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Stochastic effects during inflation can be addressed by averaging the quantum inflaton field over

Hubble-patch–sized domains. The averaged field then obeys a Langevin-type equation into which short-

scale fluctuations enter as a noise term. We solve the Langevin equation for an inflaton field with a Dirac-

Born-Infeld (DBI) kinetic term perturbatively in the noise and use the result to determine the field value’s

probability density function (PDF). In this calculation, both the shape of the potential and the warp factor

are arbitrary functions, and the PDF is obtained with and without volume effects due to the finite size of

the averaging domain. DBI kinetic terms typically arise in string-inspired inflationary scenarios in which

the scalar field is associated with some distance within the (compact) extra dimensions. The inflaton’s

accessible range of field values therefore is limited because of the extra dimensions’ finite size. We argue

that in a consistent stochastic approach the inflaton’s PDF must vanish for geometrically forbidden field

values. We propose to implement these extra-dimensional spatial restrictions into the PDF by installing

absorbing (or reflecting) walls at the respective boundaries in field space. As a toy model, we consider a

DBI inflaton between two absorbing walls and use the method of images to determine its most general

PDF. The resulting PDF is studied in detail for the example of a quartic warp factor and a chaotic inflaton

potential. The presence of the walls is shown to affect the inflaton trajectory for a given set of parameters.

DOI: 10.1103/PhysRevD.82.023515 PACS numbers: 98.80.Cq, 98.70.Vc, 98.80.Jk, 98.80.Qc

I. INTRODUCTION

Putting the successful inflationary scenario on the firm
footing of a fundamental theory is one of the remaining
challenges in cosmology. Recent years have seen consid-
erable progress towards this goal with the construction of
several concrete string inflation models; for recent reviews,
see, e.g., [1–4], and references therein. A top-level distinc-
tion among these models is the either closed or open string
mode character of the inflaton field. Typical examples of
the second class are brane inflation scenarios [5–7]: The
inflaton field � corresponds (up to renormalization) to the
distance between two branes embedded in a higher-
dimensional background. While there is an ongoing debate
about the form of the inflationary potential Vð�Þ [7–13], a
generic feature of these models is the field’s kinetic term,
which is of Dirac-Born-Infeld (DBI) type rather than can-
onic [14,15]. One can understand these DBI dynamics as a

geometry-imposed upper limit on the field’s velocity _�,
characterized by the so-called warp factor Tð�Þ. This

relativistic speed limit acts like a brake on the inflaton,
forcing � to ‘‘slow roll’’ even in regions where the poten-
tial is not flat. Hence, open string mode inflaton models
provide an additional mechanism to generate quasiexpo-
nential expansion.
It is interesting to investigate the DBI analogues of

standard inflationary calculations, such as the field pertur-
bations’ evolution and spectra [16,17], but also the effects
of stochastic inflation [18–27]. Stochastic inflation pro-
vides a technique to assess quantum effects on the inflaton
�’s trajectory averaged over a scale beyond the Hubble
patch. In this way, one can define a coarse-grained field ’,
which consists exclusively of the large-scale Fourier com-
ponents. To zeroth order, ’ obeys the slow-roll Klein-
Gordon equation, but its full evolution is subject to sto-
chastic noise � from small-scale Fourier modes. For stan-
dard inflation with arbitrary potentials, this equation was
solved perturbatively up to Oð�2Þ in Ref. [20]. By using
this perturbative solution, Ref. [20] showed how to obtain
the probability density function (PDF) for h’i in the
Gaussian approximation, with and without the volume
effects (i.e., the size of each averaging domain) taken
into account. The reliability of this treatment was further
studied in Ref. [21]. In this paper, we generalize both of
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these results to the case of DBI inflation with arbitrary
warp factors and potentials.

The Langevin equation for DBI models was given for
the first time in Ref. [28], which aimed at studying ‘‘eternal
inflation’’ [29,30] in the brane inflation context. Since then,
stochastic effects in DBI (or general k-inflation) models
have been studied by several authors [31,32]. In this paper,
we use the approach of Refs. [20,21] to calculate the PDFs
of a DBI inflaton field (with and without volume effects)
for an arbitrary functional form of the potential and warp
factor. We illustrate our results by applying them to the
example model of ‘‘chaotic Klebanov-Strassler (CKS) in-
flation,’’ where Tð�Þ and Vð�Þ are known functions. The
integrals encountered are, within certain limits, exactly
calculable, and we discuss the behavior and reliability of
the resulting DBI inflaton probability densities.

However, we argue that all PDFs used so far in the
literature suffer from a serious problem: They predict a
nonvanishing probability for the moving D3 brane to find
itself outside the so-called ‘‘Klebanov-Strassler (KS)
throat,’’ i.e., outside the (part of the) extra-dimensional
geometry with warp factor Tð�Þ. In fact, this problem is
twofold. First, at the bottom end of the throat this means
that there is a nonvanishing probability to literally find the
brane ‘‘outside’’ the extra dimensions, in other words, ‘‘out
of space,’’ which is clearly meaningless. Second, since the
metric of the 6D bulk space [and hence the continuation of
Tð�Þ] is typically unknown beyond the KS region, a string-
inflationary scenario based on the brane’s motion inside the
throat becomes inconsistent beyond its top end. Note that,
while the latter question is of a more technical nature and
we may hope to resolve it as our understanding of string
geometries improves, the former issue is rather severe as
the inflaton’s PDF does not respect the fundamentally
geometric origin of the scenario.

Put a different way, the compact character of the stringy
extra dimensions (for the purposes of concrete model
building, this means the well-known KS ‘‘corner’’ of the
6D manifold) can be translated directly into a restricted
field range for the DBI inflaton. For consistency, any
modifications of the classical trajectory induced by sto-
chastic effects should still respect these geometry-imposed
boundaries in field space. Hence, studies of stochastic DBI
inflation so far were missing a tool to ensure the conse-
quences of a stringy inflaton’s geometric interpretation at
the effective field theory level.

To amend this problem, we propose to install ‘‘walls’’ at
the boundaries (i.e., the bottom r0 and the edge rUV) of the
inflationary KS throat (whose radial coordinate is denoted
by r). As a consequence, the stochastically corrected in-
flaton field value should remain within its allowed range
�0 <�<�UV at all times. This requires the calculation
of a new PDF respecting the boundary conditions imposed
by the presence of the reflecting or absorbing walls. For the
first time, we then determine this PDF in the presence of

two absorbing walls at �0 and �UV, using the method of
images; see, e.g., [33,34]. As a by-product, we obtain the
modified stochastic trajectory of the mobile brane within
the KS throat and show that, in some cases, the presence of
the walls has a significant effect.
This paper is organized as follows. In the next section,

we start from the underlying background equations of DBI
inflation and discuss how they can be used to formulate
their stochastic counterpart, i.e., the DBI Langevin equa-
tion.We pay special attention to the normalization factor of
the noise term. We then solve the DBI Langevin equation
up to second order in the noise and calculate the corre-
sponding PDF along with its volume correction. In Sec. III,
we use these expressions to calculate the stochastic effects
in the case of chaotic Klebanov-Strassler inflation, for a
potential both with and without a constant term. Where
applicable, we calculate the domain of validity of the
perturbative approach and consider the existence of a
regime of eternal inflation [29,30]. In Sec. IV, we use the
additional information on the inflaton’s geometric bounds
as an argument to implement two absorbing walls into the
calculation of the PDF. In this way, it can be assured that
even quantum effects do not violate these field space limits.
Finally, we summarize our main findings in Sec. V, com-
menting on eternal inflation as well as on an overall picture
for a realistic brane trajectory across the entire compact 6D
geometry.

II. DBI LANGEVIN EQUATION

A. DBI background equations

As a first step, we quickly recall the basic equations of
DBI inflation at the classical level. Since models of this
kind descend from (e.g., type IIB) string theory, they are
originally represented by a higher-dimensional (d ¼ 10)
action for the stringy background and the embedded
branes. After compactification to four dimensions, the
effective field theory typically contains a gravity sector
described by general relativity and a four-dimensional
inflaton field �ðx; tÞ corresponding to the interbrane dis-
tance along one of the compactified dimensions. The mod-
el’s effective 4D action therefore reads

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�
þ Vð�Þ � Tð�Þ þ Tð�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Tð�Þg
��@��@��

s �
; (1)

where R is the four-dimensional scalar curvature and � ¼
8�=m2

Pl, mPl being the Planck mass. It is useful to intro-

duce (making use of the analogy with special relativity) the
so-called ‘‘Lorentz factor’’ �ð�; @��Þ, defined as [15]

�ð�; @��Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g��@��@��=Tð�Þ

q : (2)
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Roughly speaking, this Lorentz factor measures how close
the inflaton field’s velocity is to the geometry-imposed

speed limit
ffiffiffiffiffiffiffiffiffiffiffi
Tð�Þp

(see below). In terms of � (the argu-
ments of which we frequently suppress below), one can
rewrite Eq. (1) in the simple form

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�
þ Vð�Þ � �� 1

�
Tð�Þ

�
: (3)

Specifying to a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) universe with homogeneous scalar field matter,
the Friedmann and Klein-Gordon equations read

H2 ¼ �

3
½ð�� 1ÞTð�Þ þ Vð�Þ�; (4)

� V 0ð�Þ
�3

¼ €�þ 3H

�2
_�þ 3�� �3 � 2

2�3
T0ð�Þ; (5)

where a prime denotes a derivative with respect to the
inflaton field �. Note that in the FLRW case, � from
Eq. (2) simplifies to

�ð�; _�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2=Tð�Þ

q ; (6)

where the notion of
ffiffiffiffiffiffiffiffiffiffiffi
Tð�Þp

as a speed limit is evident. By
using the square root’s expansion in Eq. (6), it is clear from
Eq. (5) that, while � � 1, the inflaton is close to standard
dynamics. In this regime, � obeys the usual Klein-Gordon
equation and hence can slow roll only if the potential is
sufficiently flat. By using the full expression (6), however,
one can see that the inflaton velocity can never exceedffiffiffiffiffiffiffiffiffiffiffi
Tð�Þp

even if the potential is steep. The limit where _� !ffiffiffiffiffiffiffiffiffiffiffi
Tð�Þp

(and hence � ! 1) can therefore be thought of as
an additional, ‘‘ultrarelativistic’’ regime of inflation. Let us
make this statement more precise by taking the time de-
rivative of the DBI Friedmann equation (4): The DBI
condition to maintain accelerated expansion reads

€a

a
¼ �

3
Vð�Þ � �

6

ð�� 1Þð�þ 3Þ
�

Tð�Þ> 0: (7)

From this expression it is evident that the potential Vð�Þ
still has to dominate the energy density.

Our next step is to notice that from combining Eqs. (4)
and (5) one obtains

_� ¼ � 2H0

��
: (8)

This formula has two important consequences. First, by

replacing _� by this expression in Eq. (6), the Lorentz factor
� is easily expressed as a function of � only [28]:

�ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4H02

�2Tð�Þ

s
: (9)

Second, by using the DBI slow-roll condition H2 �

�Vð�Þ=3, which is derived and justified in detail in
Appendix A, one obtains the following first-order differ-
ential equation for �:

_� � � V 0ð�Þ
3�ð�ÞHð�Þ : (10)

Obviously, except for the factor � appearing in the de-
nominator, this is the standard Klein-Gordon equation in
the slow-roll limit. A detailed derivation of Eq. (10) is
given in Appendix A.

B. Stochastic DBI inflation

We now proceed to applying the stochastic approach of
Ref. [20] to DBI inflation. In a first step, the ‘‘classical’’
inflaton field �ðtÞ is replaced by the coarse-grained field
’ðtÞ, which is a stochastic process. Based on the previous
considerations [see Eq. (8)], we expect ’ to obey a
Langevin equation of the form

_’ ¼ � 2

�

H0

�
þ C�ðtÞ; (11)

where �ðtÞ is a noise term, describing the short wavelength
part of the full inflaton field, and obeying the following
properties:

h�ðtÞi ¼ 0; h�ðtÞ�ðt0Þi ¼ �ðt� t0Þ: (12)

To proceed from here, the crucial question is how to
determine the normalization factor C.
In standard (non-DBI) inflation, this question may be

resolved in several ways. One possible route to follow is to
normalize the prefactor C according to the two-point cor-
relation function of a massless test field in a de Sitter
background. Indeed, in this case, the above Langevin
equation (11) (setting � ¼ 1) reduces to _’ ¼ C�ðtÞ, with
its trivial solution ’ðtÞ ¼ C

R
t
tin
�ð	Þd	. By using Eqs. (12),

one finds

h’2ðtÞi ¼ C2ðt� tinÞ: (13)

Since the exact result is known and reads h’2ðtÞi ¼
H3t=ð4�2Þ (setting tin ¼ 0), we can read off immediately

that C ¼ H3=2=ð2�Þ. Another way to see this is to interpret
Eq. (11) as a Brownian motion [29], the field undergoing
quantum kicks of amplitude H=ð2�Þ in every Hubble time
interval H�1. This leads to the expression h’2ðtÞi ¼
½H=ð2�Þ�2n, with the number of steps n given by n ¼
t=H�1 ¼ Ht.
In the case at hand here, i.e., stochastic inflation with a

DBI field, we need to reproduce the same considerations,
but for the modified Langevin equation (11) that now
comprises the Lorentz factor �. For this purpose, let us
remark that the fully covariant formulation of the DBI
Klein-Gordon equation derived from the action (1) reads
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g��r�r��� �2

T
g
�g��ðr
r��Þr��r��

� V 0

�
þ T0

2�
ð�3 � 3�þ 2Þ ¼ 0: (14)

To see that this gives back Eq. (5) for spatially homoge-
neous DBI field � ¼ �ðtÞ in a FLRW universe, use the
definition (2) [or (6), respectively] of the Lorentz factor �
and note that

g
�g��ðr
r��Þr��r�� ¼ �2 � 1

�2
T €�: (15)

At the perturbed level, by setting

�ðx; tÞ ¼ �ðtÞ þ ��ðx; tÞ;
ds2 ¼ �ð1þ 2�Þdt2 þ a2ðtÞð1� 2�Þ�ijdx

idxj;

(16)

one can show through repeated use of the Einstein equa-
tions for a DBI scalar field (see Appendix B) that

� €�k þ 3Hð1þ�1Þ� _�k þH2

�
k2

a2H2�2
þ 2�1 � 3

2
�2 � 2�21

� �22
4
þ 5

2
�1�2 � �2�3

2
þ 3

2
�1 þ 3

2
�1�1 ��1�2 þ 5

4
�2
1

þ�1�2

2

�
��k ¼ H2z

a�3=2
�kð2� 2�1 þ �2 þ 2�1Þ (17)

in Fourier space with comoving wave number k. Here, we
have used the (�i, �i) parameters defined in Appendix A to
write Eq. (17) in a compact form. Note that in the limit
where � ! 1, �i ! 0, this gives back precisely the same
equation as in the standard case (see Appendix B).

Ignoring the metric perturbation �k amounts to drop-
ping the last term in Eq. (17). Moreover, in the ‘‘DBI slow-
roll’’ regime, all the (�i, �i) parameters are small. Hence, if
in addition we neglect all terms of at least linear order in
these parameters in Eq. (17), we obtain the limit

� €�k þ 3H� _�k þ k2

a2�2
��k � 0; (18)

which again precisely corresponds to the standard equation
up to the replacement k ! k=�.

Usually, however, the perturbed Klein-Gordon equation
is not written as in Eq. (17), but in terms of the Mukhanov-
Sasaki variable vk, which in the DBI case is defined as the
combination

vk ¼ a�3=2��k þ z�k; (19)

where z ¼ a�
ffiffiffiffiffi
�1

p
. It can be shown (see Appendix B) by

inserting this definition into Eq. (17) that vk satisfies the
following equation of motion [35]:

d2vk

d2
þ

�
k2

�2
� 1

z

d2z

d2

�
vk ¼ 0: (20)

Here  denotes the conformal time with which the scale
factor is expressed as aðÞ ¼ �1=ðHÞ during exponen-
tial inflation. In this regime we find d2z=d2 ¼ 2=2, so
that the normalized solution of Eq. (20) reads

vkðÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2kcs

p
�
1� i

kcs

�
e�ikcs; (21)

where we set cs ¼ 1=� (which corresponds to the pertur-
bations’ sound speed) and made the usual adiabatic choice
of initial conditions. [Note that, as discussed in Ref. [17],
this choice corresponds to somewhat more restrictive con-
ditions for scalar DBI perturbations evolving according to
Eq. (20), as it would be the case for their standard counter-
parts.] Thus j��kj2 behaves as

j��kj2 ¼ 1

a2�3
jvkj2 ! H2

2k3
(22)

in the long wavelength limit. Note that, unlike in the
standard case, in the DBI picture the boundary between
long and short wavelength regimes is not given by the
Hubble radius but by the ‘‘sound horizon’’ csH

�1 ¼
ð�HÞ�1, as can be seen in the solution (21).
Now, the separation of the scalar field into long and short

wavelength components,

�ð ~x; tÞ ¼ ’ðtÞ þ
Z d3k

ð2�Þ3=2 �ðk� "a�HÞ

� ½ak��kðtÞe�ik�x þ ayk��
�
kðtÞeik�x�; (23)

is precisely the essence of the stochastic inflation approach,
where " in Eq. (23) is a small parameter (not to be confused

with the first slow-roll parameter) and ak and ayk are

annihilation and creation operators, respectively. By using
this expression we find that the noise term in Eq. (11) can
be expressed as

C �ðtÞ ¼ "aðtÞ�H2
Z d3k

ð2�Þ3=2 �ðk� "a�HÞ

� ½ak��kðtÞe�ik�x þ ayk��
�
kðtÞeik�x�; (24)

with ��k given by the solution of vk; see Eq. (21). Here we
have used the condition that time dependence of cs ¼ 1=�
must be weak: j _cs=csj�H (which corresponds to �1�1),
which is required to justify our analysis of quantum fluc-
tuations based on the mode function (21). We then find the
correlation function of the stochastic noise is given by

C2h�ðtÞ�ðt0Þi ¼ "2a2�2H4 4�k
2

ð2�Þ3 j��kj2jk¼"a�H

� 1

"a�H2
�ðt� t0Þ

¼ H3

4�2
�ðt� t0Þ: (25)

Thus we conclude that the analogue of the Langevin equa-
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tion including a noise term in the DBI case is

_’ ¼ � 2

�

H0

�
þH3=2

2�
�ðtÞ: (26)

One notices that the factor � appears only in the classical
term and not in the normalization of the noise term.

By means of this equation, one can estimate in which
regime the quantum effects are important. If the field’s
behavior is dominated by quantum effects, one can neglect
the classical drift in Eq. (26). As already mentioned, by
using the properties (12) this leads to h’2ðtÞi ¼ H3t=ð4�2Þ.
However, the typical time scale �t now is 1=ðH�Þ, since
the ‘‘horizon’’ felt by the scalar field (and its perturbations)
shrinks by a factor of 1=� compared to the standard case.
Therefore, the typical quantum kick undergone by the field
in the characteristic time scale is

��qu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h’2ðtÞi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3

4�2

1

�H

s
¼ H

2��1=2
: (27)

On the other hand, if the quantum effects are negligible,
then the equation determining the behavior of the field is
nothing but the slow-roll equation of motion, and this
implies that

��cl ¼ � V 0

3H�
�t ¼ � V 0

3H2�2
: (28)

By setting ��qu ¼ ��cl, one easily concludes that the

corresponding vacuum expectation value (vev) of the field
�� obeys the equation

Hð��Þ ¼ m2
Pl

4

V 0ð��Þ
Vð��Þ

1

½�ð��Þ�3=2
: (29)

(Again, in the standard case � ¼ 1 and one recovers the
usual criterion.) This equation allows us to decide for
which values of the inflaton quantum effects play an im-
portant rôle.

So far, we have used the cosmic time t as the time
variable in the Langevin equation; see Eq. (26). The choice
of the time variable, however, is a subtle issue as different
choices may lead to physically inequivalent results. It has
recently been advocated in Refs. [23,27] that in many cases
it would be more appropriate to use the number of e-folds,
N ¼ lna, as the time variable depending on what quantities
we wish to calculate. Indeed, in this case, the results
obtained from the stochastic formalism coincide with those
derived from perturbative quantum field theory [23,27].
Written in terms of the number of e-folds, the Langevin
equation (26) reads

d’

dN
¼ � 2

��

H0

H
þ H

2�
�ðNÞ; (30)

where �ðNÞ is a new stochastic process (which, allowing
for slightly slippery notation, we still denote by the same
symbol) such that h�ðNÞ�ðN0Þi ¼ �ðN � N0Þ. It is easy to

check that a free field satisfies h’2ðNÞi ¼ H2ðN �
NinÞ=ð4�2Þ as expected. Below, we will carry out our
calculations in both time variables, cosmic time t, and
the number of e-folds N.

C. Solving the DBI Langevin equation

We now solve Eq. (26) by using a perturbative expansion
in the noise as shown in Ref. [20]. We use the following
ansatz for the Hubble-patch-averaged field:

’ðtÞ ¼ ’clðtÞ þ �’1ðtÞ þ �’2ðtÞ þ � � � ; (31)

where ’clðtÞ is the classical field, �’1ðtÞ / Oð�Þ, and
�’2ðtÞ / Oð�2Þ. In principle, this expansion can be carried
to any order in �. At zeroth order, we get back the classical
slow-roll equation (10). At first order, one obtains an
equation for �’1ðtÞ, namely,

d�’1ðtÞ
dt

þ 2

�

H0ð’clÞ
�ð’clÞ

�
H00ð’clÞ
H0ð’clÞ �

�0ð’clÞ
�ð’clÞ

�
�’1ðtÞ

¼ H3=2ð’clÞ
2�

�ðtÞ: (32)

As expected, this equation differs from the standard one by
the presence of the Lorentz factor and its derivative. At
second order in the noise, one obtains the equation describ-
ing the evolution of �’2ðtÞ:

d�’2ðtÞ
dt

þ 2

�

H0ð’clÞ
�ð’clÞ

�
H00ð’clÞ
H0ð’clÞ �

�0ð’clÞ
�ð’clÞ

�
�’2ðtÞ

¼ 3

4�
H0ð’clÞH1=2ð’clÞ�ðtÞ�’1ðtÞ � 1

�

H0ð’clÞ
�ð’clÞ

�
H000ð’clÞ
H0ð’clÞ

� �00ð’clÞ
�ð’clÞ þ 2

�02ð’clÞ
�2ð’clÞ

� 2
H00ð’clÞ
H0ð’clÞ

�0ð’clÞ
�ð’clÞ

�
�’2

1ðtÞ:

(33)

The same remark as before is valid: The equation for
�’2ðtÞ is modified by the presence of the factor � and its
derivatives. Clearly, the equation contains derivatives of �
up to second order because it is second order in the noise
expansion.
We are now in a position to solve the above equations.

Since they are first-order differential equations, they can be
solved by varying the integration constant. One finds for
�’1ðtÞ that

�’1ðtÞ ¼ H0½’clðtÞ�
2��½’clðtÞ�

Z t

tin

dt0
H3=2½’clðt0Þ�
H0½’clðt0Þ� �½’clðt0Þ��ðt0Þ;

(34)

while for �’2ðtÞ one obtains
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�’2ðtÞ ¼ 3

4�

H0½’clðtÞ�
�½’clðtÞ�

Z t

tin

dt0H1=2½’clðt0Þ��½’clðt0Þ�

� �ðt0Þ�’1ðt0Þ � H0½’clðtÞ�
��½’clðtÞ�

Z t

tin

dt0
�
H000½’clðt0Þ�
H0½’clðt0Þ�

� �00½’clðt0Þ�
�½’clðt0Þ� þ 2

�02½’clðt0Þ�
�2½’clðt0Þ�

� 2
H00½’clðt0Þ�
H0½’clðt0Þ�

� �0½’clðt0Þ�
�½’clðt0Þ�

�
�’2

1ðt0Þ: (35)

From the above expressions and the properties of the
noise given by Eq. (12), it is obvious that h�’1i ¼ 0, and
for the second moment we find

h�’2
1i ¼

�

2

�
H0

2��

�
2 Z ’in

’cl

dc

�
Hðc Þ�ðc Þ
H0ðc Þ

�
3
: (36)

The next step is to calculate h�’2i. Lengthy but straight-
forward calculations lead to

h�’2i ¼ H0

2�m2
Pl�

��
H0

�

�0 Z ’in

’cl

dc

�
H�

H0

�
3 �

Z ’in

’cl

dc

��
H�

H0

�
3
�
H0

�

�0 � 3

2

H2�2

H0

��

¼ ðH0=�Þ0
2ðH0=�Þ h�’

2
1i þ

H0=�
4�m2

Pl

��
�2H3

H02

�
’in

�
�
�2H3

H02

�
’cl

�
: (37)

As in the standard case, everything can be reduced to the
calculation of a single quadrature. As expected, in the DBI
case this quadrature contains the factor �.

By using these results, one can now calculate the PDF,
Pcð’; tÞ, which describes the probability of the stochastic
process ’½�� to take a given value ’ at a given time t in a
single coarse-grained domain (see Ref. [20]),

Pcð’; tÞ ¼ h�ð’� ’½��Þi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h�’2

1i
q exp

�
�ð’� ’cl � h�’2iÞ2

2h�’2
1i

�

� Pgð’� ’cl � h�’2iÞ: (38)

[In the last line, we have introduced the definition Pg for

later use; see Eq. (89).] If, however, one is interested in
spatial averaging over the entire Universe (instead of a
single domain), one has to include a weight factor a3ð’Þ ¼
exp½3R d	Hð’Þ� for the physical volume of each Hubble-

sized domain. This leads to

Pvð’; tÞ ¼ h�ð’� ’½��Þe3
R

d	Hð’½��Þi
he3

R
d	Hð’½��Þi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h�’2

1i
q exp

�
�ð’� h’i � 3ITJÞ2

2h�’2
1i

�

¼ Pgð’� h’i � 3ITJÞ; (39)

where again the last line is a definition used in later
sections. In Eq. (39), h’i is the single domain averaged
mean value h’i ¼ ’cl þ h�’2i, to which the volume ef-
fects induce the additional correction given by

3ITJ ¼ 3
Z t

tin

d	H0ð	Þh�’1ðtÞ�’1ð	Þi

¼ 12H0

m4
Pl�

Z ’in

’cl

dc
H4�3

H03 � 12��H

m2
PlH

0 h�’2
1i: (40)

Once this integration is carried out, the volume-weighted
distribution Pvð’; tÞ as defined in Eq. (39) is also com-
pletely determined. Again, by comparing the results of this
section with those for the standard case presented in
Refs. [20,21], we see that the only changes are the addi-
tional powers of � found in �’1ðtÞ and �’2ðtÞ. Below, we
calculate Pcð’; tÞ and Pvð’; tÞ for an example shape of
Vð’Þ and Tð’Þ.
As discussed above, the Langevin equation can also be

written with the number of e-folds as the time variable. It is
straightforward to repeat the above analysis for the corre-
sponding Langevin equation (30). In particular, the first-
and second-order corrections obtained in terms of e-folds
read

�’1ðNÞ ¼ 1

2�

H0

H�

Z N

Nin

dN0 H
2ðN0Þ�ðN0Þ
H0ðN0Þ �ðN0Þ (41)

and

�’2ðNÞ ¼ 1

2�

H0

H�

Z N

Nin

dN0H��’1ðN0Þ�ðN0Þ

� 1

�

H0

H�

Z N

Nin

dN0 H�

H0

�
H0

H�

�00
�’2

1ðN0Þ: (42)

In Eq. (42), arguments in the integrands have been partially
suppressed where they are evident. As before, it is easy to
calculate h�’2

1i and h�’2i from these expressions. It is
found that

h�’2
1iN ¼ �

8�2

H02

H2�2

Z ’in

’cl

H5�3

H03 dc : (43)

For the case of a standard kinetic term (hence, � ¼ 1), this
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equation coincides with Eq. (40) of Ref. [27]. Furthermore,
we find from Eq. (42) that

h�’2iN ¼ H�

2H0

�
H0

H�

�0h�’2
1i

þ �

32�2

H0

H�

��
H4�2

H02

�
in
�

�
H4�2

H02

��
: (44)

Again, if � ¼ 1, this equation corresponds to Eq. (48) of
Ref. [27]. Let us notice that, as in our previous results of
Eqs. (36) and (37), the expression (43) for h�’2

1iN is
sufficient to obtain h�’2iN in Eq. (44), i.e., no additional
quadrature is necessary.

By following the same steps, one can also evaluate the
PDFs in terms of e-folds. The corresponding probability

PðNÞ
c ð’; tÞ is similar to Eq. (38), except that now the for-

mulas (43) and (44) should be used in their respective
places. The definition of the volume-weighted distribution
also remains the same [see Eq. (39)], but the term 3ITJ now
reads

ð3ITJÞN ¼ 12

m4
Pl

H0

H�

Z ’in

’cl

dc
H5�3

H03 ln

�
H

mPl

�

� 12�

m2
Pl

H�

H0 h�’2
1i ln

�
H

mPl

�
: (45)

This equation should be compared to Eq. (40). Again,
assessment of the volume effects requires the calculation
of a new quadrature.

III. APPLICATION TO BRANE INFLATION

In the following, we apply the formalism developed in
Sec. II to a popular class of string-inspired inflation models
with a DBI kinetic term.We focus on scenarios of the brane
inflation type, for which the inflaton field corresponds to
the position of a D3 brane embedded in a higher-
dimensional background. Successful model building re-
quires that the six extra dimensions be deformed in a
way described by a warp factor Tð�Þ; the resulting geome-
try is commonly called a Klebanov-Strassler throat.
Scenarios of this type have been the subject of a vast
body of literature; see, e.g., Refs. [5–13,28,36–39]. For
our purposes, we denote the warp factor and the infla-
tionary potential by

Tð�Þ ¼ �4

�
; Vð�Þ ¼ V0

�
1�

�
�

�

�
4
�
þ "

2
m2�2;

(46)

where " ¼ 	1. The plus sign identifies so-called ‘‘ultra-
violet’’ (UV) models (where the D3 moves from the edge
towards the bottom of the throat geometry and hence the
field value decreases during inflation), while the minus
sign refers to the ‘‘infrared’’ (IR) setting (where the D3
climbs out of the throat and the inflaton’s field value grows
with time).

For completeness, the formulation [Eq. (46)] of Vð�Þ
includes a Coulomb potential term due to the D3’s attrac-
tion towards a �D3 brane sitting at the bottom of the throat.
Originally, the small Coulombic attraction resulting from
this very flat ( / 1=�4) potential was considered the in-
flaton’s only driving force, ignoring the (potentially much
steeper) second term / �2 in Eq. (46) [7]. In fact, it was
shown that in this case the DBI dynamics do not affect the
inflationary evolution [40], and the stochastic effects were
also assessed in the same reference. Therefore, in the
following, we ignore the / 1=�4 Coulombic contribution
in Eq. (46). Note, however, that conceptually the presence
of an antibrane at the bottom of the KS throat shall be
important for our reasoning in later sections. The quadratic
potential term in Eq. (46) has a different status. We shall
treat it here as a phenomenological description of the
potential that the various background moduli fields pro-
duce for the mobile D3 brane. The exact shape of these
moduli contributions is still a subject of active research [7–
13].
From the cosmological point of view, the inflation model

of Eq. (46) has three parameters: the mass m, the dimen-
sionless constant �, and V0 (with dimension m4

Pl). In fact,

as we show below, it is rather two dimensionless combi-
nations of (m, �, V0), which we shall call (
, �), that
characterize the evolution. We define these parameters by


 � 12�m2
Pl

�m2
¼ 96�2

��m2
; � � V0

m2m2
Pl

: (47)

Physically,�measures the importance of the constant term
relative to the mass term in the potential (recall that we are
neglecting the Coulomb term, which involves the parame-
ter �).
The geometric interpretation (in terms of an extra-

dimensional brane position) of the inflaton field enforces
some intrinsic consistency conditions. The renormalization
relating the inflaton field� to the (radial) throat coordinate
r reads � ¼ ffiffiffiffiffi

T3

p
r, where T3 ¼ ½ð2�Þ3gS
02��1 is the ten-

sion of the D3 brane, calculated from the string coupling
gS and scale 
0. (We do not consider a possible motion of
the brane along angular coordinates of the throat.) Let the
edge of the throat correspond to some rUV, where the KS
corner of the geometry is connected to the compactified
six-dimensional bulk. Since the metric outside the throat is
unknown, one has to impose r < rUV to ensure that the
brane stays inside the well-defined KS region. In terms of
stringy background parameters, one can express

r4UV ¼ 4�gS

02 N

v
; (48)

where N is a positive integer representing the total
Ramond-Ramond charge and v represents the (dimension-
less) parameter measuring the volume of the five-
dimensional submanifold that forms the basis of the 6D
throat in units of the five-sphere volume. Via the inflaton’s
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renormalization, this evidently is an upper bound on the
inflaton�. Note that, depending on whether we are talking
about UVor IR models, this constraint affects the initial or

final field value, �
ðUVÞ
in <�UV or �ðIRÞ

end <�UV.

A second consistency condition is the requirement that
the volume of the throat be smaller than the total volume of
the compactified extra dimensions. This total volume has
observational significance since it enters into the four-
dimensional Planck mass mPl. From this constraint it fol-
lows that

�<�UV <
mPlffiffiffiffiffiffiffiffiffiffiffiffiffi
2�N

p : (49)

This means that inflation always occurs for sub-Planckian
values of �. On the other hand, the bottom of the throat
being located at r0, one must have �>�0 �

ffiffiffiffiffi
T3

p
r0.

Moreover, for the model to be valid, the (physical) distance
between the branes must be larger than the string length,
and one can show that this amounts to

�>�strg ¼ �0e
ffiffiffiffi

0p
rUV : (50)

Note also that the parameters of the warp factor and
potential in Eqs. (46) can be calculated in terms of the
stringy parameters. Physically, Tð�Þ is the position-
dependent brane tension, and it can be written as Tð�Þ ¼
T3ð�=�UVÞ4, which implies [compare Eqs. (46) and (48)]
that

� ¼ N
2�2v

: (51)

The constant term V0 is given by V0 ¼ 4�2v�4
0=N ,

which can also be expressed as

V0 ¼ 2h4ðr0ÞT3; (52)

where hð�Þ � �=�UV is the warping function as it appears
in the 10D metric [it holds that Tð�Þ / h4ð�Þ].

It turns out that Eq. (49) can be rewritten in a more
quantitative way. Since the volume of a Klebanov-Strassler
throat is known (V throat

6 ¼ 2�4gSN 
02r2UV) and the total

six-dimensional volume is related to the four-dimensional
Planck mass [V tot

6 ¼ m2
Plð2�Þ7g2S
04=ð16�Þ], one deduces

for our parameters (
, �) defined in Eq. (47) that

ffiffiffiffi
�




s
<

1ffiffiffiffiffiffiffiffiffiffiffi
24�3

p h2ðr0Þ
N

� 1: (53)

A similar equation [see Eq. (2.10)] was used in Ref. [39].

A. Chaotic Klebanov-Strassler inflation

In our first example, we set the parameter � ¼ 0; hence
we are considering the case of ‘‘pure’’ CKS inflation
without a constant term. The potential and warp factor
then are given by

Vð�Þ ¼ 1

2
m2�2; Tð�Þ ¼ �4

�
: (54)

In the slow-roll limit, it follows from Eq. (4) that H2 ’
4�m2�2=ð3m2

PlÞ (see Appendix A), and, therefore, the

Lorentz factor calculated from Eq. (6) behaves as

�ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�m2

3�

1

�4

s
¼ m2

Pl

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4

m4
Pl

þ 1




s
: (55)

If we plug these expressions into Eq. (36), the calculation
of h�’2

1i can be reduced to an exactly solvable integral, and
the final result for h�’2

1i is

h�’2
1i ¼

4m2

3�2

�
1

2

ð�� �inÞ � 1

4

�
’4

cl

m4
Pl

�� ’4
in

m4
Pl

�in

�

þ 3

2

ln

�
’in

’cl

�
þ 3

4

ln

�
1þ �in

1þ �

��
; (56)

where � ¼ �ð’clÞ and �in ¼ �ð’inÞ. For h�’2i we have
from Eq. (37) that

h�’2i ¼ �2 � 1

�2

1

’cl

h�’2
1i þ

m2

3�m4
Pl

ð�2
in’

3
in � �2’3

clÞ:
(57)

To calculate the volume effects, another integration is
necessary. With the potential and warp factor given by
Eq. (54), one finds from Eq. (40) that

3ITJ ¼ 16�

�

m2

m2
Pl

mPl

�
�mPl

’in

�
’4

in

m4
Pl

þ 1




�
3=2 þmPl

’cl

�
’4

cl

m4
Pl

þ 1




�
3=2

� 3

2
ð�1Þ�1=4
�5=4

�
B

�
�


’4
in

m4
Pl

;
3

4
;
3

2

�
� B

�
�


’4
cl

m4
Pl

;
3

4
;
3

2

���
� 12��

h�’2
1i

m2
Pl

’cl; (58)

where B is the incomplete Euler’s integral of the first kind
defined by Bðz; a; bÞ � R

z
0 t

a�1ð1� tÞb�1dt [41,42].
Notice that, in the above equation, the function B takes
in fact complex values. However, multiplied by the factor
ð�1Þ�1=4, the result is real as it should be.

Let us discuss these results in more detail in the light of
the consistency constraint (49). In the limit of small field
values compared to the Planck mass, the Lorentz factor is
large and can be approximated by �ð’clÞ ’ m2

Pl=ð
ffiffiffiffi



p
’2

clÞ.
It is hence easy to show that
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h�’2
1i ’

2m2

3
ffiffiffiffi



p
�
’cl

mPl

�
2
; (59)

h�’2i ’ m2

3m2
Pl

’clffiffiffiffi



p : (60)

The expression giving the volume effects can also be
simplified. Notice that Bðz; a; bÞ ¼ za 2F1ða; 1� b; aþ
1; zÞ, where 2F1 is the hypergeometric function [41,42].
By using the asymptotic behavior of 2F1 [41,42], straight-
forward calculations show that

3ITJ ’ 8�
m2

m2
Pl

’cl



: (61)

Let us now establish the results in terms of the numbers
of e-folds. By using Eq. (43), one obtains

h�’2
1iN ¼ � 2

3

m2

�2

m2
Pl

�2

�
�3

3

’6
cl

m6
Pl

� �3
in

3

’6
in

m6
Pl

þ �




’2
cl

m2
Pl

� �in




’2
in

m2
Pl

� 1


3=2
arcsinh

�
1


1=2

m2
Pl

’2
cl

�

þ 1


3=2
arcsinh

�
1


1=2

m2
Pl

’2
in

��
: (62)

One can easily check that this expression vanishes at the
initial time as expected. The corresponding expression for
h�’2i can be deduced from Eq. (44). The result reads

h�’2iN ¼ 1

2’cl

�2 � 2

�2
h�’2

1i þ
1

3�

m2

’cl

�
�2
in

’4
in

m4
Pl

� �2 ’
4
cl

m4
Pl

�
:

(63)

In the limit where the Lorentz factor � is large, the above
expressions can be approximated by

h�’2
1iN ’ 2m2

3
ffiffiffiffi



p
�
’cl

mPl

�
2
ln

�
’in

’cl

�
2
; (64)

h�’2iN ’ 2m2

3m2
Pl

’clffiffiffiffi



p ln

�
’in

’cl

�
: (65)

It is interesting to compare these formulas to Eqs. (59) and
(60). We see that working in terms of the number of e-folds
simply introduces (apart from numerical prefactors) a
logarithmic correction to the correlation functions:
Roughly speaking, the new correlation functions are ob-
tained from the old ones with the replacement ’cl !
’cl lnð’in=’clÞ. This is confirmed by a calculation of the
volume effect. By using Eq. (45), one obtains

ð3ITJÞN ’ 16�




m2

m2
Pl

’cl

�
ln

�
’cl

’in

�
ln

��
4�

3

�
1=2m’cl

m2
Pl

�

þ1

2
ln2

��
4�

3

�
1=2m’in

m2
Pl

�
�1

2
ln2

��
4�

3

�
1=2m’cl

m2
Pl

��
:

(66)

This formula should be compared to Eq. (61).

In order to see whether the stochastic effects are impor-
tant or not, we must normalize the model’s parameters to
the Cosmic Background Explorer (COBE) observations.
This was done in Ref. [17], where it was shown that [see
that reference’s Eq. (127)]

�
m

mPl

�
2 ¼ 45

4�

Q2

T2
CMB


; (67)

where the quantity Q2=T2
CMB can be expressed in terms of

the cosmic microwave background (CMB) quadrupole
according to

Q

TCMB

¼
ffiffiffiffiffiffiffiffiffi
5C2

4�

s
’ 6� 10�6: (68)

In Ref. [17] [see Eq. (116)], it was also demonstrated that
the first slow-roll parameter �1 (see Appendix A for a
precise definition of the slow-roll hierarchy), for the model
under consideration, can be expressed as �1 ’

ffiffiffiffi



p
=ð4�Þ.

Therefore, in a realistic inflationary situation we always
have 
 � 1.
As a rule of thumb, the inflaton field can be said to

behave quantum-mechanically if the correction h�’2i to
the mean value is of the same order as the classical field
’cl. For a more detailed argument, let us consider the
calculation carried out in Ref. [43] (see also the discussion
in Ref. [20]). There, the authors compute the number of
e-folds hNi ¼ R

dthHi, which we adapt to the case of DBI

inflation as

hNi ¼ ��

2

Z ’cl

’in

dc
hHi
H0

cl

�cl: (69)

In the present case, i.e., for the potential and warp factor of
Eqs. (54), this gives

hNi ¼ ��

2

ffiffiffiffi
�

6

r Z ’cl

’in

dc
m’cl�cl

H0
cl

�
1þ h�’2i

’cl

�
: (70)

If h�’2i � ’cl, then hNi ¼ Ncl and the trajectory is indeed
classical, confirming our rule of thumb. If we work out the
above condition ignoring unimportant numerical factors,
we find that

h�’2i
’cl


 �1
Q2

T2
CMB

� 1: (71)

We conclude that the stochastic effects do not play any
important rôle in the model with � ¼ 0 and, therefore, that
eternal inflation is not possible. This conclusion, although
obtained with a different method, is in agreement with
Ref. [28]. In view of this result, we do not discuss the
domain of validity of the perturbative approach in the � ¼
0 case but instead turn straight to the case of a CKS
potential with constant term.
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B. Chaotic Klebanov-Strassler inflation with a constant
term

As a second example, we keep Tð�Þ as in Eq. (54) but
take � � 0, so that the potential is given by

Vð�Þ ¼ V0 þ "

2
m2�2: (72)

With this potential, the Lorentz factor [compare Eq. (55)]
is given by

� ¼
�
mPl

�

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

mPl

�
4 þ 1




ð�=mPlÞ2
2�þ "ð�=mPlÞ2

s
: (73)

Then, in order to determine the corrections to the variance
h�’2

1i and mean value h�’2i, one has to compute the
kernel of the integral in Eq. (36). One obtains

H�

H0 ¼ 2"

m2�2

��
V0 þ "

2
m2�2

�

�
�
V0m

2
Pl

2
�
þ�2

�
V0 þ "

2
m2�2

���
1=2

: (74)

Unfortunately, the (third power of this) expression is too
complicated to perform the integral (36) exactly. However,
while the constant term of the potential (72) dominates
(� � 1), it is legitimate to approximate V0 þ "m2�2=2 by
V0. In this case, the calculation of Eq. (36) can be done and
leads to

h�’2
1i ¼ � 32"

15

m4’2
cl

V0�
2
cl


�4

��
1þ 2
�ð’in=mPlÞ2
2
�ð’in=mPlÞ2

�
5=2

�
�
1þ 2
�ð’cl=mPlÞ2
2
�ð’cl=mPlÞ2

�
5=2

�
: (75)

In the same limit, one can also estimate h�’2i. The result
reads

h�’2i ¼ 4"�2

3

�
m

mPl

�
2 ’cl

�cl

��
mPl

�in

�
2
�2
in �

�
mPl

’cl

�
2
�2
cl

�

þ
�
1þ 1

2
�

�
mPl

’cl

�
2 1

�2
cl

� h�’2
1i

2’cl

; (76)

where the explicit expression of h�’2
1i is given in Eq. (75).

The evolution of h�’2
1i and h�’2i in the IR and UV cases is

represented in Figs. 1 and 2.
Finally, we have to estimate the volume effects. For this

purpose, we have to compute the correction to the mean
value of the field given by Eq. (40). In our approximation,

one has H4�3=ðH0Þ3 ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V0=3

p ½H3�3=ðH0Þ3�. This means
that one can express the integral of Eq. (40) in terms of the
integral appearing in Eq. (36), i.e., in terms of h�’2

1i. After
carrying out this calculation, one obtains 3ITJ ’ 0.
Therefore, at first order in our approximation, volume
effects simply are absent. In fact, one could have guessed
this result from the very beginning: At first order, the

Hubble parameter is given by H ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V0=3

p
, which is a

constant. By looking at Eq. (39), we see that, in this case,
the weight related to the volume can be taken outside the
integrals in the numerator and denominator. Hence, the
corresponding contributions cancel out and, at this order,
there is no volume effect.
For the same reason, there is no difference between the

correlation functions computed with the time variable t or
with the e-fold variable N; see, for instance, Eqs. (36) and
(43). This illustrates the fact that the difference between
the two approaches can be important only if the Hubble
parameter evolves significantly. This is the case for chaotic
inflation [23,27] (although for the DBI version of the
chaotic model studied in the last subsection, the corrections
were only logarithmic) but not for the model under scrutiny
here.

〈  
〉

〈  
〉

FIG. 1 (color online). Evolution of the (quantum) scalar field in the IR case (hence inflation proceeds from left to right) for 
 ¼ 38,
� ¼ 3:7, and m ’ 2:19� 10�7mPl, as implied by the COBE normalization. Note that the choice of the parameters is such that the
condition �=
 � 1 is valid. For this example, the spectral index and the running of the model are, respectively, given by nS � 1 ’
�0:11 and 
S ’ 0:0023, as can be shown by using the results of Ref. [17]. The initial condition is ’in ¼ 10�4mPl. The green dotted
line represents the classical evolution without the quantum effects. The red dashed line represents the mean value of the quantum scalar

field, namely, ’cl þ h�’2i, while the two blue dashed dotted lines on both side of the mean are ’cl þ h�’2i 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�’2

1i
q

. In the right

panel, the hatched region represents the region where the perturbative treatment used in this article is valid. For the parameters chosen
here, the perturbative approach breaks down at ’cl ’ 0:001mPl.
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Before investigating in more detail the previous result,
let us establish its domain of validity. It was shown in
Ref. [21] that one can trust the perturbative stochastic
treatment as long as the mean value of the inflaton field
is such that h’i2½’cl�j�’minð’clÞj;’clþ�’maxð’clÞ�,
where �’min and �’max can be found from two condi-
tions. The first of those reads

max
x2½’cl;’clþ�’ð’clÞ�

��������
Hð4ÞðxÞ

6
�’3

���������
��������
H000

cl

2

���������’2; (77)

where Hð4Þ denotes the fourth-order derivative. The second
condition can be expressed as

max
x2½’cl;’clþ�’ð’clÞ�

��������
½H3=2ðxÞ�00

2

���������’2�jðH3=2
cl Þ0�’j: (78)

These two conditions must be simultaneously satisfied,
and, therefore, the tightest bounds on �’min and �’max

that follow from Eqs. (77) and (78), respectively, give the
reliability of the perturbative treatment. By replacing again
V0 þ "m2�2=2 by V0 where applicable, straightforward
manipulations show that Eq. (77) leads to �’max ¼
�’min ¼ 3’cl while Eq. (78) gives �’max ¼ �’min ¼
2’cl. Therefore, one concludes that the perturbative ap-
proach is correct as long as h’i 2 ½’cl � 2’cl; ’cl þ
2’cl�. The allowed region is represented by the hatched
area in Figs. 1 and 2.

We now return to Eqs. (75) and (76). These expressions
can be further simplified if we take into account the fact
that the vev of the inflaton field (measured in units of the
Planck mass) must be small; compare Eq. (49). In this case,
the Lorentz factor from Eq. (73) is given by � ’
mPl=ð

ffiffiffiffiffiffiffiffiffiffi
2
�

p
’clÞ � 1 and

h�’2
1iIR ’ 16

15
ffiffiffi
2

p
�
m

mPl

�
2 �3=2


1=2

m3
Pl’

4
cl

’5
in

; (79)

h�’2
1iUV ’ 16

15
ffiffiffi
2

p
�
m

mPl

�
2 �3=2


1=2

m3
Pl

’cl

: (80)

In the same way, one can also calculate the correction to
the vev of the inflaton field. One obtains

h�’2iIR ’ 16

15
ffiffiffi
2

p
�
m

mPl

�
2 �3=2


1=2

m3
Pl’

3
cl

’5
in

; (81)

h�’2iUV ’ � 4

15
ffiffiffi
2

p
�
m

mPl

�
2 �3=2


1=2

m3
Pl

’2
cl

: (82)

Notice, in particular, that, in the UV case, the correction is
negative. This is confirmed in Fig. 2.
With the help of these approximations, let us estimate

when the stochastic effects are important. As discussed
before, one expects the quantum effects to play a rôle
when h�’2i=’cl ’ 1. In order to use Eqs. (81) and (82)
for this purpose, we must again calculate the COBE nor-
malization; this will allow us to rewrite the parameter

combination m2�3=2=ðm2
Pl


1=2Þ appearing in Eqs. (81) and

(82). In Ref. [17], it was shown that [see Eq. (153)]

�
mPl

’�

�
4 ¼ 45

16�

Q2

T2
CMB

�
mPl

m

�
2 


�2
; (83)

where ’� is the value of the inflaton field when scales of
astrophysical interest crossed out of the DBI sound hori-
zon. Moreover, it was also demonstrated that nS � 1
 4�1

[see Eq. (155)]. Therefore, we finally arrive at

�
m
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�
2 �3=2


1=2
’ 45�3

4
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CMB

ðnS � 1Þ4
�
�




�
3=2

: (84)

As a consequence, for the IR case described by Eq. (81),
the condition h�’2iIR=’cl * 1 is equivalent to

’cl

mPl
*

� ffiffiffi
2

p
12�3

�
1=2

�
Q

TCMB

��1ðnS � 1Þ�2

�
�




��3=4
�
’in

mPl

�
5=2

:

(85)

Let us discuss this expression in detail. It is interesting to
note the dependence on the initial value of the field ’in.

〈  
〉

〈  
〉

FIG. 2 (color online). Evolution of the (quantum) scalar field in the UV case (hence inflation proceeds from right to left) for 
 ¼ 38,
� ¼ 3:7, and m ’ 2:19� 10�7mPl as implied by the COBE normalization (this case corresponds to Fig. 9 of Ref. [17]). For this
example, the spectral index and the running of the model are, respectively, given by nS � 1 ’ 0:11 and 
S ’ �0:0023. The initial
condition is ’in ¼ 10�3mPl. The conventions are analogous to those in Fig. 1. The fact that h�’2iUV < 0 [see Eq. (82)] and, therefore,
h’i<’cl can be clearly observed in the above plot (red dashed line). In the right panel, the hatched region indicates the domain of
validity of the perturbative approach.
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The smaller ’in is, the sooner the influence of quantum
effects sets in. (Recall that ’in is bounded from below by
the bottom of the throat, ’in >�0, and that the inflaton
field value in this scenario increases as theD3 brane climbs
out of the throat.) For ’in ¼ 10�3:5mPl, corresponding to
the left panel in Fig. 1, one obtains ’cl=mPl * 0:008 in
good agreement with the plot. For an exemplary initial field
value of ’in ¼ 10�4mPl, one has ’cl=mPl * 0:0005.
Therefore, if the brane starts its evolution deep inside the
throat, then the stochastic effects are dominant.

For the UV case of Eq. (82), one can repeat the same
discussion. One finds that in this case the limit is given by

’cl

mPl
&

�
3�3ffiffiffi
2

p
�
1=3

�
Q

TCMB

�
2=3ðnS � 1Þ4=3

�
�




�
1=2

: (86)

Contrary to the IR case, we see that there is no dependence
on the initial conditions anymore. For the parameters in
Fig. 2, one obtains ’cl & 2:19� 10�5mPl in good agree-
ment with the plot. In addition, one can also check, by
comparing the two panels of Fig. 2, that this value does not
change much when ’in is modified. The conclusion is that,
in the UV case, the stochastic effects play an important rôle
only when the brane is approaching the bottom of the
throat, i.e., towards the end of brane inflation in its UV
incarnation.

IV. STOCHASTIC DBI INFLATION AND THE
FINITE SIZE OF EXTRA DIMENSIONS

We have established that, in the model of Eq. (72), the
stochastic effects can be dominant in a relevant and real-
istic inflationary regime. Our next goal is to compute how
the (classical) behavior of the inflaton field is modified in
the presence of stochastic noise. In principle, the above
considerations already answer this question since we have
computed in detail the time evolution of h�’2i and h�’2

1i.
However, it is clear from Figs. 1 and 2 that a first issue is
the limited validity of the perturbative regime. Outside the
hatched region in the right-hand panels of Figs. 1 and 2,
one can no longer follow the evolution of the quantum
field. In particular, it seems obvious that the regime of
eternal inflation cannot be described in this framework,
even if we have established earlier that it is likely to exist.
However, even setting aside the issue of validity, there is
another, much worse problem that renders our previous
treatment highly unsatisfactory. The probability density
functions given by Eqs. (38) and (39) can a priori extend
into the range where ’<�0 (possibly even into the range
’< 0). Clearly, since the inflationary scenario at hand is
built on the notion of the inflaton as the KS throat’s
renormalized radial coordinate r0 < r < rUV, a field value
’<�0 is inconsistent. To our knowledge, all works on
stochastic inflation in brane inflation published so far are
subject to this issue. In fact, we face here a deep concep-
tional challenge: In brane inflation, the finite size of the
extra dimensions plays a fundamental rôle. (In Ref. [40],

for example, it was shown how the finite size condition can
be exploited to cut down the allowed parameter space at the
effective field theory level.) How can this crucial impor-
tance of the geometric restrictions be implemented into the
description of stochastic DBI inflation?
We propose to address this issue by introducing a (re-

flecting or absorbing) wall at �0, following the reasoning
of Ref. [44]. (A similar technique has been used in
Ref. [45] in order to study the quantum behavior of the
quintessence field. Analogously, the approach we present
below may be applied to the case of ‘‘DBI-essence’’ in-
troduced in Ref. [46].) This wall at the bottom of the throat
then marks the ‘‘end of the world’’ as imposed by the finite
string geometry and prevents the stochastically corrected
value of ’ from reaching values smaller than �0. Let us
now explore the consequences of this proposal.
Let us recall from Refs. [44,45] that, if we start with a

normalized distribution PðxÞ for the variable x, i.e.,Rþ1
�1 PðxÞdx ¼ 1, then the normalized probability density

function in the presence of a reflecting wall at x ¼ a is
given by PðxÞ þ Pð2a� xÞ, provided that Pð2a� xÞ is
also a solution of the relevant (approximate) Fokker-
Planck equation. (This is the case for a Gaussian PDF.)
One can check explicitly that this distribution is correctly
normalized:

Rþ1
a ½PðxÞ þ Pð2a� xÞ�dx ¼ 1. As a thought

experiment, let us install a reflecting wall at the bottom of
the KS throat at the position �0. Then, according to
Refs. [44,45], our new distribution would be given by

Pwallð’Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h�’2

1i
q

�
exp

�
�ð’� ’cl � h�’2iÞ2

2h�’2
1i

�

þ exp

�
�ð2�0 � ’� ’cl � h�’2iÞ2

2h�’2
1i

��
: (87)

Notice that the wall distribution is the same with or without
the volume effects since we have shown before that 3ITJ ’
0.
However, in the present context, when the brane reaches

the bottom of the throat, it annihilates with an antibrane
fixed at �0. Note that, while the small Coulombic contri-
bution of the interbrane potential in Eq. (46) was ignored in
our calculations above, conceptually the presence of the
anti-D3 at the bottom of the throat is important for our
present argument: Therefore, a correct physical description
of this situation involves an absorbing wall rather than a
reflecting one. A more difficult question concerns the
boundary condition to be chosen at �UV (where the KS
throat joins the 6D bulk with unknown metric).
A more appropriate description of the situation could

possibly be given by a ‘‘multithroat’’ scenario: For in-
stance, one can imagine that the mobile D3 brane travels
through a 6D compact space made of a (negligibly) small
unknown bulk and two well-defined KS throats of different
depth. To account for the anti-D3s present at the bottom of
each throat, absorbing walls are installed at the correspond-
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ing positions (or their field value counterparts, respec-
tively). Clearly, the detailed treatment of such a situation
will involve a high degree of technical sophistication be-
cause a continuous description of warp factor and inflaton
potential is needed across the entire 6D manifold.

In order to render the problem tractable with our present
means, here we content ourselves with the assumption that
a second absorbing wall is located at �UV. This is a good
approximation for a two-throat model in which the second
throat is much ‘‘shallower’’ than the primary inflationary
throat (which is responsible for most of the exponential
expansion). Our hope is that this toy model with absorbing
walls at both �0 and �UV will give us an idea about the
behavior to be expected in a more realistic case. Of course,
placing a reflecting wall at�UV is also technically possible
but seems physically less justified at present. Therefore, in
the following, we concentrate on the case of two absorbing
walls.

A. Geometrically amended PDF

Our goal is now to derive the PDF in the presence of two
absorbing barriers, i.e., the equivalent of Eq. (87) but now
with the two boundary conditions

Pð’ ¼ �0Þ ¼ Pð’ ¼ �UVÞ ¼ 0: (88)

There are two ways to derive the corresponding PDF. The
first one is based on the method of images; see, e.g.,
Refs. [33,34]. We start with the unrestricted PDF Pgð’�
�meanÞ, defined in Eq. (38), centered at �mean �
’cl þ h�’2i. In order to ‘‘kill’’ the contribution of Pg at

�UV, we introduce another ‘‘source’’ located at �ð1Þ
UV �

2�UV ��mean (this source is the ‘‘image’’ of �mean with
respect to the wall located at �UV) and weighted with a
minus sign. In the same manner, in order to remove the
contribution of Pg at �0, we introduce a second image

located at �ð1Þ
0 � 2�0 ��mean still weighted with a minus

sign (this source is the image of �mean with respect to the
wall located at �0). Therefore, the new PDF is given by

Pgð’��meanÞ � Pgð’��ð1Þ
UVÞ � Pgð’��ð1Þ

0 Þ
¼ Pgð’��meanÞ � Pgð’� 2�UV þ�meanÞ

� Pgð’� 2�0 þ�meanÞ: (89)

However, this new distribution function does not yet satisfy

the boundary conditions (88) because the source �ð1Þ
UV now

gives a contribution at �0. In the same manner, the source

�ð1Þ
0 gives a contribution at �UV. The cure is obviously to

add extra images. Therefore, we introduce the source�ð2Þ
UV,

which is the image of �ð1Þ
0 with respect to the wall located

at �UV, i.e.,

�ð2Þ
UV ��UV ¼ �UV ��ð1Þ

0 (90)

or

�ð2Þ
UV ¼ 2�UV þ�mean � 2�0: (91)

This time the PDF must be weighted with a plus sign since
the new contribution is negative. We also introduce the

image �ð2Þ
0 , the image of �ð1Þ

UV with respect to the wall

located at �0. As a consequence, one obtains

�ð2Þ
0 ¼ �2�UV þ�mean þ 2�0: (92)

But, as before, the new images will give new contributions
on the two walls. Clearly, in order to obtain a distribution
that satisfies the boundary conditions (88), this process
must be repeated ad infinitum; i.e., one must introduce an
infinite number of images. The location of the nth source
can be expressed as

�ð2nÞ
0 ¼ �mean þ 2nð�0 ��UVÞ; (93)

�ð2nÞ
UV ¼ �mean þ 2nð�UV ��0Þ; (94)

�ð2nþ1Þ
0 ¼ 2�0 ��mean þ 2nð�0 ��UVÞ; (95)

�ð2nþ1Þ
UV ¼ 2�UV ��mean þ 2nð�UV ��0Þ: (96)

Note the distinction between the positions of the even- and
odd-numbered sources (n ¼ 0; 1; 2 . . . ). Then, the com-
plete distribution is obtained by taking the sum over all n
contributions with their appropriate respective signs, i.e., a
minus for the ‘‘odd sources’’ and a plus for the ‘‘even
sources.’’ The final expression is given by

Pð’Þ ¼ Pgð’��meanÞ

� X1
n¼0

½Pgð’��ð2nþ1Þ
0 Þ þPgð’��ð2nþ1Þ

UV Þ�

þ X1
n¼1

½Pgð’��ð2nÞ
0 Þ þPgð’��ð2nÞ

UV Þ�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h�’2

1i
q

� X1
n¼�1

�
exp

�
�½’��mean þ 2nð�UV ��0Þ�2

2h�’2
1i

�

� exp

�
�½’þ�mean � 2�0 þ 2nð�UV ��0Þ�2

2h�’2
1i

��
:

(97)

This formula is very general: It gives the PDF for any
Gaussian process (characterized by the variance h�’2

1i
and mean value h�’2i) that is restricted between two
absorbing barriers.
As mentioned above, there exists another way to reach

the above result. This second method consists in starting
from the first line of Eq. (38), i.e., the definition P ¼
h�ð’� ’½��Þi, but with a Dirac � function compatible
with the boundary conditions of Eq. (88). The correspond-
ing representation of the Dirac � function is given by
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�ð’� ’0Þ ¼ 2

�UV ��0

X1
n¼1

sin

�
n�

’��0

�UV ��0

�
sin

�
n�

’0 ��0

�UV ��0

�
: (98)

This is a � function in the sense that
R�UV

�0
d’�ð’� ’0Þfð’Þ ¼ fð’0Þ for any function fð’Þ and any’0 2 ½�0; �UV�. From

this expression, it is straightforward to establish that

h�ð’� ’½��Þi ¼ 1
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� 1

2
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n�

�UV ��0

�
2h�’2

1i
�
cos

�
n�

�UV ��0

ð’þ ’cl þ h�’2i � 2�0Þ
�
: (99)

Then, by using the identity

X1
n¼�1

e�ð’þn‘Þ2 ¼
ffiffiffiffi
�

p
‘

þ X1
n¼1

2
ffiffiffiffi
�

p
‘

e�ðn�=‘Þ2 cos
�
2n�’

‘

�
;

(100)

it is easy to prove that Eq. (99) is in fact exactly Eq. (97).
This PDF is the main result of our paper: It is applicable to
any model where the range of variation of the stochastic
inflaton field is limited by two absorbing walls. Finally, let
us notice that the distribution (97) is not normalized as is
expected since the two boundary conditions are absorbing
walls.

B. Inflaton between two absorbing walls

In order to study the behavior of the inflaton field in a KS
throat with its boundaries marked by absorbing walls, we
now calculate the mean field value h’i by using the geo-
metrically consistent PDF (97) obtained in the previous
section. It is given by the following expression:

h’i ¼ 1

N

Z �UV

�0

d’Pð’Þ’; (101)

where the ‘‘normalization’’ N can be calculated from

N ¼
Z �UV

�0

Pð’Þd’: (102)

Lengthy but straightforward calculations show that

Z �UV

�0

Pð’Þ’d’ ¼ X1
n¼1

2

n�
exp

�
� n2�2h�’2

1i
2ð�UV ��0Þ2

�

� sin

�
n�ð�0 ��meanÞ

�UV ��0

�

� ½�UV cosðn�Þ ��0�; (103)

while the normalization N is given by

N ¼ X1
n¼1

4

n�
exp
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� n2�2h�’2

1i
2ð�UV ��0Þ2
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� sin
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�UV ��0

�
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�
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2

�
: (104)

Finally, one can push this reasoning further to calculate the

variance of the field from h’2i defined as

h’2i ¼ 1

N

Z �UV

�0

d’Pð’Þ’2: (105)

By using the same techniques, one obtains

h’2i ¼ 1
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� n2�2h�’2

1i
2ð�UV ��0Þ2

�

� sin

�
n�ð�mean ��0Þ

�UV ��0

���
�2

0 � 2

�
�UV ��0

n�

�
2
�

� cosðn�Þ
�
�2

UV � 2

�
�UV ��0

n�

�
2
��
: (106)

It is interesting to check the consistency of the above
expressions at the initial time (when ’ ¼ ’in). Initially,
h�’2i ¼ h�’2

1i ¼ 0 and the series in Eqs. (103) and (104)
can be calculated explicitly by using formulas (1.441.1)
and (1.441.3) of Ref. [42]. The result readsR�UV

�0
d’Pð’Þ’ ¼ ’in and N ¼ 1. As a consequence,

one checks that h’iin ¼ ’in as expected.
The quantity h’i is represented in Fig. 3 in the case

where the two walls are, respectively, located at �0 ¼
10�5mPl and �UV ¼ 10�3mPl. The influence of the walls
is clearly visible from a comparison of the two curves.
While the unbounded distribution artificially predicts that
the brane can be outside the throat, the ‘‘true’’ quantum
trajectory accounting for the geometric restrictions shows
an interesting behavior: As the brane is approaching the
wall, its position starts to oscillate and then becomes
stabilized at a value >�0. Hence, the presence of the
wall prevents ’ from violating its geometric limit �0,
i.e., from going beyond the bottom of the throat.
Several words of caution are in order here. First, the

above conclusion is valid for particular initial conditions.
Clearly, if the parameters are such that the stochastic
correction h�’2i remains small, the presence of the wall
is not felt. Second, a much more serious problem is that the
perturbative approach is not valid in the regime where the
brane position oscillates, i.e., on the left part of Fig. 3.
Recall, however, that here we are considering the UV
scenario in which the inflaton field value decreases during
inflation. Therefore, Fig. 3 should be read ‘‘from right to
left’’: In the classical and the perturbative stochastic ap-

LORENZ, MARTIN, AND YOKOYAMA PHYSICAL REVIEW D 82, 023515 (2010)

023515-14



proach without the walls described by Eq. (38) (green
dotted and red dashed lines, respectively), the brane travels
towards the bottom of the throat, well within the regime of
validity of our perturbative treatment. Initially, also the
trajectory found in the presence of the walls from
Eq. (97) (black solid line) overlaps with these, but in the
vicinity of �0, the ‘‘geometry-conscious’’ brane changes
direction: It starts climbing upwards in the throat again, as
can be seen in Fig. 3. This turnaround occurs within the
(hatched) region where the perturbative approach is
reliable.

In addition, it seems reasonable to conjecture that the
oscillatory behavior mentioned above is real despite the
fact that it occurs outside the regime of validity of our
approximation. The reason is as follows. In fact, the regime
of validity indicates where the calculation of h�’2

1i and
h�’2i is no longer reliable. But it does not limit in any way
the validity of Eqs. (97), (103), and (104). Clearly, the
oscillatory behavior comes from the peculiar structure of
the PDF in Eq. (97), which gives rise to the appearance of
trigonometric functions in Eqs. (103) and (104). As long as
the stochastic effects grow (and no matter how quantita-
tively they do, i.e., no matter the detailed behavior of h�’2

1i
and h�’2i), the brane will feel the wall at some point and,
consequently, the trigonometric functions in Eqs. (103) and
(104) will start to play a rôle. Hence, it is very likely that
the brane position will oscillate even if, with the perturba-
tive method used here, we cannot calculate the fine struc-
ture of these oscillations.

Therefore, while the results obtained above probably
cannot be considered a fully realistic calculation of the
quantum trajectory, we may well take them as an indication
that geometric limits are of great importance in stochastic
DBI inflation. The finite size of the extra dimensions,
modeled by the presence of the two absorbing walls,
changes the stochastic corrections to the classical field
trajectory considerably.
Finally, we have proven that, for the CKS potential with

a constant term, stochastic effects can be dominant and
occur near the bottom of the throat. The question of eternal
inflation is clearly a more complicated issue. In particular,
computing the stationary distribution in this case cannot be
done by using the present formalism, even if one can argue
(as we have above) that the existence of an eternally
inflating regime is likely in brane inflation.

V. CONCLUSIONS

We now conclude our investigation by revisiting our
main results. In this paper, we have generalized the ap-
proach of Refs. [20,21] to DBI inflation models, in which
the kinetic term of the inflaton is modified through a
geometry-imposed upper limit on the field velocity. To
this end, we solved the DBI Langevin equation by using
a perturbative expansion in the noise. It turns out that the
results of Refs. [20,21] essentially only change by addi-
tional factors of �, reflecting the fact that the distinction
between long and short wavelength fluctuations, which is
at the heart of the stochastic inflationary approach, now is
defined with respect to the sound (instead of the Hubble)
radius scale.
Our calculation yields easy expressions for the PDFs

describing the probability for the patch-averaged inflaton
to assume a given value in one Hubble domain, or in the
entire Universe by taking into account the size of each
averaging domain. We calculated and plotted these PDFs
for the example of chaotic Klebanov-Strassler inflation, for
the cases both with and without a constant term in the
potential. In the absence of a constant term V0, stochastic
effects are found not to alter the classical field trajectory in
a significant way. However, in both the UV (" ¼ þ1) and
IR (" ¼ �1) formulation of a potential including a con-
stant term, the quantum behavior of the field plays a
dominant rôle for small field values, i.e., at the bottom of
the Klebanov-Strassler throat. Hence, in the UV model,
where the brane moves downwards in the throat, these
effects occur at the end of inflation, whereas in the IR
case, with the brane climbing up the throat, they come
into play at the very beginning.
The main result of this paper is our demonstration that

an additional subtlety arises due to the geometric restric-
tion which confines the field value of the coarse-grained
field between �0 <’<�UV: To prevent the PDFs from
extending below�0 (where the throat—and, consequently,
the stringy spacetime itself—ends), we introduced two

〈  
 〉

FIG. 3 (color online). Evolution of the (quantum) scalar field
in the UV case (hence inflation proceeds from right to left) for

 ¼ 38, � ¼ 3:7, and m ’ 2:19� 10�7mPl as implied by the
COBE normalization (this case corresponds to Fig. 9 of
Ref. [17]). The conventions are analogous to those in Fig. 1.
The black solid line represents h’i given by Eq. (101) in the case
where the two walls are located at �0 ¼ 10�5mPl and �UV ¼
10�3. The initial condition is �in ¼ 5� 10�4mPl. This figure
should be compared to Fig. 2. The influence of the wall on the
quantum trajectory is clearly visible.

GEOMETRICALLY CONSISTENT APPROACH TO . . . PHYSICAL REVIEW D 82, 023515 (2010)

023515-15



absorbing walls located at �0 and �UV. This changes the
PDF’s shape, and within the bounds of validity it is the
‘‘absorbing walls probability density functions’’ that must
be used to describe the stochastic behavior of the inflaton
field. It should be interesting to put this technique to use for
the ‘‘DBI version’’ of quintessence proposed in Ref. [46].

The question of the existence of an eternally self-
reproducing regime in the DBI case is more complicated.
We have argued that such a regime does not exist if the
potential is of the purem2�2 type but that, in the case of an
additional constant term V0, eternal inflation seems pos-
sible. Given the intrinsic validity limitations of our present
approach, a fully numerical treatment of the DBI Langevin
equation would be necessary to answer this question.

Finally, we would like to comment on possible brane
trajectories beyond the single throat model. Globally, the
string geometric 6D background is given by a compactified
bulk Calabi-Yau space (where the metric is unknown)
whose ‘‘corners’’ may comprise several (possibly general-
ized) Klebanov-Strassler throats with different parameters.
Some of these throats can contain additional antibranes at
their bottom, like in the original scenario of Ref. [7]. One
could therefore imagine that a brane starts out at the bottom
of an IR throat, moves upwards towards the bulk, and then
transverses a short distance within the bulk before drop-
ping down into a UV throat.

Let us consider qualitatively the quantum effects expe-
rienced by a brane following such a trajectory: While in the
IR throat, the impact of stochastic inflation is strongest at
the very bottom; i.e., quantum effects will push the brane
upwards even faster than its classical evolution demands.
Having made its way across the bulk, the brane will de-
scend into the UV throat first on a purely classical trajec-
tory. However, as it nears the bottom of the second throat,
the stochastic influence grows again, pushing the brane
away from the bottom and possibly upwards into the
bulk again. At the limit, one may therefore imagine a
scenario where the brane is propelled out of a UV throat
back into the bulk every time it comes sufficiently close to
a throat’s bottom.

Since we ignore the formulation of the metric in the
bulk, it seems difficult to carry out the full calculation for
the brane trajectory sketched above. However, we do know
how to describe the metric within each individual throat.
As a first toy model, we therefore considered the case of a
brane trapped between two absorbing walls located at one
throat’s bottom and edge, respectively. This successfully
prevents the brane from meandering ‘‘outside of space-
time’’ (below the bottom of the throat at �0), and we have
therefore solved the severe conceptual issue stated in the
introduction of this paper. Near the edge of the throat at
�UV, the technical difficulty of describing the stochastic
effects remains because to date the 6D bulk metric remains
unknown. The next step would be to write down a joint
warp factor for two throats of different depth which are

‘‘glued together’’ at their edges. Given the quantum be-
havior found in this paper, our expectations might point us
towards an increased probability to find the brane near the
‘‘throat matching point.’’
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APPENDIX A: SLOW-ROLL LIMIT

In this short appendix, we justify the use of the equation
H2 ’ �V=3 in the DBI case and present an alternative
derivation of the (classical) slow-roll DBI Klein-Gordon
equation. In the standard (non-DBI) case, a convenient tool
to study the inflationary evolution is the following hier-
archy of slow-roll parameters [47–49]:

�nþ1 ¼ d lnj�nj
dN

; �0 � Hin

H
: (A1)

Then, straightforward manipulations of the background
Einstein equations lead to the two following equations:

H2 ¼ �

3

V

1� �1=3
; (A2)

ð3� �1 þ 1
2�2ÞH _� ¼ �V0; (A3)

where a prime denotes a derivative with respect to the
inflaton field. In the slow-roll limit where �1; �2 � 1, we
therefore obtain the (Friedmann) equation H2 ’ �V=3 and
the slow-roll version of the Klein-Gordon equation,

namely, 3H _� ’ �V 0.
We now derive the same equations, but for DBI inflation.

In this case, the hierarchy (A1) is no longer sufficient, and,
in order to describe the evolution of the Lorentz factor �
defined in Eq. (6), we now introduce the additional hier-
archy of DBI parameters �i, the so-called ‘‘sound flow
parameters’’; see, e.g., Refs. [16,17]. These are defined as

�nþ1 ¼ d lnj�nj
dN

; �0 � �

�in

: (A4)

To find the ‘‘slow-roll’’ version of Eqs. (4) and (5) (where
by slow-roll we now understand that both of the parameter
sets �i; �i � 1), we use the DBI background equations and
the definition of � in Eq. (6) to show that the following
expression holds:
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_� 2 ¼ 2

��
H2�1; (A5)

from which we can deduce that

€� ¼ H

2
_�ð�2 � 2�1 � �1Þ: (A6)

To replace the terms proportional to T0 in Eq. (5), we

multiply the expression for �1 (see Ref. [17]) by _� and
use Eq. (A5) to find

T0 ¼ � V 0

�� 1
� 3H

�

�� 1
_��H _�

�3

ð�2 � 1Þð�� 1Þ :
(A7)

When we use these �i, �i to rewrite Eqs. (4) and (5), we
therefore find

H2 ¼ �

3

V

1� 2�1�=ð3�þ 3Þ ; (A8)

_�

2

�
�2 � 2�1 þ �1

ð�þ 1Þ þ
3ð�þ 1Þ

�

�
¼ ��þ 1

2�2

V 0

H
:

(A9)

As announced, in the limit where both �i; �i � 1, one
recovers that H2 ’ �V=3 and Eq. (10). Note that in
Eq. (A9) both the �i and �i are supposed small to obtain
Eq. (10), while it is sufficient to have �1 � 1 to rederive
the slow-roll version of the Friedmann equation.

APPENDIX B: PERTURBED KLEIN-GORDON
EQUATION

In this appendix, we briefly sketch how to obtain the
formulation (17) for the DBI Klein-Gordon equation at the
linearly perturbed level. For the case of a standard inflaton
field, it is well known that the Klein-Gordon equation for
linear perturbations of the field ��k and scalar perturba-
tions of the metric �k reads [50]

� €�k þ 3H� _�k þ
�
k2

a2
þ V 00

�
��k ¼ 4 _� _�k � 2V0�k:

(B1)

One can express V 0 and V 00 in terms of the slow-roll
parameters �i defined in Appendix A,

V0 ¼ � z

a
H2

�
3� �1 þ �2

2

�
; (B2)

V00 ¼ H2

�
6�1 � 3

2
�2 � 2�21 �

�22
4
þ 5

2
�1�2 � 1

2
�2�3

�
;

(B3)

where the function z ¼ a _�=H. Moreover, we have [50]

_� k ¼ H�1
a

z
��k �H�k: (B4)

Therefore, by using Eqs. (B2)–(B4) we can rewrite
Eq. (B1) as

� €�k þ 3H� _�k þH2

�
k2

a2H2
þ 2�1 � 3

2
�2 � 2�21 �

�22
4

þ 5

2
�1�2 � �2�3

2

�
��k ¼ H2z

a
�kð2� 2�1 þ �2Þ:

(B5)

Note that precisely the same equation is found by work-
ing backwards from the well-known evolution of the stan-
dard Mukhanov-Sasaki variable vk [in conformal time ,
where dt ¼ ad, Eq. (B6) simplifies to v00

k þ ðk2 �
z00=zÞvk ¼ 0; compare Eq. (20)]:

€v k þH _vk þ
�
k2

a2
� €zþH _z

z

�
vk ¼ 0; (B6)

which is defined as

vk ¼ a��k þ z�k; (B7)

To see this, express the time derivatives of z in terms of the
�i parameters and use Eq. (B4) as well as its derivative
along with

z

a

k2

a2
�k ¼ �1H

2

2
ð�2 � 2�1Þ��k � �1H� _�k

þ �1H
2 z

a
�k; (B8)

which is a consequence of the Einstein equations [50].
We now proceed to deriving the analogous equations for

a scalar field with DBI dynamics. Not surprisingly, the
expressions are significantly more involved in this case,
and the perturbed DBI Klein-Gordon equation reads

� €�k þ
�
3H

3� 2�2

�2
� 3ð�2 � 1Þ

_��3
½V0 þ ð�� 1ÞT0�

�
� _�k

þ
�
k2

a2�2
þ V00

�3
� T00

2�3
ð�3 � 3�þ 2Þ þ �2 � 1

2�

T0

T

�
�
6H

�
_�þ 3V 0

�2
þ 3T0

�2
ð�� 1Þ

��
��k

¼ 4

�2
_�k

_�þ 1

�2
�k

�
�ð�2 � 1Þ2

�2
6H _�

� V0

�3
ð3�4 � 3�2 þ 2Þ

� T0

�3
ð3�5 � 3�4 � 4�3 þ 3�2 þ 3�� 2Þ

�
: (B9)

Despite its complicated appearance, it is easy to see that
this equation reduces to Eq. (B1) upon setting � ¼ 1.
Lengthy but straightforward calculations allow one to ex-
press each term in Eq. (B9) in terms of the (�i, �i) parame-
ter hierarchy defined in Appendix A, in close analogy to
the expressions (B2) and (B3) in the standard case.
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In addition, the DBI version of Eq. (B4) reads

_� k ¼ H�1
a�3=2

z
��k �H�k; (B10)

now with z ¼ a�3=2 _�=H. Combining all of these ingre-
dients, one arrives at Eq. (17) in Sec. II B, which is equiva-
lent to Eq. (B5) for the case of standard inflation in which
� ¼ 1, �i ¼ 0.

Again, Eq. (17) could also have been obtained from

€v k þH _vk þ
�

k2

a2�2
� €zþH _z

z

�
vk ¼ 0; (B11)

where in the DBI case the definition of the Mukhanov-

Sasaki variable is

vk ¼ a�3=2��k þ z�k; (B12)

but with the new z defined below Eq. (B10). Here we have
used

z

a�3=2

k2

a2�2
�k ¼ �1H

2

2
ð�2 � 2�1 � �1Þ��k � �1H� _�k

þ �1H
2 z

a�3=2
�k; (B13)

as found from the Einstein equations with DBI scalar
matter.
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