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The problem of a compact binary system whose components move on circular orbits is addressed using

two different approximation techniques in general relativity. The post-Newtonian (PN) approximation

involves an expansion in powers of v=c � 1, and is most appropriate for small orbital velocities v. The

perturbative self-force analysis requires an extreme mass ratio m1=m2 � 1 for the components of the

binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of

the system using these two different approximations. The post-Newtonian calculation is pushed up to the

third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at

the location of one of the particles. We regularize the divergent self-field of the particle by means of

dimensional regularization. We show that the poles / ðd� 3Þ�1 appearing in dimensional regularization

at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through

first order in the mass ratio, and the numerical self-force calculation are found to agree well. The

consistency of this cross cultural comparison confirms the soundness of both approximations in describing

compact binary systems. In particular, it provides an independent test of the very different regularization

procedures invoked in the two approximation schemes.

DOI: 10.1103/PhysRevD.81.064004 PACS numbers: 04.25.Nx, 04.30.�w, 04.80.Nn, 97.60.Jd

I. INTRODUCTION

A. Motivation

The detection and analysis of the gravitational radiation
from black hole binaries by the ground-based LIGO-
VIRGO and space-based LISA observatories requires
very accurate theoretical predictions, for use as gravita-
tional wave templates [1]. There are two main approxima-
tion schemes available for performing such calculations in
general relativity: (i) The post-Newtonian expansion, well
suited to describe the inspiralling phase of arbitrary mass
ratio compact binaries in the slow motion and weak field
regime (c�1 � v=c � 1),1 and (ii) the perturbation-based
self-force (SF) approach, which gives an accurate descrip-
tion of extreme mass ratio binaries (q � m1=m2 � 1) even
in the strong field regime.

For the moment the post-Newtonian (PN) templates for
compact binary inspiral have been developed to 3.5PN
order in the phase [2–5] and 3PN order in the amplitude
[6,7] (see [8] for a review). These are suitable for the
inspiral of two neutron stars in the frequency bandwidth
of LIGO and VIRGO detectors. For detection of black hole

binaries (with higher masses) the PN templates have to be
matched with full numerical simulations for the merger
phase and the ringdown of the final black hole. The match-
ing between the PN approximation and numerical relativity
has turned out to be very successful [9,10].
On the other hand, gravitational SF analysis [11–15] is

expected to provide templates for extreme mass ratio in-
spirals anticipated to be present in the LISA frequency
bandwidth. SF analysis is a natural extension of first order
perturbation theory, and the latter has a long history of
comparisons with post-Newtonian analysis [16–23]. SF
analysis, itself, is just now mature enough to present
some limited comparisons with PN analysis, but it is not
yet ready for template generation.
In this paper we shall compare the PN and SF analyses in

their common domain of validity, that of the slow motion
weak field regime of an extreme mass ratio binary (see
illustration of various methods in Fig. 1). The problem was
tackled by Detweiler [24], who computed numerically
within the SF a certain gauge invariant quantity, defined by
(1.3) below for an extreme mass ratio binary, and compared
it with the 2PN prediction extracted from existing PN
results [25]. Here we shall go one step further, and extend
the comparison up to 3PN order. This will require an
improvement in the numerical resolution of the SF calcu-
lation in order to distinguish more accurately the 3PN self-
force from the self-force at higher PN orders. However, our
primary difficulty is that the PN results for the metric have
not previously been available at 3PN order, and will have to
be carefully derived. We shall demonstrate an excellent
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1By a slight abuse of notation we denote by c�1 the standard

PN estimate, where c is the speed of light. As usual we refer to
nPN as the order equivalent to terms Oðc�2nÞ in the equations of
motion beyond the Newtonian acceleration.
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agreement between the extreme mass ratio case (q � 1) of
the analytical 3PN result and the numerical SF result.

B. Method

Let us consider a system of two (nonspinning) compact
objects with masses m1 and m2, and moving on slowly
inspiralling quasicircular orbits. In the PN analysis, let m1

and m2 be arbitrary; in the SF analysis, further assume that
m1 � m2. We can then call m1 the ‘‘particle,’’ and m2 the
‘‘black hole.’’

Self-force analysis shows that the dissipative parts of the
self-force for a circular orbit are the t and ’ components.
These result in a loss of energy and angular momentum
from the small mass at the same precise rate as energy and
angular momentum are radiated away [24]. In addition,
earlier perturbative calculations of energy and angular
momentum fluxes [16–23] for this situation show them to
be equivalent to the results of the PN analysis in their
common domain of validity. Hence, by invoking an argu-
ment of energy and angular momentum balance, we know
that the PN results also agree with the dissipative parts of
the SF in their domain of common validity, and further
comparison can reveal nothing new.

For our PN-SF comparison, we shall thus neglect the
dissipative, radiation-reaction force responsible for the
inspiral, and restrict ourselves to the conservative part of
the dynamics. In PN theory this means neglecting the
dissipative radiation-reaction force at 2.5PN and 3.5PN
orders, and considering only the conservative dynamics

at the even-parity 1PN, 2PN, and 3PN orders. This clean
separation between conservative even-parity and dissipa-
tive odd-parity PN terms is correct up to 3.5PN order.2 In
SF theory there is also a clean split between the dissipative
and conservative parts of the self-force. This split is par-
ticularly transparent for a quasicircular orbit, where the r
component is the only nonvanishing component of the
conservative self-force.
Henceforth, the orbits of both masses are assumed to be

and to remain circular, because we are ignoring the dis-
sipative radiation-reaction effects. For our comparison we
require two physical quantities which are precisely defined
in the context of each of our approximation schemes. The
orbital frequency � of the circular orbit as measured by a
distant observer is one such quantity. The second requires
further explanation.
With circular orbits and no dissipation, the geometry has

a helical Killing vector field k�. A Killing vector is only
defined up to an overall constant factor. In our case k�

extends out to a large distance where the geometry is
essentially flat. There k�@� ¼ @t þ�@’ in any natural

coordinate system which respects the helical symmetry
[27]. We let this equality define the overall constant factor,
thereby specifying the Killing vector field uniquely.
An observer moving with the particle m1, while orbiting

the black hole m2, would detect no change in the local
geometry. Thus, the four-velocity u�1 of the particle is
tangent to the Killing vector k� evaluated at the location
of the particle, which we denote by k�1 . A second physical
quantity is then defined as the constant of proportionality,
call it uT1 , between these two vectors, namely,

u�1 ¼ uT1k
�
1 : (1.1)

The four-velocity of the particle is normalized so that

ðg��Þ1u�1 u�1 ¼ �1; ðg��Þ1 is the regularized metric at

the particle’s location, whereas the metric itself is formally
singular at the particle m1 in both PN and SF approaches.
The gauge invariant quantity uT1 is thus given by

uT1 ¼ ð�ðg��Þ1u�1 k�1 Þ�1 ¼ ð�ðg��Þ1k�1 k�1 Þ�1=2: (1.2)

It is important to note that this quantity is precisely defined
in both PN and SF frameworks, and it does not depend
upon the choice of coordinates or upon the choice of
perturbative gauge; however, it very definitely depends
upon using a valid method of regularization.
Furthermore, for any coordinate system uT1 has a pleasant
physical interpretation as being the rate of change of time
at a large distance, with respect to the proper time on the
particle m1, and it could in principle be measured by a
redshift experiment as described in [24].

Numerical 
Relativity

Perturbation 
Theory

Post-Newtonian 
Theory

log10( 2 / 1)

log10( 12 / )

0 1 2 3

0

1

2

3

Post-Newtonian 
Theory

&
Perturbation 

Theory

4

4

FIG. 1 (color online). Different analytical approximation
schemes and numerical techniques are used to study black
hole binaries, depending on the mass ratio m1=m2 and the orbital
velocity v2 �Gm=r12, where m ¼ m1 þm2. The post-
Newtonian theory and black hole perturbation theory can be
compared in the slow motion regime (v � c equivalent to r12 �
Gm=c2 for circular orbits) of an extreme mass ratio (m1 � m2)
binary.

2However, this split merges at 4PN order, since at that ap-
proximation arises a contribution of the radiation-reaction force,
which originates from gravitational wave tails propagating to
infinity [26].
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If we happen to choose a convenient coordinate system
where k�@� ¼ @t þ�@’ everywhere, then in particular

kt1 ¼ 1, and thus uT1 � ut1, the t component of the four-
velocity of m1. The Killing vector on the particle is then
k�1 ¼ u�1 =u

t
1, and simply reduces to the particle’s ordinary

post-Newtonian coordinate velocity v�
1 =c. In such a coor-

dinate system, the description of the invariant quantity we
are thus considering is

uT1 � ut1 ¼
�
�ðg��Þ1 v

�
1 v

�
1

c2

��1=2
: (1.3)

In the PN calculation we shall evaluate uT1 using a particu-
lar harmonic coordinate system. We shall make no restric-
tion on the mass ratio q ¼ m1=m2, but shall eventually
compute the small mass ratio limit q � 1 for comparison
with the SF result.

The regularized metric ðg��Þ1 is defined with very dif-

ferent prescriptions in the SF and PN approaches. Both
analyses require subtle treatment of singular fields at the
location of the masses. Subtracting away the infinite part of
a field while carefully preserving the part which is desired
is always a delicate task. Our comparison will rely on the
principle of the physical equivalence of the regularized SF
and PN metrics, at least in the vicinity of the particle, i.e.
that they are isometric—they differ by a coordinate trans-
formation. In fact the cross cultural comparison of the
invariant uT1 is a test of the isometry of the two regularized
metrics and is, thus, a test of the two independent (and very
different) regularization procedures in use.

In the SF prescription, the regularized metric reads

gSF��ðxÞ ¼ �g��ðxÞ þ hR��ðxÞ; (1.4)

where �g�� denotes the background Schwarzschild metric

of the black hole, and where the ‘‘regular’’ perturbation
hR�� is smooth in a neighborhood of the particle, and

follows from the Detweiler-Whiting prescription [13] for
removing the infinite part of the field, as described below in
Sec. II B. In particular the metric (1.4) is regular at the
particle’s position y�1 , and we simply have

ðgSF��Þ1 ¼ gSF��ðy1Þ: (1.5)

In the perturbative SF analysis we are only working
through first order in q ¼ m1=m2, and at that level of
approximation hR�� ¼ OðqÞ. Then uT1 can be computed

accurately to the same perturbative order and compares
well with the post-Newtonian result to 2PN order [24]. The
regularized 2PN metric is known [25], and therefore the
comparison is straightforward.

In the present paper we shall obtain the 3PN regularized
metric which will be the core of our calculation, and will be
partly based on existing computations of the equations of
motion at 3PN order using Hadamard [28] and dimensional
[29] regularizations. Using an iterative PN procedure, one
first considers the post-Newtonian metric gPN��ðx; tÞ at any

field point outside the particle, in a coordinate system x� ¼
fct; xig. That metric is generated by the two particles, and
includes both regular and singular contributions around
each particle. Then we compute the PN regularized metric
at the location of the particle by taking the limit when x !
y1ðtÞ, where y1ðtÞ is the particle’s trajectory. In three spatial
dimensions, that limit is singular. In order to treat the
infinite part of the field, we extend the computation in d
spatial dimensions, following the prescription of dimen-
sional regularization, which is based on an analytic con-
tinuation (AC) in the dimension d viewed as a complex
number. Considering the analytic continuation in a neigh-
borhood of " � d� 3 ! 0, we define

ðgPN��Þ1 ¼ AC"!0½ lim
x!y1

gPN��ðx; tÞ�: (1.6)

The limit " ! 0 does not exist in general due to the
presence of poles / "�1 occurring at 3PN order; we com-
pute the singular Laurent expansion when " ! 0, and we
shall see that the poles disappear from the final gauge
invariant results. Previous work on equations of motion
and radiation field of compact binaries has shown that
dimensional regularization is a powerful regularization
method in a PN context. In particular this regularization
is free of the ambiguities plaguing the Hadamard regulari-
zation (HR) at the third post-Newtonian order [4,5,29,30].
The plan of this paper is as follows: Sec. II is devoted to

an overview of the SF formalism. The circular geodesics of
the perturbed Schwarzschild geometry are described in
Sec. II A, where we also give an explicitly gauge invariant
relationship between � and uT1 for the particle m1. We use
the mode-sum regularization procedure of Barack and Ori
[31,32] to perform the delicate subtraction of the singular
field hS�� from the retarded metric perturbation hret��. We

give a brief description of our application of this process in
Sec. II B. In Sec. II C we describe some of the details of the
numerical analysis which yields our value for uT1 as a
function of �, and provide a brief discussion of the nu-
merical determination of the 3PN effect on uT1 . Most of the
details concerning the 3PN calculation are presented in
Sec. III. We focus mainly on the issues regarding our
implementation of the dimensional self-field regularization
which is described in Secs. III A and III B. The post-
Newtonian results are presented in Sec. IV. We give the
fully fledged regularized 3PN metric in Sec. IVA, and
present our final result for uT1 in Sec. IVB. We finally
investigate the small mass ratio limit q � 1 of the post-
Newtonian result, and compare with the self-force calcu-
lation in Sec. V. Two appendices provide further details on
the PN calculation: An alternative derivation using the
Hadamard regularization is discussed in Appendix A, and
the choice of the center-of-mass (CM) frame and the
reduction to quasicircular orbits at 3PN order within di-
mensional regularization are investigated in Appendix B.
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II. SELF-FORCE OVERVIEW

Previously we described the truly coordinate and
perturbative-gauge independent properties of � and uT1 .
In this section we use Schwarzschild coordinates, and we
refer to ‘‘gauge invariance’’ as a property that holds within
the restricted class of gauges for which k�@� ¼ @t þ�@’
is a helical Killing vector. In all other respects, the gauge
choice is arbitrary. With this assumption, no generality is
lost, and a great deal of simplicity is gained.

The regularized metric perturbation hR�� ¼ hret�� � hS��
is the difference between the retarded metric perturbation
hret�� and the singular field hS��. A Hadamard expansion of

Green’s functions in curved space-time provides an expan-
sion for hS�� [13]. In a neighborhood of the particle with a

special, locally inertial coordinate system, hS�� appears as

them1=r part
3 of the particle’s Schwarzschild metric along

with its tidal distortion caused by the background geometry
of the large black hole. Details of the expansion are given
in Sec. 6.1 of [33]. The special locally inertial coordinates
for a circular geodesic in the Schwarzschild metric are
given as functions of the Schwarzschild coordinates in
Appendix B of [34].

A. Circular geodesics of the perturbed Schwarzschild
geometry

The effect of the gravitational self-force is most easily
described as having m1 move along a geodesic of the
regularized metric �g�� þ hR��. We are interested in circular

orbits and let u� be the four-velocity of m1.
4 This differs

from the four-velocity �u� of a geodesic of the straight
Schwarzschild geometry at the same radial coordinate r
by an amount of OðqÞ. Recall that we are describing
perturbation analysis with q � 1, therefore hR�� ¼ OðqÞ,
and all equations in this section necessarily hold only
through first order in q.

It is straightforward to determine the components of the
geodesic equation for the metric �g�� þ hR�� [24], and then

to find the components of the four-velocity u� of m1 when
it is in a circular orbit at Schwarzschild radius r. We
reiterate that the four-velocity is to be normalized with
respect to �g�� þ hR�� rather than �g��, and that hR�� is

assumed to respect the symmetry of the helical Killing
vector. In this case we have

ðutÞ2 ¼ r

r� 3m2

�
1þ �u� �u�hR�� � r

2
�u� �u�@rh

R
��

�
; (2.1a)

ðu’Þ2 ¼ r� 2m2

rðr� 3m2Þ
�m2ð1þ �u� �u�hR��Þ

rðr� 2m2Þ � 1

2
�u� �u�@rh

R
��

�
:

(2.1b)

A consequence of these relations is that the orbital fre-
quency of m1 in a circular orbit about a perturbed
Schwarzschild black hole of massm2 is, through first order
in the perturbation, given by

�2 ¼
�
u’

ut

�
2 ¼ m2

r3
� r� 3m2

2r2
�u� �u�@rh

R
��: (2.2)

The angular frequency � is a physical observable and is
independent of the gauge choice. However the perturbed
Schwarzschild metric does not have spherical symmetry,
and the radius of the orbit r is not an observable and does
depend upon the gauge choice. That is to say, an infinitesi-
mal coordinate transformation of OðqÞ might change
�u� �u�@rh

R
��. But if it does, then it will also change the

radius r of the orbit in just such a way that �2 as deter-
mined from (2.2) remains unchanged. Both ut � uT and
u’ � �uT are gauge invariant as well.
Our principle interest is in the relationship between �

and uT , which we now establish directly using (2.1a) and
(2.2), writing all equations through first order. First, we can
rearrange (2.2) to get�

m2

r

�
3 ¼ ðm2�Þ2 þ

�
m2

r

�
2
�
1� 3m2

r

��
r

2
�u� �u�@rh

R
��

�
:

(2.3)

Next, we take the cube root of both sides and expand on the
right-hand-side (RHS) to obtain

m2

r
¼ ðm2�Þ2=3 þ 1

3

�
m2

r

1

ðm2�Þ2=3
�
2
�
1� 3m2

r

�

�
�
r

2
�u� �u�@rh

R
��

�
: (2.4)

The second term on the RHS of (2.4) is already first order
in q. Thus, in the first two bracketed expressions in this
second term, we can replace m2=r by the leading approxi-
mation tom2=r from just the first term on the RHS of (2.4),
giving

m2

r
¼ ðm2�Þ2=3 þ 1

3
ð1� 3ðm2�Þ2=3Þ

�
r

2
�u� �u�@rh

R
��

�
:

(2.5)

Following [24], we next introduce the gauge invariant
measure of the orbital radius

R� �
�
m2

�2

�
1=3 ) ðm2�Þ2=3 ¼ m2

R�

: (2.6)

Now we use this in its second form and substitute back into
(2.5):

m2

r
¼ m2

R�

þ 1

3

�
1� 3m2

R�

��
r

2
�u� �u�@rh

R
��

�
: (2.7)

Multiplying overall by �3 and adding 1 to both sides
before dividing through, we find

3In all of Sec. II we set G ¼ c ¼ 1.
4Since we are clearly interested in the motion of the small

particle m1, we remove the index 1 from u�1 .
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1

1� 3m2=r

�
1� r

2
�u� �u�@rh

R
��

�
¼ 1

1� 3m2=R�

: (2.8)

This is exactly what we need in (2.1a) in order to establish a
first order, gauge invariant, algebraic relationship between
uT (to which ut evaluates in our gauge) and R� (or equiv-
alently �), namely,

ðuTÞ2 ¼
�
1� 3m2

R�

��1ð1þ �u� �u�hR��Þ: (2.9)

The lowest order term on the RHS is identical to what is
obtained for a circular geodesic of the unperturbed
Schwarzschild metric. Indeed, recall that the

Schwarzschild part of uT is known exactly as uTSchw ¼ ð1�
3m2=R�Þ�1=2. Thus, if we write

uT � uTSchw þ quTSF þOðq2Þ; (2.10)

the first order term in (2.9) gives

quTSF ¼
1

2

�
1� 3m2

R�

��1=2
�u� �u�hR��; (2.11)

which isOðqÞ, and contains the effect of the ‘‘gravitational
self-force’’ on the relationship between uT and �, even
though it bears little resemblance to a force. We shall
henceforth focus our attention on the calculation of the
combination �u� �u�hR��.

B. Mode-sum regularization

Both the retarded metric perturbation hret�� and the sin-

gular field hS�� are singular at m1. However, we actually

determine hret�� by using the inherent symmetries of the

problem to separate variables and to decompose the com-
ponents of hret�� in terms of tensor spherical harmonics.

Each ‘, m component hretð‘;mÞ
�� is then finite and determined

using a standard numerical differential equation solver.
Only the sum over modes diverges.

For our problem, we treat the divergence of the singular
field hS�� in a related manner. The singular behavior is

represented in the known expansion of hS�� about the

particle, and is also amenable to a decomposition in terms
of spherical harmonics. This procedure is stylistically quite
similar to the expansion of the Coulomb field of a point
charge, displaced from the origin, in terms of spherical
harmonics centered on the origin; this results in the coef-
ficients being proportional to either 1=r‘þ1 or r‘, depend-
ing upon whether the field point is inside or outside the
charge. In SF analysis, the spherical harmonic coefficients
determine the regularization parameters of hS��.

Following the original prescription of Barack and Ori
[31,35] and extending it as in [34], we first perform the sum
over m for the retarded field at the particle

�u � �u�hretð‘Þ�� � X‘
m¼�‘

�u� �u�hretð‘;mÞ
�� : (2.12)

Then we use the recognition that the decomposition of the
singular field is of the form

�u� �u�hSð‘Þ�� ¼ Bþ C

‘þ 1=2
þ D

ð2‘� 1Þð2‘þ 3Þ
þ E1

ð2‘� 3Þð2‘� 1Þð2‘þ 3Þð2‘þ 5Þ
þOð‘�6Þ; (2.13)

where B, C, D, E1 (and the subsequent E2, E3, etc.) are
regularization parameters. The particular ‘ dependence of
the coefficients accompanying the parameters D and En is

related to the expansion of ð1� cos�Þnþ1=2 in terms of
Legendre polynomials P‘ðcos�Þ; details are derived and
described in Appendix D of [34].
The regular field at the particle is finally given by

�u � �u�hR�� ¼ X
‘

ð �u� �u�hretð‘Þ�� � �u� �u�hSð‘Þ�� Þ; (2.14)

and the sum is guaranteed to be convergent as long as B and
C are known. In practice, the regularization parameters are
difficult to determine. For our problem it is known analyti-
cally that C ¼ 0 and

B ¼ 2m1

r

�
r� 3m2

r� 2m2

�
1=2

2F1

�
1

2
;
1

2
; 1;

m2

r� 2m2

�
; (2.15)

where 2F1 is a hypergeometric function, and r is the
Schwarzschild radial coordinate of the circular orbit.
This knowledge of B and C, but not D, implies that the
sum in (2.14) converges as 1=‘. To increase the rate of
convergence, we augment our knowledge of B and C by
numerically determining further regularization parameters

[34]: We use the fact that the behavior of �u� �u�hretð‘Þ�� ,

evaluated at the particle, must match �u� �u�hSð‘Þ�� as given in

(2.13) for large ‘. This allows us to fit the numerical data to
determine the additional regularization parameters D and
En up to, say, E3. Knowledge of these additional parame-
ters results in a sum which converges as 1=‘9. In our
numerical work we typically fit for three or four extra
parameters. We calculate up to ‘ ¼ 40, fit in the range ‘ ¼
13–40, and then sum to ‘ ! þ1, with errors at the full
level of our calculational precision.
In earlier work [24,27,36] the accuracy of the numerical

integration used was adequate for the purposes then at
hand. For the comparisons presented here it became ob-
vious that we should investigate pushing our integration
procedure to enable us to obtain the highest precision
practicable. By adjusting the effective step size as ‘
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changed,5 we found that it was possible to achieve this
without encountering any other numerical difficulties
(such as an unreasonable accumulation of round-off error).
Subsequent fitting, to obtain the numerical determination
of the higher-order regularization parameters D; � � � ; E3 as
described above, allowed us to reduce residuals to the level
of the computational precision which had controlled our
integration procedure. Monte Carlo calculations based on
these residuals gave us systematic estimates of the errors to
associate with our fit parameters. Using these, we find
relative errors of order 10�13 in uTSF (the loss in precision

being due to the regularization). The corresponding results
are presented in Table I.

After the regularization procedure is complete we have
in hand �u� �u�hR��, and hence uTSF, for an orbit at a given

radius R�. At this point, we have solved our self-force
problem—we have found the effect, uTSF, of the self-force

on uT for a specific �.

C. Post-Newtonian fit of uTSF

The improved quality of the data in Table I fed directly
into the next stage, that of fitting uTSF as a function of� (or

R�) to determine the higher-order post-Newtonian coeffi-
cients. In order to proceed to our post-Newtonian fit of uTSF,
we introduce a special notation for the convenient gauge
invariant PN parameter defined in (2.6), which is Oðc�2Þ
and reads

y � ðm2�Þ2=3 ¼ m2

R�

: (2.16)

The post-Newtonian expansion of the self-force effect
given in (2.11) was determined explicitly up to 2PN order
in [24], and found to be

uTSF ¼ �y� 2y2 � 5y3 þ CSF3PNy
4 þOðy5Þ; (2.17)

where CSF3PN represents the 3PN coefficient (unknown at the

time of [24]), and higher-order 4PN terms are neglected.
The author of Ref. [24] also performed a numerical fit of
uTSF to the polynomial (2.17) in order to determine the

numerical value of CSF3PN. He expected that the post-

Newtonian derivation of this coefficient would be unavail-
able for some time, and the numerical fit was done in a
cursory fashion using a range in R� from 20m2 to 50m2,
not generally optimal for PN comparison. It is now time to
improve upon that early analysis.

The process of fitting terms in the ‘-sum for the regu-
larization parameters is relatively easy. Convergence in the
‘-sum increases by two orders with each additional regu-
larization parameter, and is very rapid. By contrast, the low
order PN series for uTSF is effectively a power series in

1=R� and is relatively slowly convergent. Moreover, if we
tried to fit higher terms, we could rapidly encounter the
situation where, for some large R�, contributions would be
below our error estimates, while for smaller R�, the same
contributions would still be significant. This situation com-
plicated both the choice of the range of R� over which we
could effectively fit, and the choice of the number of
additional PN coefficients we should use to improve the
characterization of our available data, consistent with the
error estimates we had previously established. For this
paper, we settled on a compromise, namely, we used values
of R� generally in the range 200m2 to 500m2 and, surpris-
ingly, somewhere between 3 and 6 additional PN coeffi-
cients. Following these procedures, our numerical
determination of the 3PN coefficient in the self-force effect
upon uT was found to be

C SF
3PN ¼ �27:677	 0:005: (2.18)

If we do not use a sufficient number of additional coeffi-
cients, our fitting procedure will compensate by systemati-
cally attempting to approximate the missing terms by
adjusting the fitting parameters we do use. This effect,
which determines the error term in (2.18), turns out to
dominate the random error from our numerically deter-
mined data points. We can estimate this effect by our
choice of the range of data and the number of coefficients
used in the fitting process. This proves to be adequate for
our comparison while also suggesting that further work is
warranted. In particular, we shall show in separate work
[37] that the PN expansion involves in higher orders some
logarithmic terms, and that the prior knowledge of the
coefficients of the logarithms appearing at 4PN and 5PN
orders (computed in [37] from PN theory) will improve

TABLE I. Summary of the gravitational self-force effects for a
variety of radii R�. Approximately 13 digits are believed to be
accurate.

R�=m2 �u� �u�hR��=q uTSF

200 �0:0 100 252 390 238 679 �0:00 505 064 245 513 028
220 �0:00 911 174 844 278 219 �0:00 458 725 834 137 915
240 �0:00 835 083 080 996 084 �0:00 420 175 898 117 037
260 �0:00 770 720 725 494 635 �0:00 387 603 022 007 156
280 �0:00 715 569 723 937 482 �0:00 359 717 107 497 568
300 �0:00 667 784 659 538 770 �0:00 335 574 417 643 231
320 �0:00 625 982 212 277 844 �0:00 314 468 649 077 390
340 �0:00 589 105 041 112 645 �0:00 295 860 680 303 681
360 �0:00 556 331 104 384 481 �0:00 279 331 869 895 365
380 �0:00 527 011 654 983 391 �0:00 264 552 181 684 313
400 �0:00 500 627 861 027 562 �0:00 251 257 921 031 088
420 �0:00 476 759 835 869 862 �0:00 239 235 862 943 596
440 �0:00 455 064 124 356 486 �0:00 228 311 728 867 935
460 �0:00 435 257 068 802 445 �0:00 218 341 682 793 388
480 �0:00 417 102 337 921 533 �0:00 209 205 962 311 231
500 �0:00 400 401 451 882 955 �0:00 200 804 044 413 982

5We used an integration procedure that contained an adjustable
parameter, �, which controlled the precision of the numerical
result. We chose � small enough so that further reduction would
not cause relative changes in the result larger than 10�15.
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very much the accuracy of the PN fit to the SF result.6 This
study is beyond our current scope, but will be extensively
reported in [37].

III. POST-NEWTONIAN CALCULATION

In this section, our aim is to compute the 3PN regular-
ized metric (1.6) by direct post-Newtonian iteration of the
Einstein field equations in the case of singular point-mass
sources. Previous work on the 3PN equations of motion
and radiation field of point particles [4,5,29,30] has shown
that the appropriate regularization to remove the infinite
self-field of point particles in this context is dimensional
regularization [38,39].

In the dimensional regularization (DR) scheme, we look
for the solution of the Einstein field equations in D ¼ dþ
1 space-time dimensions, with a matter source made of
point particles. We treat the space dimension as an arbi-
trary complex number, d 2 C, and interpret any intermedi-
ate formula in the PN iteration of those equations by
analytic continuation in d. Then we analytically continue
d down to the value of interest (namely, 3), posing

d � 3þ ": (3.1)

In most of the calculations we neglect terms of order " or
higher, i.e. we retain the finite part and the eventual poles.

Defining the gravitational field variable
h�� � ffiffiffiffiffiffiffi�g

p
g�� � ���,7 and adopting the harmonic co-

ordinate condition @�h
�� ¼ 0, we can write the ‘‘relaxed’’

Einstein field equations in the form of ordinary d’Alembert
equations, namely,

hh�� ¼ 16�GðdÞ

c4
jgjT�� þ���½h; @h; @2h�; (3.2)

where h � ���@�@� is the flat-space-time d’Alembertian

operator in D space-time dimensions. The gravitational
source term ��� in (3.2) is a functional of h�� and its first
and second space-time derivatives, and reads as

��� ¼�h��@�@�h
��þ@�h

��@�h
��

þ 1

2
g��g��@	h

�
@
h
�	�g��g�
@	h

�
@�h
�	

�g��g�
@	h
�
@�h

�	þg��g
	
@	h

��@
h
��

þ 1

4
ð2g��g���g��g��Þ

�
g	
g��� 1

d� 1
g
�g	�

�

�@�h
	�@�h


�: (3.3)

Note the explicit dependence on the space dimension d of

this expression. The matter stress-energy tensor T�� will
be composed of Dirac delta functions in d dimensions, say

�ðdÞ½x� ya�, where x is the field point and ya are the
source points labeled by a. Finally the d-dimensional

gravitational constant GðdÞ is related to the usual Newton
constant G by

GðdÞ ¼ G‘"0 ; (3.4)

where ‘0 denotes the characteristic length associated with
dimensional regularization. We shall check in Sec. IV that
this length scale never appears in the final three-
dimensional result.

A. Post-Newtonian metric in d dimensions

The 3PN metric is given in expanded form for general
matter sources in terms of some ‘‘elementary’’ retarded
potentials (sometimes called near-zone potentials) V, Vi,

K, Ŵij, R̂i, X̂, Ẑij, Ŷi and T̂, which were introduced in

Ref. [28] for three dimensions [see Eqs. (3.24) there] and
generalized to d dimensions in Ref. [29]. All these poten-
tials have a finite nonzero post-Newtonian limit when c !
þ1 and parameterize the successive PN approximations.
Although this decomposition in terms of near-zone poten-
tials is convenient, such potentials have no physical mean-
ing by themselves. Let us first define the combination

V � V � 2

c2

�
d� 3

d� 2

�
K þ 4X̂

c4
þ 16T̂

c6
: (3.5)

Then the 3PN metric components can be written in the
rather compact form [29]8

gPN00 ¼�e�2V =c2
�
1� 8ViVi

c6
� 32R̂iVi

c8

�
þOðc�10Þ; (3.6a)

gPN0i ¼�e�ððd�3ÞV Þ=ððd�2Þc2Þ
�
4Vi

c3

�
1þ 1

2

�
d� 1

d� 2

V

c2

�
2
�

þ 8R̂i

c5
þ 16

c7

�
Ŷi þ 1

2
ŴijVj

��
þOðc�9Þ; (3.6b)

gPNij ¼ eð2V Þ=ððd�2Þc2Þ
�
�ij þ 4

c4
Ŵij þ 16

c6

�
Ẑij �ViVj

þ 1

2ðd� 2Þ�ijVkVk

��
þOðc�8Þ: (3.6c)

The successive PN truncations of the field Eqs. (3.2) and
(3.3) give us the equations satisfied by all the above poten-
tials up to 3PN order. We conveniently define from the
components of the matter stress-energy tensor T�� the
following density, current density, and stress density

6Accordingly, the Oðy5Þ symbol for remainders in Eq. (2.17)
and similar equations below should rather be understood as the
Landau oðy4Þ symbol.

7Here g�� is the contravariant metric, inverse of the covariant
metric g�� of determinant g ¼ detðg��Þ, and ��� ¼
diagð�1; 1; 1; 1Þ represents an auxiliary Minkowski metric in
Cartesian coordinates.

8This particular exponentiated form is to be consistently
reexpanded at 3PN order.
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 � 2

d� 1

ðd� 2ÞT00 þ Tii

c2
; (3.7a)


i � T0i

c
; (3.7b)


ij � Tij; (3.7c)

where Tii � �ijT
ij. The leading-order potentials in the

metric obey

hV ¼ �4�GðdÞ
; (3.8a)

hVi ¼ �4�GðdÞ
i; (3.8b)

hK ¼ �4�GðdÞ
V; (3.8c)

hŴij ¼ �4�GðdÞ
�

ij � �ij


kk

d� 2

�
� 1

2

�
d� 1

d� 2

�
@iV@jV:

(3.8d)

These potentials evidently include many PN corrections.
The potentials V and Vi have a compact support (i.e. their
source is localized on the isolated matter system) and will
admit a finite limit when " ! 0 without any pole. With the
exception of the potential K which has also a compact
support,9 all other potentials have, in addition to a
compact-support part, a non-compact-support contribu-
tion, such as that generated by the term / @iV@jV in the

source of Ŵij. This is the non-compact-support piece

which is the most delicate to compute because it typically
generates some poles / 1=" at the 3PN order. The
d’Alembert equations satisfied by all higher-order PN po-
tentials, whose sources are made of nonlinear combina-
tions of lower-order potentials, are reported here for
completeness:

hR̂i¼�4�GðdÞ

d�2

�
5�d

2
V
i�d�1

2
Vi


�
�d�1

d�2
@kV@iVk� dðd�1Þ

4ðd�2Þ2@tV@iV; (3.9a)

hX̂¼�4�GðdÞ
�
V
ii

d�2
þ2

�
d�3

d�1

�

iViþ

�
d�3

d�2

�
2



�
V2

2
þK

��
þŴij@ijVþ2Vi@t@iVþ1

2

�
d�1

d�2

�
V@2t V

þ dðd�1Þ
4ðd�2Þ2 ð@tVÞ

2�2@iVj@jVi; (3.9b)

hẐij¼�4�GðdÞ

d�2
V

�

ij��ij


kk

d�2

�
�d�1

d�2
@tVði@jÞVþ@iVk@jVkþ@kVi@kVj�2@kVði@jÞVk

� �ij

d�2
@kVmð@kVm�@mVkÞ� dðd�1Þ

8ðd�2Þ3�ijð@tVÞ2þðd�1Þðd�3Þ
2ðd�2Þ2 @ðiV@jÞK; (3.9c)

hŶi¼�4�GðdÞ
�
�1

2

�
d�1

d�2

�

R̂i�ð5�dÞðd�1Þ

4ðd�2Þ2 
VViþ1

2

kŴikþ1

2

ikVkþ 1

2ðd�2Þ
kkVi

� d�3

ðd�2Þ2
i

�
V2þ5�d

2
K

��
þŴkl@klVi�1

2

�
d�1

d�2

�
@tŴik@kVþ@iŴkl@kVl�@kŴil@lVk

�d�1

d�2
@kV@iR̂k� dðd�1Þ

4ðd�2Þ2Vk@iV@kV�dðd�1Þ2
8ðd�2Þ3V@tV@iV�1

2

�
d�1

d�2

�
2
V@kV@kVi

þ1

2

�
d�1

d�2

�
V@2t Viþ2Vk@k@tViþðd�1Þðd�3Þ

ðd�2Þ2 @kK@iVkþdðd�1Þðd�3Þ
4ðd�2Þ3 ð@tV@iKþ@iV@tKÞ; (3.9d)

hT̂¼�4�GðdÞ
�

1

2ðd�1Þ
ijŴijþ 5�d

4ðd�2Þ2V
2
iiþ 1

d�2

ViVi�1

2

�
d�3

d�2

�

X̂� 1

12

�
d�3

d�2

�
3

V3�1

2

�
d�3

d�2

�
3

VK

þ ð5�dÞðd�3Þ
2ðd�1Þðd�2Þ
iViVþd�3

d�1

iR̂i� d�3

2ðd�2Þ2
iiK

�
þ Ẑij@ijVþ R̂i@t@iV�2@iVj@jR̂i�@iVj@tŴij

þ1

2

�
d�1

d�2

�
VVi@t@iVþd�1

d�2
Vi@jVi@jVþ dðd�1Þ

4ðd�2Þ2Vi@tV@iVþ1

8

�
d�1

d�2

�
2
V2@2t Vþdðd�1Þ2

8ðd�2Þ3Vð@tVÞ
2�1

2
ð@tViÞ2

�ðd�1Þðd�3Þ
4ðd�2Þ2 V@2t K�dðd�1Þðd�3Þ

4ðd�2Þ3 @tV@tK�ðd�1Þðd�3Þ
4ðd�2Þ2 K@2t V�d�3

d�2
Vi@t@iK�1

2

�
d�3

d�2

�
Ŵij@ijK:

(3.9e)

9Actually the compact-support potential K does not contribute to the present calculation. Indeed, it will always be multiplied by a
factor " ¼ d� 3, and being compact does not generate any pole; so it does not exist in three dimensions.
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Many of the latter potentials have already been com-
puted for compact binary systems, and we shall extensively
use these results from [28,29]. Notably, all the compact-
support potentials such as V and Vi, and all the compact-
support parts of other potentials, have been computed for
any field point x, and then at the source point y1 following
the regularization. However, the most difficult non-

compact support potentials such as X̂ and T̂ could not be
computed at any field point x, and were regularized di-
rectly on the particle’s worldline. Since for the equations of
motion we needed only the gradients of these potentials,
only the gradients were regularized on the particle, yield-

ing the results for ð@iX̂Þðy1Þ and ð@iT̂Þðy1Þ needed in the
equations of motion. However, the 3PN metric requires the
values of the potentials themselves regularized on the

particles, i.e. X̂ðy1Þ and T̂ðy1Þ. For the present work we
have therefore to compute, using the tools developed in

[28,29], the difficult nonlinear potentials X̂ðy1Þ and T̂ðy1Þ,
and especially the non-compact support parts therein.

Unfortunately, the potential X̂ is always the most tricky
to compute, because its source involves the cubically non-

linear and non-compact support term Ŵij@ijV, and it has to

be evaluated at relative 1PN order.
In this calculation we also meet a new difficulty with

respect to the computation of the 3PN equations of motion.

Indeed, we find that the potential X̂ is divergent because of
the bound of the Poisson-like integral at infinity.10 Thus,

the potential X̂ develops an IR divergence, in addition to
the UV divergence due to the singular nature of the source
and which is cured by dimensional regularization. The IR
divergence is a particular case of the well-known diver-
gence of Poisson integrals in the PN expansion for general
(regular) sources, linked to the fact that the PN expansion
is a singular perturbation expansion, with coefficients typi-
cally blowing up at spatial infinity. The IR divergence will
be treated in Sec. III B 2.

The 3PN metric (3.6) is valid for a general isolated
matter system, and we apply it to the case of a system of
N point-particles with ‘‘Schwarzschild’’ masses ma and
without spins (here a ¼ 1; � � � ; N). In this case we have


ðx; tÞ ¼ X
a

~�a�
ðdÞ½x� yaðtÞ�; (3.10a)


iðx; tÞ ¼
X
a

�av
i
a�

ðdÞ½x� yaðtÞ�; (3.10b)


ijðx; tÞ ¼
X
a

�av
i
av

j
a�ðdÞ½x� yaðtÞ�; (3.10c)

where �ðdÞ denotes the Dirac density in d spatial dimen-

sions such that
R
ddx�ðdÞðxÞ ¼ 1. We defined the effective

time-varying masses of the particles by

�aðtÞ ¼ maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgg��Þðya; tÞv�

av
�
a =c2

q ; (3.11)

together with ~�a ¼ 2
d�1 ½d� 2þ v2a=c

2��a.

B. Dimensional regularization of Poisson integrals

In the PN approximation we break the hyperbolic
d’Alembertian operator h in Eqs. (3.8) and (3.9) into the
elliptic Laplacian operator � and the small PN retardation
term c�2@2t , which is put in the RHS of the equation and
iterated. Neglecting the radiation-reaction effects, this
means that we solve the d’Alembert equations by means
of the symmetric Green function

h�1
sym ¼ ��1 þ 1

c2
��2@2t þOðc�4Þ: (3.12)

We consider only the 1PN retardation because the poten-

tials X̂ and T̂ which are the only ones to be computed are to
be evaluated at 1PN order at most. We are thus led to define
the dimensional regularization of Poisson or twice-iterated
Poisson integrals.
Let FðxÞ be the generic form of the functions represent-

ing the PN potentials in d dimensions. For simplicity we
shall treat only the case of the non-compact support terms.
Compact support potentials or compact part of potentials,

such as V or the first term in the source of Ŵij do not

generate poles in d dimensions and were dealt with in
Ref. [29]. Also, we consider only Poisson integrals and
refer to [29] for the procedure for iterated Poisson inte-
grals. So we want to compute a typical Poisson potential

Pðx0Þ ¼ ��1½FðxÞ� � � k

4�

Z
ddx

FðxÞ
jx� x0jd�2

: (3.13)

We employ the Green function u ¼ kjxj2�d of the Laplace

operator in d dimensions, satisfying �u ¼ �4��ðdÞðxÞ,
where

k � �ðd�2
2 Þ

�ðd�2Þ=2 (3.14)

is defined from the standard Eulerian gamma function.11

Furthermore, we want to evaluate the Poisson integral
Pðx0Þ on one of the singular points, say x0 ¼ ya. As we
shall see the Poisson potential we have to deal with will not
only be divergent on the singularities but also at infinity,
i.e. when the source point r � jxj ! þ1. To delineate
these problems we introduce a constant radiusR> 0, and
split the Poisson potential into a near-zone integral corre-
sponding to r <R, and a far-zone one such that r >R:

Pðx0Þ ¼ P<ðx0Þ þ P>ðx0Þ: (3.15)

The near-zone integral P< will contain the local or ultra-

10However, the other potential T̂, which is merely Newtonian,
is convergent at infinity.

11The constant k tends to 1 when d ! 3, and was formerly
denoted ~k in Ref. [29].
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violet (UV) singularities, due to the singular nature of the
point-mass source, while the far-zone integral P> will have
an infrared (IR) divergence at infinity, which is actually a
general feature of the PN expansion for any post-
Newtonian source.

1. UV divergence

The UV divergences will be dealt with using dimen-
sional regularization. Non-compact support terms are gen-
erated by a generic function FðxÞ which extends to all
space. For all needed cases we can assume that F is smooth
everywhere except at the singular points ya, around which
it admits a singular expansion in powers of ra � jx� yaj
when ra ! 0, of the type

FðxÞ ¼ XP
p¼p0

Xq1
q¼q0

rpþq"
a afp;qðnaÞ þ oðrPa Þ; (3.16)

for any P 2 N. The coefficients afp;qðnaÞ are functions of
the unit direction na ¼ ðx� yaÞ=ra, and depend on the
dimension through " ¼ d� 3, and also on the DR length
scale ‘0.

12 The powers of ra are of the type pþ q", where
p and q are relative integers (p, q 2 Z) with values limited
as indicated. The singular expansion (3.16) will yield some
UV-type divergence of the Poisson potential (3.13).
Relying on analytic continuation, we can evaluate F at
the location of particle a simply by taking the limit x !
ya. Indeed, we can check that the dimension d can always
be chosen such that F is nonsingular in this limit. Thus,

FðyaÞ ¼ AC½ lim
x!ya

FðxÞ�; (3.17)

and we may then consider the expansion when " ! 0.
From now on the analytic continuation process will be
implicitly assumed without indication.

The near-zone part of the Poisson integral of the generic
function F outside the singularities is defined by

P<ðx0Þ ¼ � k

4�

Z
r<R

ddx
FðxÞ

jx� x0jd�2
; (3.18)

in which the upper bound of the integral is set at the
intermediate radius R. The singular behavior of this in-
tegral at the source points, i.e. when x ¼ ya, is automati-
cally taken care of by dimensional continuation down to
d ¼ 3. Next we evaluate the integral at the singular point
x0 ¼ ya itself. The result is easy in DR,

13 as we are allowed
to simply replace x0 by ya into (3.18). Thus,

P<ðyaÞ ¼ � k

4�

Z
r<R

ddx
FðxÞ
rd�2
a

; (3.19)

which is the main result of DR, as applied to UV
divergences.
In practical calculations we are interested in the three-

dimensional limit, so we perform the Laurent expansion of
the previous result when " ¼ d� 3 ! 0. As we know
from previous work [29], the expression (3.19) is finite
for any of the noncompact potentials up to 2.5PN order, but
will develop a simple pole / 1=" at the 3PN order. The
poles correspond to the occurrence of logarithmic diver-
gences in the three-dimensional calculation [28], and are in
fact associated with our particular coordinate choice.
Indeed, similar calculations performed at the 3PN level
in Arnowitt-Deser-Misner-like coordinates within DR are
pole-free [30]. The information we shall need is the pole
part followed by the associated finite part when " ! 0; we
shall usually leave aside the remainder term Oð"Þ.14 We
thus consider the expansion

P<ðyaÞ ¼ 1

"
Pð�1Þ
< ðyaÞ þ Pð0Þ

< ðyaÞ þOð"Þ; (3.20)

and we look for the pole part Pð�1Þ
< ðyaÞ and finite part

Pð0Þ
< ðyaÞ coefficients. Beware that our terminology is

slightly misleading, because we shall conveniently include

in the pole part Pð�1Þ
< ðyaÞ some dependence in ", which will

of course be thought as being expanded when " ! 0 up to
first order in ", therefore yielding a finite contribution

Oð"0Þ to be added to the finite part Pð0Þ
< ðyaÞ. Combining

previous results in Sec. IVof [29], we find that the pole part
is explicitly given by

Pð�1Þ
< ðyaÞ ¼ � 1

1þ "

Xq1
q¼q0

�
1

q
haf�2;qi

þ 1

qþ 1

X
b�a

Xþ1

‘¼0

ð�Þ‘
‘!

@i1���i‘

�
1

r1þ"
ab

�

�hni1���i‘b bf�ð‘þ3Þ;qi
�
: (3.21)

The first term is the contribution of the singularity a which
is clearly singled out, while the second term comes from all
the other singularities b � a. The bracket notation in
(3.21) refers to the angular average performed in d dimen-
sions, i.e.

hafp;qi �
Z d�d�1ðnaÞ

�d�1
afp;qðnaÞ; (3.22)

where the volume�d�1 of the (d� 1)-dimensional sphere
is given by

12More precisely, the coefficients depend on ‘0 as afp;q / ‘�q"
0 ,

as can be seen from the expansion (3.16).
13This is in contrast with the difficult formulation necessary in
Hadamard’s regularization; see Refs. [28,29].

14Although those remainders Oð"Þ present in Newtonian terms
will be kept because they might get multiplied by some poles
"�1 at the 3PN order, therefore yielding finite contributions at
3PN order.
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�d�1 ¼ 2�d=2

�ðd2Þ
¼ 4�

kðd� 2Þ : (3.23)

We observe that the pole part (3.21) depends on the behav-
ior of the function F only for x in a neighborhood of the
singularities, through the singular expansion coefficients

afp;q with p 
 �2. The result for the pole part heavily

relies on DR, and depends on the DR scale ‘0 introduced in
(3.4). However, as it is ‘‘localized’’ on the singularities, the
pole part is independent of the radius R.

On the contrary, the finite-part coefficient Pð0Þ
< ðyaÞ de-

pends on all the ‘‘bulk’’ of the integration outside the
particle’s worldlines and, in particular, on the radius R.
This finite part essentially corresponds to what we would
naively compute in three dimensions, i.e. by simply replac-
ing d ¼ 3 into (3.19); the result, however, would be ill-
defined as it stands. In DR the finite-part coefficient in
(3.20) has a precise meaning, and we find that it agrees with
the so-called Hadamard partie finie integral [40,41]

Pð0Þ
< ðyaÞ ¼ � 1

4�
Pf‘0

Z
r<R

d3x
Fð0ÞðxÞ
ra

; (3.24)

where Fð0Þ is the function F computed with " ¼ 0. Here
‘‘Pf‘0’’ stands for the partie finie, which depends on the

arbitrary scale ‘0 playing here the role of the Hadamard
regularization scales. Thus, all the Hadamard regulariza-
tion scales, one for each particles (they were previously
denoted s1; � � � ; sN in [28]), are to be replaced by the
unique scale ‘0. For instance, in the equivalent representa-
tion of Hadamard’s partie finie as an analytic continuation,
making explicit the presence of those arbitrary constant
scales, we have

Pð0Þ
< ðyaÞ ¼ � 1

4�
FP

Z
r<R

d3x

�
r1
‘0

�
�1 � � �

�
rN
‘0

�
�N Fð0ÞðxÞ

ra
;

(3.25)

where the symbol FP is understood as the finite part of the
Laurent expansion of the integral when all of the �a’s tend
to zero. The Hadamard partie finie (3.24) or (3.25) is
extremely convenient to implement in practical
computations.

2. IR divergence

Next we have also to worry about the IR-type divergence
of the Poisson potential P, due to the behavior of the source
F at spatial infinity, when r ! þ1. Indeed, we find that

the near-zone potential X̂ we have to evaluate (and which is
to be computed at 1PN relative order) is given by an
iterated Poisson integral which is divergent at infinity.

The appearance of a divergent near-zone potential X̂ðyaÞ
is a novel feature of the present calculation; indeed the
problem did not arise in the previous computation of the
3PN equations of motion because we needed instead the

gradient ð@iX̂ÞðyaÞ, which is convergent.

Fortunately, the problem of IR divergences has been
solved in the general case, for any isolated PN source
and at any PN order. Here we shall follow the formalism
of Ref. [42], which uses systematically a regularized ver-
sion of the Poisson integral which is appropriate for solv-
ing the hierarchy of PN equations. The idea is to introduce
inside the Poisson integral a regularization factor ðr=r0ÞB,
where B is a complex number, and where r0 is an arbitrary
IR scale (as ‘0 is an arbitrary UV scale). The regularized
Poisson integral is then defined as the FP coefficient, i.e.
the coefficient of the zeroth power of B, in the Laurent
expansion of the integral when B ! 0. It was proved in
[42] that the latter regularized Poisson integral is a solution
of the Poisson equation for a general regular (smooth)
source, and is amenable to iteration up to any PN order.
In principle the latter procedure is defined in three

dimensions. However, since we are here solving the
d-dimensional field equations, we shall first define it in d
dimensions, so that the far-zone part of the Poisson poten-
tial reads

P>ðx0Þ ¼ � k

4�
FP

Z
r>R

ddx

�
r

r0

�
B FðxÞ
jx� x0jd�2

; (3.26)

where FP refers to the finite part when B ! 0. The precise
meaning of considering the FP process on a d-dimensional
integral has been discussed in [5].15 Here since we consider
only the far-zone part of the integral free of UV divergen-
ces, we can immediately take the limiting case " ¼ 0 and
get

Pð0Þ
> ðx0Þ ¼ � 1

4�
FP

Z
r>R

d3x

�
r

r0

�
B Fð0ÞðxÞ
jx� x0j : (3.27)

The result will depend both on the IR cutoff scale r0 and
intermediate radius R, but we shall check that these con-
stants disappear in the final results. At the point ya we have

Pð0Þ
> ðyaÞ ¼ � 1

4�
FP

Z
r>R

d3x

�
r

r0

�
B Fð0ÞðxÞ

ra
: (3.28)

Finally, the sum of the near-zone integral (3.25) and far-
zone one (3.28) gives our complete prescription for the
finite part of the dimensionally regularized Poisson integral
as

Pð0ÞðyaÞ ¼ � 1

4�
FP

Z
d3x

�
r

r0

�
B
�
r1
‘0

�
�1 � � �

�
rN
‘0

�
�N

� Fð0ÞðxÞ
ra

: (3.29)

We do not detail how this integral is computed in practice

15It could be possible to use dimensional regularization to cure
not only the UV divergences but also the IR ones (without the FP
when B ! 0). However this would imply major modifications of
the PN iteration scheme for a general source; this has not been
attempted.
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but refer to previous works [28] and, for the treatment of
the bound at infinity, Sec. IV C of [43]. We checked that the
sum of the resulting UV and IR-regularized Poisson inte-
gral is independent of the arbitrary constant length scale
R.

IV. POST-NEWTONIAN RESULTS

A. The regularized 3PN metric

The post-Newtonian metric is generated by a system of
two point particles, and computed at the location of the
particle 1 following the prescription (1.6). Here we shall
somewhat abusively simply denote this metric g��ðy1; tÞ,

or in short g��ðy1Þ, and similarly for other quantities

evaluated at the location of particle 1, so that

g��ðy1Þ � AC"!0½ lim
x!y1

gPN��ðx; tÞ�: (4.1)

We compute all the required near-zone potentials

V; Vi; � � � ; X̂; T̂ at point 1 (actually, only X̂ and T̂ are new
in the present computation with respect to Ref. [29]) and
regularize them according to the procedure of the previous
section. The regularized metric in harmonic coordinates is
now obtained in closed analytic form up to 3PN order as16

g00ðy1Þ ¼ �1þ 2Gm2

c2r12
þ Gm2

c4r12
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2 � ðn12v2Þ2 � 3
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���
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�ðn12v2Þ2 þ 2v2

2 � 2
Gm2

r12

��
þOðc�10Þ; (4.2a)

16The masses m1 and m2 have an arbitrary mass ratio. As usual we denote by r12 ¼ jy1 � y2j the relative distance between the two
particles in harmonic coordinates, by n12 ¼ ðy1 � y2Þ=r12 the direction from particle 2 to particle 1, and by v12 ¼ v1 � v2 the relative
velocity, where va ¼ dya=dt is the coordinate velocity of particle a. The Euclidean scalar product between two vectors A and B is
(AB). Parentheses around indices are used to indicate symmetrization, i.e. AðiBjÞ � 1

2 ðAiBj þ AjBiÞ.
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We indicate explicitly the post-Newtonian remainders
Oðc�nÞ. This metric agrees up to 2PN order with the
already known result obtained in [25], and recently used
in [24] for obtaining the self-force at 2PN order. Because of
the helical Killing symmetry we did not include here the
2.5PN radiation-reaction terms; these can be found in
Eqs. (7.6) of [25].

In some logarithmic terms at 3PN order ‘0 denotes the
arbitrary constant length scale associated with dimensional
regularization, which relates the d-dimensional gravita-

tional constant GðdÞ to the usual Newton constant G
through (3.4). This scale appears conjointly with the nu-
merical combination

p � ffiffiffiffiffiffiffi
4�

p
eC=2; (4.3)

where C ¼ 0:5772 � � � is the Euler-Mascheroni constant.17

Notice the important feature that the metric in harmonic
coordinates involves some poles / 1=" at the 3PN order in
the 00 and 0i components, where " is related to the spatial
dimension d by d � 3þ " (see Sec. III), and formally
tends to zero. The results presented in Eqs. (4.2a)–(4.2c)
include the pole part �"�1 and the complete finite part
�"0, and neglect the terms tending to zero when " ! 0;
for simplicity we do not indicate the remainders Oð"Þ.
However there is an exception to the above rule, in that

we have to reintroduce the correction terms Oð"Þ in the
Newtonian part of the metric. Indeed, when we shall reduce

17The number p appears in the expansion when " ! 0 of the
parameter k defined by Eq. (3.14) as k ¼ 1� " lnpþOð"2Þ.
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the metric to the center-of-mass frame and then to circular
orbits, these corrections will be multiplied by poles at 3PN
order, and will contribute in fine to the finite part at 3PN
order. Such corrections will be necessary only in the 00
component of the metric, where the three-dimensional
Newtonian potential at the location of the particle 1,
namely, VNðy1Þ ¼ Gm2=r12, is to be replaced by its
d-dimensional version18

VðdÞ
N ðy1Þ ¼ Gm2

r12

�
1þ "

�
1

2
� ln

�
r12p

‘0

���
: (4.4)

The poles / "�1 in the metric (4.2a)–(4.2c) could be
removed by a coordinate transformation and a suitable shift
of the two particle’s worldlines. This is discussed in
Appendix Awhere we compute the regularized 3PN metric
using the alternative Hadamard regularization. There we
show that, modulo some assumptions necessary to over-
come the known drawbacks of Hadamard’s regularization
(viz the presence of ambiguities at 3PN order), the regu-
larized metrics in the two regularization schemes are physi-
cally equivalent, in the sense that they differ by a
coordinate transformation plus the additional effect of
some shifts of the worldlines of the particles. In particular,
we find complete agreement with the shifts necessary to
link together the 3PN equations of motion computed in
Hadamard [28] and dimensional [29] regularizations.
However, for the present purpose it is better to leave as
they are the poles / "�1 in the metric (4.2a)–(4.2c), be-
cause we are going to compute a gauge invariant quantity,
and the poles will ultimately be automatically cancelled in
the final result.

Finally, we note that the metric depends also on the extra
arbitrary constant r0, present in some logarithmic terms of
the 00 component of the metric at 3PN order. This constant
comes from the IR regularization of the metric at spatial
infinity, as discussed in Sec. III B 2, and it shall also dis-
appear in the final gauge invariant result.

As an important check of the metric (4.2a)–(4.2c) we
have verified that it is invariant under a general Lorentz
boost, considered in a perturbative 3PN sense. The Lorentz
invariance permits checking most of the 2PN terms and
also the dynamical 3PN ones. The only terms which are not
checked by a 3PN Lorentz boost are the 3PN static ones—
those that do not depend on velocities.

B. The gauge invariant quantity uT

To compute the gauge invariant quantity uT (associated
with particle 1 for stationary, circular orbits), we adopt its
coordinate form as given by (1.3), namely,

ut ¼
�
�g��ðy1Þv

�
1v

�
1

c2

��1=2
; (4.5)

and plug into it the 3PN regularized metric explicitly
obtained in (4.2a)–(4.2c). To begin with, this yields the
expression of ut at 3PN order for an arbitrary mass ratio
q ¼ m1=m2, and for a generic noncircular orbit in a gen-
eral reference frame.
We then choose the frame of the CM, which is consis-

tently defined at the 3PN order by the nullity of the 3PN
center-of-mass integral of the motion deduced from the
3PN equations of motion [44]. We want to express the
individual positions ya � yCMa and velocities va � vCMa
(with a ¼ 1, 2 labelling the particles) relatively to the
center of mass in terms of the relative position y12 and
relative velocity v12. We know how to do this at 3PN order
in Hadamard regularization [45], and we know that the
particle’s trajectories in Hadamard regularization differ by
a shift of worldlines from those computed with dimen-
sional regularization [29]. So in order to get yCMa and vCMa
in dimensional regularization we apply directly the shift of
worldlines on the known expressions in Hadamard regu-
larization; this is detailed in Appendix B.
Having replaced the positions and velocities by their CM

expressions yCMa ½y12; v12� and vCMa ½y12; v12�, the quantity ut
becomes a functional of y12 and v12 which we now reduce
to the case of circular orbits. This means that ðn12v12Þ ¼ 0
exactly,19 and that the relative orbital velocity squared v2

12

takes a specific expression in terms of the relative separa-
tion r12 or, rather, in terms of the particular dimensionless
post-Newtonian parameter defined by

� � Gm

r12c
2
; (4.6)

where m ¼ m1 þm2 is the total mass of the binary.20 We
find in Appendix B that the required relation, valid in
dimensional regularization, is

v2
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�
�3 þOð�4Þ

�
;

(4.7)

where � � m1m2=m
2 is the symmetric mass ratio, related

to the asymmetric mass ratio q by � ¼ q=ð1þ qÞ2. From
now on we assume that m1 
 m2 to prepare the ground for

18TermsOð"2Þ are neglected. See (A17) and (A18) for the exact
expressions of the Newtonian potential and acceleration in d
dimensions.

19Consistently with the helical Killing symmetry we neglect
radiation-reaction effects.
20Recall that the orbital separation r12 is here defined in
harmonic coordinates, and differs from the Schwarzschild coor-
dinate distance r used in the SF calculation of Sec. II.
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the small mass ratio case m1 � m2 in which � ¼
qþOðq2Þ. Notice the presence of a pole / 1=" at the
3PN order in (4.7), and recall that ‘0 is the dimensional
regularization scale, and that p is defined by (4.3). Note
also that we have included the Oð"Þ correction in the
Newtonian approximation of the expression (4.7); this is
crucial because multiplying that Newtonian termOð"Þ by a
quantity having a pole at 3PN will yield a finite-part
contribution at 3PN order. The last step of the calculation
consists of replacing � by its expansion in powers of the
convenient alternative dimensionless gauge invariant PN
parameter x, directly related to the orbital frequency � �
v12=r12 by

x �
�
Gm�

c3

�
2=3

: (4.8)

To find � as a power series in x to 3PN order we invert (4.7)
and obtain

� ¼ x

�
1þ "

�
� 1

2
þ 1

3
ln

�
r12p

‘0

��
þ

�
1� �

3

�
x

þ
�
1� 65

12
�

�
x2 þ

�
1þ

�
� 251

72
� 41

192
�2 þ 11

3"

� 55

9
ln

�
r12p

‘0

��
�þ 229

36
�2 þ �3

81

�
x3 þOðx4Þ

�
: (4.9)

When finally replacing � by x we discover most satis-
factorily that all the poles / 1=" cancel out in the final
expression for ut, as well as the associated constant ‘0 (and
the pure number p). Furthermore, the IR constant r0 also
disappears from the result when parameterized by the
frequency-related parameter x. No matter what the mass
ratio, our final result for a 3PN, algebraic relationship
between uT (to which ut now evaluates) and x (or equiv-
alently �), is:

uT ¼ 1þ
�
3

4
þ 3

4
�� �

2

�
xþ

�
27

16
þ 27

16
�� 5

2
�

� 5

8
��þ �2

24

�
x2 þ

�
135

32
þ 135

32
�� 37

4
�� 67

16
��

þ 115

32
�2 þ 5

32
��2 þ �3

48

�
x3 þ

�
2835

256
þ 2835

256
�

�
�
2183

48
� 41

64
�2

�
��

�
12 199

384
� 41

64
�2

�
��

þ
�
17 201

576
� 41

192
�2

�
�2 þ 795

128
��2 � 2827

864
�3

þ 25

1728
��3 þ 35

10 368
�4

�
x4 þOðx5Þ; (4.10)

where we denote � � ðm2 �m1Þ=m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
, so that

the test-mass limit of particle 1 corresponds to � ! 0. The
expression (4.10) is a polynomial in x with coefficients
depending only on the symmetric mass ratio �; it is there-

fore clearly gauge invariant. While it has been shown in
[24] (see also Sec. I B above) that uT is gauge invariant at
any PN order, in the extreme mass ratio limit � � 1, here
we find that it is also gauge invariant for any mass ratio up
to 3PN order.21

V. COMPARISON OF POST-NEWTONIAN AND
SELF-FORCE RESULTS

We now reduce the 3PN expression (4.10) in the small
mass ratio regime q ¼ m1=m2 � 1. We express the result
in terms of the nonsymmetric PN parameter introduced in
(2.16), which is more suited than x to the small mass ratio
limit of particle 1, namely,

y �
�
Gm2�

c3

�
2=3 ¼ Gm2

R�c
2
: (5.1)

Using x ¼ yð1þ qÞ2=3 and � ¼ q=ð1þ qÞ2 we obtain, up
to say the quadratic order in q,

uT ¼ 1þ
�
3

2
� qþ q2

�
yþ

�
27

8
� 2qþ 3q2

�
y2

þ
�
135

16
� 5qþ 97

8
q2
�
y3 þ

�
2835

128
þ

�
� 121

3

þ 41

32
�2

�
qþ

�
725

12
� 41

64
�2

�
q2
�
y4 þOðq3; y5Þ:

(5.2)

This is to be compared with the result of SF calculations,
which take the general form

uT ¼ uTSchw þ quTSF þ q2uTPSF þOðq3Þ; (5.3)

with self-force and post-self-force coefficients uTSF and

uTPSF respectively. From (5.2) we thus recover the 3PN

expansion of the Schwarzschildean result, i.e.

uTSchw ¼ ð1� 3yÞ�1=2

¼ 1þ 3

2
yþ 27

8
y2 þ 135

16
y3 þ 2835

128
y4 þOðy5Þ:

(5.4)

Next, we obtain the self-force contribution uTSF up to 3PN

order as

uTSF ¼ �y� 2y2 � 5y3 þ
�
� 121

3
þ 41

32
�2

�
y4 þOðy5Þ:

(5.5)

The 2PN result is in agreement with (2.17) as it should. For
the much more difficult 3PN coefficient, whose value
depends on subtle issues regarding the self-field regulari-

21As a test of the initial expression of ut for a generic orbit in a
general frame (i.e. before going to the CM frame), we checked
that dut=dt ¼ 0 after reduction to circular orbits, as required by
the helical symmetry, i.e. neglecting the radiation-reaction.
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zation (see Sec. III), we thus find

C 3PN ¼ � 121

3
þ 41

32
�2: (5.6)

We get also the 3PN expansion of the post-self-force,
which could be compared with future SF analyses with
second-order black hole perturbations,22

uTPSF ¼ yþ 3y2 þ 97

8
y3 þ

�
725

12
� 41

64
�2

�
y4 þOðy5Þ;

(5.7)

as well as all higher post-self-force effects up to 3PN order.
Numerically, the 3PN coefficient in the self-force is

C3PN ¼ �27:6879 � � � . This shows a remarkable agree-
ment between the post-Newtonian prediction and the result
of the numerical SF calculation reported in (2.18), namely,
CSF3PN ¼ �27:677	 0:005. The two results are consistent at
the 2
 level with five significant digits. This agreement can
also be visualized in Fig. 2, where we show the SF con-
tribution uTSF to uT as a function of y�1, as well as the

successive Newtonian, 1PN, 2PN and 3PN approximations
to uTSF. Observe notably the nice convergence of the suc-

cessive PN approximations toward the exact SF result. The
3PN approximation is roughly 1% accurate up to y�1 ¼
10, and roughly 5% accurate up to y�1 ¼ 7, not very far
from the highly relativistic Schwarzschild innermost stable
circular orbit (ISCO) for which y�1

ISCO ¼ 6.23

This successful comparison between SF and PN calcu-
lations confirms the soundness of both approximations in
describing compact binary systems. In the post-Newtonian
calculation, this encompasses the post-Newtonian expan-
sion as applied to the binary equations of motion [28,47],
and includes the treatment of the issues associated with the
UV divergencies using dimensional regularization [29,30].
In addition, the IR divergences, too, in the PN calculation
(see Sec. III B 2) are seen to be correctly treated, since their
effects vanish in the final result (4.10). In the perturbative
self-force calculation embodied in (2.17) and (2.18), this
includes the delicate handling of gauge and the numeri-
cally taxing split of the metric near the particle into sin-
gular and regular pieces following the prescriptions in [13].
In this light, it would be interesting to address the opposite
question, namely, that of estimating the accuracy of the
black hole perturbation formalism by comparing several
truncated self-force series to the ‘‘exact’’ PN result in the
slow motion limit. This would require at least a second-
order perturbative SF calculation.

Our post-Newtonian calculation contains additional re-
sults which have not been used in this paper. For example,

it already contains some of these higher-order self-force
terms, as evidenced by (5.7). Similarly, our numerical self-
force calculation actually contains much more information
than is indicated by the numerical coefficient we give in
(2.18). This is most simply illustrated in Fig. 3, where we
show, over the large-R� range used for our numerical
fitting, the full 2PN and 3PN residuals, that is, the residuals
after the known 2PN and (now) 3PN terms have been
subtracted from our numerical data. In fact, we have
gone to considerable lengths to ensure that we would
have high quality numerical data to work with here. The
smooth curve of 3PN residuals, several orders of magni-

FIG. 2 (color online). The self-force contribution uTSF to uT

plotted as a function of the gauge invariant variable y�1. Note
that y�1 is equal to R�=m2, an invariant measure of the orbital
radius, scaled by the black hole mass m2 [cf. Eq. (2.16)]. The
exact numerical points are taken from Ref. [24].

FIG. 3 (color online). Numerically derived residuals, i.e. after
removal of the 2PN and 3PN self-force contributions to uTSF,
plotted as a function of the gauge invariant variable y�1.
Compare with scales in Fig. 2. Note that y�1 is equal to
R�=m2, an invariant measure of the orbital radius, scaled by
the black hole mass m2 [cf. Eq. (2.16)].

22Notice that uTSF < 0 and uTPSF > 0 (at least up to 3PN order).
The effect of the self-force is to reduce the value of uT , while the
post-self-force tends to increase it.
23See [46] for a recent calculation of the shift of the
Schwarzschild ISCO induced by the conservative part of the
self-force.
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tude below the 2PN curve, is a testament to this data quality
and represents the starting point for an investigation which
more adequately explains the appropriate higher-order PN
nature of our numerical data; especially the presence of
logarithmic terms in higher PN approximations. The press-
ing need for this explanation is strong motivation for
further work [37].
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APPENDIX A: RELATION TO HADAMARD
REGULARIZATION

As an important check of the DR calculation of uT , we
have also performed the complete calculation using the
alternative HR, in the variant proposed in [28] and called
the ‘‘extended Hadamard regularization.’’ The HR is es-
sentially based on the Hadamard partie finie integral (3.24).
Unfortunately we know that the HR, even in the extended
variant, is not entirely satisfying and cannot give a com-
pletely consistent picture at the 3PN order [28,47]. In
particular, it yields some ambiguities in the form of a small
number of arbitrary parameters which cannot be computed
within this regularization. However, the HR gives the
correct answer provided that the ambiguity parameters
are specified by some external arguments, or fixed by
comparison with some nonambiguous calculations. Then
it becomes a non trivial check to show that it is possible to
adjust a few HR ambiguity parameters so that the complete
result, which is generally made of many more terms, agrees
with the result of DR.

The ambiguity parameters in HR come from the un-
known relations between two sets of arbitrary length scales
denoted sa and r0a (where a labels the particles). Here the
scales sa are introduced into the Hadamard partie finie
[40,41] of Poisson integrals with singular sources, when
computed at any field point x0 different from the singular-
ities ya. The sa’s appear when the Poisson integrals de-
velop logarithmic divergences on the singular points (i.e.
when the source point x over which one integrates equals
ya). The other scales r

0
a come from the singular limit of the

Poisson potential when the field point x0 itself tends toward
the singularity ya; hence we have in fact r0a ¼ jx0 � yaj
which shows up in the form of some ‘‘constant’’ lnr0a which
is formally infinite. It was shown that the relation between

the scales sa and r0a must involve the masses ma (and m �P
bmb), and is necessarily of the type [28]

ln

�
r0a
sa

�
¼ �þ �

m

ma

: (A1)

Here � and � denote some purely numerical constants and
are called ambiguity parameters. After imposing the link
(A1) to get rid of the scales sa, it was shown that the
remaining scales r0a are gauge constants which can be
removed by a change of gauge.24 In the case of the 3PN
equations of motion (EOM), and for the extended variant
of HR, it was found that the correct values are [29]25

�EOM ¼ 159

308
and �EOM ¼ � 1987

3080
: (A2)

In the case of the 3PN mass quadrupole (MQ) moment
needed to compute the 3PN radiation field, the values using
the same extended HR turned out to be [4,43]26

�MQ ¼ � 9451

9240
and �MQ ¼ 0: (A3)

The fact that the MQ values are different from the EOM
values already shows that the HR is not satisfying: Two
different computations give inconsistent determinations of
the ambiguity parameters. For the present computation of
the quantity uT and comparison with SF calculations, we
have shown that the extended variant of HR reproduces
exactly the result of DR [i.e. (4.10) above] if and only if we
have the still different values

�SF ¼ � 65

154
and �SF ¼ 129

440
: (A4)

Although this result shows again that the Hadamard regu-
larization is not consistent at 3PN order, we argue that it
constitutes a powerful check of our calculation, because for
the complete agreement we have to adjust no more than
two unknown coefficients. In particular we find that the HR
constants r0a, which remain after imposing the relation
(A1), cancel out properly in the final result. The HR
calculation is also interesting because it corresponds to a
different harmonic coordinate system and a different defi-
nition of the particle’s worldlines. Since we have the
regularized 3PN metric in both HR and DR, we can now
study in detail their difference—adopting the values (A4)
in the HR scheme.
We shall find that the two metrics differ by an infinitesi-

mal 3PN coordinate transformation in the bulk, i.e. outside

24Hence the fact that lnr0a is actually ‘‘infinite’’ does not really
matter.
25More precisely, �EOM was determined by requiring that the
equations of motion should derive from a Lagrangian formula-
tion, but �EOM (which was denoted 
 in Refs. [28,29]) had to
wait until its value was fixed by DR.
26The coefficients �MQ and �MQ were, respectively, denoted �
and � in Refs. [4,43].
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the particle’s worldlines, and also by an intrinsic shift of
these worldlines. In particular we shall recover the total
shift obtained at the level of the equations of motion in
Ref. [29], but shall prove that this shift is made of the latter
intrinsic shift, plus the shift induced by the coordinate
transformation. Let the coordinate transformation between
the two metrics be �x� ¼ ��ðxÞ, where �0 ¼ Oðc�7Þ and
�i ¼ Oðc�6Þ as appropriate to 3PN order. The transforma-
tion of the bulk metric is (for simplicity we omit the PN
remainders)

��g00 ¼ �2@0�0 � �i@ig00 � �iðy1Þ @g00
@yi1

� �iðy2Þ @g00
@yi2

;

(A5a)

��g0i ¼ �2@ð0�iÞ; (A5b)

��gij ¼ �2@ði�jÞ: (A5c)

The terms involving partial derivatives with respect to the
source points ya take into account the shifts of the trajec-
tories �ðyaÞ through a modification of the source depen-
dence of the metric g��ðx; ya; vaÞ; we use the notation

ya � ðct; yaÞ and va � ðc; vaÞ. Since �� is of order 3PN,
the g00’s in the RHS of (A5a) are simply Newtonian. At the
point 1 we get27

��g00ðy1Þ ¼ �2@0�0ðy1Þ � �iðy1Þ @

@yi1
½g00ðy1Þ�

� �iðy2Þ @

@yi2
½g00ðy1Þ�; (A6a)

��g0iðy1Þ ¼ �2@ð0�iÞðy1Þ; (A6b)

��gijðy1Þ ¼ �2@ði�jÞðy1Þ: (A6c)

Now we have found that in order to relate the two metrics
one must additionally perform a shift �a of the particle’s
trajectories at the 3PN order, i.e. �a ¼ Oðc�6Þ. Such shift
will be ‘‘intrinsic’’ in the sense that it will not be induced
by any coordinate transformation of the bulk metric. It
yields the additional change of the metric components
evaluated at point y1:

��g00ðy1Þ ¼ ��i
1

@g00
@yi1

ðy1Þ � �i
2

@g00
@yi2

ðy1Þ; (A7)

while there is no change in the other components at that
order, i.e. ��g0iðy1Þ ¼ ��gijðy1Þ ¼ 0. Our final result is

that the two regularized metrics at point 1 are related
through

gDR��ðy1Þ ¼ gHR��ðy1Þ þ ��g��ðy1Þ þ ��g��ðy1Þ: (A8)

This relation is a functional equality relating the two metric

functionals at point 1, whose coordinates y�1 can be seen as
dummy variables.
An important check of our finding (A8) is that it contains

the previous result derived at the level of the 3PN equations
of motion (not considering the bulk metric), namely, that
the DR and HR equations of motion merely differ by some
shifts �a of the particle’s worldlines. This result estab-
lished the physical equivalence of HR and DR at the level
of the equations of motion [29]. Indeed, we discover that
the total shift found here, which is made up of the shift
�ðyaÞ induced by the coordinate transformation plus the
intrinsic shift �a, is precisely equal to the shift of the
worldlines of the particles found in [29]. Thus,

� a ¼ �ðyaÞ þ �a: (A9)

So we have proved that �a is partly intrinsic and partly
induced by a coordinate transformation of the bulk metric.
Since there is no physics involved in a coordinate trans-
formation, it can be argued that only the intrinsic part of the
shift �a corresponds to the physical process of renormal-
ization which was performed in [29].
We give now the explicit expressions. The coordinate

transformation at any field point x ¼ ðct;xÞ reads

�0ðxÞ ¼ 7

5

G3m1m
2
2

c7
@t

�
k

r1þ"
1

�
þ 12

5

G3m1m
2
2

c7
vi
12

� @i

�
k

r1þ"
1

�
1

"
� 2 ln

�
r02p
‘0

�
� 301

180

��

þ 1 $ 2þ f1ðtÞ; (A10a)

�iðxÞ ¼ 7

5

G3m1m
2
2

c6
@i

�
k

r1þ"
1

�
þ 1 $ 2: (A10b)

Be reminded that the DR-related quantites p, ‘0 and k are
defined by Eqs. (4.3), (3.4), and (3.14), respectively, while
r02 is an HR constant of particle 2. The symbol 1 $ 2
means adding the previous expression [i.e. excluding the
term f1ðtÞ in (A10a)], but with all particle labels exchanged
(thus r02 would be changed to r01). Note that r01 and r02 are
considered as true constants in (A10). The function f1ðtÞ is
given by

f1ðtÞ ¼ 91

15

G3m2
1m2

c7
kð1þ "Þ
r2þ"
12

ðn12v12Þ

�
�
1

"
� 2 ln

�
r01p
‘0

�
þ 1642

1365

�
: (A11)

Notice that because of the presence of f1ðtÞ in (A10a), the
time component of the gauge vector �0ðxÞ is not symmetric
by exchange 1 $ 2. This coordinate transformation satis-
fies the harmonic gauge condition h�� ¼ 0 in d dimen-
sions at the 3PN accuracy. We note also that the time
component �0 of the coordinate transformation has a pole
part / "�1, as well as a pole-independent part, but that the
space component �i is pole-free.

27Note that our too compact notation g00ðy1Þ stands in fact for
g00ðy1; ya; vaÞ; thus we have used the obvious relations
@½g00ðy1Þ�=@yi1 ¼ ð@ig00Þðy1Þ þ ð@g00=@yi1Þðy1Þ and
@½g00ðy1Þ�=@yi2 ¼ ð@g00=@yi2Þðy1Þ.
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Beware that strictly speaking (A10) is not the coordinate
transformation between the HR metric gHR��ðxÞ and the DR

metric gDR��ðxÞ in the bulk. It is solely the restriction ��ðy1Þ
of this gauge transformation at the location of particle 1
that correctly relates the two regularized metrics gHR��ðy1Þ
and gDR��ðy1Þ at that location. Indeed, if the gauge trans-

formation (A10) was to be valid in the bulk, it would
induce poles in the 00 and 0i components of gDR��ðxÞ. But
it was shown in [29], based on diagrammatic arguments,
that such poles, at 3PN order, can only be present in the 00
component gDR00 ðxÞ of the DR metric. However, the restric-

tion ��ðy1Þ at the location of particle 1 of the pole-free
gauge transformation in the bulk does generate poles in the
0i component of the DR metric at y1 [see Eq. (4.2b)].

The shift induced by this coordinate transformation is
pole-free, and we immediately get from (A10b) [up to a
correction Oð"Þ]

� ðyaÞ ¼ 7

5

G2m2
a

c6
aNa ; (A12)

where aNa is the d-dimensional Newtonian acceleration of
body a given by (A18) below. Because �ðyaÞ does not
contain any pole, we observe from (A6c) that the spatial
part of the regularized metric will be free of poles at 3PN
order as well [cf. Eq. (4.2c)]. Next we find that the addi-
tional shift �a does contain a pole, and explicitly reads

� a ¼ 11

3

G2m2
a

c6

�
1

"
� 2 ln

�
r0ap
‘0

�
� 183

308

�
aNa ; (A13)

so that the total shift as defined by (A9) is given by

� a ¼ 11

3

G2m2
a

c6

�
1

"
� 2 ln

�
r0ap
‘0

�
� 327

1540

�
aNa ; (A14)

in perfect agreement with the result of [29].
For completeness we now give the result for the differ-

ence between the two regularized metrics, �g��ðy1Þ �
gDR��ðy1Þ � gHR��ðy1Þ. Combining (A6)–(A8) with (A10)–

(A13) we get

�g00ðy1Þ ¼ G3m2
1m2

c8r312

�
2308

25
ðn12v1Þ2 � 4738

25
ðn12v1Þðn12v2Þ þ 444

5
ðn12v2Þ2 � 6014

225
v2
1 þ

12754

225
ðv1v2Þ � 1222

45
v2
2

þ
�
1

"
� 3 ln

�
r12p

‘0

�
þ 2 ln

�
r12
r01

���
182

5

�
ðn12v1Þ2 � 1

3
v2
1

�
� 292

5

�
ðn12v1Þðn12v2Þ � 1

3
ðv1v2Þ

�

þ 22

�
ðn12v2Þ2 � 1

3
v2
2

��
þ 22

3

Gm

r12

�
1717

330
þ 1

"
� 4 ln

�
r12p

‘0

�
þ 2 ln

�
r12
r01

���
� 22

3

G4m1m
3
2

c8r412

�
�
4293

1540
þ 1

"
� 4 ln

�
r12p

‘0

�
þ 2 ln

�
r12
r02

��
; (A15a)

�g0iðy1Þ ¼ G3m2
1m2

c7r312

�
61

25
ðn12v1Þni12 þ

149

25
ðn12v2Þni12 �

121

75
vi
1 �

89

75
vi
2 þ

12

5
½vi

12 � 3ðn12v12Þni12�

�
�
1

"
� 3 ln

�
r12p

‘0

�
þ 2 ln

�
r12
r01

���
; (A15b)

�gijðy1Þ ¼ 14

5

G3m2
1m2

c6r312
ð�ij � 3ni12n

j
12Þ: (A15c)

The end result for the Hadamard regularized 3PN metric,
gHR��ðy1Þ, then follows from combining the previous differ-
ence with the explicit expression (4.2a)–(4.2c) for the DR
metric. One can check while performing the sum that all
poles / 1=" and the associated ‘0-dependent logarithmic
terms cancel out, so that the HR result only depends on the
UV gauge constants r0a and also, of course, on the IR
regularization constant r0.

Note that the DR metric (A8) is really the metric expe-
rienced by the particle in d ¼ 3þ " dimensions. It is thus
very important to include in that metric all corrections of
order " which could yield finite contributions after multi-
plication by quantities involving poles. As already men-
tioned, for the problem of computing uT for circular orbits
we have to write the Newtonian part of the 00 component

of the metric as gDR00 ¼ �1þ 2VðdÞ
N =c2 þOðc�4Þ, where

the Newtonian potential satisfying the d-dimensional

Poisson equation �VðdÞ
N ¼ �4�GðdÞ
N with Newtonian

source density 
N ¼ 2ðd�2Þ
d�1

P
ama�

ðdÞ
a is given by

VðdÞ
N ðxÞ ¼ 2ðd� 2Þ

d� 1
k
X
a

GðdÞma

rd�2
a

; (A16)

with DR value at point a [see also (4.4)]

VðdÞ
N ðyaÞ ¼ 2ðd� 2Þ

d� 1
k
X
b�a

GðdÞmb

rd�2
ab

: (A17)

In the same vein the Newtonian acceleration in (A13) and
(A14) should read
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a N
a ¼ rVðdÞ

N ðyaÞ ¼ � 2ðd� 2Þ2
d� 1

k
X
b�a

GðdÞmb

rd�1
ab

nab: (A18)

APPENDIX B: CIRCULAR ORBITS IN d
DIMENSIONS

In this Appendix we describe our way to reduce a
general d-dimensional expression such as the regularized
metric (4.2a)–(4.2c)—valid for arbitrary binary orbits and
in a general frame (in harmonic coordinates)—to the
center-of-mass (CM) frame and then to circular orbits.
The relevant formulas to do so have been worked out at
3PN order within HR (see [8] for more details), and we
need here the corresponding formulas valid in DR.
Basically we shall rely on the HR results and apply to
them the known shifts of the particle’s worldlines to de-
duce the corresponding DR results.

The 3PN equations of motion of compact binaries using
HR turned out to depend on one, and only one, ambiguity
parameter called 
 (denoted �EOM in Appendix A) [28],
and to be physically equivalent to the DR equations of
motion if and only if 
 ¼ � 1987

3080 [29].
28 This means that the

difference between the DR and HR accelerations of body 1
(say) is exclusively due to a shift of the worldlines of the
particles ya ! ya þ �a through

a DR
1 ¼ aHR1 j
¼�ð1987=3080Þ þ ��a1: (B1)

The explicit 
-dependent expression of the 3PN-accurate
acceleration aHR1 can be found in Eq. (7.16) of [28]. The
effect of the shifts �a on the acceleration of body 1 is

��a1 ¼ €�1 � �i
12

@aN1
@yi1

þOðc�8Þ; (B2)

where �i
12 � �i

1 � �i
2, and the dot stands for a derivative

with respect to coordinate time t. The shift �a has been
given in (A14) above; recall the presence therein of a pole
/ "�1. To be consistent one needs to include in the
Newtonian acceleration aN1 the corrections of order ",
and the correct expression to do so is given by (A18).

By definition, the CM frame is such that the center-of-
mass position G vanishes. Within HR, we have GHR ¼ 0
when the individual positions of the particles ya are given
as some functionals of the relative position y12 and velocity
v12 according to ya ¼ yHRa ½y12; v12�. The explicit expres-
sion of the functionals yHRa ½y12; v12� up to 3PN order can be
found in Eqs. (3.6)–(3.7) of [45]. Similarly, within DR we
shall have GDR ¼ 0 when the individual positions of the
particles are related to the relative position and velocity
according to some new functional relations

y a ¼ yDRa ½y12; v12�; (B3)

which we want to determine. Now, by the effect of the
shifts of the worldlines the expression of the center-of-
mass position in DR will be different from that in HR, and
be given by GDR ¼ GHR þ ��G, where

��G ¼ �m1�1 �m2�2 þOðc�8Þ: (B4)

Therefore, we find that the DR functionals yDRa ½y12; v12� are
related to the HR functionals yHRa ½y12; v12� through
yDRa ¼ yHRa þ ��ya,

29 with the same shift for both particles

given by

��ya ¼ m1

m
�1 þm2

m
�2 þOðc�8Þ: (B5)

The DR expressions (B3) are thus easily determined from
the HR results.
Next, from the DR equations of motion (B1) and (B2) in

a general frame, we go to the CM frame by replacing the
individual positions and velocities by the relative ones
according to ya ¼ yDRa ½y12; v12� and also va ¼
_yDRa ½y12; v12�. Turning off the well-known 2.5PN
radiation-reaction terms, and restricting the result to circu-
lar orbits [thus ðy12v12Þ ¼ 0], we get the relative accelera-
tion of the binary within DR in the form aDR12 ¼ ��2y12,
where the orbital frequency � can then be computed
iteratively as an expansion in powers of the PN parameter
� � Gm=ðr12c2Þ, with r12 ¼ jy12j. To 3PN order we find

�2 ¼ Gm

r312

�
1þ "

�
3

2
� ln

�
r12p

‘0

��
þ ð�3þ �Þ�

þ
�
6þ 41

4
�þ �2

�
�2 þ

�
�10þ

�
� 2987

24
þ 41

64
�2

� 11

"
þ 44 ln

�
r12p

‘0

��
�þ 19

2
�2 þ �3

�
�3 þOðc�8Þ

�
:

(B6)

As in the Hadamard case, we invert this relation to express
� as a PN series in powers of the gauge invariant parameter

x � ðGm�=c3Þ2=3, with result

�¼ x

�
1þ "

�
�1

2
þ 1

3
ln

�
r12p

‘0

��
þ

�
1� �

3

�
x

þ
�
1� 65

12
�

�
x2 þ

�
1þ

�
�251

72
� 41

192
�2 þ 11

3"

� 55

9
ln

�
r12p

‘0

��
�þ 229

36
�2 þ �3

81

�
x3 þOðc�8Þ

�
: (B7)

Equations (B6) and (B7) are the DR equivalent of
Eqs. (188) and (191) in [8], which are valid in the coor-
dinate system used in the HR case. Of course the results
coincide up to 2PN order as they should. Notice however

28This result is equivalent to the one of Ref. [30]; see also
[48,49] for an alternative, ambiguity-free derivation of the 3PN
equations of motion.

29Note that we mean by this a functional equality, valid for any
dummy variables y12 and v12.
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that we kept the terms proportional to " in the Newtonian
terms of (B6) and (B7), because in the process of comput-
ing uT the Newtonian terms will get multiplied by some
poles "�1 occurring at 3PN order, and these corrections
will contribute to the final result. We are done for the
results necessary for the computation of uT for circular
orbits as reported in Sec. IV.

As a useful check, we compute the total energy of the
binary for circular orbits within DR, making use of
Eqs. (B5)–(B7). For a generic orbit and in a general frame,
the DR energy functional is related to the HR one through
EDR ¼ EHR þ ��E. The effect of the shifts �a on the

energy explicitly reads

��E ¼ �m1v
i
1
_�i
1 �m2v

i
2
_�i
2 þ �i

12

@UðdÞ
N

@yi12
þOðc�8Þ;

(B8)

where the Newtonian gravitational potential energy in d
dimensions is

UðdÞ
N ¼ 2ðd� 2Þ

d� 1
k
GðdÞm1m2

rd�2
12

: (B9)

At this stage, we use the expression of the total energy EHR

as computed within HR, and given, e.g. by Eq. (170) of [8],
and add to it the term ��E defined by (B8) and (B9). Our

first check is that this 3PN-accurate energy EDR for a
generic orbit in a general frame within DR is conserved,

i.e. _EDR ¼ 0 when neglecting the 2.5PN radiation-reaction
terms. This requires consistently order reducing the result,
i.e. replacing the accelerations in the time derivative of
EDR using the DR equations of motion (B1) and (B2).
Now, we obtain the expression EDR in the center-of-

mass frame by replacing the individual positions and ve-
locities by their expressions yDRa ½y12; v12� and _yDRa ½y12; v12�.
Restricting ourselves to circular orbits, the resulting CM
energy depends only on v2

12 ¼ r212�
2 and �. Then we

replace v2
12 by its PN expansion in powers of � using

(B6), and finally replace � by its PN expansion (B7) in
powers of x. We find that all poles / "�1 disappear in the
process; therefore we can take the limit " ! 0, and get the
gauge invariant expression

EDR ¼ �m�c2

2
x

�
1þ

�
� 3

4
� �

12

�
x

þ
�
� 27

8
þ 19

8
�� �2

24

�
x2

þ
�
� 675

64
þ

�
34 445

576
� 205

96
�2

�
�

� 155

96
�2 � 35

5184
�3

�
x3 þOðc�8Þ

�
; (B10)

which coincides with the well-known 3PN expression of
the total energy for circular orbits as given, e.g. by
Eq. (192) of [8].
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