokas] and (61) [Diemand–Moore–Stadel]. The formulae for the mass inversion will be found in equations
(69) [general], (74) [radial], (76) [circular] and (83) [constant β < 1, Osipkov–Merritt, Mamon–Łokas and Diemand–Moore–Stadel] with
the same Cβ and kernels, and with Dβ also given in Table 2.

In the very late stages of this work, we came across a draft of Wolf et al. (2009), who independently developed an analogous method for
anisotropic kinematic deprojection. While Wolf et al. produce a general formula for kinematic deprojection, the present paper also provides
simpler formulae for the kinematic deprojection with specific simple anisotropy profiles, as well as general and specific formulae for the mass
profile.

2 ME T H O D

2.1 Kinematic deprojection of isotropic systems

We begin by reviewing the mathematical formalism for the kinematic deprojection of isotropic systems. The structural projection equation,
relating the space density ρ(r) to the (projected) surface density 	(R):

	(R) =
∫ ∞

−∞
ρ(r) dz = 2

∫ ∞

R

ρ(r) r dr(
r2 − R2

)1/2 (7)

is inverted through the usual Abel transform, whose derivation we recall in Appendix A, as we will use it in the following subsection. One
then recovers the well-known structural deprojection or Abel inversion equation

ρ(r) = − 1

π

∫ ∞

r

d	

dR

dR

(R2 − r2)1/2
. (8)

In the case of isotropic velocities one can express the projected dynamical pressure 	σ 2
los in terms of the dynamical pressure ρσ 2 with

the isotropic kinematical projection equation, obtained by setting β = 0 in the anisotropic kinematic projection equation (5):

	 σ 2
los = 2

∫ ∞

R

ρ σ 2 r dr√
r2 − R2

. (9)

Equation (9) is the strict analogue to equation (7), where the tracer densityρ is replaced by the dynamical pressure p = ρσ 2 and the surface
density 	 is replaced by projected pressure P = 	σ 2

los.
3 With these replacements, the structural deprojection equation (8) turns into the

isotropic kinematical deprojection equation

piso(r) ≡ [ρ(r) σ 2(r)]β=0 = − 1

π

∫ ∞

r

dP

dR

dR√
R2 − r2

. (10)

2.2 Mass inversion of isotropic systems

Now, from the stationary non-streaming spherical Jeans equation (3), with the isotropic condition (β = 0), the total mass profile is trivially

M(r) = − r2

G ρ

dpiso

dr
= 1

π

r2

G ρ

d

dr

∫ ∞

r

dP

dR

dR√
R2 − r2

. (11)

3 Given the isotropy, the space velocity dispersion is equal to the radial velocity dispersion, so we drop the subscript ‘r’.
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Mass inversion of spherical systems 2437

Table 1. Nomenclature.

Definition Full expression Abbreviated expression

Space radius r
Projected radius R
Projected pressure 	σ 2

los P

Radial pressure ρσ 2
r p

Tangential pressure ρσ 2
θ pθ = (1 − β) p

Anisotropy 1 − σ 2
θ /σ

2
r β

Circular velocity
√

GM(r)/r vc

With the variable substitution R = ru, we can avoid the singularity in the surface term of the derivative of the integral of equation (10)
or (11) by writing

p′
iso(r) ≡ dpiso

dr
= − 1

π

d

dr

∫ ∞

r

dP

dR

dR√
R2 − r2

= − 1

π

∫ ∞

1
P ′′(ru)

u du√
u2 − 1

= − 1

π r

∫ ∞

r

d2P

dR2

R dR√
R2 − r2

, (12)

where P ′ ′(R) = d2P/d R2. Inserting the right-hand side of equation (12) into the first equality of equation (11), we then obtain the isotropic
mass inversion equation

M(r) = − r

G

∫ ∞
r

[d2(	σ 2
los)/dR2] [(R dR)/

√
R2 − r2]∫ ∞

r
(d	/dR) (dR/

√
R2 − r2)

, (13)

where we used the structural deprojection equation (8) to replace the density in the denominator. The isotropic mass inversion equation can
be further simplified, expressing the circular velocity, v2

c = GM/r as4

v2
c (r) = 1

πρ(r)

∫ ∞

r

d2P

dR2

R dR√
R2 − r2

. (14)

Unfortunately, the mass and circular velocity profiles require the second derivative of the (observable) projected pressure P = 	σ 2
los(R). The

singularity (R2 − r2)−1/2 in the numerators of equations (13) and (14) prevents one from expressing the mass profile with single integrals
derivatives of the projected dynamical pressure after a suitable integration by parts.

2.3 Kinematic deprojection of systems of arbitrary known anisotropy profile

2.3.1 General anisotropy

The anisotropic kinematic projection equation (5) is strictly valid for non-circular orbits (finite β). For circular orbits (σ r = 0) equation (4)
yields

P (R) = 2 R2

∫ ∞

R

pθ

dr

r
√

r2 − R2
, (15)

where

pθ = (1 − β) p = ρ σ 2
θ

is the tangential dynamical pressure. To guide the reader, Table 1 reviews the nomenclature adopted in this paper.
We repeat the steps of the standard (isotropic) Abel inversion (Appendix A), now defining

J (r) =
∫ ∞

r

P
R dR√
R2 − r2

(16)

= −
∫ ∞

r

dP

dR

√
R2 − r2 dR, (17)

where equation (17) is obtained by integration by parts (the surface term is 0 for P (R) ∝ R−α with α > 1).
For non-circular orbits, inserting the projected pressure (equation 5) into the definition of J (equation 16), one finds

J (r) = 2
∫ ∞

r

R dR√
R2 − r2

∫ ∞

R

(
1 − β

R2

s2

)
p

s ds√
s2 − R2

(18)

4 We have never encountered in the literature the mass profile written in this direct fashion, although Romanowsky et al. (2009) gave the equivalent expression

v2
c (r) = r2

πρ(r)

∫ ∞

r

d(P ′/R)

dR

dR√
R2 − r2

.

The expression in equation (14) seems preferable as the differentiation is performed in a single pass.
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2438 G. A. Mamon and G. Boué

= 2
∫ ∞

r

p s ds

∫ s

r

R dR√(
R2 − r2

) (
s2 − R2

) − 2
∫ ∞

r

β p
ds

s

∫ s

r

R3 dR√(
R2 − r2

) (
s2 − R2

) (19)

= π

2

∫ ∞

r

[
2 −

(
r2

s2
+ 1

)
β

]
p s ds, (20)

where equation (19) is obtained after reversing the order of integration and the two inner integrals of equation (19) are worth π/2 and (π/4)
(r2 + s2), respectively. Differentiating equation (20), one has

dJ

dr
= −π r

[
(1 − β) p +

∫ ∞

r

β p
ds

s

]
. (21)

Now, equation (17) can be differentiated to yield

dJ

dr
= r

∫ ∞

r

dP

dR

dR√
R2 − r2

= −π r piso(r), (22)

where the second equality in equation (22) comes from equation (10). Equations (21) and (22) yield

pθ (r) = piso(r) −
∫ ∞

r

β p
ds

s
. (23)

Equation (23) is an implicit integral equation for p with piso (equation 10) and β known. For finite β < 1, we solve for p by differentiating
equation (23), to get the differential equation

p′ − r β ′ + β

1 − β

p

r
= p′

iso

1 − β
. (24)

Now, if we write

p′ − r β ′ + β

1 − β

p

r
= 1

g

d(gp)

dr
, (25)

then equations (24) and (25) lead to

p(r) = − 1

g(r)

∫ ∞

r

g p′
iso

1 − β
ds, (26)

where the upper limit at infinity ensures that the radial pressure p = ρσ 2
r does not reach negative values at a finite radial distance. However,

equation (25) directly gives

d ln f

d ln r
= −−r β ′ + β

1 − β
,

hence

g(r) = g(r1) exp

(
−

∫ r

r1

s β ′ + β

1 − β

ds

s

)
(27)

for any arbitrary r1. With equation (27), equation (26) leads to

p(r) = − exp

(∫ r

r1

s β ′ + β

1 − β

ds

s

) ∫ ∞

r

exp

(
−

∫ s

r1

t β ′ + β

1 − β

dt

t

)
p′

iso

1 − β
ds,

= −
∫ ∞

r

exp

(
−

∫ s

r

t β ′ + β

1 − β

dt

t

)
p′

iso

1 − β
ds, (28)

where the second equality is obtained adopting r1 = r .
One wishes to avoid the second derivative of the observables that occurs in the expression of equation (12) for p′

iso(r), which will amplify
any uncertainties on the measurements of these observables. Integrating by parts the integral in equation (28), we finally obtain

p(r) = piso(r)

1 − β(r)
−

∫ ∞

r

piso(s)
Aβ (r, s)

1 − β(s)

ds

s
, (29)

where piso is given in equation (10), and where

Aβ (r, s) = β(s)

1 − β(s)
exp

(
−

∫ s

r

t β ′ + β

1 − β

dt

t

)
, (30)

which is provided in Table 2 for various simple anisotropy models.
One may prefer to use the tangential dynamical pressure instead of the radial one, as it can be expressed in a slightly simpler form

pθ (r) = −
∫ ∞

r

exp

(
−

∫ s

r

β

1 − β

dt

t

)
p′

iso ds (31)

= piso(r) −
∫ ∞

r

piso
β

1 − β
exp

(
−

∫ s

r

β

1 − β

dt

t

)
ds

s

= piso(r) −
∫ ∞

r

piso(s) Bβ (r, s)
ds

s
, (32)
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Mass inversion of spherical systems 2439

Table 2. Terms in equations (34), (62) and (67) for specific anisotropy profiles.

Anisotropy model Aβ (r, s) Bβ (r, s) Cβ (r) Dβ (r)
(equation 30) (equation 33) (equation 62) (equation 67)

β = cst
β

1 − β

( r

s

)β/(1−β) β

1 − β

( r

s

)β/(1−β) 1

2

β

1 − β

(3 − 2β) β

1 − β

Osipkov–Merritt (equation 45)
( s

a

)2 r2 + a2

s2 + a2
exp

(
r2 − s2

2 a2

) ( s

a

)2
exp

(
r2 − s2

2 a2

)
r

a

( r

a

)2 r2 + 5 a2

r2 + a2

Mamon–Łokas (equation 49)
r + a

s + a

(
s

s + 2a

)
(r + 2 a) s

(s + 2 a)2

( r

a

) r + 2 a

a

2 r

a + r

Diemand–Moore–Stadel (equation 58) s1/3 (a1/3 − s1/3)3

(a1/3 − r1/3)4
s1/3 (a1/3 − s1/3)2

(a1/3 − r1/3)3

r

(a1/3 − r1/3)3

2

3

( r

a

)1/3 5 a1/3 − 3 r1/3

a1/3 − r1/3

Notes. The Diemand–Moore–Stadel values are restricted to r < a.

as similarly derived in Appendix B, and where

Bβ (r, s) = β(s)

1 − β(s)
exp

(
−

∫ s

r

β

1 − β

dt

t

)
, (33)

which is provided again in Table 2 for our simple anisotropy models. The radial pressure is then simply p(r) = pθ (r)/[1 − β(r)].
The expressions for the dynamical pressure (radial or tangential) are made of single integrals involving piso, which is a single integral

itself. Hence, the dynamical pressure is expressed in terms of double integrals. For simple anisotropy profiles, we can simplify the dynamical
pressure to single integrals by inserting the expression for piso(s) (equation 10) in equation (32) and inverting the order of integration. This
yields

pθ (r) = piso(r) + 1

π

∫ ∞

r

dP

dR
dR

∫ R

r

β

1 − β
exp

(
−

∫ s

r

β

1 − β

dt

t

)
ds

s
√

R2 − s2

= piso(r) + 1

π

∫ ∞

r

P ′(R) dR

∫ R

r

Bβ (r, s)
ds

s
√

R2 − s2
, (34)

and for simple β(r), the inner integral can be expressed in closed form, as we shall now see.

2.3.2 Case of finite β = cst < 1

Equation (29) with Aβ from Table 2 leads to

p(r) = piso(r)

1 − β(r)
− β

(1 − β)2
rβ/(1−β)

∫ ∞

r

piso s−β/(1−β) ds

s
. (35)

Using equation (34) with Bβ from Table 2, one obtains a single integral representation for the tangential dynamical pressure:

pθ (r) = piso(r) + 1

π

β

1 − β
rβ/(1−β)

∫ ∞

r

dP

dR
dR

∫ R

r

s−β/(1−β) ds

s
√

R2 − s2

= piso(r) + 1

2π

β

1 − β

1

r

∫ ∞

r

dP

dR
Kcst

( r

R

)
dR, (36)

where the second equality of equation (36) is obtained with the change of variable t = 1 − s2/R2.
The dimensionless kernel in equation (36) is

Kcst(u) = u1/(1−β) B

(
1 − u2,

1

2
,− β/2

1 − β

)
, (37)

where B(x, a, b) = ∫ x

0 ta−1 (1 − t)b−1 dt is the incomplete Beta function. Integrating by parts the integral in equation (36), we finally obtain
after some algebra a single integral expression for the tangential pressure that does not depend on derivatives of the observations:

pθ (r) = piso(r) + 1

2π

β

(1−β)2

[
rβ/(1−β)

∫ ∞

r

P (R) R−(2−β)/(1−β) B

(
1− r2

R2
,

1

2
, − β/2

1−β

)
dR − 2(1−β)

∫ ∞

r

P (R)√
R2 − r2

dR

R

]
. (38)

The surface term R−1/(1−β) B [1 − r2/R2, 1/2, − β/(2(1 − β))]P (R) that occurs in the integration by parts goes to 0 as R → ∞. Indeed, for
x = r/R and c = −β/2/(1 − β), one has x1−2c B(1 − x2, 1/2, c) = −x/c + O (x3) and moreover P → 0. In practice, if a programming
language does not provide the incomplete Beta function, but only the regularized incomplete Beta function, as I (x, a, b) = B(x, a, b)/B(a,
b) = �(a + b) B(x, a, b)/[�(a)�(b)], one should then be careful that �(b) diverges when the last term b in the incomplete Beta function is a
negative integer, i.e. when β = 2n/(2n + 1) = 2/3, 4/5, 6/7, . . . (n being a positive integer). Luckily, B(x, a, b) always converges to finite
values.5

In the limit β → 0 everywhere, equations (35), (36) and (38) all reduce to p(r) = piso(r), as expected.

5 An SM macro for B(x, a, b) is available at http://www.iap.fr/users/gam/software.html.
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2440 G. A. Mamon and G. Boué

2.3.3 Case of radial orbits: β = 1

For radial orbits, differentiation of equation (23) leads to

p(r) = −r p′
iso(r) = 1

π

∫ ∞

r

d2P

dR2

R dR√
R2 − r2

. (39)

2.3.4 Case of circular orbits: β → −∞
For circular orbits, we proceed in a similar fashion: inserting the projected pressure (equation 15) into the definition of J (equation 16), one
finds

J (r) = 2
∫ ∞

r

R3 dR√
R2 − r2

∫ ∞

R

pθ

ds

s
√

s2 − R2

= π

2

∫ ∞

r

pθ

(
r2 + s2

) ds

s
(40)

and
dJ

dr
= −π r

(
pθ −

∫ ∞

r

pθ

ds

s

)
. (41)

Equations (22) and (41) lead to

− d

dr

(
1

πr

dJ

dr

)
= p′

θ + pθ

r
= p′

iso = 1

f

d (fpθ )

dr
, (42)

whose solution is given by f = r:

pθ (r) = −1

r

∫ ∞

r

p′
iso s ds = piso(r) + 1

r

∫ ∞

r

piso ds, (43)

where the second equality is found by integration by parts, for which the surface term, limr→∞ r piso(r), vanishes for d ln ρ/d ln r + d ln M/d
ln r < 0 (as derived from the Jeans equation 3), as is the case for reasonable mass and tracer density profiles. Inserting piso (equation 10) into
equation (43) and inverting the order of integration, we finally obtain the single integral expression for the tangential pressure:

pθ (r) = − 1

π

∫ ∞

r

dP

dR

[
1√

R2 − r2
+ 1

r
cos−1

( r

R

)]
dR. (44)

2.3.5 Case of Osipkov–Merritt anisotropy

For the Osipkov–Merritt (Osipkov 1979; Merritt 1985) anisotropy

β(r) = r2

r2 + a2
, (45)

equation (31) reduces to

pθ (r) = −
∫ ∞

r

exp

(
− s2 − r2

2 a2

)
p′

iso ds = (
ρ σ 2

r

)
iso

(r) − 1

a2

∫ ∞

r

exp

(
r2 − s2

2 a2

)
piso s ds, (46)

where the last equality is again obtained after integration by parts or from equation (32). Equation (34) yields (see Table 2) a single integral
representation for the tangential dynamical pressure:

pθ (r) = piso(r) + 1

πa2
exp

(
r2

2a2

) ∫ ∞

r

dP

dR
dR

∫ R

r

exp

(
− s2

2a2

)
s ds√

R2 − s2

= piso(r) + 1

π a

∫ ∞

r

dP

dR
KOM

(√
R2 − r2

2 a2

)
dR, (47)

where the dimensionless kernel KOM is

KOM(u) =
√

2 F (u) =
√

π

2
exp

(−u2
)

erfi u, (48)

where

F (u) =
√

π

2
exp

(−u2
)

erfi u =
√

π exp
(−u2

)
erf(iu)

2 i

is Dawson’s integral and where erfi (x) is the imaginary error function. Note that Dawson’s integral is available in most software packages
for mathematical functions.6

6 SM macros for erfi (x) and Dawson’s F(x) are available at http://www.iap.fr/users/gam/software.html.
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Mass inversion of spherical systems 2441

Equation (47) can also be found by inserting the expression for piso(s) (equation 10) into equation (46) and reversing the order of
integration.

2.3.6 Case of Mamon–Łokas anisotropy

For the simple anisotropy profile that Mamon & Łokas (2005b) found to fit well 
CDM haloes,

β(r) = 1

2

r

r + a
, (49)

one obtains

pθ (r) = − (r + 2 a)
∫ ∞

r

p′
iso

ds

s + 2 a
= piso(r) − (r + 2 a)

∫ ∞

r

piso
ds

(s + 2 a)2
, (50)

where the first equality is from equation (31), while the second one is obtained after integration by parts or from equation (32). Equation (34)
now yields (see Table 2) the single integral expression for the tangential dynamical pressure:

pθ (r) = r/2 + a

r + a
ρ(r) σ 2

r (r) = piso(r) + 1

π
(r + 2 a)

∫ ∞

r

dP

dR

∫ R

r

ds

(s + 2 a)2
√

R2 − s2

= piso(r) + 1

π

r + 2 a

a2

∫ ∞

r

dP

dR
KML

(
R

a
,

r

a

)
dR, (51)

where the dimensionless kernel KML, using X = R/a, x = r/a and y = s/a, is

KML(X, x) =
∫ X

x

dy√
X2 − y2 (y + 2)2

= 1

X2

∫ cos−1(x/X)

0

dθ

(cos θ + 2/X)2
(52)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

4 − X2

√
X2 − x2

2 + x
+ 4(

4 − X2
)3/2 tan−1

[√
2 − X

2 + X

√
X − x

X + x

]
for X < 2,

1

12

(4 + x)
√

2 − x

(2 + x)3/2
for X = 2,

1

X2 − 4

√
X2 − x2

2 + x
− 4(

X2 − 4
)3/2 tanh−1

[√
X − 2

X + 2

√
X − x

X + x

]
for X > 2,

(53)

where equation (52) is found through the variable substitution y = X cos θ . Equations (51) and (52) can also be found by inserting the
expression for piso (equation 10) into equation (50) and reversing the order of integration.

2.3.7 Case of generalized Mamon–Łokas anisotropy

The velocity anisotropies in haloes in cosmological N-body simulations do not always fit the Mamon–Łokas formula (equation 49), but
instead, β(r) shows halo-to-halo variations in its limits at r = 0 and r → ∞ (Wojtak et al. 2008). Hence, a more general form for the
anisotropy profile is (Tiret et al. 2007)

β(r) = β0 + (β∞ − β0)
r

r + a
. (54)

The Mamon–Łokas anisotropy is the special case with β0 = 0 and β∞ = 1/2. For β0 < 1 and β∞ < 1, inserting equation (54) into equation (31)
yields, after some algebra,

pθ (r) = −rβ0/(1−β0) [(1 − β∞) r + (1 − β0) a]β∞/(1−β∞)−β0/(1−β0)

×
∫ ∞

r

s−β0/(1−β0) [(1 − β∞) s + (1 − β0) a]β0/(1−β0)−β∞/(1−β∞) p′
iso ds. (55)

For β0 < β∞ = 1, the same procedure gives

pθ (r) = − exp

(
r/a

1 − β0

)
rβ0/(1−β0)

∫ ∞

r

exp

(
− s/a

1 − β0

)
s−β0/(1−β0) p′

iso ds. (56)

For β∞ < β0 = 1,7 we similarly obtain

pθ (r) = − exp

(
− a/r

1 − β∞

)
rβ∞/(1−β∞)

∫ ∞

r

exp

(
a/s

1 − β∞

)
s−β∞/(1−β∞) p′

iso ds. (57)

The integrals of equations (55), (56) and (57) are essentially double integrals, since they involve p′
iso (equation 12). Single integral solutions

do not appear to be possible to derive, even for the simple case of β0 = 0 (unless β∞ = 1/2, i.e. the Mamon–Łokas anisotropy model).

7 Decreasing anisotropy profiles are found for some regular haloes (Wojtak et al. 2008), although the central anisotropy is never unity.
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2442 G. A. Mamon and G. Boué

2.3.8 Case of Diemand–Moore–Stadel anisotropy

Finally for the other simple anisotropy profile that Diemand, Moore & Stadel (2004, section 3.3.2) also found to fit well 
CDM haloes:

β(r) =

⎧⎪⎨⎪⎩
( r

a

)1/3
r < a,

1 r ≥ a,

(58)

we obtain

pθ (r) = piso(r) − 1(
a1/3 − r1/3

)3

∫ a

r

piso

(
a1/3 − s1/3

)2 ds

s2/3
for r < a,

p(r) = prad(r) for r ≥ a,

(59)

where equation (59) is obtained from equation (32), while the equation (59) comes from the pure radial orbits for r ≥ a (equation 58). Again,
for r < a, the integral in equation (59) is essentially a double integral (because of p′

iso), and a single integral solution can be obtained using
equation (34), yielding (with Table 2)

pθ (r) = piso(r) + 1

π(a1/3 − r1/3)3

∫ a

r

dP

dR
dR

∫ R

r

(a1/3 − s1/3)2

s2/3
√

R2 − s2
ds

= piso(r) + 1

π(a1/3 − r1/3)3

∫ a

r

dP

dR
KDMS

(
R

a
,

r

a

)
dR,

(60)
where the dimensionless kernel is

KDMS(X, x) =
∫ X

x

(
1 − y1/3

)2√
X2 − y2

dy

y2/3

= 1

X2/3

∫ cos−1(x/X)

0

dθ

cos2/3 θ
− 2

X1/3

∫ cos−1(x/X)

0

dθ

cos1/3 θ
+

∫ cos−1(x/X)

0
dθ

=
[√

π
�(1/6)

�(2/3)
− B

(
x2

X2
,

1

6
,

1

2

)]
X−2/3

2
−

[√
π

�(1/3)

�(5/6)
− B

(
x2

X2
,

1

3
,

1

2

)]
X−1/3 + cos−1

( x

X

) (61)

for X = R/a, x = r/a and y = s/a.

2.3.9 General expression for the tangential pressure for specific anisotropy profiles

The expressions for the tangential pressure for the cases of constant, Osipkov–Merritt, Mamon–Łokas and Diemand–Moore–Stadel anisotropy
(equations 36, 47, 51 and 60, respectively) can all be written in the form

pθ (r) = piso(r) + 1

π r
Cβ (r)

∫ ∞

r

dP

dR
Kβ dR = 1

π r

∫ ∞

r

dP

dR

[
Cβ (r) Kβ

(
R

a
,

r

a

)
− r√

R2 − r2

]
dR, (62)

where the second equality of equation (62) is found with equation (10) and where Cβ (r) and Kβ (X, x) are dimensionless functions such that

Cβ (r) Kβ

(
R

a
,

r

a

)
= r

∫ ∞

r

Bβ (r, s)√
r2 − s2

dy

y
, (63)

with Cβ (r) given in Table 2, and Kβ given in equations (37), (48), (53) and (61), respectively. For the Diemand–Moore–Stadel anisotropy
model, the upper integration limits in equation (62) should be replaced by the anisotropy radius a. The second equality of equation (62) allows
the kinematic deprojection with a unique single integral.

2.4 Mass profiles of spherical systems with arbitrary known anisotropy

2.4.1 General mass profile

The mass profile is obtained through stationary non-streaming spherical Jeans equation (3), which writes

−ρ
GM

r2
= p′ + 2

r
β p. (64)

Now, equation (24) reads

p′ = p′
iso

1 − β
+ r β ′ + β

1 − β

p

r
= p′

iso

1 − β
+ r β ′ + β

(1 − β)2

pθ

r
. (65)

Inserting p′ from equation (65) into equation (64) yields the general mass inversion equation (dropping the dependencies on r for clarity):

−(1 − β) ρ
GM

r2
(r) = p′

iso(r) +
[

β ′ + (3 − 2 β) β/r

1 − β

]
pθ (r) = p′

iso(r) + Dβ (r)

r
pθ (r), (66)

where the dimensionless function

Dβ (r) = r dβ/dr + (3 − 2 β) β

1 − β
(67)
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Mass inversion of spherical systems 2443

is given in Table 2 for four anisotropy models.
Inserting the general expression for pθ into equation (66), and converting the mass into the circular velocity with v2

c(r) = G M(r)/r
gives either

[1 − β(r)] ρ(r) v2
c (r) = −r p′

iso(r) +
[

r β ′ + (3 − 2 β) β

1 − β

] [∫ ∞

r

piso
β

1 − β
exp

(
−

∫ s

r

β

1 − β

dt

t

)
ds

s
− piso

]
(68)

(from equation 29) or

[1 − β(r)] ρ(r) v2
c (r) =

[
r β ′ + (3 − 2 β) β

1 − β

] ∫ ∞

r

exp

(
−

∫ s

r

β

1 − β

dt

t

)
p′

iso ds − r p′
iso(r) (69)

(from equation 28). Alas, both forms (equations 68 and 69) involve the second derivative of the observable P, hence the second form
(equation 69) seems preferable to use as it is simpler. However, for simple anisotropy profiles, the double integral of equations (68) and (69)
can be simplified to single integrals, or equivalently, single integral expressions for pθ exist, which can be inserted into equation (66) to obtain
a single integral expression for the mass profile.

2.4.2 Case of isotropic systems

For isotropic systems (β = 0), equation (66) trivially leads to

v2
c (r) = − rp′

iso(r)

ρ(r)
, (70)

which is equivalent to the first equality of equation (11).

2.4.3 Case of finite β = cst < 1

For finite β = cst < 1, while equation (69) becomes (with Dβ from Table 2)

− (1 − β) ρ
GM

r2
(r) = p′

iso −
[

β (3 − 2 β)/r

1 − β

]
rβ/(1−β)

∫ ∞

r

s−β/(1−β) p′
iso ds, (71)

a single integral expression is found inserting the tangential pressure (equation 38) into equation (66) to yield

− (1−β) ρ
GM

r2
(r)= p′

iso +
[

β (3 − 2 β)/r

1 − β

] {
piso + 1

2π

β

(1 − β)2

×
[
rβ/(1−β)

∫ ∞

r

P (R) R−(2−β)/(1−β) B

(
1− r2

R2
,

1

2
, − β/2

1−β

)
dR − 2(1−β)

∫ ∞

r

P (R)√
R2 − r2

dR

R

]}
. (72)

2.4.4 Case of radial orbits: β = 1

For radial anisotropy, equations (39) and (64) simply yield

ρ(r)
GM(r)

r2
= 3 p′

iso + r p′′
iso.

However, using the change of variables R = r cosh u, the last equality of equation (39) yields

p′
rad = prad

r
+ 1

πr

∫ ∞

r

P ′′′R2 dR√
R2 − r2

, (73)

hence, from equation (64)

v2
c (r) = − 1

π ρ(r)

∫ ∞

r

(
3 P ′′ + R P ′′′) R dR√

R2 − r2
. (74)

Alas, equation (74) involves a triple differentiation of the observables.

2.4.5 Case of circular orbits: β → −∞
For circular orbits, the first term in the stationary non-streaming spherical Jeans equation (3) vanishes, and one is left with the trivial relation

v2
c (r) = 2 σ 2

θ = 2

ρ(r)

(
piso + 1

r

∫ ∞

r

piso ds

)
, (75)

where we made use of equation (43) for the last equality. Integrating the last equation by parts, or equivalently, using equation (44), we get

v2
c (r) = − 2

π ρ(r)

∫ ∞

r

dP

dR

[
1√

R2 − r2
+ 1

r
cos−1

( r

R

)]
dR. (76)
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2444 G. A. Mamon and G. Boué

2.4.6 Case of Osipkov–Merritt anisotropy

For Osipkov–Merritt anisotropy (equation 45), equation (66) leads to (with Dβ from Table 2)

ρ
GM

r2
(r) = − r2 + a2

a2
p′

iso + 1

a2

(
r2 + a2

a2
+ 4

)
r

∫ ∞

r

exp

(
r2 − s2

2 a2

)
p′

iso ds. (77)

A single integral solution to the mass profile is obtained by inserting pθ of equation (47) into equation (66), yielding

−ρ
GM

r2
(r) = r2 + a2

a2
p′

iso + (r2 + 5 a2)
r

a5

[
piso a + 1√

2π
exp

(
r2

2a2

) ∫ ∞

r

dP

dR
exp

(
− R2

2a2

)
erfi

√
R2 − r2

2a2
dR

]
. (78)

2.4.7 Case of Mamon–Łokas anisotropy

For Mamon & Łokas anisotropy (equation 49), equation (66) brings (with Dβ from Table 2)

ρ
GM

r2
(r) = −2

r + a

r + 2 a
p′

iso + 4
∫ ∞

r

p′
iso

ds

s + 2 a
. (79)

The single integral solution, found by inserting pθ from equation (51) into equation (66), is

−ρ
GM

r2
(r) = 2

r + 2 a

[
(r + a) p′

iso + 2 piso

] + 4

π a2

∫ ∞

r

dP

dR
KML

(
R

a
,

r

a

)
dR, (80)

where the dimensionless kernel KML is given in equation (53).

2.4.8 Case of Diemand–Moore–Stadel anisotropy

Finally for the anisotropy profile (equation 58) proposed by Diemand et al. (2004), equation (66) leads to (with Dβ from Table 2)

−
(

a1/3 − r1/3

a1/3

)
ρ

GM

r2
(r) = p′

iso − 2/3(
a r2

)1/3

(
5 a1/3 − 3 r1/3

a1/3 − r1/3

) [
piso + 1/π(

a1/3 − r1/3
)3

∫ a

r

dP

dR
KDMS

(
R

a
,
a

a

)
dR

]
(81)

for r < a, and to the radial solution (equation 74) for r > a.

2.4.9 General form of the mass profile for specific anisotropy profiles

Inserting equations (12) and (62) into equation (66), one can obtain a general form for the mass profiles for the constant anisotropy,
Osipkov–Merritt, Mamon–Łokas, and Diemand–Moore–Stadel anisotropy profiles:

−[1 − β(r)] ρ(r)
GM(r)

r2
= 1

π r

∫ ∞

r

{
Dβ (r)

r

[
Cβ (r) Kβ − r√

R2 − r2

]
dP

dR
− R√

R2 − r2

d2P

dR2

}
dR, (82)

where, for the Diemand–Moore–Stadel anisotropy profile, the anisotropy radius a should be used for the upper integration limits. Equation (82)
allows to express the mass profile as a unique single integral of the observations, where Cβ (r) and Dβ (r) are given in Table 2, while the kernel
Kβ is given by equations (37), (48), (53) and (61) for the constant anisotropy, Osipkov–Merritt, Mamon–Łokas and Diemand–Moore–Stadel
anisotropy models, respectively. Equivalently, equation (82) can be used to formulate the circular velocity profile

v2
c (r) = 1

π [1 − β(r)] ρ(r)

∫ ∞

r

{
R√

R2 − r2

d2P

dR2
− Dβ (r)

r

[
Cβ (r) Kβ (R, r) − r√

R2 − r2

]
dP

dR

}
dR. (83)

For isotropic models, equation (83) with Dβ = Cβ = Kβ = 0 recovers the second equality in equation (14).
In practice, writing the tracer density as ρ(r) = ρ(a) ρ̃(r/rs), where rs is the characteristic scale of the tracer, the projected pressure as

P (R) = P (rs) P̃ (R/rs), equation (83) yields[
vc(r)

σlos(rs)

]2

= 	(rs)/ [π rs ρ(rs)]

[1 − β(r)] ρ̃(r/rs)

∫ ∞

x

{
X√

X2 − x2

d2P̃

dX2
− Dβ (rsx)

x

[
Cβ (rsx) Kβ − x√

X2 − x2

]
dP̃

dX

}
dX

= 	(rs)

[π rs ρ(rs)]

r/rs

[1 − β(r)] ρ̃(r/rs)

×
∫ cosh−1(Xmax/x)

0
P̃ ′′(x cosh u) cosh u − Dβ (rsx)

x

[
Cβ (rsx) Kβ (x cosh u, x) sinh u − 1

]
P̃ ′(x cosh u) du,

(84)

where x = r/rs, X = R/rs, and where the second equality of equation (84) is useful to avoid the singularity at X = x, integrating out to the
equivalent of, say, 10 rv , i.e. Xmax = 10 rv/rs. All quantities on the right-hand side of the two equalities in equation (84) are known or assumed
(the anisotropy profile). In particular, the numerator of the factor in front of the integral of the first equality of equation (84) is a function of
the shape of the tracer density profile, found by Abel inversion (equation 8) of the surface density profile.
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Mass inversion of spherical systems 2445

Figure 1. Left: adopted anisotropy profiles: isotropic (solid black line), Osipkov–Merritt (equation 45, with a = rs, dotted red line), Mamon–Łokas (equation 49,
with a = rs, short-dashed green line) and β = cst = 0.4 (long-dashed blue line). Right: accuracy of the mass inversion (in the absence of noise): ratio of
inferred (equation 83, using equation 6 to first evaluate P on logarithmic grid of 0.2 dex steps, and using the dimensionless functions of Table 2, and the
dimensionless kernels of equations 48, 53 and 37, for the latter three anisotropy models) over true NFW mass profiles for the four anisotropy models shown in
the left-hand panel.

3 TESTS

3.1 Accuracy

We test our mass inversion equations on four anisotropy models: isotropic, constant, Osipkov–Merritt and Mamon–Łokas. For each of
these anisotropy models, we compute the projected pressure using equation (6), with the kernels given by Mamon & Łokas (2005b, 2006),
evaluated on a logarithmic grid from r = 0.01 rs to 100 rs in steps of 0.2 dex. The projected pressures P(R) were differentiated after cubic
spline interpolation and the integral of equation (83) was performed in steps of cosh−1 (R/r) out to 100 rs. We choose our mass and anisotropy
models by placing ourselves in the context of clusters of galaxies. We assume a one-component NFW model (Navarro et al. 1996), for which
the dimensionless density and mass profiles can be expressed as

ρ̃(x) = ρ(xrs)

M(rs)/
(
4πr3

s

) = (ln 2 − 1/2)−1

x(x + 1)2
, (85)

M̃(x) = M(xrs)

M(rs)
= ln(x + 1) − x/(x + 1)

ln 2 − 1/2
, (86)

where rs is the scale radius, where the slope of the density profile is −2. We make no use of our assumption that the total and tracer density
profiles are proportional.

The anisotropy profile for dark matter particles in 
CDM haloes of the masses of clusters is close to the Mamon–Łokas model
(Mamon & Łokas 2005b; Wojtak et al. 2008; Mamon, Biviano & Murante 2009) with anisotropy radius a � 0.18 r200 (Mamon & Łokas) or
0.275 r200 = 1.1 rs (Mamon et al.). We adopt a scaling of a = rs for the Mamon–Łokas model and for the Osipkov–Merritt model as well,
and we adopt a constant anisotropy model that is fairly radial but consistent with the anisotropy seen in 
CDM haloes: β = 0.4.

Fig. 1 shows the comparison of the mass profiles obtained from the mass inversion equation (83) with the true mass profiles. Despite the
double differentiation of the projected pressure, the mass profiles are recovered to a few per cent relative accuracy or better,8 except at the
innermost point where the mass is overestimated by 4 to 10 per cent in the four anisotropy models, because of the inaccurate cubic-spline
interpolation of P(R) near the edges. The accuracy of the mass inversion is even better if we use a finer grid to measure the projected pressure
before the cubic-spline interpolation of P(R) and subsequent mass inversion: for example with the OM anisotropy, the maximum relative
error in the recovered mass decreases with grid size from 9 per cent (0.2 dex steps) to 0.6 per cent (0.02 dex steps).

8 Both mass inversion and deprojection appear to be unstable at radii r < rs for the Mamon–Łokas anisotropy model when a is exactly set to rs, when using
our MATHEMATICA routines (but this odd behaviour is not present when tested with other software). The figure shows the case a = 1.001 rs.
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2446 G. A. Mamon and G. Boué

Figure 2. Robustness of the mass inversion to small data samples. Left: same as right-hand panel of Fig. 1, but for the projected pressure profile measured on
a linear grid of 10 radial bins from 0.25 to 4.75 rs, with 20 per cent relative Gaussian errors on the projected pressure (i.e. 10 per cent errors on the line-of-sight
velocity dispersion measurements based upon 50 velocities per radial bin). The error bars show the standard deviations on five tests with different seeds for the
random number generator. The points and error bars are slightly shifted along the x-axis for clarity. Right: second highest error out of five tests on recovered
mass profile. A value of unity indicates a perfect recovery of the mass.

3.2 Robustness to small data samples

We next test the accuracy of the recovered mass profiles when the data are sparse and noisy. We consider the case of velocity measurements
in a cluster of galaxies. We assume that the cluster has 500 measured velocities within 5 rs (which is roughly the cluster virial radius), and
assume for simplicity that we have line-of-sight velocity dispersions measured in 10 equal size radial bins centred from 0.25 to 4.75 rs. With
N = 50 velocities per bin, the velocity dispersions are known to a relative accuracy of

√
1/2/(N−1) = 10.1 per cent (e.g. Lupton 1993),

and we fold this noise9 into the predicted line-of-sight velocity dispersion profile, using the same seed for the random number generator
for all four anisotropy profiles. We extrapolate the projected pressures to larger radii by fitting a power law to P(R) using the last five data
points, at outer linearly spaced outer radii, with the same spacing as the data, and then fit a fourth-order polynomial to the set of observed and
mock-extrapolated data. We repeated these tests five times with different seeds for the random generator.

The left-hand panel of Fig. 2 shows the accuracy of the mass inversion is much worse than in the academic case with no noise. In
particular, the extrapolation errors at radii lower than the lowest data point make the inner mass profile inaccurate to factors often greater
than 2. With the isotropic, β = 0.4, and Mamon–Łokas anisotropy models, the mass profile is nevertheless recovered to typically better than
20 per cent accuracy for r > 0.8 rs, out to twice the radius of the last data point. However, the large error bars show that there is a large scatter
in the accuracy of the recovered mass profile for different randomly generated projected pressure profiles. The right-hand panel of Fig. 2
gives the second highest error among the five tests performed, for each given radius and anisotropy model. Typical such 80 percentile errors
are of the order of 70 per cent for r > 0.8 rs. Surprisingly, this typical error decreases to only 20 per cent at high radii (r > 8 rs), despite the
fact that the projected pressure is extrapolated beyond r = 4.5 rs.

3.3 Robustness to the wrong anisotropy model

The essential ingredient to the mass inversion is the knowledge of the velocity anisotropy profile. How wrong can the mass inversion be if
the incorrect anisotropy profile is used? We adopt the Mamon–Łokas anisotropy model with a = rs similar to what is found for cluster-mass

CDM haloes (Mamon et al. 2009) and compute the projected pressure for an NFW density model with this anisotropy model. We then
perform the mass inversion assuming other anisotropy profiles to see how off we are. In this exercise, we assume perfect data, i.e. no noise.

The left-hand panel of Fig. 3 shows that the mass profile is recovered to better than 33 per cent accuracy for all anisotropy models at
r > 4 rs, i.e. beyond the virial radius. Within the virial radius, the Osipkov–Merritt underestimates the mass by as much as a factor of 3 around
2 rs, but is much more precise at very low radii. The β = 0.4 model is accurate for r > rs, as expected as it resembles there the Mamon–Łokas

9 We neglect the noise on the uncertain surface density profile, which contributes negligibly to the noise in the projected pressure in comparison to the noise in
the velocity dispersion.
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Mass inversion of spherical systems 2447

Figure 3. Robustness of the mass inversion to the wrong choice of anisotropy profile. Left: same as right-hand panel of Fig. 1, where the true anisotropy profile
is now always an a = rs Mamon–Łokas model, but assuming one of the other three anisotropy models. Right: same as left-hand panel, but where the assumed
anisotropy profile is always the a = rs Mamon–Łokas model, but with five different guesses for a/rs.

model, but underestimates the mass by increasingly large factors at radii r < rs, and the recovered mass actually goes negative at r < 0.17 rs.
Finally, the isotropic model finds the correct mass to within 30 per cent at all radii, usually overestimating the true mass. Interestingly, at r �
7 rs, all four anisotropy models lead to the correct mass to within 5 per cent.

The right-hand panel of Fig. 3 indicates that the recovered mass is not very sensitive to the assumed anisotropy radius, as the mass is
recovered to 20 per cent accuracy, unless the anisotropy radius is assumed to be 10 times lower than it actually is. This graph also shows that
at r � 3 rs (i.e. roughly two-thirds the virial radius of clusters), the mass is correctly recovered to better than 5 per cent for our five choices
of anisotropy radius.

4 D ISCUSSION

The mass inversion algorithm presented in this work generally (equation 69) requires two steps: (1) deprojection and (2) inserting the radial
pressure in the Jeans equation to derive the mass. The deprojection (equation 32) requires a single integral involving of a quantity, piso

(equation 10), that is itself a single integral involving the derivative of the observed projected pressure. The second step (mass inversion) also
requires a single integral involving the derivative of piso. Each differentiation of the data introduces errors, and the full mass inversion requires
three single integrals. For the special cases of simple anisotropy models, we find it preferable to write the mass profile with a single integral
involving the double derivative of the observed projected pressure. Indeed, this requires a single smoothing operation before differentiation,
thus leading to more accurate results, even if the mathematical formulation of the deprojections and mass inversions for each of the simple
anisotropy models has strongly increased the number of equations in this paper.

While this work (and Wolf et al. 2009) used the Abel inversion for the kinematic deprojection, one can alternatively apply Fourier
methods (see also Kalal & Nugent 1988 and Kalnajs cited in Saha, Bicknell & McGregor 1996). Indeed, structural and kinematic projection
can be written as a convolution:

F (X) =
∫ ∞

−∞
f (x) K(X − x) dx,

where X = R2, x = r2, F (X) and f (x) correspond to either 	(R) and ρ(r) (structural projection) or P(R) and (1 − β) p + ∫ ∞
r

β p ds/s

(anisotropic kinematic projection, following Wolf et al., which simplifies to p for isotropic kinematic projection), and where

K(y) =
{

(−y)−1/2 y ≤ 0,

0 y > 0.

Hence, with the convolution theorem, deprojection is obtained by applying an inverse Fourier transform to

f̃ (ω) = 1√
2π

F̃ (ω)

K̃(ω)
= (1 + i) sgn(ω)

√
ω

2π
F̃ (ω) = [1 + i sgn(ω)]

√
|ω|
2π

F̃ (ω),

where f̃ (ω), K̃(ω) and F̃ (ω) are the Fourier transforms of f (x), K(y) and F (|X|), respectively (note the absolute values in the last term). A
comparison of the accuracy of the two deprojection techniques is beyond the scope of the present paper.
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2448 G. A. Mamon and G. Boué

Our mass inversion algorithm should serve as a useful technique to get around the mass–anisotropy degeneracy in the case where the
anisotropy profile is thought to be known. As mentioned in the end of Section 1, there is a good convergence on the anisotropy profiles
of 
CDM haloes as well as those of elliptical galaxies formed by binary mergers of spiral galaxies. Moreover, the anisotropy profile in
many simulations appears linearly related to the slope of the (tracer) density profile (Hansen & Moore 2006), and this can be used to lift the
mass–anisotropy degeneracy. A first application of our algorithm was given by Biviano & Salucci (2006) for the analysis of stacked clusters
of galaxies.

The mass inversion technique has the advantage of producing a non-parametric10 mass profile, which can then be used to test the popular
parametrizations of the mass profile (or alternatively of the density profile, the circular velocity profile or the density-slope profile).

In Section 3, we show that, for a mock NFW galaxy cluster with mildly increasing radial velocity anisotropy as seen in 
CDM haloes
and with typical line-of-sight velocity dispersion profiles, measured with 50 velocities per radial bin, the mass inversion should be accurate to
typically better than 70 per cent relative errors at most radii and better than 20 per cent for anisotropy models other than the Osipkov–Merritt
one at r > 8 rs. The relatively high errors are a consequence of the double derivative of the observed projected pressure, d2P/dR2, that enters
the mass inversion equation (68) or (69), through the term piso, or in equation (82) or (83) for the special cases of anisotropy models. The
errors are high at radii smaller than the first radial bin of the observed line-of-sight velocity dispersion profile. This illustrates the concept that
kinematical modelling can only recover the mass and anisotropy at radii corresponding to the projected radii of the data. Nevertheless, with
power-law extrapolations of the data to outer radii, we show that the mass inversion can recover mass profiles with good accuracy far beyond
the outermost data point. Note that the mass inversion involves integrals out to infinity (e.g. equation 83), so one expects that the method
should be most accurate when the tracer density profile falls fast at large radii. Our use of the NFW model for the tracer, with its shallow
outer slope of d ln ρ/d ln r = −3 is thus expected to provide poorer results for the mass inversion than for steeper tracer density profiles.

We found that the recovered mass is correctly returned, independently of the shape of the anisotropy profile at r = 7 rs, and independently
of the anisotropy radius for our chosen anisotropy model at r = 3 rs. A similar independence of the recovered mass on the assumed anisotropy
profile has been recently noticed by Wolf et al. (2009) in the context of dwarf spheroidal and elliptical galaxies (for which the dark matter
may not follow the stars, which themselves do not follow the NFW model). However, Wolf et al. prove analytically that this robustness to the
anisotropy model occurs near the radius of slope −3. Now, the NFW model has shallower slopes everywhere, reaching −3 at infinite radius.
Wolf et al. notice that, for density profiles similar to those of ellipticals and dwarf spheroidals, the radius of slope −3 is close to the half-mass
radius. In contrast, in the current context of clusters, the NFW model is divergent in mass (equation 86), and the concept of half-mass radius
is ill defined. Moreover, the radius where the mass is recovered for all anisotropy models tested is at 7 scale radii, which is outside the virial
radius, hence not comparable to the half-light radius of elliptical and dwarf spheroidal galaxies. Fixing the anisotropy to the Mamon–Łokas
model (which Mamon & Łokas 2005b found to be a good fit to the anisotropy profile of the haloes in 
CDM cosmological simulations),
the recovered mass is most robust to the anisotropy radius at 3 rs, which is roughly two-thirds of the cluster virial radius, again not directly
comparable to the half-light radius of dwarf spheroidals and ellipticals.

The mass inversion technique is thus a useful complement to the set of tools one has to lift the mass–anisotropy degeneracy in spherical
systems. Mass inversion is certainly not the privileged tool, but should be considered as one of many tools for the exploratory data analysis of
spherical systems viewed in projection, in addition to anisotropy inversion, fitting models to the line-of-sight velocity dispersion and possibly
kurtosis profiles, and fitting models, distribution functions, orbits and N-body systems to the distribution of particles in projected phase space.
Ideally, one would analyse the kinematics of spherical systems using a variety of these tools. We are preparing such global analyses on dwarf
spheroidal and elliptical galaxies, as well as on groups and clusters of galaxies.
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APPEN D IX A : A BEL DEPROJECTION

In this appendix, we remind the reader of the derivation of the deprojection of equation (7) with the Abel inversion. Consider

J (r) =
∫ ∞

r

	(R) R dR

(R2 − r2)1/2
. (A1)

Replacing 	(R) in equation (A1) by its definition in equation (7), one finds, after inverting the order of integration,

J (r) = 2
∫ ∞

r

ρ(s) s ds

∫ s

r

R dR

(R2 − r2)1/2 (s2 − R2)1/2
. (A2)

The internal integral in equation (A2) is equal to π/2, as inferred from the substitution sin2 θ = (R2 − r2)/(s2 − r2). Hence,

J (r) = π

∫ ∞

r

ρ(s) s ds,
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and therefore

ρ(r) = − 1

πr

dJ

dr
. (A3)

Now integrating equation (A1) by parts, one gets

J (r) = lim
R→∞

√
R2 − r2 	(R) −

∫ ∞

r

d	

dR

(
R2 − r2

)1/2
dR. (A4)

For all realistic density profiles, 	(R) falls faster than R−1, as is the case for the surface density profiles of globular clusters, elliptical galaxies
and clusters of galaxies. Hence, the surface term in equation (A4) is zero and one can write

dJ

dr
= r

∫ ∞

r

d	

dR

dR

(R2 − r2)1/2
. (A5)

Inserting the derivative of J of equation (A5) into equation (A3) leads to equation (8). The surface term that survived when 	 ∝ 1/R

disappears in the derivative.

APPEN D IX B: K INEMATIC DEPROJECTIO N FOR THE TANGENTI AL DYNAMI CAL PRESSURE

In this appendix, we derive equations (31) and (32) for the tangential dynamical pressure.
Differentiating equation (23), one finds to get the differential equation

p′
θ − β

1 − β

pθ

r
= p′

iso. (B1)

Now, if we write

p′
θ − β

1 − β

pθ

r
= 1

f

d(fpθ )

dr
, (B2)

then equations (B1) and (B2) lead to

pθ (r) = − 1

Cβ (r)

∫ ∞

r

f p′
iso ds, (B3)

where the upper limit at infinity ensures that pθ = (1 − β) ρσ 2
r does not reach negative values at a finite radial distance. However, equation (B2)

directly gives

d ln f

d ln r
= − β(r)

1 − β(r)
,

hence

g(r) = g(r1) exp

(
−

∫ r

r1

β

1 − β

ds

s

)
(B4)

for any arbitrary r1.
With equation (B4), equation (B3) allows one to recover equation (31):

pθ (r) = − exp

(∫ r

r1

β

1 − β

ds

s

) ∫ ∞

r

exp

(
−

∫ s

r1

β

1 − β

dt

t

)
p′

iso ds

= −
∫ ∞

r

exp

(
−

∫ s

r

β

1 − β

dt

t

)
p′

iso ds, (B5)

where the second equality is obtained adopting r1 = r .
Integrating by parts the integral in equation (B5), we finally recover equation (32):

pθ (r) = piso(r) −
∫ ∞

r

piso
β

1 − β
exp

(
−

∫ s

r

β

1 − β

dt

t

)
ds

s
.
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