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We develop a theoretical framework for describing the hierarchical structure of the phase space of cold

dark matter haloes, due to gravitationally bound substructures. Because it includes the full hierarchy of the

cold dark matter initial conditions and is hence complementary to the halo model, the stable clustering

hypothesis is applied for the first time here to the small-scale phase-space structure. As an application, we

show that the particle dark matter annihilation signal could be up to 2 orders of magnitude larger than that

of the smooth halo within the Galactic virial radius. The local boost is inversely proportional to the smooth

halo density, and thus is Oð1Þ within the solar radius, which could translate into interesting signatures for

dark matter direct detection experiments: The temporal correlation of dark matter detection can change by

a factor of 2 in the span of 10 years, while there will be significant correlations in the velocity space of

dark matter particles. This can introduce Oð1Þ uncertainty in the direction of local dark matter wind,

which was believed to be a benchmark of directional dark matter searches or the annual modulation signal.

DOI: 10.1103/PhysRevD.81.101301 PACS numbers: 95.35.+d, 98.35.Gi, 98.62.Gq

Among the favorite dark matter candidates are the
weakly interacting massive particles (WIMP), yet to be
detected in particle accelerators. Different experiments
look for a signature of WIMPs directly as they pass through
Earth and recoil off the atomic nuclei in laboratory detec-
tors, or indirectly through the by-products of their self-
annihilation into standard model particles (such as pho-
tons, electron/positron pairs, or neutrinos). The cross sec-
tion for the (s-wave) self-annihilation is also fixed by the
relic abundance: h�annvi � 10�31–10�26 cm3=s.
Therefore, one would expect an astrophysical luminosity
of

dLi

dEi

¼ h�annviEi

2m2
�

dBi

dEi

�; � �
Z

�2ðxÞd3x; (1)

where m� is the WIMP mass, Ei is the energy of the by-

products, dBi=dEi is the differential branching ratio into i
( ¼ �, eþe�, or � ��) particles, and� is fixed by the spatial
density distribution of dark matter within the emitting
region.

All the factors in (1), except for �, are fixed by the
particle physics model (e.g. [1]). Unfortunately, the gravi-
tational potential of dark matter haloes, which is con-
strained by astronomical observations, says little about
the contribution of small-scale structure to �. The cold
dark matter (CDM) primordial power spectrum predicts a
large range of mass scales, from 1012M�–1014M� down to
10�12M�–10�4M� [2], far below the resolution limit of the
present-day simulations at z ¼ 0, which is at best 104M�
(but see [3], which claims a much larger minimummass for

the CDM hierarchy). In fact, simulations already see a
nearly constant contribution to � per decade in substruc-
ture mass [4,5], suggesting a significant contribution from
unresolved structures.
Extrapolation of the simulated properties of the subha-

loes to below the resolution limit, as well as assumptions
about the spatial/mass dependence of the boost due to
substructure (e.g. [6–8]) could lead to significant over/
underestimations (especially for a non-scale-invariant lin-
ear power spectrum such as CDM). Similarly, the assump-
tion of Maxwell-Boltzmann velocity distribution in direct
detection experiments of dark matter particles could miss
important phenomenological signatures of clustering in the
phase space.
In a previous paper [9], we studied the phase-space

properties of gravitationally unbound substructure, such
as tidal streams and caustics (also, see [10,11]). In this
paper, we use the stable clustering hypothesis in order to
predict the clustering of gravitationally bound dark matter
substructure in the phase space, and consider the implica-
tions for indirect and direct dark matter searches. The
stable clustering hypothesis was first introduced by Davis
and Peebles [12] as an analytic technique to study the
galaxy correlation function in the deeply nonlinear regime,
and was subsequently applied into fitting formulas for
nonlinear correlation functions (e.g. [13–15]). The hy-
pothesis assumes that the number of neighbors within a
fixed physical separation becomes a constant (or pairwise
velocity vanishes) on small scales, when the nonlinear
structure formation is completed. However, it became clear
that this cannot be a good approximation on the scale of
virial radius of CDM haloes (� 1 Mpc today) as halo
mergers and the subsequent tidal disruption can dissolve*nafshordi@perimeterinstitute.ca
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the old structures into newly formed haloes (e.g. [16–18]).
Nevertheless, the alternative analytic framework, known as
the halo model, which has been extensively used in the
literature over the past decade, misses the small-scale
structure of the haloes (i.e. subhaloes, sub-subhaloes,
etc.) that do naturally form in hierarchical structure for-
mation, and are ubiquitous in high resolution N-body
simulations (e.g. [5]). As we mentioned before, integrating
this hierarchy into the halo model requires a host of as-
sumptions about the properties of subn-haloes (often far
below the resolution limit of simulations), which are hard
to justify independently.

In contrast, the merging and tidal activity should cease at
scales much smaller than the virial radius of CDM haloes,
suggesting that the stable clustering regime might be
achieved on small enough scales. In other words, while
subhaloes could lose a large fraction of their mass due to
tidal heating/stripping, a small fraction could remain grav-
itationally bound (e.g. [19]). The reason is that in a hier-
archical structure formation scenario, the mean/virial
density of haloes drops as 1=time2 (or the cosmic mean
density) as a result of major mergers, implying that the
gravitationally bound remnant will eventually become re-
silient to tidal disturbances.

The stable clustering hypothesis can be trivially ex-
tended to the phase space, where similar to the real space,
it would predict that the number of particles within the
physical velocity �v and physical distance �r of a given
particle does not changewith time for small enough�v and
�r. In order to justify the stable clustering formalism in
phase space, we start with the collisionless Boltzmann
equation at the phase-space coordinates, rþ �r, vþ �v,
i.e.

df

dt
ðrþ �r; vþ�v; tÞ ¼ @f

@t
þ @f

@r
� ðvþ�vÞ � @f

@v

� ð5�þ55� � �rÞ
¼ 0: (2)

The above equation in terms of the new function

~f ið�r;�vÞ � fðri þ �r; vi þ �vÞ (3)

for particle i can be rewritten as

df

dt
¼ @~fi

@t

���������r;�v
þ @~fi
@�r

� �v� @~fi
@�v

� ð5 5� ��rÞ ¼ 0;

(4)

where

@~fi
@t

���������r;�v
¼ @~fi

@t
þ v � @

~fi
@�r

�5� � @
~fi

@�v
: (5)

The stable clustering hypothesis assumes that the above
expression when averaged over the particles vanishes for

small �r and �v. If we assume that h~fi55�ip�

h~fiiph55�ip, then a solution to (4), averaged over parti-

cles, is

h~fip � 1

N

X
i

~fi ¼ F½�v2 þ �xj�xkh@j@k�ip�; (6)

which is the most general time-independent solution with
an isotropic velocity distribution, where F is an arbitrary
function, and N is the number of particles in the phase-
space volume of interest. We later show that averaging over
particles and volume averaging differ only by a constant.
Next, we use the approximation that the potential is spheri-
cally symmetric, and hence the above solution, using the
Poisson equation, can be rewritten as

h~fip ¼ ��s ¼ F½ð�vÞ2 þ 100Hð�sÞ2ð�rÞ2�; (7)

where �s is the phase-space density at the formation time
of the substructure, and we have used the fact that the post-
collapse halo density is roughly �200 times the critical
density at the formation time [20]. �� 1%–10% is the
mean fraction of bound particles that can survive the tidal
disruption period.
In order to find the function F, we use the spherical

collapse results

�s � 10Hð�sÞ
G2Mð�sÞ

; (8)

and also that the radius and velocity dispersion of haloes
are related by (e.g. [21]): �vir � 10Hrvir, where H is the
Hubble constant at the time of the halo’s collapse. Hence
(8) is roughly the phase-space density of haloes that col-
lapse at Hubble constant Hð�sÞ and mass Mð�sÞ. The
phase-space volume of the collapsed halo, i.e. the volume
of the constant-�s ellipsoid in (7), is M=�s, and using (8)
we have

�
	F�1ð��sÞ
10Hð�sÞ

�
3 ¼ ½GMð�sÞ�2

10Hð�sÞ : (9)

Furthermore, the mass scale that collapses at a given
cosmological epoch is characterized by

�
Hð�sÞ
H0

��2=3
�½Mð�sÞ� � 
c ’ 1:7; (10)

where 
c is the linear density threshold for the spherical
collapse, while �½M� is the rms top-hat linear overdensity
at the mass scale M, and H0 is the present-day Hubble
constant. We remark that the effect of dark energy will be a
constant factor that could be absorbed in the definition of
�, since most subhaloes have formed long before the era of
dark energy dominance.
Using the above results, the phase-space correlation

function takes the form
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hfðr1;v1Þfðr2;v2Þi’ 1

V6

Z
V6

d3rd3vfðr;vÞfðrþ�r;vþ�vÞ

¼ 1

V6

X
i

fðriþ�r;viþ�vÞ

¼ N

V6

h~fip (11)

’ hfðr1; v1Þihfðr2; v2Þi þ�hfð�r; �vÞi�sð�r;�vÞ; (12)

where we used the assumption of ergodicity to replace the
ensemble average h i by the volume average, in a given
volume of the phase space V6, while ð�r; �vÞ are the mean
values of ðr1; v1Þ and ðr2; v2Þ. The second term in Eq. (12)
dominates in the stable clustering regime, where j�vj ¼
jv1 � v2j � �vtid and j�rj ¼ jr1 � r2j � �rtid, and
�vtid and �rtid characterize the tidal truncation radius in
the phase space. On the other hand, the first term dominates
Eq. (12) for large separations in the phase space, where
particles are not correlated. In other words, Eq. (12) is an
interpolation between the stable clustering and the smooth
halo regimes.

The annihilation signal from the gravitationally bound
substructure is found by integrating (12) within the phase-
space stable clustering hypothesis:


�sub: ’
Z

d3x
Z

d3v1d
3v2hfðx; v1Þi��sð0; v1 � v2Þ

¼
Z

d3x�haloðxÞ
Z

d3�v ���sð0;�vÞ; (13)

yielding the local boost factor of

Bsub:ðxÞ � h
�haloðxÞ2i
h�haloðxÞi2

’ �

�haloðxÞ
Z

d3�v � �sð0;�vÞ

’ 8	1=2�

9
3
c

�
�haloðxÞ
200�crit;0

��1 Z Mmax

Mmin

M�2d½M2�3ðMÞ�;
(14)

where we have used the stable clustering framework de-
veloped in (7)–(10) to substitute for �s.

The asymptotic form of the CDM linear power spectrum
on small scales is (e.g. [22]) PðkÞ / kns�4ln2ðk=keqÞ, where
ns is the primordial adiabatic scalar index, and keq ’
0:56�mh

2 Mpc�1 is related to the comoving scale of the
horizon at matter-radiation equality. Using this asymptotic
form, we can find an analytic approximation for the boost
factor:

Bsub:ðxÞ ¼�

�
�haloðxÞ
200�crit;0

��1
�

�mh

0:27	 0:7

�ð3=2Þðneff;8þ3Þ��8

0:8

�
3

	
�
K

�
ln1=2

�
Meq

Mmin

��
�K

�
ln1=2

�
Meq

Mmax

���
; (15)

where Meq ¼ ð2:9	 1014M�Þð�mh
2Þ�2 is the mass asso-

ciated with the horizon scale at matter-radiation equality,

neff;8 ’ �1:68 is the logarithmic slope of the linear power

spectrum at �8h�1 Mpc, and

K½y� ’ 9

105

�
4y11

11
� y9

�
exp

�
1

2
ðy2 � 16Þðns � 1Þ

�
: (16)

This analytic approximation (15) is within 40% of the
exact integral in (14) for 10�15M� <M< 1010M� and
0:95< ns < 1:05 (where we compare with the fitting
form of [23] for the CDM power spectrum). For super-
symmetric dark matter models, the minimum CDM halo
mass can range from 10�12M�–10�4M�, yielding K ’ 105

within a factor of 3. Increasing this minimum mass range
by 5–7 orders of magnitude, as suggested by [3] based on
an extended Press-Schechter analysis, can decrease K (and
hence diminish the boost factor) by 50%–80%. While
significant, this will not qualitatively change our conclu-
sions below.
To calibrate the parameter �, we can compare our

results to numerical simulations. Matching the expected
boost per mass decade to that of ‘‘Via Lactea’’ mock Milky
Way simulation [4], which is around 0.1 for subhalo masses
107M� <Msub: < 1010M�, with their assumed cosmology,
yields � ’ 0:026, which is comparable to the fraction of
simulated halo mass found in (resolved) gravitationally
bound subhaloes (e.g. 5.3% in [4]).
Figure 1 compares the prediction for the annihilation

profile (solid curves) with numerical simulations of [5]
(dotted curves), which shows reasonable agreement. To

FIG. 1. The cumulative radial profile of DM annihilation: top
dotted curve shows the contribution from the mean profile, while
the lower dotted curves show the simulated contribution of
subhaloes more massive than 105;6;7;8M� [5]. The solid curves
show our analytic prediction, with the same cutoffs onMmin, and
a tidal cutoff at the high mass end. The dashed curve shows the
cumulative mass profile for comparison.
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do this, we have cut off the integral (14) at high masses by
requiring that the formation density of bound subhaloes
must be lower than the local halo density. The crudeness of
this criterion is most likely responsible for the sharp drop
in the signal at small radii, relative to the numerical results.
While one can improve the agreement by introducing a
smoother (but ad hoc) tidal cutoff, we note that (surviving)
subsolar mass subhaloes, which dominate the boost for
realistic WIMP models, are much less affected by the tidal
effects of the host halo (which was the motivation for the
stable clustering approximation). Therefore, we expect the
stable clustering predictions to be more robust for realistic
CDM haloes.

Figure 2 shows that the CDM hierarchy can not only
significantly boost the total annihilation signal from the
Milky Way (and dark matter haloes in general), they can
also affect the local density variance at the solar radius
(Bsub: � 2–6), which can have interesting implications for
direct dark matter detection searches. We can quantify the
latter through the temporal correlation of dark matter
detection signal DðtÞ, which traces the local density of
the dark matter halo at the solar system. For simplicity,
we will assume that the solar system is moving through the

CDM hierarchy at v ’ ffiffiffiffiffiffiffi
2:5

p 	 250 km=s (assuming a sin-
gular isothermal mean phase-space distribution). The two-
point correlation function ofDðtÞ simply measures the two-

point correlation of CDM density, by projecting (12) into
the real space, which is then modulated by the annual
motion of Earth around the Sun. This can be done through
a simple generalization of (14) to allow for finite separation
in real space, and is shown in Fig. 3 for three different
cutoffs of the CDM hierarchy, assuming �CDM ¼ 105�crit

FIG. 2. Boost to the dark matter annihilation signal due to
substructure with the formation mass larger than Mmin. The
lower solid curve is the local boost factor at solar radius
(assuming � ¼ 105�crit), while the upper solid curve shows the
mean boost estimated for the whole Milky Way halo (out to
16 times NFW scale radius [4]), where we have assumed ns ¼
0:96, �8 ¼ 0:82, �m ¼ 0:28, and h ¼ 0:7. The dotted curve is
our analytic approximation to the boost factor (15). The dashed
region shows the theoretical expectation for the mass cutoff [2].

FIG. 3. Temporal correlation function of the dark matter de-
tection signal within the solar system (assuming �CDM ¼
105�crit) for three different cutoffs of the CDM hierarchy.

FIG. 4. DM phase-space correlation due to bound subhaloes at
solar radius. The three lines show velocities: 200, 400, and
600 km/s in the Galactic frame. The shaded area shows the
expected contribution from the unbound substructure [9].
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within the solar system. We thus predict that, depending on
the cutoff in the CDM hierarchy, the dark matter detection
signal could gradually change by up to a factor of 2 within
a 10-year period. Potential measurement of this temporal
correlation could shed light on the cutoff of the CDM
hierarchy, which is directly related to the mass of CDM
particles.

To conclude this paper, we will turn to directional dark
matter searches, which can directly probe the phase space
of the CDM halo. These searches are now underway and
can potentially provide the first telescopes for the rich field
of Dark Matter Astronomy (e.g. [24]). We can use our
formalism Eqs. (7)–(10) to predict the velocity space cor-
relation function at the solar radius, which can be directly
measured if CDM particles are detected in directional
searches. This is shown in Fig. 4. For simplicity, we
assumed a singular isothermal sphere for the mean
phase-space density at the solar radius. The dimensionless
correlation function is more prominent at higher velocities
and shows a correlation length of 5–20 km/s in the velocity
space. For comparison, the shaded area shows the expected
level of correlation due to unbound substructure, which is

10%–30% at �v� 100 km=s [25], and scales as j�vj�1:6

[9].
The fact that Bsub: � 2–6 implies that the local CDM

density may be dominated by small subhaloes with random
velocities with respect to the Galaxy. This will introduce an
Oð1Þ uncertainty in the direction of local dark matter wind
(or dipole), which was believed to be the benchmark of
directional dark matter searches, or the annual modulation
signal. Nevertheless, as we argued above, the richness of
structure introduced by the CDM hierarchy leads to novel
observables/smoking guns for dark matter searches to aim
for.
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