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ABSTRACT

Aims. Caustic-crossing binary-lens microlensing events are important anomalous events because they are capable of detecting an
extrasolar planet companion orbiting the lens star. Fast and robust modelling methods are thus of prime interest in helping to decide
whether a planet is detected by an event. Cassan introduced a new set of parameters to model binary-lens events, which are closely
related to properties of the light curve. In this work, we explain how Bayesian priors can be added to this framework, and investigate
on interesting options.
Methods. We develop a mathematical formulation that allows us to compute analytically the priors on the new parameters, given
some previous knowledge about other physical quantities. We explicitly compute the priors for a number of interesting cases, and
show how this can be implemented in a fully Bayesian, Markov chain Monte Carlo algorithm.
Results. Using Bayesian priors can accelerate microlens fitting codes by reducing the time spent considering physically implausible
models, and helps us to discriminate between alternative models based on the physical plausibility of their parameters.

Key words. gravitational lensing: micro – methods: analytical – methods: statistical – planetary systems

1. Introduction

Mao & Paczynski (1991) first suggested that observations of
Galactic gravitational microlensing events could lead to the dis-
covery of extrasolar planets. Microlensing involves the time-
dependent brightening and then dimming of a background
source star as an intervening massive object (the lens) crosses
the observer line-of-sight. Light rays from the source bend in the
vicinity of the lens, focusing them toward the observer. Since
1994, survey teams such as OGLE1 (OGLE III, Udalski 2003)
and MOA2 (Bond et al. 2001) have reported more than four
thousand microlensing events toward the Galactic bulge to date.
Several hundreds of these events have been carefully selected
and densely sampled by follow-up networks such as PLANET3,
μFUN4, RoboNet5, and MiNDSTEp6. Although microlensing
teams have so far published only nine exoplanet detections, the
method itself stands out because of its high sensitivity to low-
mass planets with orbits of several astronomical units. It thus
probes in the planet mass-separation plane a region beyond reach
of any other technique, as demonstrated by the detection of the
very first cool super-Earth, OGLE 2005-BLG-390Lb (Beaulieu
et al. 2006; Kubas et al. 2008).

A number of microlensing events exhibit anomalous be-
haviour (i.e., they cannot be adequately modelled by the stan-
dard single-lens light curve, e.g., Paczynski 1986) and some of

1 http://www.astrouw.edu.pl/~ogle
2 http://www.phys.canterbury.ac.nz/moa
3 http://planet.iap.fr
4 http://www.astronomy.ohio-state.edu/~microfun
5 http://robonet.lcogt.net
6 http://www.mindstep-science.org

these anomalies can be attributed to lensing by binary objects.
The types of light curves produced by binary lensing form a
rich tapestry but, in general, binary systems with two equal mass
components tend to exhibit pronounced, long anomalies in their
light curves, whereas when the secondary companion is only a
small fraction of the total mass, the anomalies can be quite short
and subtle. It is primarily these latter types of anomalies that
may be caused by star-planet binaries (Mao & Paczynski 1991;
Gould & Loeb 1992). Nevertheless, because the true nature of
the anomaly cannot always be established while the microlens-
ing event is still ongoing, every binary-lens microlensing event
constitutes a prime target for planet hunting.

In binary lensing, the lens system configuration delin-
eates regions of space on the source plane that are bound by
gravitational caustics. Caustics are closed curves with concave
segments that meet in outward pointing cusps, defined by the
location where the Jacobian determinant of the lens mapping
equation vanishes, i.e., are lines of infinite point-source magnifi-
cation. There are three kinds of caustic topologies, which depend
on the values of the binary lens mass ratio q and the two com-
ponent projected separation d in angular Einstein ring radius θE
(Einstein 1936)

θE =

√
4GM

c2

(
DS − DL

DS DL

)
, (1)

where DS, DL are the observer-source and observer-lens dis-
tances and M the lens total mass. In the close separation regime
(cf. Fig. 1 of Cassan 2008), there are three caustics, one central
(4-cusp) and two (3-cusp) planetary caustics. In the intermedi-
ate regime, there is only one (6-cusp) caustic, and in the wide
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separation regime, there is one central and one planetary caustic
(both with 4 cusps).

In many cases, the source trajectory happens to cross a caus-
tic. As the source crosses the caustic curve and enters the en-
closed area, a new pair of images appears, causing a sudden in-
crease in the observed brightness. In a similar way, when the
source exits the area defined by the caustics, the two images
merge and disappear, causing a rapid drop in the observed bright-
ness. These dramatic changes in magnification result in readily
recognisable jumps in microlensing light curves. As emphasised
by Cassan (2008), the ingress and egress times tin and tout may
be restricted to within very tight intervals when caustic crossing
features have been identified in the light curve, and thus advan-
tageously used as alternative modelling parameters.

The new set of binary-lens modelling parameters introduced
by Cassan (2008) have the advantage that two of these parame-
ters are very closely related to features that can be directly iden-
tified in the light curve. Using this new formulation to analyse
the data of OGLE 2007-BLG-472 in its most straightforward
implementation as a maximum likelihood analysis (“minimis-
ing χ2”), Kains et al. (2009) unveiled a subtle aspect of binary-
lens modelling: relatively improbable physical models with very
large values of tE were found with χ2 values lower than other
more plausible models. To avoid finding parameter combinations
that are physically unlikely, dramatic progress can be achieved
by switching to a Bayesian analysis. This is desirable as the
Bayesian approach makes use of prior information on the un-
derlying physical parameters, while χ2 says nothing about pa-
rameter plausibility.

In this article, we show how to derive Bayesian priors for
the caustic-crossing binary-lens parameters defined by Cassan
(2008). These are based on physical priors on quantities that
can be estimated from Galactic models or calculated from al-
ready observed events (Sects. 2 and 3). In Sect. 4, we describe
an implementation of this Bayesian formalism within a Markov
chain Monte Carlo fitting scheme, using in particular priors on
the Einstein time tE (time for the source to travel an angular dis-
tance θE).

2. Maximum likelihood versus Bayesian fitting

Cassan (2008) introduced a new parameterisation of the binary
lens microlens light curve model that is well suited to describ-
ing caustic-crossing events. In this formalism, the caustic curve
in the source plane is parameterised by a curvilinear abscissa
(or arc length) from 0 to 2. The trajectory of a source cross-
ing a caustic, which is classically parameterised by its impact
parameter u0 and position angle α, can alternatively be defined
by giving the values sin at ingress and sout at egress7. The two
parameters timing the trajectory, tE (time to cross one Einstein
radius) and t0 (date at minimum impact parameter u0), are then
replaced by the ingress and egress times tin and tout. The caustic
curve is specified in the source (i.e., caustic) plane by a complex
function ζ(s) = ξ(s) + iη(s) (see Sect. 3.2), and once sin and sout
are specified, the source trajectory is fully defined. This bijective
switch of parameters, (u0, α, tE, t0) �→ (sin, sout, tin, tout), takes ad-
vantage of the relatively high precision with which tin and tout
can be inferred from the observations (Kains et al. 2009; Kubas
et al. 2005).

Using these new parameters, Kains et al. (2009) analysed
the caustic crossing event OGLE 2007-BLG-472. The approach

7 We use the notations “in” and “out” in place of “entry” and “exit” of
Cassan (2008) to write more condensed formulae.

taken was a maximum likelihood procedure, quantifying the
“goodness-of-fit” by a χ2 statistic, and minimising the χ2 to op-
timise the fit. A grid search in (d, q) with even spacing in log d
and log q was conducted. For each (d, q) caustic configuration,
a genetic algorithm was used to explore widely the remaining
parameter space. While (sin, sout) covered the full range of pos-
sibilities, [0, 2]× [0, 2], tin and tout evolved in very tight intervals
based on the values inferred from the light curve features (caus-
tic crossing magnification peaks). These first fits were refined
using a Markov chain Monte Carlo (MCMC) algorithm, again
holding (d, q) fixed while optimising the remaining parameters.
The best-fit models in each of the identified best-fit regions were
then found by allowing all parameters to vary.

As expected for binary lens events, the resulting χ2(d, q)
maps uncovered a variety of widely-separated model parameter
regions where a relatively low χ2 could be achieved. The low-
est χ2 models corresponded to very low q, in the planet-mass
regime. But with a short duration between the caustic entry and
exit, and a planetary caustic size scaling as q1/2, these models
implied an extremely long Einstein time tE ∼ (tout − tin)/q1/2 ∼
104 days, which is very unlikely according to kinematics of stars
motions within the Milky Way. These best-fit maximum likeli-
hood models were therefore rejected on this physical argument.
This need to reject the lowest χ2 models highlights a weakness
in the maximum likelihood approach, which neglects prior dis-
tributions on the parameter space. On the other hand, Bayesian
parameter estimation takes proper account of prior distributions
in the parameter space (see e.g., Trotta 2008, for a review of as-
trophysical applications).

In a Bayesian analysis, the posterior probability distribution
over the model parameters θ is a function of the data D

P(θ|D) =
P(D|θ)P(θ)∫
P(D|θ)P(θ) dθ

, (2)

where P(θ) is the prior probability distribution on the parame-
ters, and the denominator partition function ensures proper nor-
malisation of the posterior as a probability distribution over the
parameters θ. The likelihood P(D|θ) is a function of the parame-
ters θ and a probability distribution over the data D. For Gaussian
measurement errors with N data points having individual stan-
dard deviations σi, the likelihood is

L(θ) ≡ P(D|θ) =
exp

{
− 1

2χ
2
}

(2π)N/2 ∏N
i=1 σi

· (3)

Since maximising the likelihood corresponds to minimising

− 2 ln L(θ) = χ2 + 2
N∑

i=1

lnσi +
N
2

ln 2π , (4)

a maximum likelihood is equivalent to a minimum in χ2 when
the error bars σi are known, and is essentially a Bayesian analy-
sis that implicitly assumes a prior that is uniform on the chosen
parameters intervals. As we show in the next section, assuming
more realistic priors could substantially affect the fitting process.

3. A Bayesian prior for (sin,sout)

3.1. Distribution of (sin,sout) for isotropic trajectories

A uniform prior probability distribution in the parameter
square (sin, sout) is implicit in the maximum likelihood analysis.
Because of the non-linear correspondence between the two sets
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Fig. 1. The top panel illustrates the three kinds of possible source tra-
jectories crossing a caustic: the black line has a single pair of ingress
and egress points, while the red and blue lines have, respectively, two
and three ingress/egress points. The bottom panel shows in the (sin, sout)
square the locations of a random distribution of ∼104 of these trajecto-
ries crossing a (d = 1.1, q = 0, 1)-caustic, with the same colour conven-
tion. The solid vertical and horizontal black line mark the s-locations of
the caustic cusps.

of parameters, it should correspond to a rather unlikely prior for
the (u0, α) source trajectory parameters. A more plausible prior
would for example arrange for the source trajectories to be uni-
formly distributed and isotropic in orientation.

In Fig. 1, the top panel shows an intermediate caustic with
d = 1.1 and q = 0, 1 (i.e., six cusps, in orange) with several
crossing trajectories. It can be seen that a straight line may cross
the caustic at two (black line), four (red line), or six (blue line)
locations, depending on the number and orientation of the cusps.
In the bottom panel, ∼104 of these trajectories were randomly
shot and their corresponding position in the (sin, sout) square re-
ported, using the same colour convention. Trajectories with a
single pair of ingress and egress map into unique black points,
while for red and blue trajectory lines, there are respectively two
and three possible pairs of ingress and egress points.

We can understand some of the structures in the bottom panel
of Fig. 1 as follows: vertical and horizontal lines marking the s
values at the cusps divide the (sin, sout) square into boxes. No
trajectories appear in the boxes along the diagonal because the
caustics curve concavely outward. It is thus impossible for a line
that enters at some position between two cusps to exit at any
point between those two cusps. In a similar way, other empty
regions correspond to ingress/egress pairs that cannot be realised
by straight lines crossing the caustic. The trajectories are seen to

bunch up around ingress/egress pairs occurring close to a cusp.
This happens because any trajectory entering close to a cusp is
very likely (for a wide range of angles) to also exit near the same
cusp.

3.2. Analytical formulation

We develop a mathematical formulation that allows us to com-
pute analytically priors on (sin, sout). The lens equation for a bi-
nary lens with separation d and mass ratio q defines the mapping
of the position of a point-source ζ on the source plane to the
positions of its three or five images at z on the lens plane

ζ = z − 1
1 + q

(
1
z
+

q
z + d

)
, (5)

where the more massive body is at the centre and the companion
on the left-hand side. Following Witt (1990), the caustic lines ζ
are parametrised by a parameter φ ∈ [0, 2π]

1
1 + q

[
1
z2
+

q
(z + d)2

]
= e−iφ, (6)

where z and ζ satisfy Eq. (5). For a given angle φ, it is possible
to solve a fourth order polynomial equation in z to obtain the
corresponding caustic points ζ. While the parameter φ is used
here to write the useful formulae, in practice we use instead the
equivalent parameter s = s(φ) (bijection) introduced by Cassan
(2008), which has the advantage of sampling the caustics evenly.

To write more condensed formulae, we use notations that
resemble two-dimensional vector operations. Given two com-
plex numbers ζ1 = ξ1 + iη1 and ζ2 = ξ2 + iη2, we write
ζ1 ∧ ζ2 = ξ1η2 − η1ξ2 (“wedge product”) and ζ1 · ζ2 = ξ1ξ2 + η1η2
(“scalar product”), which are both real numbers. Moreover, a
quantity related to a caustic entry (exit) is indicated by a sub-
script “in” (“out”). Using the usual convention that u0 > 0 when
the origin of the coordinate system stays on the right-hand side
of the source trajectory, one can write

u0 =
ζout ∧ ζin
|ζout − ζin| , (7)

α = arctan

(
ηout − ηin

ξout − ξin
)
+ πH (ξin − ξout) , (8)

tE =
tout − tin
|ζout − ζin| , (9)

t0 =
tout + tin

2
− (tout − tin)

[
1
2
ζout + ζin
ζout − ζin + i

ζout ∧ ζin
|ζout − ζin|2

]
, (10)

where H is the Heaviside step function, and α =
π
2 sign (ηout − ηin) if ξout = ξin. The transformation between the
two sets of parameters is given by the Jacobian

J =
∣∣∣∣∣ ∂ (u0, α, tE, t0)
∂ (sin, sout, tin, tout)

∣∣∣∣∣ · (11)

Since the dependencies of the classical parameters with respect
to the new ones are u0(sin, sout), α(sin, sout), tE(sin, sout, tin, tout),
and t0(sin, sout, tin, tout), J reads (using φ instead of s)

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂u0
∂φin

∂u0
∂φout

0 0
∂α
∂φin

∂α
∂φout

0 0
∂tE
∂φin

∂tE
∂φout

∂tE
∂tin

∂tE
∂tout

∂t0
∂φin

∂t0
∂φout

∂t0
∂tin

∂t0
∂tout

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ ∂ (u0, α)
∂ (φin, φout)

∣∣∣∣∣ ×
∣∣∣∣∣ ∂ (tE, t0)
∂ (tin, tout)

∣∣∣∣∣ · (12)
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Fig. 2. Bayesian prior P(sin, sout) as a function of sin (horizontal axis) and sout (vertical axis), where we have assumed isotropic source trajectories
and uniform distributions for tE and event rate. Higher values of P appear in white (linear scale). From left to right, the caustic configurations are:
a) intermediate with d = 1.1 and q = 0.1; b) wide+central and c) wide+secondary caustic, both for d = 2 and q = 0.1; d) close+central and e)
close+secondary caustic, both for d = 0.5 and q = 0.1.

After some algebra, we find for the components of the two latter
Jacobians
∂u0

∂φin
=
∂u0

∂ξin

dξin
dφin
+
∂u0

∂ηin

dηin

dφin

=
(ζout − ζin) · ζout

|ζout − ζin|3
[
(ζout − ζin) ∧ dζin

dφin

]
, (13)

∂u0

∂φout
= − (ζout − ζin) · ζin

|ζout − ζin|3
[
(ζout − ζin) ∧ dζout

dφout

]
, (14)

∂α

∂φin
=
∂α

∂ξin

dξin
dφin
+
∂α

∂ηin

dηin

dφin

= −
(ζout − ζin) ∧ dζin

dφin

|ζout − ζin|2
, (15)

∂α

∂φout
=

(ζout − ζin) ∧ dζout

dφout

|ζout − ζin|2
, (16)

∂tE
∂tin

= − 1
|ζout − ζin| , (17)

∂tE
∂tout

=
1

|ζout − ζin| , (18)

∂t0
∂tin

=
1
2
+

[
1
2
ζout + ζin
ζout − ζin + i

ζout ∧ ζin
|ζout − ζin|2

]
, (19)

∂t0
∂tout

=
1
2
−

[
1
2
ζout + ζin
ζout − ζin + i

ζout ∧ ζin
|ζout − ζin|2

]
, (20)

so that∣∣∣∣∣ ∂ (u0, α)
∂ (φin, φout)

∣∣∣∣∣ =
∣∣∣∣(ζout − ζin) ∧ dζin

dφin

∣∣∣∣ ∣∣∣∣(ζout − ζin) ∧ dζout

dφout

∣∣∣∣
|ζout − ζin|3

, (21)

∣∣∣∣∣ ∂ (tE, t0)
∂ (tin, tout)

∣∣∣∣∣ =
∂t0
∂tin
+
∂t0
∂tout

|ζout − ζin| =
1

|ζout − ζin| , (22)

which gives

J =

∣∣∣∣(ζout − ζin) ∧ dζin
dφin

∣∣∣∣ ∣∣∣∣(ζout − ζin) ∧ dζout

dφout

∣∣∣∣
|ζout − ζin|4

· (23)

The derivatives dζ/dφ evaluated at the caustic entry and exit are
given by (Cassan 2008)

dζ
dφ
=

dz
dφ
+ eiφ dz

dφ
, (24)

where

dz
dφ
=

i
2

(z + d)2 + q z2

(z + d)3 + q z3
(z + d) z . (25)

In the limit of cusp-crossing trajectories, i.e., ζout − ζin → 0, J
behaves like 1/|ζout − ζin|2.

As expected, the Jacobian J is a function of the two parame-
ters (sin, sout), while the bijection between the two set of param-
eters was possible by involving (tin, tout). However, J is not yet
the Bayesian prior P(sin, sout) we seek. We have yet to consider
two aspects. Firstly, the parameters (u0, α, tE, t0) are themselves
affected by prior probability distributions; this is discussed at the
end of this section and is the topic of Sect. 4.1. Secondly, caustic
crossing points are either entries or exits since the trajectory is
orientated from tin to tout (tout ≥ tin), which is not accounted for
in Eq. (23). To solve this second issue, we calculate the outward
normal vector to the caustics at point ζ,

Nc = i
dζ
dφ

/ ∣∣∣∣∣ dζdφ
∣∣∣∣∣ (26)

as well as the normalised and orientated trajectory vector

Nt =
ζout − ζin
|ζout − ζin| , (27)

and check whether Nc,in · Nt,in < 0 (inward motion at ζin) and
Nc,out · Nt,out > 0 (outward motion at ζout). If these conditions are
fulfilled, we write P(sin, sout) = J, and 0 otherwise.

Defined in this way, P(sin, sout) is thus the prior on (sin, sout)
that we seek, in the special case of isotropic source trajecto-
ries (uniform distributions for u0 and α), uniform microlensing
events rate (t0 is a random number), and uniform Einstein time
tE ≥ 0. In Fig. 2, we have plotted P(sin, sout) for various (d, q)
configurations as a function of sin (horizontal axis) and sout (ver-
tical axis), higher values of P appearing in white (linear scale).
From left to right, these configurations are: (a) intermediate with
d = 1.1 and q = 0.1; (b) wide+central and (c) wide+secondary,
both configurations for d = 2 and q = 0.1; (d) close+central and
(e) close+secondary caustic, both for d = 0.5 and q = 0.1. One
can compare the intermediate case plot with Fig. 1. In Sect. 4.1,
we investigate how assuming different priors on the Einstein
time tE affect the prior on (sin, sout).

3.3. Extended sources

When the source approaches the caustic curves (at typically less
than three projected source radii), one needs to take into account
extended source effects in the modelling. As for tin and tout, it is
usually possible to extract from the light curve a new parameter
that can be used instead of the source radius.

It is well known that when the source crosses a straight line
caustic (which is in many cases a good approximation of a real
caustic), one can easily infer the duration of the crossing from
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the shape of the caustic crossing feature itself (Cassan et al.
2004; Albrow et al. 1999; Schneider & Wagoner 1987). Here,
we define this duration as the time for the source to cross the
caustic line by its full radius (i.e., from centre to limb), so that
Δtcc = ρ∗/v⊥. In this definition, ρ∗ is the source radius in Einstein
ring radius units, v⊥ is the component of the source velocity per-
pendicular to the caustic, and the subscript “cc” refers to either
the caustic entry (“in”) or exit (“out”). For a given absolute ve-
locity 1/tE, the source will take longer to cross the caustic if the
trajectory makes a tangential angle with it. More precisely, the
normal velocity is proportional to the cosine of the angle be-
tween the trajectory and the caustic normal v⊥ = |Nc,cc · Nt,cc|/tE.
Inserting into this equation the expressions for tE, Nc,cc, and
Nt,cc (Eqs. (9), (26), and (27), respectively), we can compute the
source radius ρ∗ as a function of Δtcc

ρ∗ =

∣∣∣∣(ζout − ζin) ∧ dζcc

dφcc

∣∣∣∣
(tout − tin)

∣∣∣∣ dζcc

dφcc

∣∣∣∣ Δtcc. (28)

This expression would be exact if the crossed caustic were a per-
fect and infinite straight line. In reality, however, caustic curves
always have a curvature, and sometimes the source partly crosses
a cusp. Nevertheless, there is no arguing that Δtcc is more suit-
able than ρ∗ for parameterising the observed caustic crossing,
since its rough value can be estimated from the light curve,
in contrast to ρ∗. In practice, we choose the caustic crossing
that provides the most comprehensive data coverage and which
ressembles most closely a straight line caustic crossing to extract
the starting value when fitting Δtcc.

4. Markov Chain Monte Carlo fitting

4.1. Examples of prior probability distributions

For a given set of fitting parameters (sin, sout, tin, tout,Δtcc), the
prior of the probed model is given by

P(model) = P(sin, sout) P(tin, tout,Δtcc). (29)

The prior P(sin, sout) is computed as explained in Sect. 3.2, and
may include priors that have been defined using the other pa-
rameters u0, α, tE, t0, or ρ∗ by properly weighting P(sin, sout).
Given Eqs. (9) and (10), a prior P(tin, tout) is equivalent to a prior
P(t0, tE) with a corresponding change in the prior P(sin, sout). We
now discuss different priors for the various parameters that could
realistically be used in the Bayesian analysis. In Fig. 2 for exam-
ple, we illustrate the case of isotropic trajectories, which cor-
responds to uniform priors for the parameters u0 and α. This
choice is justifiable, since the direction of the binary lens axis is
random.

The first class of priors that we can use are uninformative
priors. Since the prior expresses information about the values of
parameters before any data has been taken, we know that pa-
rameters such as t0, tE, or Δtcc must have uninformative priors,
because we can only estimate their values by examining the light
curve. Although it is natural to use uniform priors for t0, α or u0,
for strictly positive parameters such as Δtcc or tE, it is more suit-
able and commonly decided to use an uninformative prior that is
uniform in the logarithm of the parameter.

We illustrate the use of an uninformative prior (uniform pri-
ors in log tE, in u0, α, and t0) by computing P(sin, sout) for the so-
lution configuration of the binary lens event OGLE 2002-BLG-
069 (Kubas et al. 2005; Cassan et al. 2004). The configuration
for that event was that of a source crossing the central caustic

Fig. 3. Prior P(sin, sout) for the solution configuration of caustic crossing
event OGLE 2002-BLG-069 (close+central caustic), with an underly-
ing (uninformative) uniform prior in log tE. The red cross shows the
location of the found caustic crossing, (1.3, 0.3), which falls in a region
of relative high probability.

of a close binary lens with parameters d = 0.46, q = 0.58 and
tout − tin � 14.5 days. The resulting prior P(sin, sout) is plotted
in Fig. 3, where the red cross shows the location of the caus-
tic crossings at sin � 1.3, sout � 0.3. This falls within a region
of high probability, meaning that the corresponding P(sin, sout)
prior would have been a reasonable choice for this event.

The second class of priors are those that we can derive using
information known before the event is observed. In microlens-
ing, a convenient parameter on which such a prior can be placed
is the Einstein time tE. This parameter depends on the relative
distances between the source, the lens, and the observer, the
kinematics of both the lens and the source and the lens’ mass
function. Combining all these data can help us to determine
which ranges of values of tE are more likely to be observed. For
the event OGLE-2007-BLG-472 (Kains et al. 2009), no prior in-
formation was included on tE (or the prior was assumed to be
uninformative), which cause the best-fit models to have unreal-
istically long tE.

The method presented here can indeed be extended to in-
clude informative priors on parameters other than tE, such as
the source flux distribution, the blending light due to the lens,
the relative proper motion of the source and lens, or the source-
radius caustic crossing-time, but this would require us to link the
analysis to a Monte Carlo model of the Galaxy. Although our ap-
proach can be generalised to these possible extensions, they are
beyond the scope of the present paper. Using tE also has the ad-
vantage that its statistical distribution is fairly well-constrained
by observed single-lens light curves, since this parameter is com-
mon to single- and binary-lens events.

Empirical distributions of tE can be obtained by modelling a
large number of observed microlensing events. The top panel of
Fig. 4 shows a histogram (blue rectangles) of tE values found by
fitting 788 single-lens microlensing events from the 2006–2007
OGLE seasons (including blending). As expected, the distribu-
tion is far from uniform but instead appears roughly log-normal
with a peak close to log tE � 1.32 and σlog tE � 0.4. Theoretical
distributions of tE can also be based on predictions obtained with
a Galactic model, such as the distribution advocated by Wood &
Mao (2005). This is plotted as a solid black line on top of our his-
togram (Fig. 4, top panel) and is seen to closely match the empir-
ical distribution. Nevertheless, the distribution of Wood & Mao
(2005) lacks both extremely long events (say tE > 300 days)
that can be interpreted as black hole lenses, and extremely short
events (say tE < 3 days) that can be interpreted as evidence of
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Fig. 4. In the top panel, the histogram (blue rectangles) shows the dis-
tribution of tE found after fitting 788 single-lens microlensing events
from OGLE 2006–2007 seasons. The solid black line shows the model
prediction of Wood & Mao (2005), which is in good agreement with
the data. The bottom panel displays the prior P(sin, sout) for the same
intermediate caustic configuration as for Fig. 2 (d = 1.1, q = 0.1), but
assuming an underlying prior for tE given by the above distribution.

a population of free floating planets. But selection effects cause
these extreme events to be under-represented in the observed tE
distribution, as can be seen in Fig. 4. For these exceptional cases,
special treatment would be required, for example using a prior
on tE that is more generous to extreme values in an attempt to
compensate for selection effects. For most of binary lens events,
however, a mild discrimination against black hole or loose planet
lenses seems appropriate.

Using the Wood & Mao (2005) distribution as a prior, we
compute and plot (Fig. 4, bottom panel) the corresponding distri-
bution P(sin, sout) by assuming (tout− tin) = 20 days, d = 1.1, and
q = 0.1 (the same intermediate configuration as Fig. 2). Figure 4
(bottom panel) shows that with this prior, cusp-crossing trajecto-
ries are far less likely to happen. For a trajectory near the cusps,
this is because the source has only a short distance to travel be-
tween the entry and exit, while (tout − tin) is constant, meaning
that the source’s motion has to be very slow, leading to large val-
ues of tE, which are now ruled out by the prior8. This effect can
be seen directly in the plot of P(sin, sout), where strong “wing”
features at the cusps disappear, and other features appear (com-
pare with Fig. 2).

8 More precisely, when tE → ∞, Wood & Mao (2005) tE distribution
behaves like 1/tE

3 ∼ |ζout − ζin|3, and since J ∼ 1/|ζout − ζin |2, the net
result is that near cusps, J ∼ |ζout − ζin| → 0.

4.2. Posterior probability distributions: MCMC fitting

In practice, these and other statistics related to the posterior pa-
rameter distribution can be evaluated efficiently using a Markov
chain Monte Carlo to evaluate the probability-weighted integrals
in Bayes’ theorem. A random walk in the parameter space is
undertaken by taking random steps drawn from a distribution
of the parameters θ. Each proposed step is accepted or rejected
based on the probability of the new point relative to the old one
exceeding some threshold, which is adjusted to maintain the ac-
ceptance rate above roughly 20–30%. The resulting chain locates
and wanders around a local minimum, sampling the parameters
with a weight proportional to the posterior probability.

For a maximum likelihood analysis, the relative probability
used to accept or reject new steps is exp

{
−Δχ2/2

}
alone, where

Δχ2 is the χ2 difference between the new and old points; in a
full Bayesian analysis, we multiply this exponential factor by
the ratio of new to old values of the prior P(model), following
Eq. (29). The posterior probability that the parameters θ lie in a
defined region Θ is then

P(θ ∈ Θ) =
∫
Θ

P(θ|D) dθ. (30)

The expected value of any function of parameters, g(θ), is

〈g〉 ≡
∫
g(θ) P(θ|D) dθ, (31)

and the variance about that expected value is

Var
[
g(θ)

] ≡ ∫
(g(θ) − 〈g〉)2 P(θ|D) dθ. (32)

In a similar way, confidence intervals, parameter covariances,
and confidence intervals can all be evaluated easily in the usual
manner given the posterior probability distribution found with
the MCMC algorithm, providing us with a complete statistical
picture of the parameter space that we explore.

5. Conclusion

We have investigated plausible priors for Bayesian analysis of
caustic-crossing microlensing light curves, based on an alter-
native parameterisation introduced by Cassan (2008). We have
developed a mathematical formulation that allows us to com-
pute analytically Bayesian priors for these parameters, given
the knowledge we have about the physical quantities on which
they depend. A number of relevant priors that may be used in
a Bayesian, Markov chain Monte Carlo implementation of the
given equations have been explored.

In the context of the rapid development of a new generation
of networks of classical and robotic telescopes (e.g., Tsapras
et al. 2009), as well as space-based observations such as with
the ESA project satellite Euclid (Beaulieu et al. 2010), a cur-
rent challenge facing the microlens planet search community is
to fully automate the fitting of binary lens light curves in real
time, after having detected an anomaly (e.g., Horne et al. 2009).
This would enable anomalies that are detected in the observed
light curves to be characterised as quickly as possible and for
us to ascertain whether the anomalous behaviour is caused by
a planet-mass companion of the lens star. Identifying param-
eters that could be estimated automatically by analysing the
light curve (e.g., a magnification jump due to a caustic cross-
ing) is already a step forward in accelerating the fitting codes by
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exploring a far more tighter parameter space. This was the mo-
tivation of Cassan (2008) in defining a new set of parameters. In
this work, we have added the possibility of including Bayesian
priors in the analysis, which would avoid the need to explore
combinations of parameters that are unlikely to happen.
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