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10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France, and Institut d’Astrophysique de Paris,

UMR 7095-CNRS, 98bis boulevard Arago, F-75014 Paris, France

S. Deser†

Physics Department, Brandeis University, Waltham Massachusetts 02454, USA, and Lauritsen Laboratory,
California Institute of Technology, Pasadena California 91125, USA

G. Esposito-Farèse‡

GR"CO, Institut d’Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie-Paris 6,
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We show that scalar, 0-form, Galileon actions—models whose field equations contain only second

derivatives—can be generalized to arbitrary even p-forms. More generally, they need not even depend on

a single form, but may involve mixed p combinations, including equal pmultiplets, where odd p fields are

also permitted: We construct, for given dimension D, general actions depending on scalars, vectors, and

higher p-form field strengths, whose field equations are of exactly second derivative order. We also

discuss and illustrate their curved-space generalizations, especially the delicate nonminimal couplings

required to maintain this order. Concrete examples of pure and mixed actions, field equations, and their

curved-space extensions are presented.

DOI: 10.1103/PhysRevD.82.061501 PACS numbers: 04.50.�h, 11.10.�z, 98.80.�k

I. INTRODUCTION

The geometric ancestors of Galileons [1–5] are the
Gauss-Bonnet-Lovelock (GBL) actions

I ¼
Z

dDx "��..."��...R���� . . .R...e�� . . . e...; (1)

powers of the curvature R whose field equations are never-
theless independent of higher than second metric deriva-
tives. This is achieved by virtue of the Bianchi identities,
due to which the R variations do not contribute; only the
explicit vielbeins’ do, as is especially clear in vielbein/spin
connection formalism. Here R is the ‘‘field strength’’ of the
(non-Abelian) spin connection !���ðeÞ; the Levi-Civita

symbol "��... is a tensor density, while "��... is a world
scalar; ð�; �; . . .Þ and ð�;�; . . .Þ are world and local
Lorentz indices, respectively. These actions are dimension
dependent, yielding vanishing field equations below a
certain D, such as D ¼ 5 for R2 and D ¼ 7 for R3. More
explicitly, for D ¼ 5 say, one e�� is required to contract

the two leftover indices in ð""RRÞ��, while there is no
e��, hence no field equation, in D ¼ 4. The mechanism is

simple, and as we shall see below, universal: First note that
�R���� ¼ D½��!����, where D is the usual covariant

derivative with respect to the spin connection (acting also
on local indices), and �! is a world vector. Therefore,

integrating D by parts (freely past all vielbeins of course)
onto the remaining Riemann tensor(s) gives 0 by the
cyclic Bianchi identities. So the GBL field equations,
ð""R . . .RÞ�� ¼ 0, just result from removing (any) e�� in

(1) and are manifestly independent of higher than second
vielbein derivatives.
Galileons are scalars whose field equations depend

only on second derivatives, hence are invariant under
constant shifts of the fields (‘‘positions’’) and their gra-
dients (‘‘velocities’’), recalling old-fashioned Galilean
invariance. (Note that this invariance is only meaningful
in flat space, since there are no constant vectors or
tensors in curved backgrounds.) Their actions bear a
formal resemblance to the GBL systems, when expressed
as [4]

I ¼
Z

dDx "��..."��...@��@��ð@�@��Þ . . . ð@@�Þ: (2)

Again, the variations only leave second-order equations
ð@@�Þ . . . ð@@�Þ ¼ 0, and for sufficiently lowD, where the
@�@�� “e” are absent (for a given power of @@�� “R”),
Eq. (2) has vanishing variation. This (slightly imperfect)
similarity led us to conjecture that (2) could be obtained
from a GBL-like action using a metric suitably parame-
trized in terms of @�; it was indeed elegantly confirmed
recently [5] for the R2 case (and in a suitable limit), as a
byproduct of a brane analysis.
The purpose of this paper is to generalize the above

models by noting that the properties of 0-forms underlying
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(2) are actually shared by arbitrary even p-forms, and
extend to any (dimensionally allowed) admixtures of vari-
ous p-level fields. Surprisingly, we found a fundamental
divide between even (scalars, . . .) and odd (vectors, . . .)
models. The latter turn out, despite initial appearances, to
have empty flat-space actions1 (except of course the stan-
dard Maxwell-like L ¼ F2), i.e., devoid of field equations
for any (D, p ¼ 2nþ 1). However, as we discuss below,
they may appear in mixed form, or in multiplets of single
p-form, models.

We will work primarily in flat space in order to focus on
our main results. As for scalars, the key ingredient here is
that the forms’ ‘‘field strengths’’ !pþ1 ¼ dAp, are curls

which do not become covariant; only the explicit r in r!
does. Using these ‘‘gauge-invariant’’ field strengths rather
than ordinary gradients is both essential to the Galileon
aspect and excludes their possible ghost, lower spin gauge
components.

Retaining second order upon extension to curved back-
grounds is nontrivial; even for scalars, the minimal cou-
pling extension of (2) gave rise to third derivative terms in
its stress tensor and hence in the associated gravitational
field equations, as well as to third metric derivative terms
/ rR in the � equations. A delicate set of additional,
nonminimal, couplings, involving the full curvature tensor
was required [3,4] to remove these. This program, though
correspondingly more complicated, can in fact be carried
out for our present generalized framework in a fashion
similar to that of [4] for scalars. Instead of detailing here
the straightforward but still rather lengthy derivation for
the most general case, we will display some examples of
successful covariantization in Sec. IV.

II. p-FORM ACTIONS

We start, to emphasize the pitfalls in this problem, with
the obviously simplest—but actually empty—generaliza-
tion from a scalar (2) to a one-form A� with field strength

F�� ¼ @½�A��:

I ¼
Z

dDx "��..."��...F��F��ð@�F�� . . .Þð@	F
� . . .Þ;
(3)

where the parentheses contain products of @F and indices
are connected as follows: In the first parenthesis, the index
of the derivative @ is contracted with the first "��... whereas
those of F are contracted with the second "��..., and
inversely in the second parenthesis. The integrand
of (3) is a total divergence which we may write as
1
2 @	½"��...’�..."��...	
 ...F��F
�F��ð@�F�� . . .Þð@
F’� . . .Þ�.
This equality follows by noting that 1

2@	 manifestly anni-

hilates all its operands but F��F
� (on each of which it acts

identically), where its actions reproduce the original
Lagrangian. Since this conclusion is due to the evenness
of F��F
� upon exchange of their indices �� $ 
�, the

difficulty obviously persists for all (D, p ¼ 2nþ 1).
However, as we shall see in the next section, odd p models
can be revived if they are allowed to depend on more than
one A�.

Fortunately, the direct extension of (2) does exist for
even p; it formally resembles (3) where now !���... ¼
@½�A��...�. In detail, the general (now nonvanishing)

action is

I ¼
Z

dDx "��..."��...!��...!��...ð@�!��... . . .Þ
� ð@	!
�... . . .Þ: (4)

As in Eq. (3), when the derivative @ of a gradient @! is
contracted with one of the two ", the indices of !pþ1 must

be contracted with the other ", otherwise the action would
vanish by virtue of the Bianchi identities (i.e., ½d; d� ¼ 0).
The two parentheses of (4) must contain the same number
of terms, not greater than ðD� p� 1Þ=ðpþ 2Þ. [In the
lowest, p ¼ 0, case, an odd total number of @! is also
permitted, cf. (2).] For fewer terms, there remain extra
open indices on each " that must be contracted between
them (using vielbeins in curved space, of course); this
yields (up to an overall factor) the same Lagrangian as in
the lowest possible dimension. There is actually a formal
resemblance between (4) and (2) that emerges from
considering the (pþ 1) indices of the form ! as a multi-
index M replacing the single index of �;�. Then, just as

each of the two indices of @�@�� must be contracted

with different ", here � and M of @�!M must belong to
different ".
It should be clear from our notation and the Bianchi

identities that the field equations depend homogeneously
on @! and not at all on !, hence they enjoy the cor-
responding Galilean invariance, this time under a shift
of ðA��...; !���...Þ by constants antisymmetric tensors

ðc½��...�; k½���...�Þ. For completeness, let us run through the

argument, entirely akin to those for gravity and scalars:
First, if either pure ! is varied, the explicit curl on its
A can only land on the other !, since Bianchi annihilates
any @�@½�!��...� (or @�@½�!��...�). Likewise, varying any

@!� @�@�A factor forces each of those two @ to land

on one of the two pure !; all other landings vanish, again
by Bianchi. The simplest version of Eq. (4), valid for
D � pþ 1, does not contain any derivative @!, and is
thus the standard kinetic term !2 (valid for all p of course,
though dynamically nontrivial only when D> pþ 1).
The first novel p-form Galileon action, involving just
two @! factors, requires D � 2pþ 3. For p ¼ 2, it reads
explicitly

1Nevertheless, covariantized versions of trivial flat-space ac-
tions can produce nontrivial field equations, proportional to the
curvature, as will be illustrated in Sec. IV.
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I ¼
Z

d7x "���
�’�"����	
�!���!���@
!�	
@�!�’�

¼ 36
Z

d7x½�9ð!�
��;
!


�’!�’�;�!
���Þ � 18ð!�

�
�!�


�!’��;
!’��;�Þ � 36ð!���!�
�!��’
;
!�’�

;�Þ
þ 6ð!���!

���;
!
’�!
’��

;�Þ þ 18ð!��
�!��
!’��;
!

’��
;�Þ � 3ð!���!�
�;�Þ2 � 9ð!���!�
�;�Þ2

þ 18ð!���!
�
�

;�Þ2 þ 9ð!���!��
;�Þ2 � 9ð!���!
��


;
Þ2 � ð!���!���;
Þ2
þ ð!2Þð!���;
Þ2 � 3ð!2Þð!���

;�Þ2�: (5)

Its field equation

"���
�’�"����	
�@�!���@
!�	
@�!�’� ¼ 0 (6)

is obviously of pure second order; we do not display its, 23
term, expansion.

We conclude this section by discussing another amusing
(if somewhat tangential) parallel between tensors and
forms, which evokes the well-known conversion [6]
of pure divergence D ¼ 4 GB into general relativity
(GR), with or without cosmological term: upon adding
��e��e�� to each R���� in the topological invariant

(1), it becomes proportional to the GR action, since the
cross term in ""ðR��eeÞ2 is the scalar curvature, while
the �2 term is the volume density, cosmological, term.
Subtracting ðRþ�eeÞ2 and ðR��eeÞ2 actions removes
the latter. For scalars, we similarly add �m2���� to each

of the two @�@�� in the pure GB-like I ¼ R
""@@�@@�:

this leads to the (massive or massless by subtraction)
Klein-Gordon action. These extensions can be made for
all forms: thus for the vector Proca/Maxwell actions, add
��m2��½�A�� to each @�F�� in the otherwise vacuous

action I ¼ R
""@F@F, etc. Note that our mass construction

is valid in all D [ � ðpþ 2Þ of course]; that of GR, for all
D � 4. That the former has a curved-space extension is
also obvious.

III. MIXED FORM ACTIONS

Our actions (4) can be further generalized by including
several species, i.e., mixtures of various unequal p-forms
compatible with a desired D. Labelling these species by
ða; b; . . .Þ, the action takes the formal expression

I ¼
Z

dDx "��..."��...!a
��...!

b
��...ð@�!c

��... . . .Þ
� ð@	!d


�... . . .Þ: (7)

The number of indices contracted with the first and second
" must be the same and not greater than D, but the two
parentheses may now involve different species and there-
fore a different number of terms. Here, Bianchi again
ensures (exactly as for the single species version) that
only @! appears in the field equations. Hence (flat space)
Galilean invariance under translation of all ðAp;!pþ1Þ by
constant antisymmetric tensors ðcp; kpþ1Þ is preserved.

Note that odd forms are also allowed in (7), subject to

various symmetry constraints. For example, no more than
two @F factors can be present, otherwise (7) would involve
at least one product of the form @�F��@�F��, where the

two @ and the two F are, respectively, contracted with
the same " tensors. Hence their indices can be inter-
changed by three permutations, � $ �, �� $ ��, so
they vanish identically. This single @F@F ceiling obviously
also applies to higher odd p-forms; instead, the p ¼ 2n
models, being even under such permutations, may contain
arbitrary powers of @! consistent with a given D (but
conversely, see below for limitations on even p actions).
Let us quote two simple, mixed 0- and 1-form, nontrivial

examples; the first Lagrangian is defined in any D � 3:

L ¼ "���"���F��F��@�@��

¼ 4F��F�
��;�� � 2F2h�: (8)

Both its � and A� field equations are obviously of pure
second order; explicitly,

ðF��;�Þ2 � 2ðF��
;�Þ2 ¼ 0; (9)

F��;��;�� þ F��
;��

;�
� � F��

;�h� ¼ 0: (10)

Similarly, in D � 4, the mixed model

L ¼ "���
"����@��@��@�F��@�F�


¼ �8ð�;�F
��;�F�


;
�;�Þ þ 4ð�;�F��;�Þ2
þ 2ð�;�F��;�Þ2 � 4ð�;�F

��
;�Þ2

� 2ð�;�Þ2ðF��;
Þ2 þ 4ð�;�Þ2ðF��
;�Þ2 (11)

also yields pure second-order � and A� field equations:

4ð�;��F
��;�F�


;
Þ � 2ðF��;
�;��F
�
�;
Þ

þ 2ðF��
;��;��F

�

;
Þ � ðF�
;��

;��F�

;�Þ

þ ðh�ÞðF��;�Þ2 � 2ðh�ÞðF��
;�Þ2 ¼ 0; (12)

2ð�;��F
��

;��
;��Þ þ 2ð�;��F��;��

;��Þ
þ 2ð�;���;��F

��
;�Þ � ð�;��Þ2ðF��

;�Þ
� 2ðh�Þð�;��F

��;�Þ � 2ðh�Þð�;�
�F

��
;�Þ

þ ðh�Þ2ðF��
;�Þ ¼ 0: (13)

An even simpler class of mixed actions involves a
single p-order species, but now as a ‘‘multiplet’’ Aa

��...,
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for instance pure scalars but with different�a replacing the
single one in (2). This extension even resuscitates odd-p
actions: For instance, the simplest bi-vector Lagrangian
of the type (3),L ¼ "���
�"����	Fa

��F
a
��@�F

b
��@	F

b

�, is

obviously no longer a total divergence. Our reasoning
below Eq. (4), showing that the field equations do not
involve higher order derivatives, may also be generalized
to non-Abelian gauge bosons Aa

� and their field strengths

F ¼ dAþ A ^ A, although both the invariances under
constant shifts, Aa

� ! Aa
� þ ca� and Fa

�� ! Fa
�� þ ka½���,

would then be lost. Indeed, if D denotes the covariant
derivative with respect to the internal space [like the D
below (1) with respect to tangent space], then the Bianchi
identitiesD½�Fa

��� ¼ 0 still hold, therefore Lagrangians of

the form L ¼ "��..."��...Fa
��F

b
��ðD�F

c
�� . . .ÞðD	F

d

� . . .Þ

define nonlinear extensions of Yang-Mills theory, while
keeping field equations of second (and lower) order.

It is worth noting that one may also add undifferentiated
powers of ! beyond the two in the generalized models (7),
provided all indices of any one! (whatever its p order) are
contracted with those of a single " tensor, but not ‘‘across’’
both. Also, no more than two undifferentiated even p-field
strengths !a

pþ1 are allowed for the same species a, other-

wise the action would vanish by oddness, while any num-
ber of odd p field strengths may be present. The same
reasoning as above indeed shows that no higher derivative
than @! is generated in the field equations, i.e., that they
depend at most on second derivatives of the p-forms A. On
the other hand, these field equations now involve some
pure! in addition to the usual @! factors, because at most
two derivatives are generated by varying the @! terms of
the action, so that they can act on at most two of the
undifferentiated !. Therefore, this generalization with
more than two pure ! results in a loss of the ‘‘velocity’’
invariance ! ! !þ k. A simple D � 4 example of this
type is

L ¼ "���
"����@��@��F��F��@
@��

¼ 4ð�;�F
���;��F

�
�;
Þ þ 8ð�;�F
��F���

;�
�;
Þ
þ 2ðF2Þð�;��

;���;�Þ þ 4ð�;�Þ2ðF�

F

�
�;��Þ
� 4ð�;�F

��F���
;�Þðh�Þ � 2ð�;�Þ2ðF2Þðh�Þ: (14)

As is clearest from the first expression, its variations in-
volve both first and second (but no higher) derivatives of �
and A�.

IV. GRAVITATIONAL COUPLING

As stated in the Introduction, second-order preserving
extension of even the scalar flat-space actions to curved
backgrounds was a rather complicated process, one that
becomes more combinatorially involved for higher forms.
We content ourselves here with giving the explicit non-
minimal extensions for four of our cases (5), (8), (11), and
(14), that avoid higher derivatives in both the matter
and gravitational (that is, through T��) field equations.

These terms are constructed as for scalars in [4]: All
possible pairs of gradients, @!a@!b, must be replaced by
suitable contractions of the undifferentiated!a!b with the
Riemann tensor, and added to the minimally covariantized
flat-space action with suitable coefficients; somewhat
more involved counting shows that they require factors
/ ðpa þ 1Þðpb þ 1Þ, where pa;b denote the orders of the

forms Aa;b. One other difference in the p > 0 construction
is that r�!��... are to be distinguished from r�!��...,

essentially because of their different "-index contractions,
a distinction irrelevant to the original scalar, �;�� ¼ �;��,

case. One common feature is that flat-space Galilean in-
variance is also not restorable by consistent covariantiza-
tion (nor should it be expected, absent constant vectors or
tensors in curved space): the equations now necessarily
depend on both second and first derivatives of the fields.
For (5), the added terms are

�I ¼ � 9

4

Z
d7x "���
�’�"����	
�!���!���!�
�!

�
�	R’�
�

¼ 54
Z

d7x
ffiffiffiffiffiffiffi�g

p ½24ð!���!
���!�’�!

’�
R��
�
Þ þ 12ð!���!

���!’��!
’�
R��

�
Þ
þ 4ð!2Þð!���!

��
R��
�
Þ þ 12ð!��’!

���!�’�!��
R


� Þ þ 18ð!���!

���!’��!’�
R


� Þ

� 10ð!2Þð!���!��
R


� Þ � 3ð!���!

��
Þ2Rþ ð!2Þ2R�: (15)

Similarly, the mixed D � 4 example (11) acquires the terms

�L ¼ "���
"����@��@��F��F
�
�R�
��

¼ 2
ffiffiffiffiffiffiffi�g

p ½�2ð�;��;�F��F

�R���
Þ þ 4ð�;�F

��F��R
�
�;
Þ þ 2ð�;�Þ2ðF�
F�


R��Þ
þ 2ðF2Þð�;�R

���;�Þ þ ð�;�F
��Þ2R� ð�;�Þ2ðF2ÞR�: (16)

In contrast to the above models, the mixed D � 3 example (8) and the ‘‘non-Galileon’’ Lagrangian (14) actually
require no additional terms to preserve second order, since they only contain a single vulnerable—because of second

C. DEFFAYET, S. DESER, AND G. ESPOSITO-FARÈSE PHYSICAL REVIEW D 82, 061501(R) (2010)

RAPID COMMUNICATIONS

061501-4



order—@@� factor. It is clear by inspection of (8) and (14)
that all (covariant) third derivatives arising from
variations here always have the form of a commutator
½r;r� acting on a @A, that is a—harmless—curvature
times first derivatives of fields.

Our final model illustrates the observation made in
our footnote that actions trivial in flat space can have
nontrivial, dynamical, curvature-dependent extensions:
Consider the vector models (3), or more generally, actions
(4) for any odd p, which are vacuous in flat space. Their
minimal covariantizations are clearly both nonvanishing
and of third order. However, one may also add appropriate
nonminimal terms that both remove the offending higher
derivatives and remain nontrivial. Indeed, the simplest case
is the lowest Galileon D ¼ 5 vector action,

I ¼
Z

d5x "���
�"����	F��F��r�F��r	F
�

¼ � 1

2

Z
d5x "���
�"����	F��F��F

�
�F��R
��	: (17)

The last equality in (17) exhibits the model’s curvature-
dependence, and is obtained from the first expression by
parts integration. [The metric variation of the curvature in

the second expression (17) yields a non-vanishing T�� ¼
@�@�H

½���½��� even in flat space, despite the model’s

triviality there; no paradox ensues since this pure super-
potential form has vanishing Lorentz generators.] The third
derivatives in the resulting field equations can be removed
by adding the counterterm

�I ¼
Z

d5x "���
�"����	F��F��F
�
�F��R
��	:

(18)

It differs from the action (17) itself simply by an overall
factor and the index change � $ � in the last two terms.
Their sum,

I þ�I ¼ �8
Z

d5x
ffiffiffiffiffiffiffi�g

p ½4ðF��F��F��F
�
C���
Þ

þ 4ðF�
�F

��F�
�F

�
C���
Þ
þ ðF2ÞðF��F�
C���
Þ�; (19)

depends only on the Weyl tensor C���
 [for no obvious

D ¼ 5 reason, though (19) is manifestly conformal invari-
ant in D ¼ 10]; as per design, both its T�� and field

equations depend on at most second derivatives.
Details of our models’ constructions, of their general

nonminimal compensating gravitational extensions, appli-
cations for instance in the spirit of [7], and other open
questions, e.g., possible supersymmetrization, may be pre-
sented elsewhere.
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