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A non-Abelian generalization of the neutral Witten current-carrying string model is discussed in which

the bosonic current carrier belongs to a two-dimensional representation of SU(2). We find that the current-

carrying solutions can be of three different kinds: either the current spans a U(1) subgroup, and in which

case one is left with an Abelian current-carrying string, or the three currents are all lightlike, traveling in

the same direction (only left or right movers). The third, genuinely non-Abelian situation, cannot be

handled within a cylindrically symmetric framework, but can be shown to depend on all possible string

Lorentz invariant quantities that can be constructed out of the phase gradients.

DOI: 10.1103/PhysRevD.82.023510 PACS numbers: 98.80.Cq, 11.27.+d

I. INTRODUCTION

Topological cosmic strings or superstrings of cosmo-
logical size are one-dimensional extended objects which
are believed to have been formed in the early phases of
cosmological evolution. They are of considerable interest
because they may offer an observable window on the high
energy physics of the primordial universe, i.e., at grand
unified scales.

Topological strings are produced in phase transitions
associated with spontaneous symmetry breaking. This is
the standard Kibble mechanism [1,2]. Almost all super-
symmetric grand unified theories in which hybrid inflation
[3–5] can be realized lead to the formation of topological
strings [6–9]. Besides, most classes of superstring compac-
tification lead to a spontaneous breaking of a pseudoanom-
alous U(1) gauge symmetry producing local cosmic strings
[10]. Such strings also form in the case where the Higgs
field has a nonminimal kinetic term [11].

The simplest kind of topological string is the Nambu-
Goto string which is described by the Nambu-Goto action
[12,13]. The Nambu-Goto action is the world-sheet for-
mulation counterpart of a field theory description in which
the string arises as a solitonic solution of the Abelian Higgs
model [14]. Such a string has no internal structure and is
described entirely in terms of a world-sheet Lagrangian
and the tension per unit length of the string.

Most observational signatures in the gravitational sector
expected from topological strings have been derived and
simulated numerically for Nambu-Goto strings. There are
five main possible observational effects (see [15,16] and
references therein): beamed gravitational wave bursts from

kinks and particle acceleration; deflection, gravitational
lensing effects, and multiple image effects; Doppler shift-
ing effects; background gravitational radiation from string
loops; and string effects in the cosmic microwave back-
ground. The existence of kinks along the strings has been
shown to occur also for current-carrying strings [17] and
the electromagnetic effects of such strings, which are
absent in the simpler Nambu-Goto string, have been inves-
tigated. An especially interesting observational conse-
quence of the presence of cosmic string networks in the
early universe potentially because it is susceptible to being
detected in the cosmic microwave background is the Gott-
Kaiser-Stebbins effect [18,19]. This effect consists of a
temperature shift that is due to the gravitational lensing
of photons passing near a moving source.
Cosmic superstrings are formed by tachyon condensa-

tion at the end of brane inflation [20,21]. The tachyons are
complex scalars [with a local U(1) gauge symmetry] iden-
tifiable with the ground state open string modes of the
Neveu-Schwarz sector that end on coincident non-BPS
branes and antibranes [22–25]. There exist associated
gauge fields living on the brane and antibrane so that there
exists a Uð1Þ � Uð1Þ symmetry on the brane-antibrane
configuration. A first linear combination of the U(1)’s is
Higgsed [26,27] leading to the appearance of a first kind of
cosmic superstrings that are D p-branes with p� 1 dimen-
sions compactified [28]. In type IIB superstring theory, and
given a spacetime manifoldM, such stable p-branes, can,
for example, be obtained by considering a pþ 2 brane-
antibrane pair stretching over a submanifold Rpþ3 � M.
The pþ 2 brane-antibrane pair will annihilate unless a
topological obstruction exists. This obstruction can be
obtained from K-theory [29–31]. A second linear combi-
nation of the U(1)’s leads to the formation of F-strings
[26,27].
All of these types of strings have until recently been

considered as structureless, so their dynamics is given by
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the Nambu-Goto action. Numerical simulations of net-
works (see [32] and references therein) of such strings
have been produced with the result of scaling, a property
thanks to which the string network never comes to domi-
nate the Universe evolution, but neither are the strings
completely washed out of the Universe, so their effect,
however small, is still detectable.

The Nambu-Goto string can be generalized to the case of
a string with internal structure. Such a string can be ob-
tained by including a coupling of the string-forming Higgs
field to additional (bosonic or fermionic, with global or
local, Abelian, or non-Abelian symmetry) fields in the
theory. In part of the parameter space, these fields condense
onto the string (the symmetry gets broken) leading to the
appearance of currents on the world sheet in the form of
Goldstone bosons propagating along string [33]. In such a
case, the current-carrying string can be described using a
world-sheet Lagrangian and a nontrivial equation of state
relating the tension per unit length to the energy density of
the string [34–37]; the actual form of this equation of state
was discussed numerically [38–40] and analytically [41].
The presence of currents on the world sheet modifies only
slightly the gravitational properties of the long strings
[42,43], but it also halts cosmic string loop decay caused
by dissipative effects, thereby yielding new equilibrium
configurations [17,44] named vortons [45–50]. Those can
potentially change drastically the cosmological network
evolution, at the point of ruling such strings out.

Although the current-carrying property of cosmic strings
is in fact fairly generic [51–53], a possibility that has, until
now, been completely disregarded is that for which the
string would be endowed not only with many currents [54],
but also with currents of a non-Abelian kind, as is to be
expected in most grand unified theories. This natural ex-
tension of the Witten idea leads to numerous new difficul-
ties, as, in particular, the internal degrees of freedom
manifold is intrinsically curved, so that a local, flat, de-
scription of the string world-sheet manifold turns out to be
inappropriate [55,56]. This paper is devoted to the specific
task of obtaining the equivalent microscopic structure of a
non-Abelian current-carrying cosmic string.

To do so, we restrict attention to the global situation in
which, in a way similar to the so-called neutral Witten
model [38], we wish to capture the essential internal dy-
namics of the string without the undue complication of
adding extra gauge vector fields. In the case of an Abelian
current, it was indeed shown that these contributions,
although of potential great cosmological relevance (see,
e.g. Ref. [57] and references therein), can however be
treated in a perturbative way, not modifying in any essen-
tial way the actual microscopic structure [39]. We therefore
assume, as a toy model, a U(1) Higgs model whose break-
ing leads to the existence of the strings themselves, coupled
to an SU(2) doublet through a scalar potential with pa-
rameters ensuring a condensate. We first describe the fields

and notation, derive their dynamical equations in full gen-
erality, and then discuss the condensate configuration.
After having recovered the Abelian cases as particular
solutions of the general non-Abelian situation, we concen-
trate on the strictly non-Abelian solutions. We obtain an
exact configuration, called trichiral, and show how this
model makes explicit the obstruction theorem first ob-
tained by Carter [55,56]. We then derive the stress-energy
tensor and its eigenvalues, namely, the energy per unit
length and tension, and show that they depend on all the
possible two-dimensional Lorentz invariants that can be
constructed from the phase gradients (and second deriva-
tives) of the angular variables in the internal space. We
conclude by discussing the possible cosmological conse-
quences of this new category of objects.

II. FIELDS CONTENT

The simplest non-Abelian current-carrying string model
that can be written down is that in which a U(1) symmetry
is spontaneously broken by means of a scalar complex
Higgs field �, itself coupled to �, a scalar field belonging
to an arbitrary representation of a non-Abelian group G.
The string-forming action stems from the Higgs
Lagrangian

L S ¼ �D��
?D��� 1

4C��C
�� � VHð�Þ; (1)

where

C�� ¼ r�C� �r�C� (2)

and the U(1) covariant derivative is expressed in terms of
the U(1) gauge field C� as

D�� ¼ r��þ iqC��; (3)

where q is the charge. VH can be chosen without lack of
generality as the Higgs symmetry breaking potential,
namely,

VH ¼ ��

4
ðj�j2 � �2Þ2; (4)

with �� a coupling constant and � the Higgs vacuum

expectation value (VEV) at infinity.
The current part of the Lagrangian reads

L C ¼ �ð@��Þy � @��� VCð�Þ; (5)

where � transforms according to a yet arbitrary represen-
tation of the global invariance group whose structure con-
stants we write as fabc; these are defined through the

commutation relations for fTag, the algebra of G, namely,

½Ta; Tb� ¼ ifcabTc: (6)

In Eq. (6) and in the following, the group indices are
denoted by Latin small cap letters a; b; . . . ¼ 1; . . . ; N
which run to N, the group dimension. The potential ap-
pearing in the current action is the self-interacting potential
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chosen as

VCð�Þ ¼ �m2
��

y ��þ ��ð�y ��Þ2; (7)

thus introducing the vacuum mass and self-interaction
constants m� and ��. In Eq. (7), we have introduced a
sign parameter which accounts for the possibility that
SU(2) is broken (� ) or unbroken (þ ) far from the string
core. The first possibility is usually not taken into account
when one considers the Witten model since in that case,
one has in mind that the condensate depicts electromagne-
tism, which is obviously unbroken far from the string. In
the non-Abelian case however, it is reasonable to assume a
broken symmetry far from the string as well, in particular,
if one is to identify this symmetry with that of the electro-
weak phenomenology.

The total action of the system can be written as

L ¼ LS þLC � Vint; (8)

where the interaction term couples the two scalar fields
Vintð�;�Þ. This potential, again for illustrative purposes
below, shall be taken as the most general renormalizable
one, namely,

Vintð�;�Þ ¼ fðj�j2 � �2Þ�y � �; (9)

with a positive coupling constant f to ensure vacuum
stability. The vacuum far from the string therefore depends
on the representation � belongs to. The microscopic pa-
rameters that allow for a condensate to form are similar to
those of the Abelian current case; they have been dis-
cussed, in particular, in Ref. [38].

III. FIELD EQUATIONS

Having specified the field content and the action of the
system, one can now derive the corresponding equations of
motion. The equations of motion of the system consisting
of the string-forming fields � and C� and the current

carrier � are

r�r��þ 2iqC�r��þ iq�r�C
�

� q2C�C��� @V

@�� ¼ 0 (10)

for the string-forming Higgs field,

r�C
�� � iqð�r��� ���r��Þ � 2q2C�j�j2 ¼ 0

(11)

for the associated U(1) gauge field, and

h� ¼ @V

@�y (12)

for the current carrier.
The energy-momentum tensor of the system is given by

the usual relation

T�� � g��L� 2
�L
�g�� ; (13)

and can be decomposed into a scalar and a vector part,
namely,

T�� ¼ Ts
�� þ Tv

��; (14)

where

Ts
�� ¼ Dð���D�Þ�� g��D��

�D��þ @ð� �y � @�Þ�
� g��ð@��Þy � @��� g��Vð�;�Þ; (15)

with parentheses denoting symmetrization of the indices,
i.e., Sð	
Þ � S	
 þ S
	, and

Tv
�� ¼ �ðC�	C

	
� þ 1

4g��C	
C
	
Þ: (16)

From this stress-energy tensor and the field equations, we
shall now derive the full microscopic structure of the
system.

IV. THE CONDENSATE

Having derived the most general form of the equations
of motion, we now turn to the specific situation where a
straight, infinitely long, cosmic string is present. A typical
vortex solution aligned along the z axis in polar coordi-
nates r and � is then given by the Nielsen-Olesen ansatz

� ¼ ’ðrÞein� and C� ¼ C�ðrÞ��
�; (17)

where n 2 Z. Although the specific form of the potential is
irrelevant for most of what follows, the shape (4), being the
most general renormalizable function satisfying this con-
straint, is used in the numerical illustrations below.
Inserting the above ansatz into the equations of motion,
Eq. (10) takes the form

d2’

dr2
þ 1

r

d’

dr
¼ Q2

r2
’þ @V

@’
; (18)

while Eq. (11) becomes

d2Q

dr2
� 1

r

dQ

dr
¼ 2q2Q’2; (19)

where we have defined Q � nþ qC�. In Eq. (18), the last
term on the right-hand side (rhs) involves not only the
derivative of the self-interaction potential VH, but also
that of the coupling term Vint, so that this equation also
depends on the SU(2) doublet amplitude. It is through this
‘‘backreaction’’ term that the string itself is affected by the
presence of the current.
Let us now discuss in more detail the form of the

current-carrier scalar field �. Our goal is to find the most
general ansatz for � in cylindrical coordinates. The case
where G ¼ Uð1Þ represents the usual so-called supercon-
ducting string model originally introduced by Witten [58].
In this particular case, � is a complex field vanishing in
vacuum, i.e. far from the string. Its coupling with the
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string-forming Higgs field yields an instability in the vor-
tex core leading to a condensate: far from the string, in
vacuum, where the Higgs field is equal to its VEV j�j ¼
�, the interaction term Vint vanishes so that � must vanish.
The string location, defined as the set of points where � ¼
0, however, is no longer vacuumlike from the point of view
of �, and indeed the parameters of the potential (9) can be
chosen [38,39] such that � does not vanish inside the
vortex.

One can pick a specific gauge in which � is real, � ¼
�ðrÞ say, depending only on the distance to the string, with
� 2 R and limr!1�ðrÞ ¼ 0, and generate all the solutions
by applying a gauge transformation, in this case a phase.
The full solution then reads

� ¼ eic ðz;tÞT�ðrÞ; (20)

where the phase transformation can now depend on the
world-sheet internal coordinates and we did not take into
account a possible dependence in the external coordinates.
In Eq. (20), we have written explicitly the generator of the
U(1) translation as T, even though it is not necessary in this
simplifying case for which the scalar field is a mere singlet
under this extra U(1); note that this could be different if �
were belonging to the representation of a larger group
containing this U(1).

Written in the form (20) with the generator, the solution
is easily generalizable to the non-Abelian case. We again
choose a gauge in which� ¼ �ðx?Þ, with � in the desired
representation but depending only on the external coordi-
nates x? (in practice the radial distance r), and produce the
full solution by exponentiation of the generators Ta as

� ¼ eic
að�ÞTa�ðx?Þ; (21)

where the functions c a a priori depend on the internal
coordinates � only. As it turns out however [55,56], in the
more general case of a non-Abelian symmetry, the fields
c a live on a curved manifold which cannot, in general, be
smoothly projected on the flat manifold describing the
string world sheet. As a result, one must assume that the
fields c a depend on all embedding coordinates.

The form (21) is not, unfortunately, directly usable, as
the derivative of the group element is not easy to handle.
Indeed, for a noncommuting algebra, one has

@�U ¼ i@�c �
Z 1

0
Uð1� pÞTUðpÞdp � i@�c � TU;

(22)

where UðpÞ � expðipc � TÞ and U� expðic �TÞ¼Uð1Þ,
and the last relation becomes an equality in the Abelian
case. Restricting attention to SU(2) however, allows simple
calculations to be carried out completely since one then has
the useful relation

e i	n�� ¼ cos	1þ in � � sin	; with nan
a ¼ 1; (23)

between the Pauli matrices a, generators of SU(2), and

their exponentiated form. We therefore restrict attention to
a scalar field belonging to the representation 2 of SU(2),
i.e. a doublet, and thus assume in what follows that the
current carrier takes the form

� ¼ ðcos	1þ in � � sin	Þ�g; with g � 1ffiffiffi
2

p 0
1

� �
:

(24)

Notice that Eq. (18), together with the assumption of a
potential depending only on the amplitude �y �� ¼ 1

2�
2,

shows that � ¼ �ðrÞ only. But, as already mentioned
above, the angle 	 and the normalized vector na a priori
depend on all the coordinates.
With the form (24) for the scalar field, the variation of

the potential is

@V

@�y ¼ 1

2

@V

@�
ðcos	1þ in � � sin	Þg; (25)

which provides the equation of motion through Eq. (12).
Indeed, projecting this equation of motion on the identity
of SU(2) yields

��� ½ð@	Þ2 þ tan	h	��� 2 tan	@	 � @� ¼ 1

2

@V

@�
;

(26)

while the projection on the Pauli matrices a leads to

na
�
��þ

�
h	

tan	
� ð@	Þ2

�
�þ 2

@	 � @�
tan	

�

þ 2

�
@�þ �@	

tan	

�
� @na þ �hna ¼ 1

2

@V

@�
na; (27)

which in turn implies, upon projection on na, recalling this
vector to be normalized to unity, that

���
�
ð@	Þ2 � h	

tan	
� nahna

�
�þ 2

@	 � @�
tan	

¼ 1

2

@V

@�
:

(28)

This last equation can be used in order to simplify Eq. (27).
Indeed, inserting Eq. (28) into Eq. (27), one obtains

hna þ 2

�
@�

�
þ @	

tan	

�
� @na � ðnbhnbÞna ¼ 0; (29)

which provides a clean equation for the evolution of the
vector na. Note also that Eqs. (26) and (28) can be com-
bined to provide a dynamical equation for the angle 	,
namely,

h	þ 2

�
@� � @	þ sin	 cos	ðnahnaÞ ¼ 0; (30)

and the profile of the condensate then satisfies

��� ½ð@	Þ2 � ðnahnaÞsin2	�� ¼ 1

2

@V

@�
; (31)

which generalizes the Abelian case by inclusion of the

LILLEY et al. PHYSICAL REVIEW D 82, 023510 (2010)

023510-4



nonlinear term. At this stage, Eqs. (29)–(31) are the equa-
tions that one needs to solve in order to determine �, 	,
and na.

In fact, they can still be further simplified. Indeed, let us
now expand the vector components in such a way as to
implement its normalization, i.e. by projecting these com-
ponents on the sphere on which it evolves in terms of
angular variables 
ðt; r; z; �Þ and �ðt; r; z; �Þ. This gives
n1 ¼ sin
 sin�; n2 ¼ sin
 cos�; n3 ¼ cos
;

(32)

and therefore

nahna ¼ �ð@
Þ2 � sin2
ð@�Þ2; (33)

which shows that Eq. (30) is indeed a dynamical equation
for the variable 	 only. Using the expansion (32), one can
transform Eq. (29) into

h
þ 2

�
@�

�
þ @	

tan	

�
� @
 ¼ cos
 sin
ð@�Þ2; (34)

and

h�þ 2

�
@�

�
þ @	

tan	
þ @


tan


�
@� ¼ 0; (35)

that completes a new set of dynamical equations, namely,
Eqs. (30), (31), (34), and (35), for the 4 independent
functions �, 	, 
, and �. A particular solution for constant
angles and gradients (lowest energy state) is exemplified in
Fig. 1 for the cases for which SU(2) is unbroken or broken
far from the string, derived using typical values for the
parameters.

V. ABELIAN CASES

Since the group SU(2) contains invariant U(1)’s, it can
be used, restricting to special cases, to recover the Abelian
Witten model [33] as well as the bi-Abelian case [54]. The
purpose of this section is precisely to establish the
correspondences.

A. Witten Abelian model

The form (24) for the scalar doublet can be rewritten in
terms of the angles 	, 
, and � as

FIG. 1 (color online). Typical numerical solution of the system (18), (19), and (31) with constant phases (	, 
, and � constant) for
the dimensionless fields Xð�Þ ¼ ’=�, Yð�Þ ¼ �

ffiffiffiffiffiffi
��

p
=m�, and Q as a function of the rescaled distance to the string core � ¼ ffiffiffiffiffiffiffi

��

p
�r

for parameters fixed to ~q2 ¼ 0:1, 	1 ¼ 3:37� 10�3, 	2 ¼ 2:63� 10�3, and 	3 ¼ 5:26� 10�4. The relevant free parameters are
defined in a way reminiscent of Ref. [38], i.e. ~q2 ¼ 2q2=��, 	1 ¼ m2

�=ð2���
2Þ, 	2 ¼ fm2

�=ð2�����
2Þ, and 	3 ¼ m4

�=ð2�����
4Þ

(the 	i’s have of course nothing to do with the angle 	 introduced before). The solutions are calculated by means of successive
overrelaxation [69] for both cases for which either the SU(2) field does not condense in vacuum, i.e. for the plus sign in front of the
massive term in Eq. (7) (left panel), or that for which the SU(2) field does condense in vacuum, i.e. for the minus sign (right panel). The
fact that the three curves for the Higgs field [Xð�Þ, full line], the U(1) gauge field [Qð�Þ, dashed line], and the SU(2) scalar condensate
[�ð�Þ, dotted line] seem to cross at a single point for the noncondensing case of the left panel is purely coincidental and merely due to
the specific choice of the parameters. The normalization of Y with respect to that of � implies that in the large distance limit � ! 1,
one has Y ! 1

2 ð1	 1Þ.
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� ¼ �ffiffiffi
2

p ei� sin	 sin

cos	� i sin	 cos


� �
; (36)

from which one would like to single out a phase represent-
ing the U(1) situation. In other words, one wants to identify
real functions c , f, and g such that

� ¼ eic
f
g

� �
: (37)

Through identification of (37) with (36), one can easily
convince oneself that there are only two possibilities,
namely,

	 ¼ 
 ¼ �

2
; c ¼ �; f ¼ �ffiffiffi

2
p ; g ¼ 0;

(38)

and

c ¼�	; 
¼ 0; �2 R; f¼ 0; g¼ �ffiffiffi
2

p :

(39)

The first case, Eq. (38), leads to nahna ¼ �ð@c Þ2, and the
field equations become

��� ð@c Þ2� ¼ 1

2

@V

@�
; (40)

and

hc þ 2

�

d�

dr
@rc ¼ 0: (41)

In the Abelian case, the phase does not depend on the radial
distance and, hence, the last equation simply becomes
hc ¼ 0. This relation, together with Eq. (40), are exactly
the equations of motion in the Abelian case [33–40]. The
fact that we recover them from the most general framework
discussed here is a consistency check of Eqs. (30), (31),
(34), and (35). In the same manner, one can also check that
the ansatz (39) also leads to the Abelian equations of
motion.

At this point, a clarification concerning the Abelian
situation is useful. With the set of equations above, one
in principle assumes the phase to vary only along the
world-sheet directions, i.e., c ¼ c ðz; tÞ; see above.
However, this is not merely an assumption, but rather a
fact that can be demonstrated through separation of varia-
bles: since the scalar field amplitude� depends only on the
radial distance r, setting c ¼ RðrÞ þ Tð�Þ þWðz; tÞ,
Eq. (40) tells us that

ð@c Þ2 ¼
�
dR

dr

�
2 þ 1

r2

�
dT

d�

�
2 þ ð@zWÞ2 � ð@tWÞ2 (42)

is a yet unknown function of r only, which we write
temporarily as fðrÞ. This implies that T ¼ T0 þ p�, and
hence

�
dR

dr

�
2 þ p2

r2
� fðrÞ ¼ �ð@zWÞ2 þ ð@tWÞ2 � �w; (43)

where w is a separation constant, to be later identified with
the state parameter of the Abelian current-carrying cosmic
string. The equation ð@zWÞ2 � ð@tWÞ2 ¼ w can also be
solved through separation of variables. Indeed, writing
Wðz; tÞ as the sum of a function of z and of a function of
t, one can show that these two functions are in fact linear in
z and t, respectively.
Similarly separating variables in Eq. (41) then leads to

d2R

dr2
þ

�
1

r
þ 2

�

�
d�

dr

dR

dr
¼ @2t W � @2zW ¼ 0; (44)

since we have just seen that W is the sum of two linear
functions (and, therefore, its second order derivatives van-
ish). This can be integrated to yield

dR

dr
¼ A

r�2
; (45)

where A is a constant. If we insert this expression into
Eq. (43), this leads to an explicit expression for the func-
tion fðrÞ, namely,

fðrÞ ¼ wþ p2

r2
þ A2

r2�4
¼ ð@c Þ2: (46)

This function must be plugged back into Eq. (40) in order
to obtain the full profile. Since dR=dr / r�1��2, there is
no way to obtain a regular solution for � unless the con-
stants p and A are made to vanish, i.e. unless RðrÞ is in fact
a constant. One recovers the possibility to concentrate on
pure world-sheet phase excitations, and the dynamics of
the world sheet merely depends on the phase gradients, the
state parameter. It is important to notice at this stage that
the second derivatives of the phase contribute neither at the
level of the field equations, nor at that of the stress tensor:
this is why one usually disregards them and sets, without
loss of generality, the phase as c ¼ kz�!t, with the state
parameter being w ¼ k2 �!2.

B. The bi-Abelian case

One step further in the direction of a full non-Abelian
situation is that of two Abelian currents, dubbed the bi-
Abelian current-carrying string, as was, in particular,
studied in Ref. [54]. In this case, one identifies a Uð1Þ �
Uð1Þ piece in SU(2) through the requirement

� � �1

�2

� �
¼ 1ffiffiffi

2
p �1e

ic 1

�2e
ic 2

� �
: (47)

There is no direct identification that can be done here for
which the phases, contrary to the actual bi-Abelian one,
would depend only on the world-sheet coordinates: this is
due to the fact that SU(2) is topologically equivalent to a 3-
sphere, whereas the Uð1Þ � Uð1Þ we consider consists of
two independent circles at the surface of this 3-sphere. As
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the phases vary, in principle independently, around the
circles, they cannot describe an actual trajectory along
the 3-sphere, hence the problem.

Thus, there cannot be a simply defined global solution in
this case. It turns out that, in order to recover the actual
Uð1Þ � Uð1Þ, one must apply a trick, which we shall also
use afterward in the full non-Abelian case. It consists of
first identifying the phases as

c 1 ¼ �; c 2 ¼ �tan�1ðcos
 tan	Þ; (48)

so that the amplitudes are given by

�2
1 ¼ �2sin2	sin2
;

�2
2 ¼ �2ðcos2	þ sin2	cos2
Þ: (49)

We immediately see where the problem originates, because
in principle one expects the phases to depend on z and t,
while the amplitude should be functions of the string radial
distance r. But in the case of Eqs. (48) and (49), one phase,
namely, c 1 ¼ �, enters independently of the rest and can
therefore safely be assumed to vary along z and t, but the
second phase and the amplitudes involve the same func-
tions in a essentially nonlinear way.

The way to recover the previous case is to assume an
ultralocal hypothesis, which consists of saying that the
fields are to be evaluated at only one point of the world
sheet, which we set, for simplicity, to be at z ¼ t ¼ 0,
while we keep the gradients at this very point. This means
in practice that we consider the angles as functions of the
radial distance and set their gradients along the string to

@z	 ! k	 and @t	 ! �!	; (50)

and similar relations for 
 and �.
The kinetic term K ¼ j@�1j2 þ j@�2j2 in the action

then becomes

K ¼ 1
2f�02 þ �2½	02 þ w	 þ sin2	ðw
 þ w�Þ�g; (51)

where a prime denotes a derivative with respect to r and we
have set wi � k2i �!2

i for each angle i 2 f	;
; �g.
Taking into account the identifications (48) and (49), we
see that provided wewritew1 ¼ w	 þ w
 þ w� andw2 ¼
w	, it takes the canonical form for two scalar current
carriers, namely,

K ¼ 1
2ð�02

1 þ �02 þ w1�
2
1 þ w2�

2
2Þ: (52)

In the final section, devoted to the stress-energy tensor of
the string, we shall discuss the conditions on the parame-
ters, for it can easily be seen right away that at this stage,
the model contains 6 independent parameters (the phase
gradients), whereas we know that the actual Uð1Þ � Uð1Þ
case can be fully described with only 3, which are the
world-sheet Lorentz invariants that can be built out of the
two phase gradients. The fact that the string stress tensor
can only depend on Lorentz invariant quantities must be
implemented by hand at this stage, and it gives precisely

the exact values for the eigenvalues that are the energy per
unit length and the tension. The ultralocal procedure de-
scribed below is thus validated in this case.

VI. THE NON-ABELIAN PART

Let us first build on the second solution of Sec. VA
[Eq. (39)] and assume that 	 depends on the external
coordinates and is a function of z and t only. We will
show that this implies that 
 and � also depend only on
z and t; this would be the most natural generalization of the
Witten model for which the phase excitation only moves
along the world sheet. However, we find that there is only
one such globally defined solution, containing three chiral
propagation modes. Let us see how this happens.

A. An exact solution: The trichiral case

Let us start with seeking solutions for the angle 	.
Looking at Eq. (24), one notices that the term cos	 repre-
sents a natural Abelian part of the solution since only this
term remains if one requires na ¼ 0. In other words, 	
again identifies a subgroup U(1) of the original SU(2)
along which the condensate behaves as a usual Abelian
current-carrying cosmic string. In this situation, one also
recovers the previously discussed Abelian solution. As a
consequence, it seems natural to assume that 	 is a func-
tion of z and t, so that

@	 � @� ¼ 0: (53)

Moreover, as � depends only on r, it is immediately clear
from Eq. (26) that

ð@	Þ2 þ tan	h	 ¼ w; (54)

where w is a constant, again to be later identified with the
state parameter of the Abelian current-carrying string.
Plugging the relation (54) back into Eq. (28) now gives
the constraint

nahna ¼ � 2h	

sin2	
¼ ð@	Þ2 � w

sin2	
: (55)

Equation (54) can be solved setting u ¼ cos	 as it then
transforms into the linear Klein-Gordon equation

ðh� wÞu ¼ 0; (56)

whose general solution is easily obtained. It reads

u ¼ cosð!t� kz� 	0Þ þ
Z
½sþðEÞeiðEtþ

ffiffiffiffiffiffiffiffiffiffi
E2�w

p
zÞ

þ s�ðEÞeiðEt�
ffiffiffiffiffiffiffiffiffiffi
E2�w

p
zÞ�dE; (57)

with s�ðEÞ two arbitrary (unknown) functions of E and
w � k2 �!2. This general solution is made of two pieces.
The first one,

	 ¼ 	0 þ kz�!t; (58)

is the exact equivalent of the U(1) conducting string phase.
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Note that this was to be expected since, as mentioned
above, 	 picks a special U(1) direction of the original
SU(2) [59]. At this point however, it is worth mentioning
that contrary to the U(1) case, there is no simple way to
cancel out the constant 	0 appearing: since a simple SU(2)
transformation can never be expressed as a shift in 	, one
cannot simply set 	0 ! 0, so that this quantity is actually
endowed with a physical (measurable) meaning. The sec-
ond part of the solution represents massive particles mov-
ing along the world sheet when one considers usually
normalized distribution functions s�. We are however
interested in collective modes along the string, and there-
fore restrict attention to the special case for which s� ¼ 0.
Let us also notice that, if w ¼ 0, then u becomes an
arbitrary function of tþ z and t� z. Inserting this solution
back into Eq. (54), we see that 	 becomes an arbitrary
function of tþ z or t� z,

	chiral ¼ 	ðtþ "zÞ; with " ¼ �1: (59)

To summarize, we have two possible situations: eitherw �
0 and one must consider the solution (58) orw ¼ 0 and one
must work with the chiral solution given by (59).

Finally, we notice that, for the two above mentioned
cases, one has h	 ¼ 0 which in turn, thanks to Eq. (55),
means

nahna ¼ 0: (60)

We then look for a nontrivial solution for the vector na

whose dynamics is given by Eq. (29). Once one takes into
account that 	 is a function on z and t only, see Eqs. (58) or
(59), this relation reduces to

hna þ 2
d ln�

dr
@rn

a þ 2

tan	
½ð@z	Þ@z � ð@t	Þ@t�na ¼ 0:

(61)

Therefore, one must solve this equation together with the
constraint (60), nahna ¼ 0.

We first rewrite Eq. (61) as dynamical equations for the
world-sheet functions 
 and �. We find

@2


@r2
þ

�
1

r
þ 2

1

�

d�

dr

�
@


@r
þ 1

r2
@2


@�2
þ @2


@z2
� @2


@t2

þ 2

tan	

�
ð@z	Þ@
@z � ð@t	Þ@
@t

�
¼ 0; (62)

and

@2�

@r2
þ

�
1

r
þ 2

1

�

d�

dr

�
@�

@r
þ 1

r2
@2�

@�2
þ @2�

@z2
� @2�

@t2

þ 2

tan	

�
ð@z	Þ @�@z � ð@t	Þ @�@t

�
¼ 0; (63)

showing that 
 and � are subject to the same dynamics, so
that their potentially different behaviors merely rely on
their initial conditions. One the other hand, the constraint
(60) reads

ð@
Þ2 þ sin2
ð@�Þ2 ¼ 0; (64)

showing that, in the four-dimensional embedding space-
time, the phase gradients @�
 and @�� are lightlike.

However, this is not the end of the discussion, for the fields

 and � actually live in the embedding four-dimensional
spacetime. They could therefore vary, in a lightlike way, in
all directions around the vortex, and after integration over
the transverse degrees of freedom, leave the appearance of
a spacelike or timelike variation. This, in fact, is to be
expected on general geometrical considerations [55,56],
leading to many equation of state parameters. We shall
see below that it is not what happens in the case at hand.
Concretely, Eq. (64) amounts to�

@


@r

�
2 þ 1

r2

�
@


@�

�
2 þ

�
@


@z

�
2 �

�
@


@t

�
2 ¼ 0; (65)

�
@�

@r

�
2 þ 1

r2

�
@�

@�

�
2 þ

�
@�

@z

�
2 �

�
@�

@t

�
2 ¼ 0: (66)

These equations have the form of two gravitational
Hamilton-Jacobi equations; that is to say gikð@S=@xiÞ�
ð@S=@xkÞ ¼ 0. Consequently, they can be explicitly solved
by means of separation of variables. Setting 
 ¼
R
ðrÞT
ð�Þb
ðz; tÞ and � ¼ R�ðrÞT�ð�Þb�ðz; tÞ, the com-

plete system of equations reads�
dTi

d�

�
2 � �2

i T
2
i ¼ 0; (67)

�
dRi

dr

�
2 � 1

r2i

�
1þ �2

i

r2i
r2

�
R2
i ¼ 0; (68)

�
@bi
@z

�
2 �

�
@bi
@t

�
2 þ b2i

r2i
¼ 0; (69)

for both i ¼ 
 and �, where ri and �i are separation
constants. Of course, the solution must also satisfy the
dynamical equations (62) and (63). Straightforward ma-
nipulations show that this amounts to

d2Ti

d�2
��2

i Ti ¼ 0; (70)

d2Ri

dr2
þ

�
1

r
þ 2

�

d�

dr

�
dRi

dr
�

�
wi þ�2

i

r2

�
Ri ¼ 0; (71)

@2bi
@z2

� @2bi
@t2

þ 2

tan	

�
@z	

@bi
@z

� @t	
@bi
@t

�
þ wibi ¼ 0;

(72)

where wi and �i are two new constants of separation. The
main question is now whether the solutions obtained from
the dynamical equation are compatible with the ones de-
rived from the constraint.
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The two equations (68) and (71) controlling the behavior
of Ri can only be compatible if the function Ri is a constant
since one of these equations, Eq. (71), contains �while the
other, Eq. (68), does not. This immediately implies �i ¼
1=ri ¼ �i ¼ wi ¼ 0 and we are left with�

@bi
@z

�
2 �

�
@bi
@t

�
2 ¼ 0; (73)

and

@2bi
@z2

� @2bi
@t2

þ 2

tan	

�
ð@z	Þ@bi@z

� ð@t	Þ@bi@t

�
¼ 0: (74)

Of course, one possibility is to take bi as constant.
However, this means that the vector na is fixed and this
just corresponds to the Abelian case. In fact the general
solution of the first equation above is bi ¼ biðtþ "izÞ,
with "i ¼ �1. Inserting this solution into the second rela-
tion, one obtains

"ið@z	Þ � ð@t	Þ ¼ 0: (75)

If 	 is given by Eq. (58), then the above equation becomes
! ¼ �"ik which implies w ¼ 0. But, if w ¼ 0, then one
must consider the chiral solution (59). In this case, the
dynamical solution reduces to ""i ¼ 1. This means that
one also obtains chiral solutions for these angles, namely,


chiral ¼ 
ðtþ "zÞ; with " ¼ �1; (76)

and

�chiral ¼ �ðtþ "zÞ; with " ¼ �1: (77)

We see that this solution contains three chiral-like func-
tions, hence its name. It is of course very important to
notice that the relative sign in the argument of 	, 
, and �
needs to be the same for these three functions. This implies
that all the angles must propagate in the same direction, i.e.
the string currents consist of right or left movers only. The
situation is thus the same as that first discussed in Ref. [60],
but with three independent copies of the currents and the
additional constraint that they all move in the same
direction.

Constructing a surface action over the word sheet (with
coordinates �i)

S ¼
Z

d2�
ffiffiffiffiffiffiffi�h

p
Lð2Þð�iÞ; (78)

for such a trichiral string is a straightforward generaliza-
tion of [60]: if one assumes a two-dimensional Lagrangian
of the form

L ð2Þ ¼ �m2 � 1
2M

ABhij@ic A@jc B; (79)

where m is a constant describing the Nambu-Goto string
background andMAB is a matrix Lagrange multiplier with
no kinematic term in the action, hij is the world-sheet
induced metric and the c A stand for our angular functions
	, 
, and �. Varying with respect to this matrix immedi-

ately provides the null conditions for all the fields, namely,

hij@ic A@jc B ¼ 0; (80)

showing that not only are the fields all lightlike, but also, if
the matrix M is nondiagonal, that all the solutions do
move in the same direction, i.e. that they are all either
right or left movers.

B. A no-go theorem for exact separable solutions

In fact, one can show that the trichiral solution is the
only exact separable solution. Indeed, Eq. (68) can be
easily solved. Its solution reads

Ri

R0
i

¼ exp

�
� r

ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

i

r2i
r2

s ��
�i

ri
r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

i

r2i
r2

s �	�i

;

(81)

where R0
i is an integration constant. However, inserting this

expression into Eq. (71) shows that it is a solution only if Ri

is a constant. This is of course due to the presence of the
term ðd�=drÞ=� which cannot be canceled by any other
term. But if Ri is a constant, then �i ¼ 0 which in turn
implies that T is also a constant. In other words, we are
back to the trichiral solution of the previous section.
This shows that there is no other exact and separable

solution. Although this, of course, does not, in principle,
prevent the existence of solutions which do not obey
separation of variables, there exists a general argument,
due to Carter [55,56], showing that one should not expect a
global solution to exist. The argument relies on the fact that
the generators of the currents form a manifold whose
curvature is nonzero, while the cylindrically symmetric
string configuration assumes vanishing extrinsic and in-
trinsic curvatures, thus leading to an incompatibility.

VII. ULTRALOCAL CROOKED STRING

The SU(2) condensate does not have any regular non-
trivial solution expect for the trichiral: does this mean that
only Abelian or chiral-like current-carrying cosmic strings
can be formed?
The answer to this question involves two different per-

spectives. First, one must remember that when the current
builds up along the string, it does so through a random
process through which phases take uncorrelated values on
distances larger than the correlation length. There is there-
fore no reason to assume the current would be, all along the
world sheet, always following one particular U(1) direc-
tion. Moreover, all the above discussion heavily relies on a
straight and static string whose fundamental tensor is
merely the two-dimensional Minkowski metric. The string
manifold, therefore, is described as flat, and this is the
cause for the discrepancy: SU(2) having a nonvanishing
curvature, it is normal that it cannot be projected onto the
string world sheet, so only a flat subspace of it, the U(1) we
identified, remains once this operation is performed.
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The way to reconcile both perspectives is by considering
an actual string, which, as simulations reveal, is in fact
crooked, and definitely not flat. Locally, one can always
approximate the string by a straight line, and assume
cylindrical symmetry. However, this is only a rough ap-
proximation which, although valid in the Abelian case, is
severely limited in the non-Abelian case. In order to take
into account the possible variations of the phases without
having a solution satisfying the requirement of cylindrical
symmetry, we introduce a so-called ultralocal approxima-
tion, by which we restrict attention to one particular point
on the world sheet, which we take for simplicity (and
without lack of generality), to be at z ¼ t ¼ 0, but keep
the phase gradients along the world sheet as parameters.
This procedure, applied to the Abelian and bi-Abelian
cases, gives the correct result.

In practice, the ultralocal approximation for the crooked
non-Abelian current-carrying cosmic string consists of
assuming the phases to depend on the radial distances,
while their gradients are numbers. In other words, we set

	 ! 	ðrÞ þ k	z�!	tþ 1
2ð	0

;zzz
2 þ 	0

;ttt
2Þ þ � � � (82)

(and similar expressions for
 and �) and let z, t ! 0 in the
final expressions we obtain. Note that this procedure only
applies in the very final equations, and for instance it is not
possible to apply it for the action itself, as the field equa-
tions derived from the approximated action would not be
equivalent to the approximated field equations derived
from the exact action, lacking, in particular, the squared
gradients and second derivatives with respect to the world-
sheet coordinates.

Using the approach described above, it is straightfor-
ward to derive the equations of motion obeyed by the three
angles 	, 
, and �. Since we are interested in the minimal
energy configuration, we ignore a possible � dependence.
As a consequence, only equations controlling the profiles
of the functions 	ðrÞ, 
ðrÞ, and �ðrÞ remain. They read

d2	

dr2
þ 1

r

d	

dr
þ 2

d�

dr

d	

dr
þ 	0

;zz � 	0
;tt

� sin	 cos	

��
d


dr

�
2 þ k2
 �!2




�

� sin	 cos	sin2


��
d�

dr

�
2 þ k2� �!2

�

�
¼ 0; (83)

d2


dr2
þ 1

r

d


dr
þ 2

d�

dr

d


dr
þ 
0

;zz � 
0
;tt

þ 2

tan	

�
d	

dr

d


dr
þ k	k
 �!	!


�

� sin
 cos


��
d�

dr

�
2 þ k2� �!2

�

�
¼ 0; (84)

d2�

dr2
þ 1

r

d�

dr
þ 2

d�

dr

d�

dr
þ �0

;zz � �0
;tt

þ 2

tan	

�
d	

dr

d�

dr
þ k	k� �!	!�

�

þ 2

tan


�
d


dr

d�

dr
þ k
k� �!
!�

�
¼ 0: (85)

As expected, the profiles depend on the six parameters ki
and !i. However, and this is a new feature of the non-
Abelian case, there is also an additional dependence in the
second order derivatives which introduces three new
Lorentz invariant parameters, namely, 	0

;zz � 	0
;tt, 


0
;zz �


0
;tt, and �0

;zz � �0
;tt.

Our ultralocal approximation can only make sense pro-
vided Eqs. (83)–(85) depend on a finite set of new parame-
ters: it is not a derivative expansion for which all orders
contribute equally, for otherwise there would be no way to
decide where to stop the expansion, and hence no way to
know how many parameters are relevant for the micro-
scopic description. Indeed, we expand the phases around
the point of interest in the world sheet to all orders in the
string coordinates close to the point in question, and take
the limit z, t ! 0. Since the underlying theory is second
order, not surprisingly, all that remains are all the Lorentz
invariant first (squared) and second order derivatives of the
phases.
One then wonders why not simply set these parameters

to zero? This would restrict unduly to the static situation, as
can be understood by the following argument: the mecha-
nism thanks to which the current condenses along the
string is akin to a phase transition, the SU(2) doublet
acquiring a nonvanishing value along the world sheet
only. At the transition itself, there will necessarily be a
correlation length �—which in practice will be of the order
of the Compton wavelength of the doublet—above which
the phases 	, 
, and � will be uncorrelated. Therefore, for
two points on the string separated by a distance larger than
�, one expects variations in the phases: the coefficients ki,
!i and the second order derivatives in Eq. (82) are thus
expected to be given by ��1, i.e. by the doublet mass, up to
numerical coefficients. This is like in the original Witten
Abelian model in which the order of magnitude of the state
parameter is also of the order of the condensate’s mass.
The shape of the profiles will be very similar to what one

encounters in the Abelian case as a simple study of the
behavior of the above equations in the limit r ! 0 and r !
þ1 reveals. The precise form of the profiles does not bring
much insight into the problem at hand and, therefore, we
now turn to the calculation of the stress-energy tensor.

VIII. WORLD-SHEET STRESS-ENERGY TENSOR

Our aim is to describe the string world sheet by itself, i.e.
to integrate over the transverse degrees of freedom in order
to identify the stress-energy tensor eigenvalues, namely,
the string tension and its energy per unit length. Let us first
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recall how this is done for the Witten U(1) case by repro-
ducing the argument of Ref. [61].

In the U(1) situation, there is only one phase present,
namely, 	, and its general solution is the same as in our
case. In fact, as discussed above, this solution is equivalent
to saying that in a small but finite neighborhood of any
point ðz0; t0Þ on the string, the phase can be approximated
as a Taylor series 	 ’ 	0 þ kðz� z0Þ �!ðt� t0Þ þ � � � ,
and since there is an invariance of the theory under global
transformations 	 ! 	þ const, it is always possible, at
any given point, to rescale 	 to the simplest solution 	 ¼
kz�!t, i.e. to send 	0 ! 0.

The stress-energy tensor, again for the U(1) case, does
not explicitly depend on the phase itself, but on its gra-
dients @�	, which, locally, can always be taken as con-

stants. As a result, the stress-energy tensor is a function of
the radial distance only if cylindrical symmetry is assumed,
and its conservation r�T

�� ¼ 0 implies, for � ¼ r,

Z
rdrðTr

r þ T�
� Þ ¼ 0:

This sum of terms is the same as Tx
x þ Ty

y , and the sym-
metry around the vortex also implies that both of these
terms are the same, as the choice of directions for the axes
x and y is irrelevant, nothing depending on the angle �.
Therefore, the transverse components of the stress tensor
vanish. On the other hand, the � ¼ z and � ¼ t compo-
nents of the conservation equation imply that the mixed
parts Trz and Trt both behave as r�1, which is not possible
if this tensor is to be finite: one must impose Trz ¼ Trt ¼ 0.
There remain the internal components Tab with a, b ¼ z, t:
upon integration and diagonalization, they provide the
relevant functions of the state parameter w ¼ k2 �!2

known as energy per unit length and tension.
Unfortunately, the above does not generalize easily to

the more complicated non-Abelian situation. Indeed, for
the simplest possible SU(2) case we have discussed until
now, the general form of the stress-energy tensor reads

T�� ¼ t��ðrÞ þ �2½s��ðz; tÞ � 1
2s

	
	g���; (86)

where

s�� ¼ @�	@�	þ sin2	ð@�
@�
þ sin2
@��@��Þ
(87)

shows an explicit dependence in the word-sheet coordi-
nates and the first part t�� only depends on r. Let us see

how the above argument fails in this case.
The conservation equation, as given above, with � ¼ r,

now transforms into

Z
rdrðTr

r þ T�
�Þ ¼

Z
r2drð@tTtr � @zTzrÞ; (88)

while the z and t components, respectively, give

�
@

@r
þ 1

r

�
Trz ¼ @tTtz � @zTzz;

and �
@

@r
þ 1

r

�
Ttz ¼ @tTtt � @zTzt:

Assuming the separated form Trz ¼ ZðrÞ ~Trz and Trt ¼
TðrÞ ~Trt, with ~T being independent of r, we find, upon
integration over r of these two relations, that provided
the functions Z and T decay faster than r�1, the surface
stress tensor

~T ab �
Z

rdrd�Tab (89)

is conserved, i.e. ra
~Tab ¼ 0.

The tensor (89) will contain all the relevant information
for the dynamics of the string world sheet provided the rhs
of Eq. (88) vanishes, and this gives a necessary condition
for a two-dimensional world-sheet description to be valid.
Given the form (86) of the stress tensor for the non-Abelian
case, it is far from obvious that the two-dimensional stress-
energy tensor is automatically conserved. We shall see
later that the condition that Eq. (88) vanishes provides a
constraint on the second time and space derivative of the
angular functions 	, 
, and �.
Let us now return to the crooked string in the ultralocal

regime. The surface stress-energy tensor takes the form

�T a
b ¼ Tt

t Tt
z

Tz
t Tz

z

� �
¼ �Aþ B C

�C �A� B

� �
; (90)

where

A ¼ 2�
Z

rdr

�
’02 þ Q02

2q2r2
þ 1

2
�02 þQ2’2

r2

þ 1

2
�2½	02 þ sin2	ð
02 þ sin2
�02Þ�

�
; (91)

while

B ¼ X
i¼	;
;�

ðk2i þ!2
i ÞIi (92)

and

C ¼ 2
X

i¼	;
;�

ki!iI
i (93)

are expressible in terms of the profile integrals

I	 ¼ �
Z

�2rdr; (94)

I
 ¼ �
Z

�2sin2	rdr; (95)

I� ¼ �
Z

�2sin2	sin2
rdr: (96)
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The energy per unit length U and the tension T are then
obtained as the, respectively, timelike and spacelike eigen-
values of this stress tensor, namely,

U ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p
and T ¼ A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C2

p
; (97)

where the quantity B2 � C2 can be expressed in terms of
all the possible Lorentz invariant scalars made from the
phase gradients, namely, the parameter matrix

wij ¼ kikj �!i!j; (98)

and we find

B2 � C2 ¼ X
i;j¼	;
;�

IiIjð2wij � wiwjÞ; (99)

which generalizes the Abelian case.
Equations (97) and (99) show that the energy per unit

length and tension of the non-Abelian current-carrying
string depend explicitly on all the possible two-
dimensional (world-sheet) Lorentz invariant parameters
that can be constructed out of the phase gradients of the
angular variables 	, 
, and �. Although this induces a
tremendous level of complexity for the description of
the dynamics of the string world sheet itself, this is how-
ever not the end of the story, for the field equations for the
angle profiles actually show another dependence, implicit
this time: under the assumption of ultralocality, the Euler
equations for 	, 
, and �, namely, Eqs. (30), (31), (34),
and (35), contain the parameters @zz	

0 � @tt	
0, @zz


0�
@tt


0, and @zz�
0 � @tt�

0, i.e. again, all the possible string
Lorentz invariant second order derivatives. This makes a
difference with the Abelian case for which, as we showed
in Sec. VA, these second derivatives do not enter, at any
level. Here, since they enter in the profiles, the energy per
unit length and tension indirectly depend on their values.
Thus, going from U(1) to SU(2), one increases the number
of free parameters from one to eight or nine, depending on
whether one considers or not yet another constraint, which
we now discuss.

In Sec. VIII, we showed that the two-dimensional stress-
energy tensor is conserved only provided the rhs of
Eq. (88) vanishes. This, given the form (86), can be im-
plemented in two ways. The first possibility is to simply
assume the ultralocal approximation in the stress-energy
tensor itself, which amounts to saying that s�� in Eq. (87),

in fact, depends on neither z nor t; in this case, T�� is

merely a function of the radial variable and the analysis of
[61] applies.

Another way to impose the surface stress-energy tensor
to be conserved is by expliciting the condition

@t
Z

r2drstr ¼ @z
Z

r2drszr (100)

using the expansion (82), and only then take the ultralocal
limit. This method gives a relationship between the second

derivatives of the angular variables and their gradients,
hence reducing the number of free parameters by one unit.
Finally, one can use the stress-energy tensor here derived

to recover the bi-Abelian situation, which will allow one to
illustrate a difference between many Abelian and non-
Abelian currents. The Uð1Þ � Uð1Þ case of Sec. VB is
obtained in the ultralocal limit by writing 	 !
	ðrÞ þ k	z�!	t, 
 ! �

2 þ k
z�!
t, and � ! k�z�
!�t, and then assuming t, z ! 0. Then the stress-energy

tensor above is unchanged, with now I
 ¼ I� ¼ I1 ¼
�
R
�2

1ðrÞrdr and I	 ¼ I1 þ I2 ¼ �
R½�2

1ðrÞ þ �2
2ðrÞ�rdr,

where the fields are defined above Eq. (52). Setting k2 ¼
k	 � @zc 2, !2 ¼ !	 � �@tc 2, k21 ¼ k2	 þ k2
 þ k2� �
ð@zc 1Þ2, and !2

1 ¼ !2
	 þ!2


 þ!2
� � ð@tc 1Þ2, we diago-

nalize the stress-energy tensor as above [Eq. (99)] to get

B2 � C2 ¼ I22ðk22 �!2
2Þ2 þ I21ðk1 �!1Þ2ðk1 þ!1Þ2

þ I1I2½ðk2 �!2Þ2ðk1 þ!1Þ2
þ ðk2 þ!2Þ2ðk1 �!1Þ2�; (101)

which is of the form of Eq. (48) of Ref. [54] only provided
the vectors k1 and!1 are collinear, i.e. k1 ¼ k1u and!1 ¼
!1u, with u2 ¼ 1. In this case, we recover indeed

B2 � C2 ¼ w1I
2
1 þ w2I

2
2 þ 2xI1I2; (102)

where wi ¼ k2i �!2
i and x ¼ k1k2 �!1!2 is the cross

product. This particular choice is that which lowers the
number of arbitrary parameters to only three, as demanded
by the two Abelian current cases.
The bi-Abelian current case, as discussed above, has a

microscopic structure (the field profiles) that depends
solely on the squared phase gradients w1 ¼ ð@c 1Þ2 and
w2 ¼ ð@c 2Þ2, even though the energy per unit length and
tension also depend on the cross product x ¼ @c 1 � @c 1.
By contrast, the non-Abelian current-carrying case in-
volves in a nontrivial way not only the gradients ð@	Þ2,
ð@
Þ2, and ð@�Þ2, but also all the possible combinations of
cross products, namely, @	 � @
, @	 � @�, and @
 � @�;
this is clear from the dynamical equations (30), (31), (34),
and (35) defining the profiles of these angles, again pro-
vided one takes the ultralocal limit after deriving these
equations.

IX. CONCLUSION

Cosmic strings are an almost generic prediction of most
high energy theories, and they can have many observatio-
nal cosmological consequences. They can also be current
carrying, and this property changes their dynamics drasti-
cally, as it has been argued that a network of current-
carrying cosmic strings could overproduce equilibrium
loop configurations which, if stable, would overclose the
Universe; such strings are clearly ruled out. The last case
that has not been studied yet is that for which the current
carrier transforms according to some representation of a
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non-Abelian group, and this is what has been presented
above, in the particular (simplest) example of (global)
SU(2). By means of such a toy model, we have been able
to derive the microscopic structure of a non-Abelian
current-carrying string, and exhibit the characteristic fea-
tures of its stress-energy tensor, out of which one obtains,
through integration over the transverse degrees of freedom,
the energy per unit length and tension. In principle, these
quantities allow for a complete calculation of the dynamics
of the strings, hence of the motion of a network.

We have found many differences between the Abelian
and the non-Abelian situations. Where the Abelian case
involves a single state parameter, the simplest non-Abelian
model here developed contains far more parameters,
namely, at least 8. Besides, when the Abelian current
case, even with more than one current, involves only the
phase gradients of the fields, the non-Abelian case at hand
exhibits implicit dependencies in the second derivatives
with respect to the world-sheet coordinates of these phases.
Those phases also acquire a profile, i.e. they must vary
between the string core and the exterior: in accordance
with the general Carter argument [55,56], the path fol-
lowed by the phases on the SU(2) 3-sphere could not be
smoothly projected onto the world sheet itself, the latter
being flat while the former being intrinsically curved.
Finally, whereas in the many current case the eigenvalues
of the stress-energy tensor depend only explicitly on the
cross gradients, the microscopic structure—the profiles—
depending only on the squared gradients, in the non-
Abelian case the profiles, and hence the energy per unit
length and tension, depend on all the possible two-
dimensional Lorentz invariants that can be built out of
the phase derivatives up to the second order.

If cosmic strings were ever formed, it is quite likely that
they would be current carrying, and in this category, since
the well-tested standard electroweak theory already con-
tains a broken SU(2) with a Higgs field doublet as in our
case [51], the model we developed here may be relevant,
depending on the values of the unknown coupling parame-
ters. At the cosmological level, Abelian current-carrying
strings do intercommute in much the same way as non-
conducting ones [62]. This is made possible because the
currents in both pieces of the colliding strings can merely
add up at the junction, being confined in the world sheet
through a linear interaction. In the non-Abelian case, it is
likely that the essentially nonlinear interaction terms
would forbid such a simple readjustment of the phases: it
is to be expected that the intercommutation probability is
much lower than for ordinary strings. This, as is well

known from the superstring case [63], can imply funda-
mentally different cosmological consequences. Another
reason why one would expect intercommutation to be far
less effective in the non-Abelian current-carrying case is
also related to extra dimensions: in the simplest Kaluza-
Klein framework with a circular fifth dimension, the extra
angular variable plays the role of the current-carrier phase
and the equation of state can be calculated to be of the self-
dual fixed trace kind [41] by projecting in the 4-
dimensional base space [64]; it can be conjectured that
introducing many extra dimensions with a complicated
structure can lead to currents sharing many of the proper-
ties of the non-Abelian ones discussed here. The intercom-
mutation of non-Abelian current-carrying cosmic string is
therefore an important open problem that deserves further
investigation.
The SU(2) current involved in the cosmic string dis-

cussed in this work is of the uncoupled, global kind, as was
the first complete examination of the so-called neutral
Witten model [38]. In order to identify this SU(2) with
that actually involved in the electroweak interactions, it
would be necessary to gauge it, thus introducing 3 gauge
vector fields Aa

�. These gauge vectors then couple not only

with the doublet� but also with each other. As a result, the
simple configuration we considered in this paper always
seems to lead to strong divergences of the vectors, hence of
the energy density. The cure to this problem may be related
to confinement in QCD: as a string interaction state must
be colorless, the condensate should be associated with
another SU(2) field in order to form an uncharged state;
within the framework of such a configuration, the total
energy density contained in the world sheet can then be
made finite. The resulting macroscopic string stress tensor
and other relevant quantities need be evaluated in a sepa-
rate work.
Finally, inclusion of a current along the strings in a

cosmologically relevant network can have many conse-
quences that need be evaluated in more details. Among
those is the possibility that the currents could induce
[65,66] �-ray bursts or high energy cosmic rays [67].
The latter was recently revisited in details in Ref. [68]
provided the carrier couples linearly to the string. A similar
analysis applying to our case should be carried out to
decide on the observability of non-Abelian current-
carrying cosmic strings.
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