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ABSTRACT
We study the dissipative effects of baryon physics on cosmic statistics at small scales using a
cosmological simulation of a (50 Mpc h−1)3 volume of universe. The MareNostrum simulation
was performed using the adaptive mesh refinement (AMR) code RAMSES, and includes most
of the physical ingredients which are part of the current theory of galaxy formation, such as
metal-dependent cooling and UV heating, subgrid modelling of the interstellar medium, star
formation and supernova feedback. We reran the same initial conditions for a dark matter only
universe, as a reference point for baryon-free cosmic statistics. In this paper, we present the
measured small-scale amplification of σ 2 and S3 due to baryonic physics and their interpretation
in the framework of the halo model. As shown in recent studies, the effect of baryons on the
matter power spectrum can be accounted for at scales k � 10 h Mpc−1 by modifying the halo
concentration parameter. We propose to extend this result by using a composite halo profile,
which is a linear combination of a Navarro, Frenk and White profile for the dark matter
component and an exponential disc profile mimicking the baryonic component at the heart
of the halo. This halo profile form is physically motivated and depends on two parameters,
the mass fraction fd of baryons in the disc and the ratio λd of the disc’s characteristic scale
to the halo’s virial radius. We find this composite profile to reproduce both the small-scale
variance and skewness boosts measured in the simulation up to k ∼ 102 h Mpc−1 for physically
meaningful values of the parameters fd and λd. Although simulations like the one presented
here usually suffer from various problems when compared to observations, our modified
halo model could be used as a fitting model to improve the determination of cosmological
parameters from weak lensing convergence spectra and skewness measurements.

Key words: gravitational lensing – hydrodynamics – Galaxy: disc – cosmological parameters
– large-scale structure of Universe.

1 IN T RO D U C T I O N

One of the great challenges in modern cosmology is to understand
the nature of dark energy, which is believed to dominate the en-
ergy budget in the Universe (∼70 per cent) at low redshift (Riess
et al. 1998; Perlmutter et al. 1999; Astier et al. 2006; Spergel et al.
2007). Since the value of �� directly impacts the rate of struc-
ture formation at recent epochs, the mass distribution and its time
evolution bear the signature of the dark energy content of the Uni-
verse. Cosmic shear measurements provide an independent method
of probing the total mass distribution at large scales. Combined with
photometric redshifts, it is even possible to extract the 3D matter

�E-mail: thomas.guillet@cea.fr

distribution and reconstruct the matter power spectrum at different
epochs. Comparing these measurements to theoretical predictions
will set strong constraints on the cosmological parameters (e.g. Hu
& Tegmark 1999; Huterer 2002; Amara & Refregier 2006; Albrecht
& Bernstein 2007), and among them both the equation of state w

of dark energy and its possible evolution w′ with redshift.
The cosmic shear convergence power spectrum P κ depends on

the total matter power spectrum P, which contains the information
about w and w′ through the growth rate of structures. Extracting the
dark energy equation of state from weak lensing signals therefore
requires a good theoretical model for P, with a typical accuracy
of a few per cent up to angular scales of about 10 arcmin (see
e.g. Bartelmann & Schneider 2001; Refregier 2003, for a review).
Substantial work has been done to measure and predict the dark
matter power spectrum from collisionless N-body simulations (see
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e.g. Efstathiou & Eastwood 1981; Jenkins et al. 1998). Semi-
analytic models for the dark matter power spectrum have also been
proposed, reaching the per cent level accuracy (Hamilton et al.
1991; Jain, Mo & White 1995; Peacock & Dodds 1996; Smith et al.
2003). While the distribution of total matter is likely to closely fol-
low dark matter at large scales, dissipative physics is expected to
modify the power spectrum at small scales, and therefore possibly
interfere with weak lensing measurements.

The interest for the effects of baryons on the convergence power
spectrum has led to the development of semi-analytic halo mod-
els to estimate effect of cold (White 2004) and hot (Zhan & Knox
2004) gas on the total matter power spectrum. More recently, nu-
merical simulations have been carried out to complement those
semi-analytical results (Jing et al. 2006; Rudd, Zentner & Kravtsov
2008). While the exact effect of the baryons differs quantitatively
between different models, the models and simulations agree qual-
itatively on a boost of the total matter power spectrum due to cold
baryons at small scales. At k ∼ 10 h Mpc−1, this amplification has
been found to be of around 10 per cent at z = 0. Our theoretical
understanding of galaxy formation is however far from being com-
plete. Current numerical simulations that include various complex
baryons physical processes suffer from the so-called overcooling
problem (Cole 1991; Blanchard, Valls-Gabaud & Mamon 1992),
with too many baryons condensing into gaseous and stellar discs
when compared to observational constraints. Statistical effects mea-
sured in Galaxy formation simulations, including the one used in the
present work, are therefore likely overestimated. If we can account
for the effect of baryons at the required accuracy in this extreme
case, real data sets will be probably even easier to deal with.

We still need a flexible and accurate tool to account for the effect
of baryons on the statistical properties of the matter density field in
a parametrized model. The halo model has been developed in the
last decade to meet these goals. The halo model is based on the
idea that the matter distribution in the Universe can be described
as a collection of individual haloes, in which baryonic structures
such as galaxies form (Neyman & Scott 1952; White & Rees 1978).
Scherrer & Bertschinger (1991) proposed a formalism to compute
correlation functions of the continuous density field from a model
of discrete virialized haloes. Since then, there have been notable
contributions and refinements to the halo model approach, such as
Ma & Fry (2000), Seljak (2000) and subsequent developments (see
Cooray & Sheth 2002 for a review in the context of large-scale
structure).

As the halo model has proved to be a successful framework for
describing statistical properties of the dark matter density field in
the non-linear regime, there has been also interest in extending it to
baryons in the context of the Sunyaev–Zeldovich effect (Refregier
& Teyssier 2002) and of the galaxy distribution (Seljak 2000). In
previous studies, White (2004) and Zhan & Knox (2004) have used
the halo model with a baryonic component to describe the effect
of cold and hot gas respectively from a semi-analytical standpoint.
More recently, Rudd et al. (2008) have shown that the halo model
can be used in a self-consistent way to describe the amplification of
the power spectrum caused by baryons as measured in cosmological
simulations. They proposed to modify the concentration parameter
mass dependence of the dark matter haloes to account for the col-
lapse of baryons at small scale, leading to more concentrated haloes.

In this paper, we would like to extend the previous models for
cosmic statistics to smaller scales, where baryons are likely to dom-
inate the total mass distribution. For that purpose, we use the re-
sults of a recent, high-resolution, cosmological simulation, featur-
ing state-of-the-art galaxy formation physics, thanks to the Horizon

collaboration.1 The simulation was performed on the MareNos-
trum supercomputer at the Barcelona Supercomputer Centre using
the RAMSES code (Teyssier 2002), including a detailed treatment of
metal-dependent gas cooling, UV heating, star formation, super-
novae feedback and metal enrichment.

The simulation data are compared to the analytical prediction
of a modified halo model, taking into account small-scale baryons
physics in an ad hoc way by adding to the halo mass profile a small
baryonic component, modelled as an exponential disc with mass
fraction and scalelength as the only two additional free parameters.
This approach, which modifies the shape of the halo profile, is in
essence similar to the one of White (2004), which we use as a starting
point for our theoretical model to compare against our numerical
simulation. In contrast to previous studies, we also compute the
effect of baryons on the skewness of the mass distribution. It has
been shown that measuring the third moment of the cosmic shear is
of paramount importance, since it can break the degeneracy in the
cosmological parameters estimation based on the power spectrum
alone and reduce the corresponding error bars by a factor of 2
(Bernardeau, van Waerbeke & Mellier 1997; Jain & Van Waerbeke
2000; Takada, Komatsu & Futamase 2000). Using only the two
additional parameters of the model, we can fit the simulation data
with great accuracy, for both the power spectrum and the skewness.
This has important consequences for future weak lensing surveys,
since the disc parameters of the model could be fitted together with
the cosmological parameters, promoting baryons physics from a
mere systematic effect to an additional probe of the underlying
cosmological model. Within the modified concentration model of
Rudd et al. (2008), statistical bias effects have been studied by
Zentner, Rudd & Hu (2008) and further by Hearin & Zentner (2009)
in the context of the test of general relativity by weak lensing
surveys.

2 STATI STI CAL ANALYSI S OF THE
MARENOSTRU M SI MULATI ON

2.1 The MareNostrum simulation

We have performed a cosmological simulation of unprecedented
scale, using 2048 processors of the MareNostrum computer in-
stalled at the Barcelona Supercomputing Centre in Spain. We have
used intensively the AMR code RAMSES (Teyssier 2002) for 4 weeks
dispatched over one full year. This effort is part of a consortium
between the Horizon project (see footnote 1) in France and the
MareNostrum galaxy formation project in Spain.2 The originality
of this project relies on using a lot of (if not all) physical ingredients
that are part of the current theory of galaxy formation and at the
same time cover a large enough volume to provide a fair sample of
the universe, especially at redshifts above 1.

The physical processes we have included in our simulation are
described now in more detail. We have considered metal-dependent
cooling and UV heating using the Hardt and Madau background
model (see Ocvirk, Pichon & Teyssier 2008). We have incorporated
a simple model of supernova feedback and metal enrichment using
the implementation described in Dubois & Teyssier (2008). For
high-density regions, we have considered a polytropic equation of
state to model the complex, multiphase and turbulent structure of the
interstellar medium (ISM) (Yepes et al. 1997; Springel & Hernquist

1http://www.projet-horizon.fr
2http://astro.ft.uam.es/∼marenostrum
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2003) in a simplified form (see Dubois & Teyssier 2008; Schaye &
Dalla Vecchia 2008): the ISM is defined as a gas with a density above
n0 ≈ 0.1 H/cc. Star formation has also been included, for ISM gas
only (nH > n0), by spawning star particles at a rate consistent with
the Kennicutt law derived from local observations of star-forming
galaxies. In more mathematical terms, we have ρ̇� = ρgas/t� where
t � = (nH/n0)−1/2t0 and t0 = 8 Gyr. Recast in units of the local
free-fall time, this corresponds to a star formation efficiency of
5 per cent. The simulation was started with a base grid of 10243

cells and the same number of dark matter particles, and the grid was
progressively refined, on a cell-by-cell basis, when the local number
of particles exceeded 10. A similar criterion was used for the gas,
implementing what is called a quasi-Lagrangian refinement strategy.
Five additional levels of refinement were considered, providing a
resolution between 1 and 2 kpc physical at all times. In this way, our
spatial resolution is consistent with the angular resolution used to
derive the Kennicutt law from observations. On the other hand, we
are not in a position to resolve the scaleheight of thin cold discs so
that the detailed galactic dynamics might be affected by resolution
effects.

The simulation was run for a � cold dark matter (�CDM)
universe with �m = 0.3, �� = 0.7, �b = 0.045, H 0 =
70 km s−1 Mpc−1, σ 8 = 0.9 in a periodic box of 50 Mpc h−1. Our
dark matter particle mass (mp ≈ 8 × 106 M� h−1), our spatial reso-
lution (1 kpc physical) and our box size make this simulation ideally
suited to study the formation of galaxies within dark matter haloes,
from dwarf to Milky Way sized objects at high redshift. For large
galaxies, we can nicely resolve the radial extent of the disc (not its
vertical extent), while for small galaxies we can resolve the gravi-
tational contraction of the cooling gas, but barely the final disc. The
simulation was stopped at redshift z ≈ 1.5 because we ran out of
allocated time. The total number of star particles at the end of the
simulation was above 2 × 108, and the total number of AMR cells
was above 5 × 109.

To quantify the effects of baryons on statistical properties of the
mass distribution, the MareNostrum run, which includes dissipative
physics, was rerun from the same initial conditions with baryon
mass converted to dark matter. This latter dark matter only (DMO)
simulation serves as a reference for statistical quantities without
the presence of dissipative physics. Both runs were carried out up
to redshift z = 2, which we will consider in the rest of this paper.
It is already late enough to witness interesting structures such as
well-formed galaxy discs.

2.2 One-point statistics

Meaningful statistics of the density field can be extracted from dif-
ferent statistical quantities, such as the n-point correlation functions,
the density probability distribution function (PDF) or the one-point
cumulants. By far, the easiest quantities to measure are the one-point
moments Sp(R), i.e. the pth order cumulant of the smoothed density
field as a function of the smoothing scale R. The Sp parameters have
also been studied extensively, whether from a theoretical standpoint
(Balian & Schaeffer 1989; Szapudi & Szalay 1993), in the pertur-
bation theory framework (Bernardeau 1994), or in simulations and
observations (see e.g. Colombi et al. 2000; Marinoni et al. 2008).
For the 50 Mpc h−1 box of MareNostrum, we have computed the
statistics for scales ranging from 15 kpc h−1 to 2 Mpc h−1.

With weak lensing applications in mind, we are primarily in-
terested in the total mass statistics. In the case of the dissipative
simulation, this requires a consistent treatment of both dark matter
particles and gas cells.

The total local density in the dissipative simulation can be written
as

ρtot = ρg + ρDM + ρs, (1)

where ρg, ρDM and ρs are the local gas, dark matter and star den-
sities, respectively. However, because of the different nature of the
gas (which is a continuous cell-based quantity), and stars and CDM
(which are modelled as collisionless particles), the three matter
components should be treated separately. One could simply evalu-
ate ρDM and ρs by binning the particles into cells to obtain a local
estimate of the densities and then simply calculate ρ tot as in equa-
tion (1) and computing its moments. However, as we discuss below,
the discrete nature of particles mandates a special treatment, and
we chose instead to compute the moments and cross-correlations of
the different species separately and then reconstruct the moments
of the total density field as we now describe.

Obtaining the moments of the gas distribution involves no the-
oretical difficulty. The gas density of the whole simulation box is
mapped on to a 20483 grid from the AMR cells using a donnercell
scheme, where the resulting value in each cartesian cell is directly
copied from the finest AMR cell covering it. To determine the
moments of the smoothed gas density field for a given comoving
smoothing radius R, we compute the average of the density over cu-
bic regions of volume (4/3)πR3. We restrict ourselves to values of
R corresponding to smoothing boxes which span an integer number
of base grid cells. The average densities in such cubic regions are
computed using a fast convolution algorithm (see e.g. Blaizot et al.
2006), and the moments overall such regions are then evaluated.
Since the simulation directly provides the continuous gas density
ρg, this prescription yields unbiased estimates of the moments of
the gas distribution.

Particles require a somewhat more careful treatment. The statis-
tics of particle distributions are readily studied using a counts-in-
cells analysis (see for example Balian & Schaeffer 1989; Bouchet &
Hernquist 1992; Sheth 1996). The idea is to count particles within
the same cubic cells of scale R used for the smoothing of the gas
density. The particle counting is implemented by first binning the
particles into the base grid using a nearest grid point (NGP) scheme
(Hockney & Eastwood 1981) and then counting particles in the cu-
bic regions, again by using fast convolution. This is indeed equiva-
lent to computing a local particle density by NGP, and then perform-
ing the R-scale smoothing. In this case, however, simply computing
the moments of the resulting data will introduce shot-noise effects
(Szapudi & Szalay 1993; Bernardeau et al. 2002).

It is possible to correct for these effects using factorial moments.
Let us consider a continuous field ρ sampled by a finite collection
of particles. Given a cell of size R and volume v = R3, we call
ρ̃ = 1

v

∫
v
ρ(x)d3x the average value of ρ over the cell. Equivalently,

ρ̃ is the value of ρ smoothed at scale R at the centre of the cell. The
local Poisson sampling hypothesis (see e.g. Bernardeau et al. 2002)
states that the distribution of the number N of particles in the cell
follows a Poisson probability mass function of mean ρ̃v/mp, where
mp is the mass of a single particle. Letting

(N )k ≡ N (N − 1) · · · (N − k + 1), (2)

the factorial moments are defined as

Fk ≡ 〈(N )k〉P = 〈N (N − 1) · · · (N − k + 1)〉P , (3)

where N is the cell particle count and 〈. . .〉P denotes the average over
the Poisson distribution of the particle sampling. It has been shown
(Szapudi & Szalay 1993) that the Fk yield unbiased estimators of
the moments of the underlying smoothed density field ρ̃ at the scale
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of the cell size, in the sense that

ρ̃k =
(mp

v

)k

Fk =
(mp

v

)k

〈(N )k〉P . (4)

Let us now consider the density fields smoothed at scale R for
the gas, dark matter and stars, ρg, ρDM and ρs, respectively. For the
sake of readability, we shall drop the tilde notation, and the density
fields are to be understood as smoothed at the scale R in the rest
of this section. Using equation (1), we can express the moments of
the smoothed total density field ρ tot as a function of the moments
and correlations of the individual species using the multinomial
theorem:
〈
ρk

tot

〉 =
∑

k1+k2+k3≤k

(
k

k1, k2, k3

) 〈
ρk1

g ρ
k2
DMρk3

s

〉
. (5)

In this equation, 〈· · ·〉 denotes the ensemble average overall realiza-
tions of the underlying density fields, not to be confused with the
average 〈· · ·〉P over particle samplings for a fixed realization of ρ

introduced in equation (3).
Provided we can compute all correlations of the form

〈ρk1
g ρ

k2
DMρk3

s 〉, we are now in position to reconstruct the moments
of the smoothed total density field. Under the local Poisson sam-
pling hypothesis, one can deduce from equation (3) the identity:〈
ρk1

g ρ
k2
DMρk3

s

〉
=

(mDM

v

)k2
(ms

v

)k3 〈
ρk1

g (NDM)k2
(Ns)k3

〉
, (6)

which involves the definition (2) and where mDM and ms are the
dark matter and star particle masses. Since the Poisson processes of
the counts-in-cells for the different particle species are independent
of each other, equation (6) involves no approximation, even though
the underlying fields ρDM and ρs are correlated.

From the moments (5), we can straightforwardly compute the
moments of the total matter overdensity 〈δk

tot〉 = 〈(ρtot/ρ̄tot − 1)k〉
from the binomial theorem.

We can finally compute the Sk parameters, which are defined as

Sk(R) ≡
〈
δk(R)

〉
c〈

δ2(R)
〉k−1

c

, (7)

where the c subscripts denote the connected moments of the
smoothed density field, whose generating function is the logarithm
of the generating function of the 〈δk〉.

2.3 Power spectrum

Because of the particular significance of the 3D total matter power
spectrum P(k) in the convergence power spectrum, we have also
measured P(k) in the dissipative and DMO simulations, in addition
to the one-point statistics. The variance of the total matter density
field smoothed at scale R can be expressed as

σ 2(R) = 1

2π2

∫
dk

k
k3P (k) |W (kR)|2 , (8)

where W is the Fourier transform of a spherical top-hat window
function with volume unity:

W (x) = 3

x3
(sin x − x cos x) . (9)

Various sophisticated techniques for estimating the power spectrum
have been proposed, especially for correcting mass assignment and
sampling effects (Jing 2005; Cui et al. 2008; Colombi et al. 2009).
Since the two-point correlation function (or, equivalently, the power
spectrum) is not our primary interest in this paper, we have settled
for a simple method which we expect to yield reasonable results,
even if not as accurate as our one-point moments measurements.

The gas and particle densities were mapped on to a 20483 base
grid and added up, using donnercell for the gas and NGP binning
for the dark matter particles. The spectrum is computed using fast
Fourier transform folding (see Jenkins et al. 1998; Colombi et al.
2009) and corrected for the NGP convolution and shot-noise bias
effects (Hockney & Eastwood 1981).

2.4 Results

Because of cooling, the baryons will condense to form dense struc-
tures such as discs at the centre of dark matter haloes. Fig. 1 shows
a density map of one of the biggest MareNostrum haloes, together
with contours of the density ratio ρbar/ρCDM. The effect of cooling
can be seen as dense baryon-dominated regions at the cores of the
haloes and halo substructures.

The small-scale baryonic features directly impact the density
statistics at small scales: as the smoothing scale decreases, the
discs become more and more apparent in the density PDF as
peaks in the high-density regions. We can expect this process to
broaden the distribution, thereby increasing the variance, and as only
the higher density regions are affected, the skewness should also
increase.

The computed variance σ 2 and skewness S3 from the MareNos-
trum dissipative and DMO simulations is presented in Fig. 2. Com-
paring the DMO simulation (solid black) with the total matter in
the dissipative run (blue dashes), we indeed note that the presence
of baryonic physics dramatically amplifies both σ 2 and S3 at small
R. At k ∼ 10 h Mpc−1, the power spectrum boost reaches about
35 per cent (see Fig. 3), most of which is caused by cold baryons

Figure 1. Map of the projected dark matter density of one of the largest
haloes in the MareNostrum simulation (Rvir = 0.59 Mpc h−1 comoving
shown as the dashed circle) at z = 2. The contours represent isovalues of
the baryon to dark matter density ratio ρbar/ρCDM. The outer black contours
correspond to ρbar = 0.1 ρCDM, while the inner red contours delimit equal
density regions. The total matter density is baryon-dominated at small scales
well within the halo core. The bright central galaxy clearly stands out of
the halo substructures, whose distribution within the halo remains mainly
unaffected by the presence of baryons (see Weinberg et al. 2008).
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Figure 2. Variance (left-hand panel) and skewness (right-hand panel) of the smoothed density field of different species at z = 2, as a function of the smoothing
scale in the MareNostrum dissipative and DMO simulations. The solid line shows σ 2 and S3 for dark matter in the DMO simulation, while the dashed and
dotted lines correspond to the dissipative simulation: short dashes for dark matter, long dashes for total matter and dots for baryons. The error bars on the DMO
data are 1σ wide and determined by the subvolumes method as described in the text.

Figure 3. Relative power spectrum amplification due to baryons at z = 2.
The solid curve is the measured power spectrum, the dotted curve is an NFW
profile with c0 = 20, b = −0.15 and the dashed curve is the halo model with
our composite halo profile.

(stars). Because our study is carried out at z = 2, precise compar-
isons with previous results of Jing et al. (2006) and Rudd et al.
(2008) are difficult. Note, however, that we observe the same qual-
itative effects. The variance plot in Fig. 2 also demonstrates the
presence of CDM adiabatic contraction (Gnedin et al. 2004). As
the gas cools down, its contraction drags the dark matter into local
potential wells created by dense baryon clumps. This effect results
in a net condensation of the dark matter, whose effect on variance
can be seen by comparing the DMO run (solid black curve) with
CDM of the dissipative run (short-dashed curve). Both observed
boosts and dark matter contraction effects are well in accordance
with the results presented in Weinberg et al. (2008).

Because of the relatively small size of the MareNostrum simula-
tion box, the results presented in Fig. 2 are contaminated to some
degree by cosmic variance and finite volume effects. We have esti-
mated those effects in the MareNostrum DMO simulation. Note that
the rigorous determination of error bars is beyond the scope of this

paper, and we do not expect baryons to modify those uncertainties
significantly.

The cosmic variance and finite volume effects on the statistical
quantities were sampled by three different independent methods.
We have run a set of 10 smaller 2563 cosmological simulations
up to z = 2 with the same box size and power spectrum as the
MareNostrum box, only with differing random phases. The statis-
tical quantities were then computed on each box, and the variance
of those quantities over the 10 boxes were used as a first estimate
of the MareNostrum cosmic variance effects. While such ensemble
simulations are easy to carry out, this method is known to under-
estimate the actual cosmic variance, as all the realizations of the
initial density field are constrained: the total box matter density is
fixed to the background matter density of the universe. In addi-
tion, this method cannot be used to determine the variance at small
scales because of the low resolution of the ensemble simulations.
Relative cosmic error derived from this set of simulations is pre-
sented in Fig. 4 (dashed curve). The FORtran for Cosmic Errors
code (FORCE; Colombi & Szapudi 2001) implements the results of
Szapudi, Colombi & Bernardeau (1999) and provides cosmic vari-
ance estimations given the values of the density cumulants. The
corresponding cosmic error, based on the MareNostrum DMO cu-
mulants, is shown as the solid curves in Fig. 4. This estimation
relies on a perturbative expansion which breaks down when relative
errors approach unity. As the MareNostrum errors range from about
5 to 30 per cent, the FORCE computation still holds, but the quality
of the estimation is impacted, especially at small scales where the
errors on high-order cumulants increase. To confirm the FORCE re-
sults at small scales, we have studied the variance of the statistical
quantities over a random sample of cubic subvolumes of size 
.
Let εX(
, R) = √

var(X(R))/X̄(R) be the relative cosmic error of
a statistical quantity X at scale R defined on subvolumes of size

. To obtain the cosmic variance of the whole simulation box [i.e.
εX(L, R) for all R], we computed εX(
, R) for 
 = L/8, L/16,
L/32 and extrapolated in 
 to 
 = L assuming the power-law form
εX(
, R) = εX(L, R) (
/L)η. This last estimation of the error is
represented in Fig. 4 with dotted lines. None of these methods en-
sures accurate determination of the errors over the whole range of
scales, however, they paint a clear picture of cosmic variance in the
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530 T. Guillet, R. Teyssier and S. Colombi

Figure 4. Estimates for the relative cosmic errors 
σ 2/σ 2 and 
S3/S3 for each method described in the text. The dashed curves correspond to the 10
ensemble simulations, the solid curves to results of the FORCE code and the dotted curves to the subvolumes estimation.

MareNostrum simulations. As can be seen in Fig. 2, the observed
boosts in σ 2 and S3 are well above cosmic variance effects. Note
that scales comparable to the MareNostrum box size correspond to
a patch of z = 0.5 sky extending over about 4 deg2.

For our present study, it is important to notice, however, that since
both the DMO and dissipative runs have been performed using the
same set of random phases for the initial conditions, they suffer
from the same such effects. As a consequence, the corresponding
errors in the two runs are strongly correlated, and ratios of statistical
quantities such as σ 2

tot/σ
2
DMO are mostly devoid of finite volume

contamination. For the rest of this paper, we will therefore only
consider such amplification ratios (or ‘boosts’) for the variance and
skewness of the total matter in the dissipative run with respect to
the dark matter of the DMO run.

3 A M O D I F I E D H A L O M O D E L FO R BA RYO N S

3.1 The halo model

The halo model provides a well-tested and flexible framework for
the study of the properties of matter distribution in non-linear stages
of gravitational collapse. While first studied in the context of the
galaxy distribution (Neyman & Scott 1952), it has become a full-
fledged and now mature tool for cosmological statistics through
significant contributions and improvements to its various ingredi-
ents.

Attempting to reproduce the effect of baryons on the boost fac-
tors of variance and skewness requires us to model both the DMO
and dissipative matter distributions. Rudd et al. (2008) have shown
that modifying the halo concentration relation can account for the
variance amplification at scales k � 20 h Mpc−1. In this paper, we
will use a standard halo model to describe the dark matter of the
DMO run. We base our halo profile for the total mass on the DMO
halo model, but instead of modifying only c(M), we propose to also
modify the halo profile itself. As discussed previously, the quantity
of interest is the boost of the statistics (i.e. the amplification of the
variance and skewness witnessed on the total matter halo model
with respect to the reference halo model). We now briefly describe
the different key ingredients which take part in the computation of
σ 2(R) and S3(R) in the halo model.

Statistical description of the density field as a set of virialized
haloes requires the specification of the mass distribution of the
haloes (the mass function), their density profiles and associated
mass parametrization and a model for halo–halo correlations.

A simple model for the halo mass function was given by Press &
Schechter (1974) based on the spherical collapse model. Since then,
there has been more convincing derivations of the Press–Schechter
result, as well as attempts to take into account non-symmetric col-
lapses and tidal effects (Bond et al. 1991; Audit, Teyssier & Alimi
1997; Sheth, Mo & Tormen 2001; Sheth & Tormen 2002). These
studies resulted in other parametrizations, such as the Sheth–Tormen
mass function (Sheth & Tormen 1999).

In this study, we use the Sheth–Tormen prescription for the halo
mass function, as it turns out to be a better fit to our simulations than
the Press–Schechter form. In normalized units, the Sheth–Tormen
mass function reads

m

ρ̄
n(m) dm = A(p)

√
2q

π

(
1 + (

qν2
)−p

)

× ν exp

(
−qν2

2

)
dν

ν
, (10)

where ν ≡ δc/σ . δc ≈ 1.68 is the collapse density threshold in the
spherical collapse model and p ≈ 0.3, A(p) ≈ 0.322, q ≈ 0.75.

We have also introduced a mass cut-off in the halo mass function
to account for the small box size of the MareNostrum simulation.
The value of the cut-off is chosen slightly above the mass of the
biggest halo found in the simulation, which is around 5.1013 M�.
While the cut-off has little effect on the variance as computed by
the halo model, the skewness drops significantly at large scales,
resulting in a better fit against the measured S3. This is not surprising
since high-order moments at large scale are sensitive to rare events
(such as massive haloes; e.g. Colombi, Bouchet & Schaeffer 1994),
which are not well sampled by the MareNostrum box.

For the DMO model halo profile, we use the standard Navarro,
Frenk and White (NFW) form (Navarro, Frenk & White 1997):

uNFW(r|M) ∝ x−1 (1 + x)−2 , x ≡ c(M)r

Rvir
(11)

and u(r|M) is normalized such that
∫

u(r|M) d3r = 1. Our halo
virial radius Rvir is defined such that, for a halo of mass M, we have
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Baryons and statistics of mass distribution 531

M = (4/3)πρ̄R3
vir
, with 
 = 200. Note that the mass M of a halo

is related to its comoving Lagrangian size R by M = (4/3)πρ̄R3.
The NFW model has proved to fit numerical dark matter profiles
over a large range of masses and radii with some dispersion in the
concentration parameter c(M) (Kravtsov et al. 1998; Jing 2000).
The central logarithmic slope of dark matter profiles, which is −1
in the case of NFW, is currently debated (see Fukushige & Makino
1997; Moore et al. 1998, and more recently Springel et al. 2008;
Stadel et al. 2009). Note, however, that in the presence of dissipative
physics, baryons are likely to affect the inner slope.

The concentration parameter c(M) is parametrized in our model
according to the result of Bullock et al. (1999):

c(M, z) = c0

1 + z

(
M

M∗

)b

, c0 ≈ 9, b ≈ −0.13. (12)

This power-law model has been found to be a good fit to numerical
simulations also for dark energy cosmologies (Dolag et al. 2004).

Following Scherrer & Bertschinger (1991), we can express the
density two-point correlation function ξ (r) as

ξ (r) = ξ1h(r) + ξhh(r), (13)

where ξ 1h represents the contribution to the correlation function
from mass within the same halo, and ξ hh contains the contribution
from mass located in different haloes.

ξ 1h is essentially the autocorrelation of the halo profile and its
contribution to the power spectrum is

P1h(k) =
∫

n(m)

(
m

ρ̄

)2

|u (k|m)|2 dm, (14)

where u(k|m) is the Fourier transform of the halo profile for a halo
of mass m. We compute the halo–halo contribution following Mo
& White (1996) and its subsequent extensions (Mo, Jing & White
1997; Sheth & Lemson 1999; Sheth & Tormen 1999). Assuming de-
terministic biasing on large scales, we can write the ξ hh contribution
from two haloes of masses M1 and M2 as

ξhh(r|M1, M2) = b(M1)b(M2)ξ (r)

≈ b(M1)b(M2)ξlin(r), (15)

where ξ lin is the matter correlation function from linear theory. This
prescription is accurate at large scales and consistent with the choice
of mass function provided the bias b(M) is computed from f (ν) as
prescribed in Mo et al. (1997).

Now in possession of a halo model for ξ (r) [and therefore its
Fourier transform P(k)], we can evaluate σ 2(R) using equation (8).

3.2 Skewness in the halo model

While in principle the halo model ingredients presented so far
fully determine the statistics of the density field, additional work is
needed to extract S3(R).

At large enough scales, the one-point statistics Sk may be com-
puted using perturbation theory (Fry 1984; Juszkiewicz, Bouchet &
Colombi 1993; Bernardeau 1994; Bernardeau et al. 2002), which
yields

SPT
3 = 34

7
+ γ, (16)

where γ = d ln σ 2(R)/d ln R. However, in the MareNostrum simu-
lation at z = 2, PT is only expected to be valid at scales greater than
∼ 1 Mpc h−1. A first interesting refinement taking discrete haloes
into account is the Poisson cluster model, where halo–halo cor-
relations are neglected and profiles are assumed to be point-like

(Sheth 1996). Halo profiles, however, are responsible for most of
the behaviour of small-scales statistics, and thus neither perturbation
theory nor the point-cluster model is appropriate for our study.

Fortunately, the full computation of the higher order cumulants
Sk in the halo model was developed in Scoccimarro et al. (2001).
Following the authors, we define

um(R, ν) ≡
∫

k2dk

2π 2
[u(k|ν)]m |W (kR)|2 (17)

Ai,j (R) ≡
∫

dνf (ν)bi(ν)u2(R, ν) [u(R, ν)]j
(

M

ρ̄

)j+1

, (18)

where R is such that δc/σ (R) = ν. In these notations, the third
cumulant of the density field in the halo model writes

〈δ3〉c = SPT
3 σ 4

lin + 3σ 2
linA1,0 + A0,1. (19)

3.3 Halo model results

We have tested some families of halo profiles to attempt to reproduce
the observed effect of baryons on the statistics of the density field.
The reference halo model for the DMO simulation is based on an
NFW profile with the commonly used c(M) relationship of Bullock
et al. (1999) as written in equation (12).

As suggested by previous numerical studies (Rudd et al. 2008),
an increase in c0 and a steeper concentration slope b are expected
to reproduce – at least partially – the increase in power at small
scales due to baryonic physics and radiative processes in particular.
We have accordingly tried to adjust the concentration parameters
with an NFW profile to obtain a good match for both the variance
and skewness at small scales. The power spectrum, variance and
skewness boosts for an NFW-based model with parameters com-
parable to Rudd et al. (2008) (c0 = 20, b = −0.15) are presented
as the dotted curves in Figs 3 and 5. This model reproduces the
MareNostrum variance and power spectrum boosts down to a scale
of about 0.5 Mpc h−1. At smaller scales, however, the halo model
underestimates the variance amplification. A large part of this dis-
crepancy is likely due to the difference in the simulation codes and
physical modelling between the two studies. Note, however, that
the skewness S3 of this halo model lacks much of the measured
small-scale amplification, as can be seen in Fig. 5. The distinctive
bend is also not reproduced at all, which suggests the profile form
distributes matter too evenly across scales.

With the partial success of this profile, one might expect NFW
profiles with higher concentrations to yield better fits. It turns out
however that reasonably fitting the variance boost at small scale
requires very high values of c0, exceeding 30. Such high values of
the concentration parameter are too high to be accepted as physically
meaningful. Yet more importantly, while increasing c0 will indeed
boost the variance, it fails to reproduce at all the corresponding
small-scale skewness amplification. This can be seen in Fig. 5, and
the S3 boost of a pure NFW halo model remains essentially flat for
varying values of c0, with a very weak dependence.

This leads us to believe that, while the NFW profile with adjusted
concentration parameters has merits in modelling the variance am-
plification caused by dissipative physics, it can only paint a limited
picture of the statistical properties of the density field in the presence
of baryons. As increasing c0 essentially amounts to concentrating
more matter within the central region of the haloes, we naturally
turn to other centrally concentrated halo profiles.

One way to concentrate more matter within the centre region is
by using families of profiles with steeper central cusps than NFW
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532 T. Guillet, R. Teyssier and S. Colombi

Figure 5. Effect of baryons on the variance and the skewness S3 boost factors, as measured on the MareNostrum simulation (solid curve) and modelled by an
NFW profile with c0 = 20, b = −0.15 (dotted curve) and the composite profile (dashed curve).

of the form:

uα(x) = x−α(1 + x)α−3, (20)

where α = 1 yields an NFW profile. We have tested this family
of profiles on a wide range of values 1 ≤ α ≤ 2.5. For each value
of α, we attempted to find a best-fitting value of (c0, b), again by
exploring the parameter space. It is interesting to note that high val-
ues of α, in the range [2.0, 2.15], produce to some extent both the
σ 2 small-scale steepening and a strong S3 amplification. Isothermal
(α = 2) profiles are known to be a good description of the total
density in haloes hosting elliptical galaxies (see e.g. Gavazzi et al.
2007; van de Ven, Mandelbaum & Keeton 2009). In the case of
the MareNostrum simulation, however, this property seems coin-
cidental, as the simulated physics form no truly elliptical galaxy
comparable to observations. Moreover, the residuals of the best σ 2

and S3 fits for such profiles cast doubt on the legitimacy of the
analytical form uα for the statistical analysis of the simulation.

3.4 A modified halo profile

A good candidate profile which is both centrally concentrated and
physically motivated is a composite halo profile (see White 2004;
Zhan & Knox 2004), parametrized by the dimensionless parameters
fd and λd:

ufd,λd (r|M) = (1 − fd) uNFW(r|M)

+fd uexp,λd (r|M) , (21)

where uexp,λd is a spherically averaged exponential disc profile with
length-scale rd proportional to the halo’s virial radius:

uexp,λd (r|M) ∝ exp(−r/rd)

r/rd
, rd ≡ λdRvir. (22)

The dimensionless parameter λd is essentially the spin parameter of
the halo and defines the disc scale rd. The profile ufd,λd features a
central r−1 cusp and behaves like the NFW profile for radii bigger
than the disc length-scale rd. However, because of the profile nor-
malization, it concentrates more mass within the central exponential
than a pure NFW. ufd,λd can be seen as a halo profile concentrating
a fraction fd of the mass within a central exponential disc profile,
and the remaining 1 − f d in a standard NFW component.

This form of composite profile is physically motivated. The to-
tal mass distribution in group-sized haloes is known to be well
described by a halo component and a concentrated component cor-
responding to the bright central galaxy (see e.g. Dubinski 1998).
The presence of baryons does not fundamentally change the diffuse
halo component: the distribution of satellite galaxies within haloes
is very similar to the halo occupation distribution of dark matter sub-
structures in pure N-body simulations (see Weinberg et al. 2008).
This suggests keeping an NFW profile to account for the dark mat-
ter, diffuse gas and halo substructures, while introducing a spiked
central component mimicking the bright central galaxy’s disc. We
may expect this NFW profile to be more concentrated than in the
DMO case, because of the adiabatic contraction of the CDM due to
the presence of baryons. This will therefore lead to an increase of c0

in the c(M) relationship of equation (12). For the composite profile,
fd is to be understood as the fraction of the total halo mass which
resides in the galactic disc in the form of baryons. As most formed
galaxies found at z = 2 in MareNostrum simulation are spirals, we
restrict ourselves in this paper to an exponential disc profile for the
central component. We believe this form captures the essential fea-
tures of the dense central baryonic regions which are important for
the halo model. It also places interesting constraints on the profile
parameters fd and λd, as mass fractions and angular momenta of
discs are well studied both theoretically and observationally. We
further assume both λd and fd to be independent of halo mass. The
assumption that the disc size is a fixed fraction of Rvir corresponds
to the singular isothermal sphere model of disc formation (see Mo,
Mao & White 1998). We postpone refinements of this model to
future work.

Here again, we explored the (f d, λd) parameter space to find a
good fit to the MareNostrum data. Our best model has parameters:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c0 = 13.5

b = −0.15

fd = 0.09

λd = 0.025.

(23)

The corresponding power spectrum, variance and skewness boosts
are represented in Figs 3 and 5 as dashed curves. This halo profile
reproduces accurately both the measured σ 2 and S3 amplifications
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Baryons and statistics of mass distribution 533

Figure 6. Error on the amplification of the 3D total mass power spectrum
at z = 2 for the halo models represented as a function of the angular
mode 
 in the flat sky approximation. The dashed curve is the reference
DMO model (i.e. without any boost), the dotted curve is the pure NFW
model with modified c(M) and the solid curve is the composite halo model
amplification. The light and dark shaded areas are estimates of the expected
experimental errors on C
 for the CFHT Wide-field and LSST experiments,
respectively.

down to the smallest scales. In addition, Fig. 6 shows the error on
the 3D power spectrum amplification for the three models (pure
DMO, modified NFW and composite halo model), as a function
of the angular scale 
, compared to expected experimental errors
on the convergence power spectrum for the Canada–France–Hawaii
Telescope (CFHT) and Large Synoptic Survey Telescope (LSST).
The error on the boost predicted by our best-fit composite model is
within the uncertainties of both experiments.

4 D ISC U SSION AND CONCLUSION

With a base grid resolution and particle count of 10243 and a box size
of 50 Mpc h−1, the MareNostrum simulation resolves the length and
mass scales of galactic discs while also providing a volume large
enough for cosmological studies. This makes it particularly suitable
for the study of the effect of baryonic physics on cosmic statistics.
Such an intermediate box size, however, will be affected at both
small and large scales by resolution and finite volume effects.

At very small scales, counts-in-cells measurements are expected
to suffer from shot noise, as the density field is sampled by a finite
number of particles. This translates into both statistical variance
and bias at small scales, if using naive statistical estimators for the
moments of the density field. Assuming particles trace the density
field as a local Poisson process, it can be shown, however, that
factorial moments defined in equation (3) are unbiased estimators
(Szapudi & Szalay 1993; Bernardeau et al. 2002). We thus do not
expect our measurements to be affected by Poisson noise at small
scales.

On large scales, the results will be contaminated by cosmic vari-
ance and finite volume effects. In cosmological simulations, statis-
tical quantities are usually computed by taking the spatial average
– instead of ensemble average – of local quantities over the single
simulated volume. This prescription is only appropriate for scales
corresponding to wavenumbers k for which the simulation provides
sufficient independent samples. For a box of a given size L, the
sampling of large scales k with 2π/k approaching L suffers from
the decreasing number of independent modes. The low number

of modes at low wavenumbers introduces variance on large-scale
quantities, which is purely statistical in nature. As presented earlier,
we have measured the cosmic variance of the whole MareNostrum
box, and while conservative estimates for the errors range from
5–30 per cent depending on the statistic and estimation method, it
is our understanding that cosmic variance does not fundamentally
affect our result. As previously mentioned, we have minimized the
effect of cosmic errors on our conclusions by only considering ra-
tios of statistical quantities from simulations run with the same set
of random phases.

We have shown that, although different halo profiles can describe
variance amplification due to dissipative physics at small scale
by merely modifying the concentration parameter c(M), the third
moment S3 introduces additional constraints on the inner profiles
which cannot be reproduced by changing c(M) alone. The distinc-
tive slope of S3(R) at small scales seems characteristic of a higher
mass concentration towards the core than NFW. Unsurprisingly,
profiles with a core or relatively weak central density peaks do not
describe well the effective total matter distribution in the presence of
baryons.

Instead, we have found that using a superposition of an NFW pro-
file and an exponential profile yields realistic variance amplification
and S3 gain for reasonable values of the concentration parameters
c0 and b, disc mass fraction fd and disc scale λd. One should note
that the values of the best-fitting λd and fd parameters are in good
agreement with the expected physical properties of the galaxies of
the simulated MareNostrum universe. The f d = 0.09 value is quite
compatible with observed and predicted baryon disc mass fractions
(see e.g. Somerville et al. 2008).

In this model, we chose not to introduce any mass or redshift
dependence in fd and λd. For the latter, this assumption is supported
in part by the weak dependence on mass of rd/Rvir (Somerville et al.
2008). On the other hand, for fd, a proper model should account for
the variation of M/L as a function of halo mass in real galaxies
(see e.g. Yang, Mo & van den Bosch 2003). We postpone this more
elaborate approach to a future paper.

The modified c0 and b parameters of equation (23) for the NFW
profile correspond to a more concentrated CDM component than in
the pure DMO model. This is in accordance, both qualitatively
and quantitatively, with the results of Rudd et al. (2008). It is
interesting to note that the variance boost caused by the NFW com-
ponent is of the same order of magnitude as the adiabatic contraction
effect visible in Fig. 2, albeit slightly weaker. This supports the idea
that the composite halo profile concentrates a significant fraction of
the halo’s baryonic mass within the central disc, while the remaining
halo gas essentially follows the NFW component which accounts
for the CDM. This last CDM component ‘feels’ the presence of the
hot gas through the process of adiabatic contraction.

This suggests that both variance and skewness of the density field
can be estimated at small scale within the framework of the halo
model by using a composite halo profile. While the halo model
is a valuable tool for the study of theoretical power spectra, the
accuracy requirements of precision cosmology are arguably too
stringent to consider directly fitting cosmological parameters to
observed cosmic statistics. The halo model has merit, however, as it
allows one to study the dependence of cosmic shear with baryonic
features such as galaxy disc masses and sizes.
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