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ABSTRACT

When clusters of galaxies are viewed in projection, one cannot avoid picking up a fraction of foreground/background interlopers, that
lie within the virial cone, but outside the virial sphere. Structural and kinematic deprojection equations are known for the academic
case of a static Universe, but not for the real case of an expanding Universe, where the Hubble flow (HF) stretches the line-of-sight
distribution of velocities. Using 93 mock relaxed clusters, built from the dark matter (DM) particles of a hydrodynamical cosmological
simulation, we quantify the distribution of interlopers in projected phase space (PPS), as well as the biases in the radial and kinematical
structure of clusters produced by the HF. The stacked mock clusters are well fit by an m = 5 Einasto DM density profile (but only
out to 1.5 virial radii), with velocity anisotropy (VA) close to the Mamon-Łokas model with characteristic radius equal to that of
density slope −2. The surface density of interlopers is nearly flat out to the virial radius, while their velocity distribution shows a
dominant Gaussian cluster-outskirts component and a flat field component. This distribution of interlopers in PPS is nearly universal,
showing only small trends with cluster mass, and is quantified. A local κ = 2.7 sigma velocity cut is found to return the line-of-
sight velocity dispersion profile (LOSVDP) expected from the NFW density and VA profiles measured in three dimensions. The HF
causes a shallower outer LOSVDP that cannot be well matched by the Einasto model for any value of κ. After this velocity cut,
which removes 1 interloper out of 6, interlopers still account for 23 ± 1% of all DM particles with projected radii within the virial
radius (surprisingly very similar to the observed fraction of cluster galaxies lying off the Red Sequence) and over 60% between 0.8
and 1 virial radius. The HF causes the best-fit projected NFW or m = 5 Einasto model to the stacked cluster to underestimate the
true concentration measured in 3D by 6 ± 6% (16 ± 7%) after (before) the velocity cut. These biases in concentration are reduced
by over a factor two once a constant background is included in the fit. The VA profile recovered from the measured LOSVDP by
assuming the correct mass profile recovers fairly well the VA measured in 3D, with a slight, marginally significant, bias towards more
radial orbits in the outer regions. These small biases in the concentration and VA of the galaxy system are overshadowed by important
cluster-to-cluster fluctuations caused by cosmic variance and by the strong inefficiency caused by the limited numbers of observed
galaxies in clusters. An appendix provides an analytical approximation to the surface density, projected mass and tangential shear
profiles of the Einasto model. Another derives the expressions for the surface density and mass profiles of the NFW model projected
on the sphere (for future kinematic modeling).

Key words. galaxies: clusters: general – cosmology: miscellaneous – dark matter – galaxies: halos – gravitational lensing: weak –
methods: numerical

1. Introduction

The galaxy number density profiles of groups and clusters of
galaxies falls off slowly enough at large radii that material be-
yond the virial radius (within which these structures are thought
to be in dynamical equilibrium) contribute non-negligibly to
the projected view of cluster, i.e. to the radial profiles of sur-
face density, line-of-sight velocity dispersion and higher velocity
moments.

In principle, this contamination of observables by interlop-
ers, defined here as particles that lie within the virial cone but
outside the virial sphere, is not a problem, since we know how

� Appendices are only available in electronic form at
http://www.aanda.org

to express deprojection equations when interlopers extend to in-
finity along the line-of-sight. Consider the projection equation

Σ(R) =
∫ +∞

−∞
ν(r) ds = 2

∫ ∞

R
ν(r)

r dr√
r2 − R2

, (1)

where Σ and ν are the projected and space number densities,
respectively, while R and r are the projected and space radial
distances (hereafter, radii), respectively. Equation (1) can be de-
projected through Abel inversion1 to yield

ν(r) = −1
π

∫ ∞

r

dΣ/dR√
R2 − r2

dR. (2)

The projection to infinity is explicit in Eqs. (1) and (2).

1 Alternatively, the projection Eq. (1) corresponds to a convolution and
can therefore be deprojected with Fourier methods (see Discussion in
Mamon & Boué 2010, and references therein).
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Fig. 1. Line-of-sight velocity as a function of real-space line-of-sight
distance (see Fig. 2) for particles inside the virial cone obtained by
stacking 93 cluster-mass halos in the cosmological simulation described
in Sect. 2 without (top) and with (bottom) the Hubble flow (1 particle
in 5 is shown for clarity). The red dashed horizontal lines roughly in-
dicate the effects of a radius-independent 3σ clipping. Note that the
velocity-distance relation without Hubble flow shown here is not en-
tirely realistic, because the simulation was run in the context of an ex-
panding Universe (and cannot be run in a static Universe, for lack of
knowledge of realistic initial conditions), but should be accurate enough
to illustrate our point.

However, the Hubble expansion complicates the picture, as
the Hubble flow moves background (foreground) objects to high
positive (negative) line-of-sight velocities. This is illustrated in
Fig. 1 which shows how the line-of-sight velocity vs. real-space
distance relation is affected by the Hubble flow. The line-of-sight

C
O

P

P’

Q

interlopers
interlopers

halo

rv

Fig. 2. Representation of the virial cone with halo particles inside the
inscribed virial sphere and interlopers outside. Also shown is our defi-
nition of projected radius (CQ) and line-of-sight distance (OP and QP
respectively in the observer and halo reference frames) for a random
point P. For illustrative purposes, the distance to the cone is taken to be
very small, so that the cone opening angle is much larger than in reality.

distances are computed as the segment length QP in Fig. 2. Now,
clipping the velocity differences to, say, κ = 3 times the cluster
velocity dispersion (averaged over a circular aperture, hereafter
aperture velocity dispersion), σv, gets rid of all the distant inter-
lopers. More precisely, the radius, rmax, where the Hubble flow
matches κσv is found by solving H0 rmax = κσv (where H0 is the
Hubble constant) yielding

rmax

rv
= κ

√
Δ

2

(
σv
vv

)
, (3)

where rv is the virial radius where the mean density is Δ times
the critical density of the Universe, ρc = 3H2

0/(8πG) (where G
is the gravitational constant), and where vv =

√
Δ/2 H0 rv is the

circular velocity at the virial radius. Clusters are thought to have
density profiles consistent with the Navarro et al. profile (1996,
hereafter NFW) profiles,

ν(r) =
1/ (ln 2 − 1/2)

(r/r−2) (r/r−2 + 1)2

⎡⎢⎢⎢⎢⎣M (r−2)

4 π r3
−2

⎤⎥⎥⎥⎥⎦ , (4)

where r−2 is the radius of density slope −2, in number (Lin et al.
2004), luminosity (Łokas & Mamon 2003) and mass (Łokas &
Mamon; Biviano & Girardi 2003; Katgert et al. 2004), with a
concentration, c = rv/r−2, of 3 to 5. For isotropic NFW models,
the aperture velocity dispersion is (Appendix A of Mauduit &
Mamon 2007) σv = η vv, where η � 0.62 (weakly dependent on
concentration), and Eq. (3) then becomes

rmax

rv
� 13.2

(
κ

3

) √
Δ

100
· (5)

Equation (5) indicates that a 3-sigma clipping will remove all
material beyond 13 (Δ = 100) or 19 (Δ = 200) virial radii2. So,
in the deprojection Eq. (2), the upper integration limit must be
set to this value of rmax. Although this effective cutoff in line-
of-sight distances is quite far removed from the cluster, it is not

2 With our chosen cosmology, the overdensity at the virial radius is
Δ � 100, but many authors prefer to work with Δ = 200, and we will
do so too.
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clear whether there may still be a measurable bias in the concen-
tration of clusters that one measures by comparing the surface
density distribution of galaxies in clusters with NFW models
projected out to infinity. Moreover, it is not clear how accurate
are such measures given the finite number of galaxies observed
within clusters.

Finally, it is not clear how the stretching of the velocities af-
fects the kinematic analyses of clusters, especially in the case
of nearby clusters where the opening angle of the cone is non-
negligible, leading to an asymmetry between the foreground and
background absolute velocity distributions. For example, is the
anisotropy of the 3D velocity distribution (hereafter velocity
anisotropy or simply anisotropy)

β(r) = 1 − 1
2

〈
v2θ(r) + v2φ(r)

〉
〈
v2r (r)

〉 (6)

or equivalently3

A(r) = [1 − β(r)]−1/2 =

⎡⎢⎢⎢⎢⎢⎢⎣ 2
〈
v2r (r)

〉
〈
v2θ(r) + v2φ(r)

〉⎤⎥⎥⎥⎥⎥⎥⎦
1/2

(7)

affected by the Hubble flow? One can add interlopers beyond
the virial radius as a separate component to the kinematical
modeling (van der Marel et al. 2000; Wojtak et al. 2007).
Unfortunately, we have no knowledge of the distribution of in-
terlopers in projected phase space (projected distance to the halo
center and line-of-sight velocity).

This paper provides the distribution of interlopers in pro-
jected phase space (projected distance to the halo center and line-
of-sight velocity) as measured on nearly 100 stacked halos from
a well-resolved cosmological simulation. We additionally mea-
sure the bias in the measured surface density and line-of-sight
velocity dispersion and kurtosis profiles compared to those ob-
tained in a Universe with no Hubble flow, and estimate how this
bias affects the recovered concentration and velocity anisotropy
of the cluster. In this paper, we use interchangeably the terms
“clusters” and “halos”.

We present in Sect. 2 the cosmological simulations we use
and how the individual halos were built. In Sect. 3 we explain
how we stack these halos. In Sect. 4, we present the statistics on
the halo members and the interlopers in projected phase space.
Then in Sect. 5, we explain how we remove the outer interlop-
ers and show analogous statistics on the cleaned stacked halo in
Sect. 6. We proceed in Sect. 7 to measure the biases induced by
the Hubble flow and the imperfect interloper removal on the es-
timated concentration parameter and anisotropy profile. We dis-
cuss our results in Sect. 8.

2. Data from cosmological N-body simulations

The halos analyzed in this paper were extracted by Borgani et al.
(2004) from their large cosmological hydrodynamical simula-
tion performed using the parallel Tree+SPH GADGET-2 code
(Springel 2005). The simulation assumes a cosmological model
with present day parameters Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.039,
h = H0/(100 km s−1 Mpc−1) = 0.7, and σ8 = 0.8. The box
size is L = 192 h−1 Mpc. The simulation used 4803 dark matter
particles and (initially) as many gas particles, for a dark matter
particle mass of 4.62 × 109 h−1 M�. The softening length was

3 β(r) enters the Jeans equation of local hydrostatic equilibrium,
whileA(r) is a more physical definition of velocity anisotropy.

set to 22.5 h−1 comoving kpc until z = 2 and fixed afterwards
(i.e., 7.5 h−1 kpc). The simulation code includes explicit energy
and entropy conservation, radiative cooling, a uniform time-
dependent UV background (Haardt & Madau 1996), the self-
regulated hybrid multi-phase model for star formation (Springel
& Hernquist 2003), and a phenomenological model for galactic
winds powered by type-II supernovae.

Dark matter halos were identified by Borgani et al. at redshift
z = 0 by applying a standard Friends-of-friends (FoF) analysis
to the dark matter particle set, with linking length 0.15 times
the mean inter-particle distance. After the FoF identification, the
center of the halo was set to the position of its most bound par-
ticle. A spherical overdensity criterion was then applied to de-
termine the virial radius, rv = r200 of each halo. In this manner,
117 halos were identified within the simulated volume, among
which 105 form a complete subsample with virial mass M200
larger than 1014 h−1 M�, thus representing a sample of mock
galaxy clusters. Their mean and maximum masses are respec-
tively 2.0 × 1014 h−1 M� and 1.1 × 1015 h−1 M�.

To save computing time, we worked on a random subsam-
ple of roughly 2 million particles among the 4803. Although the
simulation also produced galaxies, we chose to use the dark mat-
ter particles as tracers of the galaxy distribution for two rea-
sons: 1) simulated galaxy properties in cosmological simula-
tions depend on details of the baryon physics implemented in
the code, and can show some mismatch with observed proper-
ties (e.g. Saro et al. 2006); 2) only a handful of simulated clus-
ters had over 50 galaxies (Saro et al.), so we would have strongly
suffered from small-number statistics. There is some debate on
whether the velocity distribution of galaxies is biased relative to
the dark matter. On one hand, the galaxy velocity distribution,
although close to the dark matter one, shows a preference for
lower velocities (Biviano et al. 2006), perhaps as a consequence
of dynamical friction. On the other hand, the velocity distribu-
tion of subhalos, selected with a minimum mass before entering
their parent cluster-mass halos, is similar to that of the dark mat-
ter (Faltenbacher & Diemand 2006).

We visually inspected each of the 105 clusters in redshift
space along three orthogonal viewing axes, and removed 12 clus-
ters that appeared, within r200, to be composed of two or three
sub-clusters of similar mass (where the secondary had at least
40% of the mass of the primary). Most observers would omit
such clusters when analyzing their radial structure or internal
kinematics. This leaves us with 93 final mock clusters4. The
median values (interquartile uncertainties) of their virial radii,
virial masses, virial circular velocities, and velocity dispersions
(within their virial spheres) are respectively 864 ± 81 h−1 kpc,
1.50 ± 0.44 1014 h−1 M�, 865 ± 81 km s−1, and 584 ± 60 km s−1.

3. Stacking the virial cones

For each cluster, we projected the coordinates along the virial
cone (circumscribing the virial sphere, see Fig. 2), as follows.
We first renormalized the 6 coordinates of phase space of the
entire simulation box to be relative to the cluster. So the cluster
most bound particle should be at the origin and its mean peculiar
(bulk) velocity should be zero5. To take into account the periodic
boundaries of the simulation box, we added or subtracted a box

4 Including all 105 halos makes virtually no difference for the results
of this article.
5 Observers usually adopt the position of the brightest cluster galaxy
as the center, and this corresponds to the most bound galaxy, so they
should not suffer from important centering errors, although admittedly
some clusters like Coma have two brightest galaxies.
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length to those particles situated at over a half-box length from
the cluster center. In this fashion, each cluster now effectively
sits at the center of the simulation box. We then placed an ob-
server at coordinates (−D, 0, 0), (0,−D, 0), or (0, 0,−D), with
0 < D < L/2. We present here the results for D = 90 h−1 Mpc,
corresponding to a typical distance of observed clusters in the
local Universe. At this distance, the median virial angular radius
of our 93 clusters is 33 ± 3 arcmin. We do not expect that the
results of this paper should depend on the adopted value of D.
We assume that the observer’s peculiar velocity is equal to the
cluster’s bulk velocity, so that the observer’s velocity is zero in
the renormalized coordinate system6.

We then measured, for each cluster and for each of these
three observers, the coordinates of all 2 million particles in both
the observer frame and the cluster frame. Given the distance ro
of the particle to the observer and the projected coordinate of the
particle in cylindrical coordinates Rc, we determined the pro-
jected distances in the observer frame (measured in a plane per-
pendicular to the line-of-sight passing through the cluster center)
as Ro = D Rc/ro (see Fig. 2, where D = OC, rO = OP, Rc = PP′,
and Ro = CQ). This projection ensures that particles along the
surface of the virial cone have R = rv. We were then able to select
all particles within a cone circumscribing the sphere of radius rv,
where we chose rv = r200, as well as rv = 1.35 r200 � r100. In
practice, we extracted data from a wider cone, circumscribing
the sphere of radius 3 r200.

We next added the Hubble flow (for both the observer and
cluster frames), using H0 = 100 km s−1 Mpc−1 7. We then limited
in depth to line-of-sight velocities within 4 vv from the cluster.
As mentioned in Sect. 1, the Hubble flow effectively limits the
depth of the cones to a half-length of κ̂

√
Δ/2 = 40 virial radii

(see Eq. (3)), where the cut in velocity space in units of virial
velocity is κ̂ = 4 and the virial overdensity is Δ = 200.8 Our
results should not depend much on the distance of our observer
(90/0.864 = 104 virial radii), as our first cut at ±4 virial veloci-
ties limits the line of sight to 40% of the observer’s distance.

We finally normalized the particle relative positions and ve-
locities to the virial radius, rv and circular velocity at the virial
radius, vv, respectively, and finally computed the projections of
the velocities in spherical coordinates (to later measure the 3D
radial profiles of density and velocity anisotropy). For clarity, we
will sometimes use the notation r200 for the virial radius and v200
for the virial velocity.

In the end, we have roughly 84 thousand particles for each
of the three cartesian stacked virial cones, which we then stack
together into our global stacked virial cone, with a grand total of
roughly a quarter-million particles, among which nearly three-
quarters lie within the virial radius. Hence, roughly 1/30th of
all the particles in the simulation box lie within the virial radius,
r200, of our 93 clusters. Note that with our stacking method, some
of the particles inside virial cones but outside virial radii can
end up being selected in more than one of the three cartesian
stacked virial cones. However, this fraction is small (27% of the
interlopers, i.e. less than 8% of all particles in virial cones), so
the three cartesian stacked virial cones are virtually independent

6 In our simulation, the one-dimensional cluster bulk velocity disper-
sion is 228 km s−1, so given our adopted distance of D = 90 h−1 Mpc,
the typical cluster bulk velocity is only 228/9000 = 2.5%. Therefore,
our neglect of the observer’s peculiar motion relative to the cluster is an
adequate assumption.
7 All our positions and cluster virial radii were expressed in h−1 kpc;
the choice of H0 does not matter as long as we normalize to the virial
quantities rv and vv, which we computed with the same value of H0.
8 Throughout this paper, we use x̂ to express quantity x in virial units.

Fig. 3. Projected phase space diagram of stacked virial cone (built from
3× 93 halos). Only 1 particle in 5 is shown for clarity. The red (lighter)
and blue (darker) points refer to the particles within and outside the
virial sphere, respectively. The green curves illustrate the ±2.7σlos(R)
velocity cut (from Eqs. (21) and (22)) for the c ≡ c200 = 4 NFW model
with ra = r−2 ML anisotropy (Eq. (20)).

(except that their halos are common), hence can be stacked into
the global virial cone.

Figure 3 shows the projected phase space (line-of-sight ve-
locity, vlos, versus projected radius, R) distribution of particles of
the stacked cluster, highlighting the halo particles (lying within
the virial sphere) and interlopers (lying in the virial cone but out-
side of the virial sphere). Note that the halo particles are confined
to fairly small velocities (the largest absolute halo particle veloc-
ity is 2.7 vv). One notices an excess of positive velocity outliers
in comparison with negative velocity ones, as expected from the
conical projection used here.

4. Interloper statistics before the velocity cut

We now measure the distribution of interlopers in projected
phase space and study its dependence on halo mass.

4.1. Global statistics

Figure 4 displays contours of the density in (R, |vlos|) projected
phase space. Note that the projected phase space density of
Fig. 4 is proportional to d2N/(R dR d|vlos|), hence the different
shapes than seen in Fig. 3. The interlopers have a very different
projected phase space density than the halo particles. In par-
ticular, their horizontal contours mean that the interloper pro-
jected phase space density is fairly independent of projected ra-
dius. Moreover, the interloper contours do not extend beyond
vlos = 2 vv, except for a few islands (caused by cosmic variance),
indicating that the velocity distribution of interlopers is close to
flat at large velocities (the islands thus represent small, probably
statistical, fluctuations in a flat background).

These issues can be looked in more detail through slices of
the projected phase space density in velocity and radial space.
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Fig. 4. Contours of projected phase space density of stacked virial cone
– in units of d2N/(dR/r200 d|vlos |/v200)/(2πR/r200) – of halo (dashed red
contours) and interloper (solid blue) particles. The halo contours are
equally spaced in log-density, increasing by a factor 2.44 from 0.085
(upper right) to 3370 (lower left). The interloper contours are taken
from the same set as the halo contours, but limited from the 5th highest
level halo contour (72 virial units, at the lower left) to the 8th high-
est level halo contour (4.0 virial units, for all contours above the 3rd
nearly horizontal one). The green curve shows the 2.7σlos(R) (from
Eqs. (21) and (22)) velocity cut for the c = 4 NFW model with ra = r−2

ML anisotropy (Eq. (20)).

Figure 5 shows how the projected phase space density varies
with projected radius in different wide velocity bins. The halo
particles display a negative gradient, i.e. a decreasing surface
number density profile, as expected. However, one immediately
notices that in all line-of-sight velocity bins, the density of inter-
lopers in projected phase space is roughly independent of pro-
jected radius. In other words, interlopers have a nearly flat sur-
face density profile.

For low velocities, one can notice a small rise of the inter-
loper surface density at high projected radii. This small rise is
a geometric effect: the line-of-sight distance between the virial
sphere and a sphere of k > 1 virial radii is k−1 virial radii at R =
0 but

√
k2 − 1 virial radii at R = rv, which is

√
(k + 1)/(k − 1)

times greater. We will return to this rise in Sect. 4.2.
Figure 6 displays the distribution of line-of-sight velocities

of the halo and interloping particles. The interloper distribution
shows a flat component that dominates at large velocities and
a Gaussian-like component. Figure 6 confirms, once more (see
Figs. 4 and especially 5) that the density of interlopers in pro-
jected phase space is fairly independent of radius.

The total surface density of particles in velocity space
shows an inflection point at about 2 vv (bottom plot of Fig. 6).
Kinematical modelers attempt to throw out the high-velocity in-
terlopers by identifying this gap by eye (Kent & Gunn 1982;
Łokas & Mamon 2003) or automatically (Fadda et al. 1996) or
by rejecting 3σ outliers, either using a global criterion (Yahil
& Vidal 1977) or a local one (e.g. Łokas et al. 2006; Wojtak &
Łokas 2010). Interestingly, the 3σv criterion was first motivated

Fig. 5. Phase space density of stacked virial cone as a function of pro-
jected radius in bins of absolute line-of-sight velocities (marked on the
upper-right of each plot). Dashed (red) and dotted (blue) histograms
represent the halo particles (r < rv) and the interlopers (r > rv), respec-
tively, while the solid histograms (artificially moved up by 0.06 dex for
clarity) represent the full set of particles. There are no halo particles at
v > 3 vv (top plot).

on statistical grounds, but the v � 2.0 vv inflection point one sees
in the plots of Fig. 6 happens to correspond to �3σv. In other
words, the 3σv criterion is not only a consequence of statistics,
but also motivated by the combination of cluster dynamics and
cosmology.

While visual attempts to separate interlopers from halo par-
ticles in projected phase space look for gaps in the line-of-
sight velocity distribution, the different panels of Fig. 6 indicate
that, on average, one should not expect such gaps in the pro-
jected phase space diagram of stacked clusters, as the number
of interlopers also decreases with velocity to reach a plateau at
about 2 vv.

4.2. Universality

The three panels of Fig. 7 illustrate the universality of the line-
of-sight velocity distribution of interlopers, in terms of projected
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Fig. 6. Phase space density of stacked virial cone as a function of line-
of-sight velocity in different radial bins (marked on the lower-left of
each plot). Dashed (red) and dotted (blue) histograms represent the halo
particles (r < rv) and the interlopers (r > rv), respectively, while the
solid histograms (artificially moved up by 0.06 dex for clarity) represent
the full set of particles. The green vertical lines indicate the 2.7σlos(R)
(from Eqs. (21) and (22)) velocity cut for the c = 4 NFW model with
ra = r−2 ML anisotropy (Eq. (20)).

radius and halo mass. Figure 7a confirms that the projected phase
space density of interlopers depends little on projected radius.
This will be quantified later in this sub-section.

As mentioned above, to first order, the density of interlopers
in projected phase space has a constant component and a quasi-
Gaussian component, which we write

g (R, |vlos|) = A exp

⎡⎢⎢⎢⎢⎢⎣−1
2

( |vlos|
σi

)2⎤⎥⎥⎥⎥⎥⎦ + B. (8)

Maximum likelihood estimation (MLE, see Appendix C) yields

σi = 0.576 ± 0.003,

A = 0.1164 ± 0.0006, (9)

B = 0.0075 ± 0.0001,

where σi is in units of vv, while g, A and B are in units
of Nv r−2

v v
−1
v , where Nv is the number of particles within the virial

Fig. 7. Phase space density of interlopers as a function of line-of-sight
velocity. a, Top): dependence on projected radius: R/r200 = 0−0.2,
0.2−0.4, 0.4−0.6, 0.6−0.8, and 0.8−1 (red dotted, green short-dashed,
blue long-dashed, magenta dot-long-dashed and cyan dot-long-dashed
broken lines, respectively). b, Middle): dependence on 3D radial dis-
tance: 1 < r/r200 < 8 (blue dash-dotted curve) and r/r200 > 8 (red
dashed curve). c, Bottom): dependence on halo mass: high (h M200 >
1.87 × 1014 M�, red long dashed curve) and low (h M200 < 1.87 ×
1014 M�, blue dash-dotted curve) mass halos. Also shown in all three
plots is the MLE (Eqs. (8) and (10)) for the Gaussian (dotted curve) and
field (horizontal dashed line) components, as well as the predicted total
interlopers (the sum of these two components, solid curve).

sphere. Figures 7a and c show that this Gaussian+constant model
is an excellent fit to the distribution of interloper line-of-sight
velocities.

The origin of these two components is clarified in Fig. 7b:
cutting the halo interlopers in two subsamples at different
3D distances from the halo, one finds that the flat component
corresponds roughly to the interlopers beyond 8 r200, while the
quasi-Gaussian component corresponds to the closer interlopers
(r200 < r < 8 r200).

Figure 8 shows the radial dependence of the parameters of
the interloper phase space distribution. We also show the mean
surface densities of interlopers measured on the stacked halo.
The normalization of the Gaussian component and the surface
density both increase slowly at small projected radii, but sharply
near the virial radius. A good fit for the normalization and the
standard deviation of the Gaussian component is provided by

A(R)� dex
[
−1.061 + 0.364 X2 − 0.580 X4 + 0.533 X6

]
, (10)

σi(R)� 0.612 − 0.0653 X2, (11)

where X = R/R200 and dex x = 10x.
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Fig. 8. Variations of MLE parameters of Eq. (8) and measured interloper
surface density with projected radius (in units of vv for σi, Nv r−2

v v
−1
v

for A and Nv r−2
v for Σi). The blue and green curves show the fits of

Eqs. (10) and (11), respectively, while the red horizontal dashed line
shows the mean of 50 B. The magenta solid curve shows the prediction
for the interloper surface density from Eqs. (12), (10) and (11), respec-
tively, with B = 0.0075, while the magenta dashed curve shows the
interloper mean surface density predicted (Eq. (13)) from a c = 4 NFW
model. Small radial bins were chosen to capture the rise of Σi and A
near the virial radius. Errors are from the likelihood ratios in the MLE
fit (A, σi, and B) or Poisson (Σi).

The solid magenta curve of Fig. 8 indicates that the interloper
surface density profile is well recovered from A, σi and B by
integrating over the model velocity distribution (Eq. (8)) from 0
to κ̂ vv:

Σi(R) =
√
π/2 A(R)σi(R) erf

(
κ̂

σi(R)
√

2

)
+ κ̂ B. (12)

Alternatively, the surface density profile of interlopers is also
well recovered (dashed magenta curve in Fig. 8) by the predic-
tion from an NFW model, i.e. as the difference between the stan-
dard surface density integrated to infinity and the surface density
limited to the virial sphere:

Σi(R) = ΣNFW(R) − Σsph
NFW(R,R200), (13)

where the expression for Σsph
NFW(R,R200) is provided in Eq. (B.4).

According to Eq. (13), the rise at radii close to the virial ra-
dius is almost independent of the concentration (with relative
differences of less than 4% at all projected radii). Hence, one
can adopt a unique empirical model for A. These two estimates
of Σi(R) are in very good agreement, except that the difference
of the cylindrical and spherical NFW surface density profiles
(Eq. (13)) rises somewhat faster than our fit at projected radii
very close to the virial radius.

The bottom panel of Fig. 7 shows that the density of in-
terlopers in projected phase space as a function of line-of-
sight velocity remains the same for low and high mass clus-
ters (where we took the dividing line at the median cluster virial

Fig. 9. Variations of MLE parameters of Eq. (8) with halo mass (in
units of vv for σi, Nv r−2

v for Σi and Nv r−2
v v

−1
v for A and B). Errors are

from 100 bootstraps on the 93 halos. The symbols for 50 B are displaced
by +0.01 dex for clarity.

mass of h M200 = 1.87 × 1014 M�). The interlopers of high mass
clusters have a cluster-outskirts component whose density in
projected phase space is roughly 15% lower than that of the low-
mass clusters.

Figure 9 provides a closer look at the variation with halo
mass of the parameters of Eq. (8). The best fitting logarithmic
slopes, obtained by least-squares fits to the points shown in Fig. 9
are −0.042± 0.030,−0.037± 0.069, 0.155± 0.225 and −0.044±
0.104 for σi, A, B, and Σi, respectively. The 90% confidence
lower limits on the slopes d ln X/d ln M are thus −0.08, −0.13,
−0.17 and −0.18 for X = σi, A, B, and Σi, respectively, while the
90% upper limits are less than 0.1 except for B (where is it 0.5).
These shallow limits to the logarithmic slopes illustrate the near-
universality of the distribution of interlopers in projected phase
space.

However, the universality of the distribution of interlopers
in projected phase space may hide an important level of cosmic
variance. Performing MLE for parameters σi, A, and B, for each
of the 93 clusters, each viewed in turn along each of three or-
thogonal viewing axes, we find standard deviations of

σ(logσi) = 0.11, σ(log A) = 0.23, σ(log B) = 0.40. (14)

So, while the dispersion σi of the Gaussian component of the
interloper velocity distribution is fairly constant (29% typical
variations) from one cluster to the next, there is more scatter in
the normalization A of the Gaussian component (factor 1.7 typ-
ical variations) and a large scatter in the flat component B (fac-
tor 2.5 typical variations).

5. Interloper removal

We remove the interlopers of the stacked cluster proceeding
along similar lines as Łokas et al. (2006, see also Wojtak et al.
2007), by clipping the velocities beyond κ times the local line-
of-sight velocity dispersion. We assume that our stacked cluster
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has an NFW profile (Eq. (4)), or, alternatively, an Einasto (1965)
profile:

ν(r) =
(2m)3m

m γ(3m, 2m)
exp

⎡⎢⎢⎢⎢⎢⎣−2m

(
r

r−2

)1/m⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎣M (r−2)

4 π r3
−2

⎤⎥⎥⎥⎥⎦ , (15)

where γ(a, x) is the incomplete gamma function. The density
model of Eq. (15) fits the density profiles of ΛCDM halos even
better than the NFW model (as first discovered by Navarro et al.
2004), at the expense of an additional parameter, m.

The velocity cut requires an estimate of the line-of-sight ve-
locity dispersion profile of the halo. One could measure this in
bins of projected radius, iteratively rejecting the outliers. This
gives a profile that shows important radial fluctuations, and we
would need to either smooth the profile or fit a smooth analytical
function to it.

Instead, we choose to predict the line-of-sight velocity dis-
persion profile given the typical density and velocity anisotropy
profiles of halos. The line-of-sight velocity dispersion profile can
be written (Mamon & Łokas 2005b)

σ2
los(R) =

2
Σ(R)

∫ ∞

R
K
( r
R
,

ra

R

)
ν(r) v2c(r) dr, (16)

where vc(r) =
√

GM(r)/r is the circular velocity profile, ra is the
anisotropy radius, while the dimensionless kernel K is

K(u) =

√
1 − 1

u2
, (17)

for isotropic orbits (Tremaine et al. 1994; Prugniel & Simien
1997) and

K(u, ua) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2

u2
a − 1

√
1 − 1

u2
+

(
1 +

ua

u

)
cosh−1 u

−sgn (ua−1) ua
u2

a−1/2(
u2

a−1
)3/2 (1+ ua

u

)
× C−1

(
uau + 1
u + ua

)
(ua�1),

(
1+

1
u

)
cosh−1u − 1

6

(
8
u
+7

)√
u−1
u+1

(ua=1),

(18)

where

C−1(x) =

{
cos−1 x for ua < 1
cosh−1 x for ua > 1

(19)

(Mamon & Łokas 2005b) for the anisotropy profile

β(r) =
1
2

r
r + ra

, (20)

which Mamon & Łokas (2005b, hereafter, ML) found to be a
good fit to the anisotropy profiles of ΛCDM halos.

Since the space density model enters Eq. (16) express-
ing σlos(R) (through the tracer density ν and the total mass M,
which are related since we are considering single component
mass models), we first need to determine the best fitting model
to the distribution of particle radii in the stacked halo: we per-
formed MLE of the NFW and Einasto models to the distribution
of 3D radii of our stacked cluster. The minimum radius was cho-
sen as 0.03 r200 to avoid smaller radii, since our halo centers ap-
pear to be uncertain to about 1% of the virial radius. We varied
the outer radii of the fit, starting at r200. Since we will later fit

Table 1. MLE fits to the radial distribution of the stacked halo.

Model rmax 100 ν̂bg c PKS

NFW 1 0 4.08± 0.05± 0.17 0.0021
NFW 1 (0.036) 4.10± 0.05± 0.17 0.0023
NFW 1 0.416 4.26± 0.07± 0.23 0.0069
Einasto 1 0 4.00± 0.05± 0.17 0.31
Einasto 1 (0.036) 4.02± 0.05± 0.17 0.3
Einasto 1 0.002 4.00± 0.07± 0.20 0.31
NFW 1.35 0 4.20± 0.05± 0.14 0.0023
NFW 1.35 (0.036) 4.23± 0.05± 0.14 0.0021
NFW 1.35 0.002 4.20± 0.04± 0.15 0.002
Einasto 1.35 0 4.14± 0.04± 0.13 0.016
Einasto 1.35 (0.036) 4.17± 0.04± 0.13 0.0058
Einasto 1.35 0.002 4.14± 0.04± 0.14 0.015
NFW 3 0 4.80± 0.04± 0.24 0
NFW 3 (0.036) 5.01± 0.04± 0.24 0
NFW 3 0.001 4.80± 0.03± 0.19 0
Einasto 3 0 4.26± 0.03± 0.22 <10−15

Einasto 3 (0.036) 4.50± 0.03± 0.23 <10−10

Einasto 3 0.042 4.54± 0.04± 0.13 <10−11

Notes. The Einasto models are for index m = 5. Column (2) is the
maximum radius for the fits (the minimum radius is set to 0.03 r200).
Columns (3) and (4) are respectively the background density (multiplied
by 100, fixed if in parentheses) and concentration, while Col. (5) is the
Kolmogorov-Smirnov test probability that the model is consistent with
the distribution of radii. Virial units (with Δ = 200) are used for rmax

and ν̂bg (r200 and N200/r2
200, respectively), while c = r200/r−2, where r−2

is the radius of density slope equal to −2. The outer radius of 1.35 r200

corresponds to the virial radius, r100. Errors are 1σ: the first are the
statistical errors from likelihood ratios and the second are from cosmic
variance using 100 cluster bootstraps. Concentrations in bold face are
those providing the highest PKS tests for given rmax.

the surface density profile out to the virial radius and beyond,
we need to remember that the space radii extend beyond the
maximum projected radius of the future surface density fits. So
we also performed 3D fits beyond the virial radius: at 1.35 r200
(which corresponds to the radius where Δ = 100, i.e. the largest
radius where the halos should be close to virial equilibrium),
and 3 r200 for a broader view of halos far beyond r200.

When Prada et al. (2006) fit the density profiles of ΛCDM
halos out to 2.7 r200, they found them to be well approximated
by the sum of an Einasto model and a constant term ρbg = Ωm ρc.
We therefore also experimented with the addition of a constant
background component of density equal to the density of the
Universe. In virial units, this background is expected to be equal
to ν̂bg = 3Ωm/(4πΔ) = 3.6×10−4 (withΩm = 0.3 and Δ = 200).

Table 1 shows the resulting best-fit concentrations9 obtained
by MLE fits of NFW and m = 5 Einasto models, plus an optional
fixed or free constant background, to the distribution of 3D radii
of the stacked halo10. The best-fit concentrations increase with
the maximum allowed projected radius when the NFW model is
used. This indicates the inadequacy of the NFW model at large
radii, as it fails to capture the steepening of the slope of the den-
sity profile beyond the virial radius (Navarro et al. 2004). In fact,
a Kolmogorov-Smirnov test (last column in Table 1) indicates
that the NFW model is not an adequate representation of the dis-
tribution of radii, whether a constant background is added or not,
regardless of the maximum radius used in the fit.

9 In this paper, concentrations refer to r200/r−2.
10 We also experimented with free index Einasto models: we generally
found that the best fit index was in the range 4.6 < m < 5.2.

Page 8 of 22



G. A. Mamon et al.: Universal distribution of halo interlopers

Fig. 10. Top: space density profile (multiplied by r2) of the stack of the
93 halos, with best maximum likelihood fits for r/r200 from 0.03 to 1
(solid), and 3 (dotted without background, dashed curves with best-fit
background, see Table 1) for the NFW (red) and Einasto (blue) mod-
els. The best fit NFW models to 3 r200 with and without background are
indistinguishable (see Table 1). The errors are from 100 cluster boot-
straps. Bottom: ratios of measured to fit densities.

On the other hand, the concentration of the Einasto model
appears to be somewhat less dependent of the outer radius, as
also noted by Gao et al. (2008). At 0.03 < r/r200 < 1, the Einasto
model is an adequate representation of the distribution of radii.
At 0.03 < r < r100 = 1.35, the m = 5 Einasto model is incon-
sistent with the distribution of radii, but not by a large amount.
However, the distribution of radii extending far beyond the virial
radius, 0.03 < r/r200 < 3 is not consistent with either NFW or
m = 5 Einasto models11.

The inclusion of the background in the fits leads to even
higher concentrations when the maximum radius considered
is 3 r200.

The density profile of the 93 stacked clusters is shown in
Fig. 10 for maximum fit radii of rmax = 1 and 3 r200. The max-
imum likelihood NFW model produces clearly worse fits to the
density profile than the maximum likelihood Einasto model for
r < 3 r200, while the NFW model reproduces better the measured
density profile at r = 3 r200. As clearly seen in the bottom panel
of Fig. 10, neither model is adequate near 2 r200, even when con-
sidering the cosmic variance measured by our cluster bootstraps
(see the error bars in the top panel of Fig. 10).

11 For rmax = 3 r200, the KS test showed that the free m Einasto model
with free or fixed background (or without any) failed to provide an ad-
equate representation of the distribution of radii.

Fig. 11. Velocity anisotropy profile (including streaming motions:
Eqs. (6) and (7)) of the stack of the 93 halos. The error bars are from
100 bootstraps on the 93 halos. The curve shows the weighted χ2 fit (in
the range 0.03 < r/r200 < 1) of the Mamon-Łokas anisotropy (2005b)
model (Eq. (20)) with ra = 0.27 r200 (the solid portion of the curve
highlights the region where the fit was performed). The purple dashed
horizontal line indicates the fully isotropic case.

In most of what follows, we restrict our analysis to R < r200.
For these analyses, we adopt the c = 4, NFW and m = 5
Einasto models, as these models are simple and the latter is con-
sistent with the radial distribution without and with a constant
background.

The radial profile of velocity anisotropy (Eq. (6)) of the
stacked cluster, shown in Fig. 11, is reasonably well fit by (re-
duced χ2 = 1.4) the ML model12 (Eq. (20)), with anisotropy
radius (where β reaches its half-value of 1/4) ra = 0.275 ±
0.020 r200, as found with a weighted χ2 fit for log r/r200 be-
tween −1.5 and 0. With a concentration parameter c = 4.0,
the anisotropy radius is ra � 1.1 r−2, i.e. the velocity anisotropy
reaches its value intermediate between the center and the outer
regions close to the radius of density slope −2.

We now measure the velocity dispersion of the stacked pro-
file using different schemes for interloper removal to find a
scheme that produces a velocity dispersion profile (on the data
with Hubble flow and the velocity cut) in agreement with the pre-
dictions (with no Hubble flow nor velocity cut) for the c = 4.0
NFW and Einasto models whose density profiles we just fit in
3D. Since the surface density profile enters Eq. (16), and no ana-
lytical formula is known for the Einasto model, we derived an ac-
curate approximation for the Einasto surface density profile (for
a large range of projected radii and of indices m) in Appendix A
(Eqs. (A.15) and (A.14)).

The red open triangles in the top panel of Fig. 12 show
the line-of-sight velocity dispersion profiles “measured” with
our standard velocity cut at 3 times the predicted isotropic

12 Other anisotropy models such as constant and Osipkov-Merritt
(Osipkov 1979; Merritt 1985) produce much worse best fits (reduced
χ2 � 5 and 20, respectively).
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Fig. 12. Line-of-sight velocity dispersion profiles of the stacked virial
cone, cutting at 3 (triangles) or 2.7 (circles) σlos(R), assuming the best
fitting (c = 4.0) NFW (top) or m = 5 Einasto (bottom) model with
isotropic velocities (red open symbols) or slightly radial ML anisotropy
(Eq. (20)) with ra = r−2 (black filled symbols). The error bars are
from 100 bootstraps on the particles within each bin of projected radii.
For clarity, the isotropic and ML symbols are shifted by 0.01 dex left-
wards and rightwards, respectively. The curves show the predicted line-
of-sight velocity dispersions (for no Hubble flow, Eq. (16)) assuming
isotropy (red curve, Eq. (17)) or ML anisotropy with ra = r−2 (black
curve, using Eq. (18)). The ratios of measured to predicted σlos(R) are
shown in the lower frames of each plot (same colors and symbols as
upper frames).

line-of-sight velocity dispersion (hereafter σiso
los) for an NFW

model with concentration c = 4.0 (as measured in 3D, see
above). In comparison, σiso

los (red solid curve in the top panel
of Fig. 12) is typically 10% lower than the “measured” veloc-
ity dispersion profile for radii R < 0.1 r200. This discrepancy

is decreased to 4% if one compares the measured velocity
dispersions after clipping at 3 times the line-of-sight velocity
dispersion, computed with the ML anisotropy (hereafter σML

los ,
Eqs. (16) and (18), black filled triangles) to σML

los (black solid
curve in the top panel of Fig. 12). This suggests that the 3σ clip-
ping generally used is too liberal. A near perfect match (typ-
ically better than 1% for R < 0.8 r200) is obtained by cutting
at 2.7σML

los (black filled circles vs. black solid curve in the top
panel of Fig. 12).

When the m = 5 Einasto model is used to compute σlos(R)
before applying the velocity cut, the best match between the
measured and predicted line-of-sight velocity dispersion profiles
is for a cut at κ = 2.6 (bottom panel of Fig. 12).

The Hubble flow (HF) causes a shallower slope at projected
radii close to the virial radius (one notices in both panels of
Fig. 12 an inflection point in the measured profiles (filled circles)
of logσlos vs. log R near half a virial radius). Indeed, we obtained
results similar to those of Fig. 12 when we did not incorporate
the HF to the peculiar velocities of the simulation: the measured
σlos(R) fell more sharply, with no inflection point, even some-
what more sharply than predicted by the Einasto model (because
the velocity anisotropy without the HF is more radial at �4 r200
in comparison with the case where the HF is incorporated, where
4 r200 roughly corresponds to the turnaround radius where the ve-
locities are mostly tangential). So, although the steeper Einasto
density profile ought to catch better the steeper line-of-sight ve-
locity dispersion profile at large projected radii, the NFW model
performs slightly better, because its shallower line-of-sight pro-
file mimics better the effects of the Hubble flow.

In summary, Fig. 12 indicates that if one wishes to recover
the correct line-of-sight velocity dispersion profile, one should
use 2.6 or 2.7σ clipping instead of 3σ clipping, where the line-
of-sight velocity dispersion is either measured or modeled with
anisotropic velocities.

The choice of model and κ is not obvious. We prefer the
NFW model, as it is simpler and, with κ = 2.7, it presents a
slightly better match between measured and predicted line-of-
sight velocity dispersion profiles than does the m = 5 Einasto
model (compare the ratios of measured to predicted σlos(R) in
both plots of Fig. 12, especially at large radii).

Mass modelers of clusters may wish to avoid performing the
integral of Eq. (16) with the kernel of Eqs. (18) and (19). The
line-of-sight velocity dispersion profile (Eq. (16)) for the NFW
and m = 5 Einasto models with ML anisotropy with ra = r−2 can
be approximated as

σlos(R)√
GM(r−2)/r−2

� dex

⎧⎪⎪⎨⎪⎪⎩ 7∑
i=0

ai

[
log10

(
R

r−2

)]i
⎫⎪⎪⎬⎪⎪⎭ (21)

where the coefficients are given in Table 2 for both models.
These two approximations are accurate to better than 0.5% (rms)
for 0.0032 < R/r−2 < 32.

Then, one can write σlos(R) in terms of vv using Eq. (21) and

v2v
GM(r−2)/r−2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ln(c + 1) − c/(c + 1)

(ln 2 − 1/2) c
(NFW),

γ
(
3m, 2m c1/m

)
γ(3m, 2m) c

(Einasto),

(22)

(e.g., Navarro et al. 1996; for NFW and trivially derived from the
Einasto mass profile first derived by Mamon & Łokas 2005a).

In the absence of information on the mass profile (e.g. from
X-ray observations), neither the concentration parameter, c, nor
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Table 2. Coefficients for σlos(R) approximation (Eq. (21)).

NFW m = 5 Einasto
a0 –0.1478 –0.1520
a1 –0.1109 –0.1242
a2 –0.1357 –0.1637
a3 0.001948 –0.01688
a4 0.02317 0.01892
a5 0.0006310 0.001844
a6 –0.003234 –0.002044
a7 –0.0006370 –0.0004103

the scale radius r−2 are known, so one has to work iteratively,
first guessing a plausible value of c, applying the velocity filter,
then re-estimating c from the data and re-applying the velocity
filter. This process should converge in a one or two iterations.

6. Interloper statistics after the velocity cut

We now show the statistics of interlopers after our adopted ve-
locity cut. The motivation is to allow observers to compare with
their own data. With the velocity cut (κ = 2.7), the line-of-sight
distances are now effectively limited to ±17 r200 from the cen-
ter of the stacked halo (Eq. (5)). The qualitative features of the
projected phase space distribution are robust to variations of the
method to cut the velocities.

The green curves in Fig. 3 show the velocity cut at
±2.7σlos(R) – with our adopted NFW model with ML anisotropy
with anisotropy radius ra = r−2 – on top of the projected phase
space (using Eqs. (21) and (22)). Only 0.4% of the halo particles
are rejected by the 2.7σ velocity cut, which is a low enough frac-
tion that the shot noise in the structural and kinematical model-
ing is not significantly increased. The velocity cut in Fig. 3 seems
very reasonable as it is close to optimizing the completeness of
the selection of particles within the virial sphere. However, less
than 17% of the interlopers are identified as such by the veloc-
ity cut. Therefore, the great majority of interlopers cannot be
removed by a velocity cut.

Figure 4 shows the velocity cut on top of the phase space
density distribution. The velocity cut appears to occur in a region
where the interloper phase space density is roughly constant.

This can be seen in a clearer fashion in Fig. 6, where the ve-
locity cut is shown as green vertical lines. While the highest ve-
locity interlopers are removed by the velocity cut, there remains
signs of the field component, which we had identified with par-
ticles beyond 8 virial radii, at low (R < 0.4 r200) projected radii.

The fraction of particles outside the virial sphere is displayed
in Fig. 13. Interestingly, at R > 0.8 r200 (magenta histogram) the
interlopers account for over 60% of all particles, regardless of
the particle velocity up to the velocity cut (filled circles). But
even at smaller radii, 0.4 < R/r200 < 0.6, interlopers account for
over 20% of all particles again for all velocities up to the cut. So,
unless one limits one’s kinematical analysis to very small cluster
apertures, one cannot avoid being significantly contaminated by
interlopers.

While there is no gap in the velocity distribution of particles
(Fig. 6), Fig. 13 shows local minima of the interloper fraction for
all bins of projected radii, except the outermost one. Regardless
of the application of a velocity cut, these local minima occur at
lower velocity (1.3 to 1.5 vv) than the inflection points of the in-
terloper density in projected phase space (1.6 to 2.6 vv as seen in
Fig. 6). The local minima occur at velocities that decrease with
projected radius, suggesting that our local κσlos cut is preferable

Fig. 13. Fraction of interlopers as a function of line-of-sight velocity
for all projected radii R < r200 (thick black histogram) and in bins
of projected radius: R/r200 = 0−0.2, 0.2−0.4, 0.4−0.6, 0.6−0.8, and
0.8−1 (thin histograms), increasing upwards. The filled circles show
the 2.7σlos(R) (from Eqs. (21) and (22)) velocity cut for the c = 4 NFW
model with ra = r−2 ML anisotropy (Eq. (20)).

to a global one, since σlos(R) decreases with R for R > 0.1 r200
(see Fig. 12). These local minima arise because the interloper
system has a lower velocity dispersion than the halo system:
σi = 0.58 (Eq. (10)) while after the velocity cut the aperture ve-
locity dispersion of the global stacked virial cone (thus including
both halo particles and interlopers) is η = 0.65, i.e. 5% higher
than predicted by Mauduit & Mamon (2007) for an isotropic
NFW model, which is not surprising given the radial anisotropy
of the halos (Fig. 11).

The surface density profile of the stacked halo is shown in
Fig. 14. The surface density profile of the interlopers is flat
with small fluctuations around the mean values Σi = 0.114 and
0.096 Nv r−2

v , measured in the stacked virial cone, respectively
before and after the velocity cut13. In comparison, our model of
the surface density of interlopers (Eq. (12)) combined with our
MLE values for A, B and σi yields mean interloper densities of
0.114 and 0.094 Nv r−2

v , respectively before and after the κ = 2.7
(κ̂ = 1.76 with η = 0.65) velocity cut. The general agreement is
excellent.

Note that, at projected radii beyond the virial radius, all par-
ticles are interlopers, so the surface density of interlopers is not
constant but decreases, to first order, as the NFW or Einasto
models. While the total surface density profiles of the popular
NFW and Einasto models for ΛCDM halos are convex in log
surface density vs. log projected radius, an important additional
background term in the surface density would lead to an inflec-
tion point and subsequent concavity at some radius. Such a fea-
ture would lead to poor fits of single NFW or Einasto profiles.

13 Figure 14 shows interloper surface densities that are lower, at R <
0.7 r200, than 0.114 and 0.096 Nv r−2

v , respectively before and after the
velocity cut, but most of the particles lie within the highest bins of log
projected radius.
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Fig. 14. Top panel: surface density profile of global stacked cone (black
histogram, raised up by 0.02 dex for clarity), as well as halo members
(r ≤ r200, red histogram) and interlopers (r > r200) before (thin) and
after (thick blue histograms) the velocity cut. Poisson errors are only
shown for the interlopers after the velocity cut for R < r200. Also shown
(curves) are maximum likelihood m = 5 Einasto model fits (after the
velocity cut), in the range 0.03 r200 to 1 (purple) or 3 (brown and green)
r200, without (purple and brown) or with (green) an additional free con-
stant background component (dashed green line). Bottom panel: ratios
of measured to fit surface densities (after the velocity cut). For clarity,
Poisson errors are only shown if larger than the symbol size.

Now, within the virial radius, no such inflection point and outer
concavity are seen in Fig. 14 for the total surface density pro-
file. However, extending the surface density profile out to three
virial radii, as illustrated in Fig. 14, one does see the inflection
point of the total surface density profile (near 1.6 r200 after the
velocity cut and right at r200 before). This points to an addi-
tional background of surface density. This requirement for the
additional background component is confirmed by the fairly flat
ratios of data over model (bottom panel of Fig. 14) for the case
where the background is fit, in comparison with larger residuals
for R > r200 for the fits without a background.

Such a background is expected, since the density profiles of
ΛCDM halos is the sum of an Einasto model and a constant
background corresponding to the mean density of the Universe
(Prada et al. 2006). Integrating along the line-of-sight (Eq. (1))
within the sphere of radius rmax (Eq. (5)), one deduces that the
surface density profile of (foreground/)background structures is

Σbg(R) = 2Ωm ρc

√
r2

max − R2. (23)

Since rmax 
 rv (Eq. (5)), Σbg is roughly constant for R <∼ rv:

Σbg � 2Ωm ρc rmax, (24)

which in dimensionless virial units (Nv r−2
v ) becomes

Σ̂bg =
Σbg

Nv/r2
v

� 3
π

η κΩm√
8Δ
, (25)

Fig. 15. Mean interloper surface density (in virial units) versus halo
mass (for Δ = 200). The open black and filled blue circles show the
93 halos each measured along 3 orthogonal viewing directions, before
and after the velocity cut, respectively. The right panel provides the fre-
quency of the mean interloper surface density (with logarithmic bins),
before (dashed black) and after (solid blue histograms) the velocity cut.

Table 3. Statistics of interloper surface densities Σi (in Nv r−2
v ).

Velocity cut No Yes
Arithmetic mean 0.116 0.098
Geometric mean 0.102 0.085
Standard deviation of log Σ̂i 0.216 0.229
Spearman rank correlation 0.025 −0.008
Probability 0.34 0.44

Notes. Spearman rank correlation is between mean surface density of
interlopers and halo mass. Probability is of having a stronger correlation
by chance.

using Eq. (3). With the velocity cut, κ = 2.7 and Eq. (25) yields
Σ̂bg � 0.0126 for Ωm = 0.3, Δ = 200, and η = 0.65 (see above).
Without the velocity cut κ̂ = η κ = 4 and one obtains Σ̂bg �
0.0286. According to Eq. (23), the relative drops of Σbg from
R = 0 to Rmax = 1 or 3 rv are 0.2% and 1.6%, respectively, so
the approximation of a constant surface density background is
adequate.

This background corresponds to the velocity-independent
component of the interloper surface phase space density, which
in our model (Eq. (8)) is the B term, which produces a mean
surface density of Σ̂bg = η × 2.7 B = 0.0132 (with B = 0.0075
from Eq. (10) and again η = 0.65). This agrees with the previous
value to within 4%. This means that the constant field term in
the velocity distribution corresponds precisely to the additional
halos outside the test halo. In any event, the total surface density
of a cosmological structure is the sum of the surface density of
that structure and a constant background.

Although the mean surface density of interlopers is roughly
independent of halo mass (Fig. 9), it may vary from cluster to
cluster. Figure 15 shows the surface density of each of the 93 ha-
los. As seen in Table 3, the arithmetic mean value of Σi matches
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well the value of the stacked virial cone, regardless of the ve-
locity cut, which has only a minor effect on the statistics of
interlopers (while the geometric means are �15% lower). But
the dispersion in log Σ̂i is as high as 0.22, close to σ(log A)
(Eq. (14)), so that the relative dispersion of Σi is as high as a
factor 100.22 � 5/3.

The fraction of interlopers in the stacked virial cone is

fi =
Ni

Nh + Ni
=
π Σ̂i

1 + π Σ̂i
(26)

(where indices “h” and “i” correspond to halo and interloper
particles, respectively), where the second equality of Eq. (26)
made use of Σ̂h = Σh/[Nv/r2

v ] = 1/π, by definition. This yields
fi = 27% before and 23.1±0.1% after the velocity cut, where the
error is both from binomial statistics and from a bootstrap on all
the particles; a bootstrap on the halos leads to an error of 0.6%;
propagating (with Eq. (26)) the error on the mean of Σ̂i (from
the standard deviation of Σ̂i given in Table 3) also leads to an er-
ror on fi of 0.6%; finally, the standard deviation of the interloper
fraction for the three stacked cartesian virial cones is 1.7%. We
adopt the error estimate of 0.6% on fi for the later discussion.

The small decrease in interloper fraction from before to af-
ter the velocity cut confirms our finding that the large majority
of interlopers have too low velocities to be filtered by velocity.
Cosmic variance causes huge fluctuations in the fraction or sur-
face density of interlopers (2/3 of the mean value, independent
of the presence of a velocity cut), with roughly a log-normal dis-
tribution (see the right panel of Fig. 15 and Table 3). The last two
lines of Table 3 indicate that there is no statistically significant
correlation of surface density of interlopers with halo mass.

7. Biases in concentration and anisotropy?

What are the effects of the Hubble flow on estimates that ob-
servers make on halos, e.g. the concentration and the velocity
anisotropy of the distribution of their tracer constituents (i.e.
galaxies in clusters)?

7.1. Effects of the Hubble flow

We begin by a naïve comparison of the observable distribu-
tions with and without the Hubble flow, before comparing the
concentration and anisotropy measured by an observer with the
corresponding quantities we directly infer in 3D from the cos-
mological simulations. Admittedly, the distribution of velocities
without the Hubble flow is not fully realistic, since the cosmo-
logical simulation solved equations for comoving coordinates in
an expanding universe14.

Figure 16 shows the changes in the radial profiles of surface
density and line-of-sight velocity dispersion and kurtosis15, once
the Hubble flow is added to the peculiar velocities. One striking
feature of Fig. 16 is that the Hubble flow leads to a lower sur-
face density profile at large radii. This cannot be a consequence
of the restriction of the line-of-sight of the halo component to
±19 r200 (see Sect. 1), because the NFW surface density with

14 In fact, static universes are never simulated in a cosmological con-
text, because of their lack of realism, given the expansion of the
Universe as seen in the Hubble law, and also because of the lack of
knowledge of suitable initial conditions in such a static universe.
15 The reader should not confuse the line-of-sight velocity kurtosis κlos

with the velocity cutoff in units of line-of-sight velocity dispersion (κ)
or of virial velocity (κ̂).

Fig. 16. Difference of velocity moments with Hubble flow and veloc-
ity cut (HF) and without Hubble flow or velocity cut (noHF): log sur-
face density (dotted black), log line-of-sight velocity dispersion (solid
red), and line-of-sight velocity kurtosis (dashed blue). The error bars
are based upon Poisson errors for the surface density and bootstraps
within the radial bin for the log dispersion and the kurtosis, where the
error on the difference is the square root of the sum of the square errors.

line-of-sight limited to the sphere of that radius (Appendix B)
matches the NFW surface density projected to infinity to better
than 1.4% relative accuracy for R < 3 r200 (for c = 4). Instead,
it is the integral along the line of sight of the constant den-
sity (foreground/background) component that diverges when no
Hubble flow is present, and is limited to half a box size here:
L/2 = 96 h−1 Mpc, which corresponds to roughly 100 virial
radii. In any event, the lower (40% lower at r200) surface den-
sity profile found when the Hubble flow is added to the peculiar
velocities might explain the lack of concavity in the (log−log)
surface density profile within the virial radius (Fig. 14).

We noticed in Sect. 5 that the line-of-sight velocity disper-
sion profile showed an excess at radii near the virial radius.
Figure 16 confirms that the line-of-sight velocity dispersion pro-
file is gradually overestimated at large radii, while the surface
density profile is much more biased beyond half a virial radius,
being underestimated at large radii. The effects of the Hubble
flow on the surface density and line-of-sight velocity dispersion
profile are both small at very low projected radii.

Finally, our sharp cut (Sect. 5) in the distribution of line-of-
sight velocities when the Hubble flow is incorporated implies
that the line-of-sight velocity kurtosis is underestimated (espe-
cially at large projected radii).

7.2. Concentration

Does the excess of interlopers at large projected radii lead to
lower values of the concentration parameter in the fits of the pro-
jected NFW and Einasto profiles to the surface density profiles
of clusters?

Table 4 shows the MLE fits (see Appendix C) of the NFW
and m = 5 Einasto surface density profiles to the distribution of
projected radii of the three cartesian stacked cones. Different fits
were performed with variations in the maximum allowed pro-
jected radius, Rmax, the presence of a constant (fixed or free)
background term, and the possible removal of high-velocity
outliers. The NFW surface density and projected number (or
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Table 4. MLE fits to the distribution of projected radii of the three cartesian stacked cones.

Model Rmax Vel. cut No bg Fixed bg Free bg

c2D PKS c2D PKS 100 Σ̂bg (σ(log Σ̂bg)) c2D PKS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
NFW 1 N 3.46± 0.04± 0.21 <10−5 4.06± 0.05± 0.26 0.18 2.4 (0.20) 3.95± 0.05± 0.03 0.08
NFW 1 Y 3.84± 0.05± 0.19 0.059 4.10± 0.05± 0.21 0.19 1.0 (0.07) 4.06± 0.11± 0.17 0.2
Einasto 1 N 3.30± 0.04± 0.21 0.00053 3.90± 0.05± 0.25 0.46 2.6 (0.18) 3.83± 0.05± 0.08 0.27
Einasto 1 Y 3.70± 0.04± 0.18 0.32 3.96± 0.05± 0.20 0.42 0.8 (0.01) 3.87± 0.12± 0.19 0.65
NFW 1.35 N 3.21± 0.03± 0.24 <10−14 4.07± 0.05± 0.31 0.11 2.9 (0.08) 4.06± 0.07± 0.15 0.25
NFW 1.35 Y 3.78± 0.04± 0.23 0.052 4.19± 0.05± 0.26 0.06 0.5 (0.29) 3.96± 0.07± 0.16 0.22
Einasto 1.35 N 3.00± 0.03± 0.22 <10−13 3.83± 0.04± 0.28 0.32 3.3 (0.08) 3.95± 0.06± 0.16 0.52
Einasto 1.35 Y 3.59± 0.04± 0.20 0.04 3.98± 0.04± 0.22 0.46 0.9 (0.10) 3.89± 0.08± 0.17 0.73
NFW 3 N 1.67± 0.01± 0.16 0 3.82± 0.04± 0.37 0 3.8 (0.03) 4.42± 0.04± 0.45 <10−6

NFW 3 Y 3.06± 0.02± 0.12 0 4.31± 0.04± 0.17 <10−9 1.2 (0.12) 4.34± 0.05± 0.38 0.00003
Einasto 3 N 1.42± 0.01± 0.12 0 3.19± 0.03± 0.34 0 4.3 (0.05) 4.15± 0.03± 0.67 0.00003
Einasto 3 Y 2.65± 0.02± 0.10 0 3.75± 0.03± 0.12 <10−13 1.5 (0.03) 4.02± 0.01± 0.12 0.00055

Notes. Column 1: model (NFW or m = 5 Einasto); Col. 2 (Rmax): projected radius of the cone in which the stacked cluster is built, in units of r200;
Col. 3 (v-cut): presence (Y) or absence of the velocity cut with κ = 2.7 (NFW) or 2.6 (Einasto); Cols. 4−5, 6−7, 9−10: mean best-fit concentration
(c = r200/r−2) from projected radii and probability that distribution of projected radii is consistent with model using a Kolmogorov-Smirnov test
(PKS), for fits without a background (Cols. 4 and 5), with a fixed background (Σ̂bg = 0.0286 (no velocity cut) or 0.0126 (with velocity cut), Cols. 6
and 7) or a free background (Cols. 9 and 10), with best-fit value (100 times the geometric mean and error on its logarithm in parentheses) given in
Col. 8. The minimum projected radius is set to 0.03 r200. For the Einasto model, we adopt the approximation to the surface density and projected
number (mass) profiles given in Appendix A. The errors on c are statistical (first) and a measure of the cosmic variance term estimated by the
gapper (Wainer & Thissen 1976, see Beers et al. 1990) standard deviation of the MLE values for the three projection axes.

equivalently projected mass) profiles, required for the nor-
malization of the probability used in the MLE, are given by
Bartelmann (1996) and, in another form by Łokas & Mamon
(2001). The surface density and projected number (mass) pro-
files of the Einasto model are not known in analytical form, so
we have derived accurate approximations in Appendix A. For
these MLE, we adopt Eqs. (A.17) with (A.6) for the surface den-
sity profile and Eqs. (A.8) with (A.6) for the projected mass pro-
file. When a constant background term is included in the fits, it
is either free (Col. 8) or fixed at Σ̂bg = κ̂ B = 0.0286 and 0.0126
without (κ̂ = 4) and with (κ̂ = η κ = 1.75) the velocity cut (see
Sect. 6).

The concentrations measured on the projected radii with
single component fits are always smaller than the characteris-
tic value found in 3D (c = 4.0, 4.1, and 4.5, see bold values
in Table 1). The best-fit concentrations are very low when the
fits are performed out to 3 r200 (unless a velocity cut is per-
formed or background component added to the model). Note
that when the background is fitted together with the concentra-
tion and no velocity cut is performed, the best-fit value for the
background can be over a factor two off from the value expected
from Eq. (24), even with maximum projected radii of 3 r200. The
KS tests indicate that for most combinations of maximum pro-
jected radius, presence or absence of the velocity cut and how
the background is handled, the m = 5 Einasto model usually
provides a better representation of the distribution of projected
radii than does the NFW model. Finally, the errors in Table 4 in-
dicate that the cosmic variance of stacks of 93 clusters, measured
using the standard deviation of the three cartesian stacked cones
with the gapper16 estimate of dispersion, which is most robust to
small sample sizes (Beers et al. 1990), are much greater than the
intrinsic fitting errors.

Table 5 shows the bias in concentrations, where the bias is
the ratio between the concentration measured with the 2D fit
(Table 4) and the best-fitting of the concentrations found with the

16 The gapper dispersion of a vector x of length n is s =
√
π/[n(n −

1)]
∑n−1

i=1 i(n − i) (xi+1 − xi) (Wainer & Thissen 1976).

3D fits (highlighted in bold in Table 1), for given rmax/r200 and
different models and backgrounds. The concentration parame-
ters found in the fits of the surface density profile are underes-
timated by typically 16%± 7% when we make no velocity cut,
limit the projected radii to r200, and do not incorporate a constant
background in the fit. This underestimate of the concentration is
statistically significant (marginally so for NFW). The concen-
tration bias gets worse as we increase the maximum projected
radius: the concentration is underestimated by 1/4 at R < r100
and by as much as 2/3 with R < 3 r200.

But when we make the velocity cut at 2.7 (NFW) or 2.6
(Einasto) σlos(R), where σlos(R) is obtained from Eqs. (21)
and (22), the biases in the concentration parameters are typically
reduced by a factor two. When we limit the analysis at R < r200,
the concentration parameters found in the fits of the surface
density profiles are (only) underestimated by typically 6 ± 6%.
This low bias is no longer statistically significant given our fit
and cosmic variance errors17. However, extending the analysis
to R = r100, the concentration is still biased low by as much as
11% (which is marginally significant), despite the velocity cut.
And if we go all the way to 3 r200, the bias is still very strong, as
the concentration is underestimated by over 1/3.

One may wonder whether one can recover the concentration
parameter more accurately with two-component fits to the set
of projected radii than with the single-component fit, since we
found an additional background needs to be added (Sect. 6). For
example, Lin et al. (2004) fit a projected NFW model plus a
constant surface density background (hereafter NFW+bg), with
no velocity cut, for projected radii 0.02 < Rmax/r200 < 2.5. We
tested the single and double-component models in the optimistic
case of our stacked cluster with nearly 3× 105 particles. As seen
in Table 5, the 3D concentration parameter is recovered bet-
ter by the two-component models, regardless of the velocity cut,

17 We also experimented with concentration fits on the projected radii
of all particles within 3σlos(R) instead of 2.7, but the changes were very
small (less than 1%, with slightly worse underestimates of the concen-
tration for the single component fits).
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Table 5. Concentration bias of 2D fits.

Model Rmax c2D/cbest
3D

no v-cut v-cut
no bg fixed bg free bg no bg fixed bg free bg

NFW 1 0.86± 0.07 1.01± 0.08 0.99± 0.05 0.96± 0.06 1.02± 0.07 1.01± 0.07
Einasto m = 5 1 0.82± 0.06 0.97± 0.08 0.96± 0.05 0.93± 0.06 0.99± 0.07 0.97± 0.07
NFW 1.35 0.78± 0.06 0.98± 0.08 0.98± 0.05 0.91± 0.06 1.01± 0.07 0.96± 0.05
Einasto m = 5 1.35 0.72± 0.06 0.93± 0.07 0.95± 0.05 0.87± 0.06 0.96± 0.06 0.94± 0.05
NFW 3 0.37± 0.04 0.85± 0.09 0.98± 0.11 0.68± 0.04 0.96± 0.06 0.96± 0.10
Einasto m = 5 3 0.32± 0.03 0.71± 0.08 0.92± 0.16 0.59± 0.04 0.83± 0.05 0.89± 0.05

Notes. The biases highlighted in bold (respectively blue italics) show the cases where the best-fit surface density profile was consistent with the
data to better than 5% (between 0.01% and 5%) confidence (see last column of Table 4). The errors are the statistical (MLE fit) and cosmic variance
(from the 3 cartesian stacked halos) errors of Table 4 added in quadrature together and with the analogous errors on the best-fit (bold in Table 1)

3D concentration, with σ2(c2D/cbest
3D ) = σ2(c2D)/

〈
cbest

3D

〉2
+ σ2(cbest

3D ) 〈c2D〉2 /
〈
cbest

3D

〉4
.

although the improvement is not always statistically significant.
Note that the background is well recovered with Rmax = 3 r200
and a velocity cut for both the NFW+bg and Einasto+bg models
(Table 4).

In summary, the concentrations measured in 2D recover best
the 3D values once the velocities are filtered and especially once
a background is included in the fit (even when limited to the
virial radius).

Note also that one should not attempt to model the surface
density profile as the sum of the halo term (with line-of-sight
limited to the sphere, with the formulae of Appendix B for the
NFW model) and a constant background, because the total sur-
face density profile decreases smoothly beyond the virial radius
in ways that are not simple to model, for example with a spher-
ical halo and a constant background. Moreover, for fits where
the projected radii are limited to the virial radius, these spherical
plus background fits are not recommended because the back-
ground is not constant but rises with radius (Figs. 5 and 8) and
is less easy to model than the surface density with line-of-sight
integrated to infinity.

7.3. Velocity anisotropy

The signature of the Hubble flow on the shape of the line-of-sight
velocity dispersion profile (Fig. 12) suggests that the velocity
anisotropy that is recovered may be affected. Figure 17 shows
the result of the non-parametric anisotropy inversion (first de-
veloped by Binney & Mamon 1982; but we use here the simpler
algorithm by Solanes & Salvador-Solé 1990), which computes
the anisotropy profile assuming a smooth representation of the
line-of-sight velocity dispersion profile and a mass model. Here,
we adopt a c = 4 NFW model and fit polynomials to the binned
logσlos vs. log R18.

In the region where the order of the polynomial fit does not
matter (0.1 < r/r200 < 1), the recovered anisotropy profile
reproduces very well the one measured in three dimensions
(points in Fig. 17), although, beyond 0.2 r200, the recovered
anisotropy profiles are slightly more radial than that measured in
3D. This bias towards more radial motions appears statistically
significant, since in all six radial bins where there is a �1σ offset,

18 We cannot employ the analytical approximation of Eq. (21) to the
line-of-sight velocity dispersion profile for an NFW model with ra = r−2

ML anisotropy, because we place ourselves in the context of an observer
who wishes to measure the velocity anisotropy with no prior on it: (s)he
is thus forced to use a smooth representation of the observed line-of-
sight velocity dispersion profile.

Fig. 17. Velocity anisotropy profiles (including streaming motions:
Eqs. (6) and (7)) of the stack of the 93 halos. The points are the mea-
sured velocity anisotropy (same as in Fig. 11, again with uncertainties
from 100 bootstraps on the 93 halos) and the curves are recovered from
anisotropy inversion assuming the c = 4 NFW model (solid curves),
for three polynomial fits (orders 2, 3, and 4 in log−log space) to the
measured line-of-sight velocity dispersion profile (after the κ = 2.7 ve-
locity cut using the NFW model with ML anisotropy: solid dark red,
dashed green, and dotted blue for orders 2 to 4, respectively). The pur-
ple dashed horizontal line indicates the fully isotropic case. Note that
the 4th order polynomial (blue) extrapolates poorly the line-of-sight ve-
locity dispersion profile at very low and very high projected radii.

this offset is in the same direction (probability of 2−5 = 3%).
Therefore, the Hubble flow produces only a slight radial veloc-
ity anisotropy bias in the envelopes of halos.

8. Summary and discussion

This work analyzes the distribution of particles in projected
phase space around dark matter halos in cosmological simula-
tions. The particles are split among halo particles within the
virial sphere and interlopers within the virial cone but outside
the virial sphere (Fig. 2). The reader should be careful that the
analyses presented here cannot be directly applied to observa-
tions of clusters of galaxies, as they work with halo particles in-
stead of galaxies within clusters, and assume the halo centers to
be determined quite precisely (from real space measurements).
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We find a universal distribution of interlopers in projected
phase space, i.e. with little dependence on halo mass (Figs. 7c
and 9). In particular, we note that velocity cuts cannot distinguish
the quarter of particles that are interlopers from those in the virial
sphere (Fig. 13), as was previously noted by Cen (1997). We find
that the distribution of interlopers in projected phase space dis-
plays a roughly constant surface density (Figs. 5 and 8) and a
distribution of line-of-sight velocities that is the sum of a quasi-
Gaussian component, caused by the halo outskirts (out to typi-
cally 8 virial radii, Fig. 7b) and a uniform component caused by
particles at further distances from the halo (Figs. 6 and 7).

The cosmological simulations allow us to optimize the ra-
tio of maximum velocity to line-of-sight velocity dispersion that
recovers the latter quantity. Although this may seem to be a cir-
cular argument (since σlos(R) depends on the velocity cut), it has
been widely used in the past, usually in iterative form, with a
3σ cutoff. We find that this cutoff is not restrictive enough and
causes an overestimate of the line-of-sight velocity dispersion
profile (based upon mass and velocity anisotropy models derived
from the cosmological simulations): up to 10% for the isotropic
NFW velocity cut, which is reduced to 5% for the ML anisotropy
velocity cut (Fig. 12). We recommend instead a velocity cut
at 2.7σlos(R) on the best iterative fit to the line-of-sight veloc-
ity dispersion for the NFW model with ra = r−2 ML anisotropy.
Alternatively, one can use a velocity cut at κ = 2.6 for the m =
5 Einasto model, modeled (again) with ra = r−2 ML anisotropy,
but this underestimates the line-of-sight velocity dispersion near
the virial radius (Fig. 12).

We illustrate (Figs. 3, 4, 6, 13, and 14) how the distribution of
particles in projected phase space is altered once the high veloc-
ity interlopers are rejected with this new velocity filter (besides
limiting the line-of-sight to typically ±17 r200, the main effect
is to remove the flat velocity component). The fraction of inter-
lopers within the virial cone drops from 27% (with an observer
at distance D = 90 h−1 Mpc) to 23.1 ± 0.6% (independent of D
for D >∼ 17 〈r200〉) when the velocity cut is applied (where the
uncertainty is taken from the end of Sect. 6).

This fraction of interlopers can be directly inferred from the
NFW or Einasto model

fi =
M̂p(r200) − 1 + π Σ̂bg

M̂p(r200) + π Σ̂bg
(27)

where M̂p = Mp/M200 is the projected virial mass in virial units
(i.e. in units of the mass within the virial sphere), while Σ̂bg is
given in Eq. (25). For the NFW model, one then obtains fi =
26.8% and 24.0%, respectively before (Σ̂bg = 0.0286) and after
(Σ̂bg = 0.0126) the velocity cut, while with the m = 5 Einasto
model with c = 4, the corresponding percentages of interlop-
ers are 25.7% and 22.8%. These theoretical predictions are in
excellent agreement with the fractions obtained from the simu-
lations. Note that the omission of the background (Σ̂bg) term in
Eq. (27) reduces fi by typically 10% in relative terms, relative to
the fractions after the velocity cut. Applying Eq. (27) to models
of different concentrations leads to roughly a power-law varia-
tion of fi with slope −0.32 (NFW) or −0.49 (m = 5 Einasto).
Therefore, the fraction of interlopers should be (slightly) more
important in the more massive halos, since they have (slightly)
lower concentrations (Navarro et al. 1997; Macciò et al. 2008).

In comparison, using 62 clusters from the same simulation
as the one we have analyzed (we have 53 clusters in common),
Biviano et al. (2006) found that among particles selected in
cones of projected radius 1.5 h−1 Mpc around cluster-mass ha-
los (after their velocity cut), 18 ± 1.4% of them lie outside the

sphere of the same radius19. Their halos have a median virial ra-
dius of r200 = 0.93 h−1 Mpc (1.08 times our median) and hence a
virial mass of M200 = 1.9×1014 h−1 M�. Their Figure 7 indicates
that their velocity cut is roughly 1180, 1105, and 780 km s−1,
at projected radii 0.6, 1.0 and 1.5 h−1 Mpc, respectively. Since
NFW concentration scales as M−0.1 (Navarro et al. 1997; Macciò
et al. 2008), their median concentration should be 3.9, hence
their scale radius should be 930/3.9 = 238 h−1 kpc. Assuming
an NFW model, we deduce that their median circular velocity
at the scale radius is 914 km s−1, and find that their velocity cuts
correspond to κ = 2.1, 2.2, and 1.8, at the three projected radii
chosen above. These fractions are consistent with the values of κ̂
one can read off of Fig. 3 of Wojtak et al. (2007) that illustrates
the same velocity cut model (den Hartog & Katgert 1996). We
then considered a cone of projected size 1.5/0.93 = 1.6 r200.
Adopting their typical κ = 2, we then found that after a 2σ
velocity cut, the fraction of particles with r > 1.6 r200 is now
21.3%. This fraction is still marginally significantly larger than
Biviano et al.’s fraction of 18% (assuming the same errors as
above). We attribute this discrepancy to their variable κ veloc-
ity cut, which differs from our fixed κ one. Wojtak et al. (2007)
tried several interloper removal schemes and definitions (using
a different ΛCDM cosmological simulation). Their local 3σ cut
leads to 20.4 ± 1.7% of interlopers remaining within the virial
cone. Given the quoted errors, the lower fraction of interlopers
found by Wojtak et al. is marginally consistent with ours.

This fraction of 23% of interlopers after the velocity cut is
surprisingly close to the fraction of blue galaxies (i.e. galax-
ies off the Red Sequence) observed within SDSS clusters, as
Yang et al. (2008) find roughly 22% of blue galaxies within
SDSS clusters of masses >1014 h−1 M�. Admittedly, it is dan-
gerous to match the dark matter distribution with the galaxy dis-
tribution, since galaxies are biased tracers of the matter distri-
bution. In fact, galaxies are biased relative to dark matter halos
(e.g. Conroy et al. 2006), which in turn are biased relative to the
dark matter particle distribution (e.g. Mo & White 1996; Catelan
et al. 1998). If, in the end, the SDSS galaxies analyzed by Yang
et al. are unbiased tracers of the dark matter distribution, then
this close agreement would be expected if all blue galaxies are
caused by projection effects. But if projections also pick up red
galaxies in groups, then some blue galaxies would need to sur-
vive within the virial sphere for the match to hold. However, the
Yang et al. group finder is fairly efficient in separating groups
along the line-of-sight, so we conclude that the fraction of blue
galaxies within the virial sphere should be small. In other words,
star formation appears to be strongly quenched when galaxies
penetrate the virial spheres of clusters.

When no velocity cut is performed, a maximum likelihood
fit of the concentration of the projected NFW model to the pro-
jected radii of a stacked cluster of nearly 300 000 particles out
to r200 (r100) leads to a 14 ± 7% (22 ± 6%) underestimate of the
true concentration parameter (Table 5, where most of the uncer-
tainty comes from cosmic variance). Similar biases occur with
the m = 5 Einasto model. But after the velocity cut, these biases
decrease by a factor two, and are no longer statistically signif-
icant (Table 5). Moreover, the inclusion in such fits of a con-
stant background as an extra parameter also strongly decreases
the bias, even when the maximum projected radius is as low
as r200 (Table 5). In fact, inspection of Table 5 indicates that,
for Rmax = r100 or 3 r200, the background (fixed or free) has a
greater influence than the velocity filter in removing the bias on

19 The error is taken as their dispersion over the square root of their
number of halos.
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measured concentration. Surprisingly, for Rmax = 3 r200, a phys-
ically motivated fixed background added to the NFW model is
slightly less effective in reducing the concentration bias than is a
free background.

When the maximum radius is 3 r200 and no velocity cut is
performed, the NFW model with a free (respectively fixed) back-
ground underestimates the concentration (Table 5) by 2 ± 11%
(15 ± 9%). This insignificant (marginally significant) bias is
caused by the strong decrease of the surface density profile once
the Hubble flow is added to the peculiar velocities (Fig. 16).
These small biases suggest that the fairly low concentration
(c200 = 2.9 ± 0.2) for the galaxy distribution in clusters found
by Lin et al. (2004), who fit an NFW model with a free constant
background to the distribution of projected radii in the range
0.02 < R/r200 < 2.5, but who did not make a velocity cut for lack
of velocity data, is incompatible with true cluster concentrations
of c = 4.0 at the 2σ level. The lower concentration bias with
the two-component model is expected, because the single com-
ponent NFW or Einasto models cannot capture the flat surface
density at large radii (Fig. 14), because other halos are projected
along the line-of-sight.

While a two-component model of halo (to infinity) + con-
stant background is better able to recover the halo concentra-
tion than a single-component model (Table 5), it is not wise to
estimate the halo concentration from a two-component model
with a halo term whose line-of-sight is limited to the sphere
(Appendix B) plus a near constant background term arising from
our universal interloper surface density model (Eqs. (12) or sim-
ply (13)): the single-component NFW captures better the total
surface density profile than this halo+background model, espe-
cially if the maximum projected radius is beyond the virial ra-
dius, as the interloper surface density has a discontinuous slope
at the virial radius (Fig. 14). On the other hand, the universal
distribution of interlopers in projected phase space might be use-
ful to model the internal kinematics (hence total mass profile) of
clusters of galaxies, where the full distribution of galaxies in pro-
jected phase space is the sum of these interlopers and an NFW-
like model projected onto the virial sphere. We are preparing
tests of the mass/anisotropy modeling of clusters, groups, and
galaxies (through their satellites) using this interloper model.

We also performed 2D fits to individual halos of typically
700 particles (not shown here). The dispersion of the concen-
trations were much larger (typically 0.16 dex) than the biases
obtained from the stacked virial cone (typically 0.05 dex, i.e.
10% errors, see Table 5), which means that shot noise and cos-
mic variance dominate the bias caused by the Hubble flow.

The line-of-sight velocity dispersion profile shows a concav-
ity (in log-log) near the virial radius (Fig. 12), which is caused by
the Hubble flow (Fig. 16). The velocity anisotropy profile recov-
ered from this velocity dispersion profile, assuming the correct
mass distribution, is close to the true anisotropy profile, with a
slight, marginally significant, radial bias in the envelopes of clus-
ters in comparison with the anisotropy profile recovered in 3D
(Fig. 17), as was previously noted by Biviano (2007).

In summary, the density profile of ΛCDM halos falls fast
enough that the effects of the Hubble flow perturbing the stan-
dard projection equations produce only small biases in compari-
son with the shot noise of clusters with less than 1000 galaxies,
as well as the large cosmic variance of the halos.

These results have been obtained with the dark matter par-
ticles of a cosmological N-body simulation (with additional gas
and galaxy components). They will need to be confirmed with
future more realistic simulations of the galaxy distribution.
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Appendix A: Projected mass, surface density and tangential shear of the Einasto model

In this appendix, we derive an approximation to the surface density and projected mass (or, equivalently, projected number) profiles
for the Einasto model.

A.1. Projected mass profile

For any density model, the projected mass is

Mp(R; m) =
∫ R

0
2 π S Σ(S ; m) dS

= 4 π

[∫ R

0
r ρ(r) dr

∫ r

0

S dS√
r2 − S 2

+

∫ ∞

R
r ρ(r) dr

∫ R

0

S dS√
r2 − S 2

]
= 4 π

[∫ R

0
r2 ρ(r) dr +

∫ ∞

R
r
(
r −
√

r2 − R2
)
ρ(r) dr

]
(A.1)

= M∞ − 4 π
∫ ∞

R
r
√

r2 − R2 ρ(r) dr, (A.2)

where the second equality is obtained after reversing the order of integration. Equation (A.1) is general, while Eq. (A.2) is only
valid for models with finite total mass M∞. For the Einasto model of total mass M∞, the 3D mass profile is

M(r; m) = P

⎡⎢⎢⎢⎢⎢⎣3m, 2m

(
r

r−2

)1/m⎤⎥⎥⎥⎥⎥⎦ M∞, (A.3)

where P(a, x) = γ(a, x)/Γ(a) is the regularized incomplete gamma function. The ratio

μ(R,m) =
Mp(R; m)

M(R; m)
, (A.4)

determined from Eqs. (A.3) and (A.2), with Eq. (15), varies little, as seen in the right panel of Fig. A.1. We fit again a two-
dimensional fourth-order polynomial in m and u = log10 (R/r−2) and find

μ(R,m) � μapx(u,m) (A.5)

μapx(u,m) = dex
(
0.0001219 m4 + 0.0007400 m3u − 0.003209 m3 + 0.002976 m2u2 − 0.01560 m2u

+0.02966 m2 + 0.0003307 m u3 − 0.04434 m u2 + 0.1273 m u− 0.1149 m

+0.001036 u4 − 0.003133 u3 + 0.1905 u2 − 0.5241 u+ 0.3525
)
. (A.6)

In the interval 3.5 ≤ m ≤ 6.5 and −2 ≤ u ≤ 2, Eqs. (A.5) and (A.6) are accurate to better than 1.5% everywhere (0.23% rms).
The projected mass of the Einasto model can thus be written

Mp(R; m) � μapx(u,m) M(R; m) (A.7)

= μapx

[
log10

(
R

r−2

)
,m

]
P

⎡⎢⎢⎢⎢⎢⎣3m, 2 m

(
R

r−2

)1/m⎤⎥⎥⎥⎥⎥⎦ M∞, (A.8)

where again u = log10(R/R−2).

A.2. Surface density profile

Inserting Eqs. (15) into (1), the surface density of the Einasto model of total mass M and index m is

Σ(R; m) =
M (r−2)

πr2
−2

Σ̃

(
R

r−2
; m

)
, (A.9)

Σ̃(X; m) =
(2m)3m−1

γ(3m, 2m)

∫ ∞

X
exp

(
−2 m x1/m

) x dx√
x2 − X2

· (A.10)

Writing the dimensionless mass density as

ρ̃(x; m) =
ρ(xr; m)

M (r−2; m) /
(
4πr3

−2

) = (2m)3m

m γ(3m, 2m)
exp

(
−2m x1/m

)
, (A.11)

where the second equality derives from Eq. (15), we can express the ratio of dimensionless surface to space densities as

R(X,m) =
Σ̃(X; m)
ρ̃(X; m)

=
1
2

exp
(
2 m X1/m

) ∫ ∞

X
exp

(
−2m x1/m

) x dx√
x2 − X2

, (A.12)
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Fig. A.1. Contours of log10 R (left, Eq. (A.12)) and μ (right, Eq. (A.4), with Eqs. (15), (A.2) and (A.3)) for the Einasto model.

where X = R/r−2. In the range 3.5 ≤ m ≤ 6.5 (spanned by ΛCDM halos in the redshift range 0 ≤ z ≤ 3 according to Gao et al.
2008) and −2 ≤ log10 X ≤ 2, R varies little and regularly, as seen in the left panel of Fig. A.1. We fit a two-dimensional 4th-order
polynomial in m and u = log10(R/r−2) to log10 R. We find

R(X,m) � Rapx(u,m) (A.13)

Rapx(u,m) = dex
(
6.286 × 10−6 m4 + 0.001178 m3u − 0.0002251 m3 + 0.001524 m2u2 − 0.02427 m2u

+0.0008538 m2 + 0.001861 m u3 − 0.02323 m u2 + 0.1849 m u+ 0.01577 m

+0.0006014 u4 − 0.01506 u3 + 0.1056 u2 + 0.3406 u− 0.2515
)
. (A.14)

In the interval 3.5 ≤ m ≤ 6.5 and −2 ≤ u ≤ 2, Eqs. (A.13) and (A.14) are accurate to better than 0.8% everywhere (0.12% rms).
The dimensionless surface density can then be written as

Σ̃(X; m) =
(2 m)3m

m γ(3 m, 2 m)
exp

(
−2 m X1/m

)
Rapx(log10 X,m), (A.15)

or equivalently, with M (r−2) = P(3m, 2m) M∞, where P(a, x) = γ(a, x)/Γ(a) is the regularized incomplete gamma function and M∞
the total mass of the Einasto model:

Σ(R)

M∞/
(
πr2
−2

) = (2 m)3m

m Γ(3 m)
exp

(
−2 m X1/m

)
Rapx(log10 X,m). (A.16)

Alternatively, the surface density profile can be, self-consistently, estimated from Eq. (A.7) by differentiation over the projected
mass profile, yielding after some algebra

Σ(R; m) =
1

2πR

dMp(R; m)

dR

� μapx(u,m)

2πR2

[
4πR3 ρ(R; m) +

d log10 μapx

du
M(R; m)

]

=

⎡⎢⎢⎢⎢⎣M (r−2)

πr2
−2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣X3 ρ̃(X; m) +

d logμapx

d log X

P
(
3m, 2m X1/m

)
P(3m, 2m)

⎤⎥⎥⎥⎥⎥⎥⎦ μapx(u,m)

2 X2
, (A.17)

where ρ̃ is given in Eq. (A.11).
Equation (A.17) has the advantage of providing an approximation for the surface density profile that is consistent with that of

the projected mass profile. This is crucial for maximum likelihood estimation of concentration (and possibly Einasto index and
background level). On the other hand, the accuracy of Eq. (A.17) is about 5 times worse than that of Eq. (A.15).
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Fig. A.2. Dimensionless tangential shear profile for the NFW model (black) and the m = 4 (red, long-dashed), 5 (green, short-dashed) and 6 (blue,
dotted) Einasto models, using Eq. (A.18) with Eqs. (A.9), (A.14), (A.15), (A.6), and (A.8).

A.3. Tangential shear profile

For any density model, the tangential shear measured by weak lensing can be written (e.g. Miralda-Escude 1991)

γt(R; m) =
Σ(R; m) − Σ(R; m)

Σcrit
, (A.18)

where Σ(R; m) = Mp(R; m)/(πR2) is the mean surface density, while Σcrit = c2/(4πG) DS/(DLDLS) is the critical surface density,
with c the velocity of light, and where DS, DL, and DLS are the angular diameter distances between the observer and the source, the
observer and the lens, and the lens and the source, respectively. Equation (A.18) indicates that adding a constant term to the surface
density (Eq. (24)) has no effect on γt (this is the mass-sheet degeneracy). For the Einasto model, the tangential shear (Eq. (A.18)) is
readily computed using Eqs. (A.15) with (A.14) and (A.8) with (A.6). Figure A.2 shows the subtle differences in the shear profile
between the NFW and Einasto models of index m = 4, 5, and 6. While the tangential shear of the four models is indistinguishable in
the wide range 0.8 < R/r−2 < 10, there are potentially measurable differences at R > 10 r−2 (at 100 r−2, the NFW shear is 1.5 times
greater than that for the m = 5 Einasto model) and possibly at R < 0.8 r−2 (as long as the weak linear approximation assumed for
the measured shear to match the expression of γt of Eq. (A.18) remains valid).

Appendix B: Surface density and projected mass of the NFW model with lines of sight limited to a sphere

In this appendix, we derive the surface density and projected mass (or, equivalently, projected number) profiles of the NFW model,
with the lines of sight restricted to a sphere (which we conveniently choose as the virial sphere) instead of extending to infinity.

B.1. Surface density profile

In an analogous manner as the case with line-of-sight extending to infinity (Eq. (1)), the surface density at projected radius R within
the sphere of radius rmax is

Σsph(R; rmax) = 2
∫ rmax

R
ρ(r)

r dr√
r2 − R2

· (B.1)

We now consider the case of the virial sphere: rmax = rv. The surface density can then be written

Σsph(R; rv) =
M (r−2)

πr2
−2

Σ̃sph

(
R

r−2
,

rv
r−2

)
, (B.2)
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where

Σ̃sph(X, c) =
1

2 ln 2 − 1

∫ c

X

dx

(1 + x)2
√

x2 − X2
(B.3)

=
1

2 ln 2 − 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(1 − X2)3/2

cosh−1

[
c + X2

(c + 1) X

]
− 1

(c + 1)

√
c2 − X2

1 − X2
0 < X < 1,

√
c2 − 1(c + 2)
3(c + 1)2

+

(
−2c3 − 4c2 − c + 2

)
(X − 1)

5(c + 1)2
√

c2 − 1
X = 1 < c,

1
(c + 1)

√
c2 − X2

X2 − 1
− 1

(X2 − 1)3/2
cos−1

[
c + X2

(c + 1) X

]
1 < X < c ,

0 X = 0 or X > c,

(B.4)

where Eq. (B.3) is found by inserting the NFW density profile (Eqs. (4)) into (B.1).

B.2. Projected mass profile

For the NFW model, the projected mass within the virial sphere is

Msph
p (R; rv) =

∫ R

0
2 π S Σsph(S ; rv) dS = M(r−2) M̃sph

p

(
R

r−2
,

rv
r−2

)
, (B.5)

where

M̃sph
p (X, c) = 2

∫ X

0
Y Σ̃sph(Y, c) dY (B.6)

=
1

ln 2 − 1/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 X = 0,

√
c2−X2 − c

c + 1
+ ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣ (c + 1)
(
c − √c2−X2

)
X

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + 1√
1 − X2

cosh−1

[
c + X2

(c + 1)X

]
0 < X < 1 and X < c,

√
c2−X2 − c

c + 1
+ ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣ (c + 1)
(
c − √c2−X2

)
X

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + 1√
X2 − 1

cos−1

[
c + X2

(c + 1)X

]
1 < X < c,

ln
[
(c + 1)

(
c −
√

c2 − 1
)]
− c

c + 1
+ 2

√
c − 1
c + 1

1 = X < c,

ln(c + 1) − c
c + 1

X ≥ c,

(B.7)

where Eq. (B.7) was found by inserting Eq. (B.4) into Eq. (B.6). For X ≥ c, one recovers the mass within the virial sphere.

Appendix C: Maximum likelihood estimates

In this appendix, we illustrate the maximum likelihood calculations that we have performed.
Given parameters θ, and data points x the MLE is found by minimizing

− lnL = −
∑

j

ln p(x j|θ), (C.1)

where L =
∏

j

p(x j|θ) is the likelihood.

C.1. Density profile

The probability of measuring an object (galaxy or dark matter particle) at radius r in a spherical model of concentration c is

p(r j|c) =
4πr2

[
ν(r j; c) + b

]
N(rmax; c) − N(rmin; c) + 4 π b

(
r3

max − r3
min

)
/3
, (C.2)

where ν(R) and N(R) are respectively the density and number (proportional to mass) profiles, rmin and rmax are respectively the
minimum and maximum radii, c is the concentration, while b is the constant density background.
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C.2. Surface density profile

The probability of measuring a galaxy at projected radius R in a spherical model of concentration c and background b is

p(R j|c, b) =
2πR j

[
Σ(R j; c) + Σbg

]
Np(Rmax; c) − Np(Rmin; c) + πΣbg

(
R2

max − R2
min

) , (C.3)

where Σ(R) and Np(R) are respectively the surface density and projected number (proportional to projected mass) profiles, Rmin and
Rmax are respectively the minimum and maximum projected radii, c is the concentration, while Σbg is the constant surface density
background.

For the surface density profile Σ(R) and the projected number (mass) profile Np(R), we use the formulae of Łokas & Mamon
(2001) and of Appendix A for the NFW and Einasto models, respectively.

C.3. Distribution of interloper velocities

According to Eq. (8), the distribution of interloper line-of-sight absolute velocities, v j ≡ |vlos, j|, is to first order the sum of a Gaussian
and a constant term:

p(v j|σi, A, B) =
A exp

[
−v2j/

(
2σ2

i

)]
+ B

√
π/2 Aσi erf

[
κ̂/(σi

√
2)
]
+ κ̂ B

, (C.4)

where the denominator is found by ensuring
∫ κ̂

0
p(v j) dv j = 1 (Eq. (12)), and where κ̂ is the maximum considered value of |vlos|/vv

(so κ̂ = 4 in Figs. 6). If A and B are expressed in virial units, then the denominator of Eq. (C.4) is the surface density of particles
under consideration in virial units, which we directly measure from the simulation as Σ = (N/Nv)/S , where Nv is the number of
particles within the virial sphere, while N is the number of particles in the radial bin (or within the full virial cone), and S is the
surface of the radial bin (i.e. π for the full virial cone). Hence, substituting for A = Σ (1 − κ̂ B′)/[

√
π/2σi erf[κ̂/(σi

√
2)], we can

write the probability of measuring an interloper absolute velocity as

p(v j|σi, B) =
(1 − κ̂ B′) exp

[
−v2j/

(
2σ2

i

)]
√
π/2σi erf

[
κ̂/(σi

√
2)
] + B′, (C.5)

where B′ = B/Σ. Then given the respective uncertainties ε(σi) and ε(B′) in σi and B′, we deduce the uncertainties in B and A as

ε(B) = Σ ε(B′), (C.6)

ε(A) =

√(
∂A
∂σi

)2

ε2(σi) +

(
∂A
∂B′

)2

ε2(B′) = Σ

√
2κ̂2 πσ4

i E2 ε2(B′) + (1 − κ̂ B′)2
{√

2πσi E − 2κ̂ exp
[
−κ̂2/

(
2σ2

i

)]}2
ε2 (σi)

πσ3
i E2

, (C.7)

where E = erf
[
κ̂/(σi

√
2)
]
.

C.4. Practical considerations

For one-parameter fits, we first search on a wide linear grid of equally-spaced 11 points for θ j, then we consider the three points
with the lowest values of lnL and create a subgrid of 11 equally-spaced points (thus typically zooming in by a factor of 5), and
iterate with finer subgrids until the two values of the parameter θ j with the highest likelihoods differ by less than 0.0001 or when
the lowest − lnL decreases by less than 10−12. We then obtain the 1σ confidence interval fitting a cubic spline to the points below
and above the best-fit parameter to solve for − lnL = − lnLML + 0.5.

For two-parameter (three-parameter) fits, we first search on a wide rectangular (cuboidal) grid of equally-spaced 11 points. Then
we consider the rectangle (cuboid) obtained by searching for the lowest values of − lnL, such that there are at least 3 different values
for both (all three) parameters. We create a sub-grid in this rectangle (cuboid) with again 11 × 11 (11 × 11 × 11) points, and iterate
with finer subgrids until the pair of each of the two (three) parameters with the highest two likelihoods differ by less than 0.0001 or
when the lowest − lnL decreases by less than 10−12. We then obtain the 1σ contour by considering those points in parameter space
for which − lnL = − lnLML + 1.15 (1.77), and then define as the minimum and maximum values for each parameter the extreme
values in this contour.
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