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We compute the growth of the mean square of quantum fluctuations of test fields with small effective

mass during a slowly changing, nearly de Sitter stage which takes place in different inflationary models.

We consider a minimally coupled scalar with a small mass, a modulus with an effective mass / H2 (with

H the Hubble parameter), and a massless nonminimally coupled scalar in the test field approximation and

compare the growth of their relative mean square with the one of gauge-invariant inflaton fluctuations. We

find that in most of the single field inflationary models the mean square gauge-invariant inflaton

fluctuation grows faster than any test field with a non-negative effective mass. Hybrid inflationary models

can be an exception: the mean square of a test field can dominate over the gauge-invariant inflaton

fluctuation one on suitably chosen parameters. We also compute the stochastic growth of quantum

fluctuations of a second field, relaxing the assumption of its zero homogeneous value, in a generic

inflationary model; as a main result, we obtain that the equation of motion of a gauge-invariant variable

associated, order by order, with a generic quantum scalar fluctuation during inflation can be obtained only

if we use the number of e-folds as the time variable in the corresponding Langevin and Fokker-Planck

equations for the stochastic approach. We employ this approach to derive some bounds for the case of a

model with two massive fields.

DOI: 10.1103/PhysRevD.82.064020 PACS numbers: 04.62.+v, 98.80.Cq

I. INTRODUCTION

The theory of quantum fields in an expanding universe
has evolved from its pioneering years [1] into a necessary
tool in order to describe the Universe on large scales. The
de Sitter background—characterized by the Hubble pa-
rameterH � _a=a being constant in time (for the flat spatial
slice), where aðtÞ is the scale factor of a Friedmann-
Robertson-Walker (FRW) cosmological model—has been
the main arena to compute quantum effects even before
becoming a pillar of our understanding of the early infla-
tionary stage and of the recent acceleration of the Universe.

However, while j _Hj � H2 for any inflationary model, _H
may not become zero in a viable model, apart from some
isolated moments of time. Indeed, the standard slow-roll
expression for the power spectrum of the adiabatic mode of
primordial scalar (density) perturbations becomes infinite,
i.e., meaningless, if _H becomes zero during inflation.1

Outside the slow-roll approximation, _H may reach zero

[3], but for a moment only. Therefore, the study of quan-
tum effects in a nearly de Sitter stage with _H � 0, in
particular, when the total change in H during inflation is
not small compared with its value during the last e-folds of
inflation [4–7] (see also the recent papers [8–10]), is not of
just pure theoretical interest. Among the main results of
previous investigations, it has been shown that the infrared
growth of minimally coupled scalar fields with a zero or
small mass m � H in a background with a practically
constant H [11–13] occurs for massive fields when H
changes significantly during inflation [4,5], and that the
stochastic approach, originally mainly applied to a new
inflationary type background with a small change in H
during inflation [14], also works in realistic chaotic type
inflationary space-times [7] (here we do not discuss its
application to eternal inflation [15,16] and to interactions
in a de Sitter background [17–19]). A particle production
in a realistic inflationary background is so different from
the corresponding one in the de Sitter space-time that it has
prompted us to reconsider the amplification of nearly
massless minimally coupled scalar fields in inflation with
a quadratic potential [4,7] and compare it with the dynam-
ics driven by a scalar field condensate.
In this paper we wish to tackle in more detail the moduli

problem issue. On one hand we wish to extend our results

1This is why the statement sometimes found in literature that,
for H ¼ const, a flat (Harrison-Zeldovich) ns ¼ 1 spectrum is
generated is also meaningless. Actually, it is a Vð�Þ / ��2

inflaton potential that leads to ns ¼ 1 (and r � 0) in the slow-
roll approximation. See [2] for the exact solution for Vð�Þ
without using this approximation.
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in [7] to different inflationary models and to different types
of test fields, not only to massive minimally coupled scalar
fields, but also to massless nonminimally coupled scalar
fields and moduli with an effective mass / H2. We inves-
tigate effectsOð _HÞ and we therefore need to consider both
these extensions. On the other hand, it is known that the
mean square of gauge-invariant inflaton fluctuations grows
[5] and the stochastic description for this effect for a
general potential has been established [7]; it is therefore
interesting to compare the quantum amplification of test
fields not only with the background inflaton dynamics, but
also with the stochastic growth of gauge-invariant inflaton
fluctuations. This comparison aims for a self-consistent
understanding of quantum foam during inflation.

We then discuss the diffusion equation for general scalar
fluctuations in a generic model of inflation. On using the
results obtained by field theory methods, we show that the
diffusion equation for the gauge-invariant variable associ-
ated with this generic scalar fluctuation should be formu-
lated in terms of the number of e-folds N.

The paper is organized as follows. In Sec. II we choose
four representative cases of the inflationary ‘‘zoo’’ on
which we focus in this paper. In Sec. III we compute the
stochastic growth of a minimally coupled scalar with a
small mass, a modulus with an effective mass / H2, and a
massless nonminimally coupled scalar in the test field
approximation for the four inflationary models considered.
In Sec. IV we review the result obtained in Ref. [7] for
gauge-invariant inflaton fluctuations and compare it with
the growth of the test fields in the four different inflationary
models considered. In Sec. V we examine the stochastic
approach for a two field model for two generic self-
interacting potentials, and we compare our solution, ob-
taining some constraints on the parameters, for a particular
two quadratic field model. In Sec. VI we illustrate our
conclusions.

Our paper does not include a derivation of the stochastic
approach. Indeed an introduction of the stochastic method
is given in Refs. [14,18] and a comparison between sto-
chastic methods and quantum field theory results is done in
Refs. [14,18] and in our previous paper [7].

II. INFLATIONARY MODELS

The detailed evolution of the expansion during the ac-
celerated stage depends on the inflaton potential and so
does the growth of quantum fluctuations. For this reason
we consider in the following four different potentials
which are representative of the ‘‘inflationary zoo.’’ Since
we shall study the growth of quantum fluctuations as a
function of the number of e-folds

N ¼ log
aðtÞ
aðtiÞ ; (1)

we shall give the evolution of the Hubble parameter as a
function of N.

The first obvious model is chaotic quadratic inflation,
which we have also used in our previous investigations [4–
6]:

Vð�Þ ¼ m2

2
�2: (2)

During the slow-roll trajectory we have

H2 ’ H2
i � 2

3m
2N; (3)

_� ’ �
ffiffi
2
3

q
mMpl; (4)

whereM�2
pl ¼ 8�G (these formulas were obtained already

in [20] in the context of a closed bouncing FRW universe
with two quasi–de Sitter stages during contraction and
expansion). Let us note that in the numerical results pre-
sented in the figures all dimensional quantities have been

rescaled with respect to mpl ¼ Mpl

ffiffiffiffiffiffiffi
8�

p
. We then consider

the case of a quadratic potential (of arbitrary sign) uplifted
with an offset V0:

Vð�Þ ¼ V0 �M2

2
�2: (5)

With the positive sign, the potential in Eq. (5) is an ap-
proximation for the simplest model of hybrid inflation well
above the scale of the end of inflation; in this case �
decreases during the inflationary expansion. With the nega-
tive sign the potential in Eq. (5) is a simple small field
inflation model, again far from the end of inflation; in this
case � increases during the inflationary expansion. In the
following we use the approximate solution for the square
of the inflaton as

�2ðNÞ ’ �2
i e

�2ððM2M2
pl
Þ=V0ÞðN�NiÞ; (6)

valid whenH ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=ð3M2

plÞ
q

, i.e., M
2

V0
j�2 ��2

i j � 1.2 The

exact expression can be given in the implicit form N �
Ni ¼ �ðV0=ð2M2M2

plÞÞ logð�2=�2
i Þ � ð�2 ��2

i Þ=ð4M2
plÞ.

As another large field inflationary model we consider an
exponential potential

V ¼ V0e
�ð�=MplÞ�: (7)

This potential leads to a power-law expansion given by

aðtÞ ¼
�
t

ti

�
p
; HðtÞ ¼ p

t
(8)

with p ¼ 2=�2 [21] [we consider aðtiÞ ¼ 1 for the sake of
simplicity]. Such a solution is stable for p > 1 and the
slow-roll conditions are well satisfied for p � 1. In par-

2For a double well spontaneous symmetry breaking potential
V ¼ �ð�2 � ��2Þ2, which may be approximated by Eq. (5) for
small field values, the condition becomes jð�2 ��2

i Þ= ��2j � 1
together with �2

i =
��2 � 1, which again means that Vð�Þ is

always considered far from the minima.
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ticular one obtains

H ¼ Hie
�N=p ¼ p

ti
e�N=p; (9)

� ¼
ffiffiffiffi
2

p

s
MplN þ�i: (10)

III. GROWTH OF TEST FIELDS WITH SMALL
EFFECTIVE MASS IN THE STOCHASTIC

APPROACH

We shall consider a test scalar field with a small effective
mass and a zero homogeneous expectation value on an
inflationary background driven by an inflaton with poten-
tial Vð�Þ in the slow-roll approximation. The evolution
equation for the renormalized mean square h�2iREN (the
pedix REN will denote renormalized in the following) in
the next three subsections [Eqs. (11), (16), and (22)] fol-
lows in a straightforward manner from our previous paper
[7]. Note that the right-hand side of Eqs. (11), (16), and
(22) representing the contribution of created fluctuations
(’’particles’’) is obtained under the natural assumption of
the absence of particles in the in-vacuum state, more ex-
actly that each Fourier mode k of the quantum field � was
in the adiabatic vacuum state deep inside the Hubble radius
and long before the first Hubble radius crossing during
inflation, i.e., when its energy! ¼ k=aðtÞwas much larger
than HðtÞ.3 So the explicit time asymmetry of Eq. (11)
shows that this in-vacuum is not de Sitter invariant; it is
unstable and creation of fluctuations (particles) of light
scalar fields, as well as metric perturbations, takes place.
In turn, the cause of this instability may be finally traced to
the expansion of the Universe.

A. Growth of scalar fields with m2
� in the stochastic

approach

The stochastic equation is

dh�2iREN
dN

þ 2m2
�

3H2ðNÞ h�
2iREN ¼ H2ðNÞ

4�2
: (11)

Its general solution is

h�2iREN ¼
�
h�2iRENðNiÞ þ

Z N
dn

H2ðnÞ
4�2

� e
R

nðð2m2
�Þ=ð3H2ð~nÞÞÞd~n

�
e�

R
Nðð2m2

�Þ=ð3H2ðnÞÞÞdn;

(12)

which is just the integral form of Eq. (13) of Ref. [7]
generalized to an arbitrary inflaton potential.
For the quadratic inflaton case, we report here the solu-

tion given in Ref. [7]:4

h�2iREN ¼ 3H2ðm2
�=m

2Þ

8�2ð2m2 �m2
�Þ

ðH4�2ðm2
�=m

2Þ
i �H4�2ðm2

�=m
2ÞÞ;
(13)

where we have assumed h�2iRENðNiÞ ¼ 0 (we shall adopt
the same choice afterwards if not otherwise stated). We
then consider the potentials in Eq. (5), in the lowest order
approximation; that is, for V ’ V0 ¼ 3H2

0M
2
pl, we have

h�2iREN ’ 3H4
0

8�2m2
�

ð1� e�ðð2m2
�Þ=ð3H2

0
ÞÞNÞ: (14)

Let us note that the corrections induced by a nonzero
M2�2=V0 term are typically small both for the case of
hybrid inflation as well as for small field inflation (as long
as the field does not grow too much due to instability). The
corresponding analytic expressions, obtained using Eq. (6),
can be written in terms of hypergeometric functions but we
do not report them here. For the exponential potential we
obtain

h�2iREN ¼ p

8�2
H2

i exp

�
�p

3

m2
�

H2

��
� exp

�
p

3

m2
�

H2

�
H2

H2
i

þ p

3

m2
�

H2
i

Ei

�
p

3

m2
�

H2

�
þ exp

�
p

3

m2
�

H2
i

�

� p

3

m2
�

H2
i

Ei

�
p

3

m2
�

H2
i

��
; (15)

where Ei is the exponential integral function (see, for
example, [23]).

B. Growth of moduli fields with m2
� ¼ cH2 in the

stochastic approach

If jcj � 1, the stochastic equation takes the form

dh�2iREN
dN

þ 2c

3
h�2iREN ¼ H2ðNÞ

4�2
: (16)

Its general solution is

h�2iREN ¼
�
h�2iRENðNiÞ

þ
Z N

dn
H2ðnÞ
4�2

eð2=3Þcn
�
e�ð2=3ÞcN: (17)

3This assumption also means the absence of the so-called
trans-Planckian particle creation. See [22] and references therein
for a discussion of why trans-Planckian particle creation should
be absent in the standard quantum field theory.

4For the particular value m2
� ¼ 2m2 we obtain

h�2iREN ¼ 3H4

4�2m2
log

�
Hi

H

�
:
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For Vð�Þ ¼ m2�2=2 we obtain

h�2iREN ¼ m2

6�2

�
ð1� e�ð2=3ÞcNÞ

�
9

4c2
þ 3

2c
NT

�
� 3

2c
N

�
;

(18)

where NT ¼ 3H2
i =ð2m2Þ is equal to maximal number of

possible e-folds in this chaotic model. In the limiting case
c ! 0 and at the end of inflation (N ¼ NT � 3=2), we
recover the result5

h�2iREN ’ m2

12�2
N2

T ¼ 3H4
i

16�2m2
: (19)

For the potential in Eq. (5), we consider the lowest
approximation as in the previous subsection. Therefore
the result can be simply obtained by substituting m2

� ¼
cH2

0 in Eq. (14):

h�2iREN ¼ 3H2
0

8�2c
ð1� e�ð2=3ÞcNÞ: (20)

For the power-law inflation case we obtain

h�2iREN ¼ p

8�2
H2

i

�
c
p

3
� 1

��1ðe�2ðN=pÞ � e�ð2=3ÞcNÞ:
(21)

Let us note that m2 ¼ V�� ¼ 6
p ð1� 1

3pÞH2 for this par-

ticular model, so the results above are also valid for the
case m2

� ¼ ~cm2 with ~c ¼ p
6 ð1� 1

3pÞ�1c.

C. Growth of nonminimally coupled scalar fields in the
stochastic approach

The stochastic equation is now

dh�2iREN
dN

þ 4�ð2� �Þh�2iREN ¼ H2ðNÞ
4�2

; (22)

where � is the nonminimal coupling to the Ricci scalar R
and we assume that j�j � 1 (however, �N may be large).
Indeed, the term in the action proportional to ��2R gives
an effective time dependent mass for �: m2

� ¼ 6�H2ð2�
�Þ where � ¼ � _H

H2 .

Its general solution is

h�2iREN ¼
�
h�2iRENðNiÞ þ

Z N
dn

H2þ4�ðnÞ
4�2H4�

i

e8�n
�

�
�

Hi

HðNÞ
�
4�
e�8�N: (23)

If we again consider the chaotic scenario induced by a
massive inflaton field as in the previous subsections, the
integral can be easily computed in a closed form in terms of
the exponential integral function E�ðzÞ. Assuming

h�2iREN ¼ 0 initially, one finds

h�2iREN ’ m2

6�2

e8�ðNT�NÞ

ðNT � NÞ2� ½ðNT � NÞ2þ2�

� E�1�2�ð8�ðNT � NÞÞ � ðNT � NiÞ2þ2�

� E�1�2�ð8�ðNT � NiÞÞ�: (24)

One can verify that in the limit � ! 0 at the end of inflation
and a fixed large value for NT , the result of Eq. (19) for a
massless modulus is again reobtained.
For the potential in Eq. (5) we have, in the same ap-

proximation as in the two previous subsections,

h�2iREN ¼ H2
0

32�2�
ð1� e�8�NÞ: (25)

As before, let us finish with the case of a power-law
model of inflation. We obtain

h�2iREN ¼ p

8�2
H2

i ð�2�� 1þ 4p�Þ�1

� ðe�2ðN=pÞ � e�Nðð4=pÞ�8ÞÞ: (26)

IV. COMPARISON WITH THE GROWTH OF
INFLATON FLUCTUATIONS

The results of the previous section should be compared
with the growth of gauge-invariant inflaton fluctuations
��, the Mukhanov variable [24] which is used to canoni-
cally quantize the Einstein-Klein-Gordon Lagrangian. The
evolution equation for h��2iREN found in [7] can be re-
written as

dh��2iREN
dN

þ 2ð	� 2�Þh��2iREN ¼ H2ðtÞ
4�2

; (27)

where

� ¼ M2
pl

2

�
V�

V

�
2
; 	 ¼ M2

pl

V��

V
: (28)

In Eq. (27) the positivity of 	� 2� is not determined by
the convexity of the potential, i.e., V�� > 0, as we would

expect in the absence of metric perturbations. The thresh-
old corresponds to the following condition on the potential:

d

d�

�
V�

V

�
> 0: (29)

With the use of the slow-roll expressions for the scalar
spectral index ns and the tensor-to-scalar ratio r, one
obtains

ns � 1 ¼ �6�þ 2	; (30)

r ¼ 16�; (31)

and Eq. (27) can be rewritten as

5This corresponds to the massless limit of moduli production
computed in Eq. (15) of [7] for 
 ! 0.
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dh��2iREN
dN

þ
�
ns � 1þ r

8

�
h��2iREN ¼ H2ðtÞ

4�2
: (32)

Both Eqs. (29) and (32) tell us that power-law inflation, for
which ns � 1 ¼ �r=8 holds, lies at the threshold between
two opposite behaviors. Power-law inflation with 78<
p< 246 is allowed at the 95% confidence level [25]. We
note that Eq. (32) is the same for a modulus with the mass
m2

� ¼ cH2 and c ¼ 3ðns � 1þ r=8Þ=2; below the power-

law inflation line inflaton fluctuations behave as a modulus
with negative c.

The solution of Eq. (27) is

h��2iREN ¼ �ðNÞ
4�2

Z N
dn

H2ðnÞ
�ðnÞ : (33)

For the quadratic chaotic potential the solution was found
in [7]

h��2iREN ¼ H6
i �H6

8�2m2H2
: (34)

For the potential in Eq. (5) we obtain the following in the
lowest nontrivial approximation for small M2-dependent
corrections in the potential:

h��2iREN ’ � V2
0

24�2M2M4
pl

�
1� e�ðð2M2M2

pl
Þ=V0ÞðN�NiÞ

�
;

(35)

where, as discussed previously, the case with a minus sign
in the exponent refers to the hybrid model whereas the
other case is associated with the small field inflationary
model. Let us note that for a small value of the exponent
(an almost constant potential) or for very small (N � Ni),
by expanding up to the linear order, one obtains almost the
case of a de Sitter background (M2 ¼ 0), with h��2iREN
linearly growing in N. In this approximation we see that
the hybrid model is characterized by h��2iREN bounded as
N ! 1. This statement remains true even after dropping
our approximations (see below).
This leads, by invoking the consistency of the perturba-

tive expansion in field fluctuations through the condition
h��2iREN � �2

i , to the following hierarchy which the
inflationary model has to satisfy:

V0

24�2M4
pl

� M2�2
i

V0

� 1: (36)

We have also computed the expression for the fluctua-
tions by solving Eq. (27) using the expression in Eq. (6)
with no further approximations. In this more general case
we obtain

h��2iREN ’ � 4V2
0 ð1� yÞ þ 3M4�2

i yð4M2
plðN � NiÞ þ�2

i ð1� yÞÞ � yð1� y2Þ M6

4V0

96�2M2M4
plð1� y

M2�2
i

2V0
Þ2

; (37)

0 10 20 30 40 50
0

2 10 11

4 10 11

6 10 11

8 10 11

1 10 10

1.2 10 10

FIG. 1 (color online). Evolution of the mean square quantum
fluctuations (in units of m2

pl) versus the number of e-folds N for

the quadratic chaotic model. For the inflationary background we
have chosen the inflationary trajectory in Eq. (3) with m ¼
10�6mpl and Hi ¼ 10m. The mean square gauge-invariant in-

flaton fluctuation (thick line) dominates over those of test fields
(m� ’ 0:3m is the solid line, c ¼ 0:02 is the dashed line, � ¼
0:001 is the dotted line).

0 20 40 60 80 100 120 140
0

2 10 11

4 10 11

6 10 11

8 10 11

1 10 10

FIG. 2 (color online). Evolution of the mean square quantum
fluctuations (in units of m2

pl) versus the number of e-folds N for

the small field inflationary model in Eq. (5). For the inflationary
background we have chosen V0 ¼ 2:6� 10�12m4

pl, M ¼
0:85� 10�6mpl, and �i ¼ 0:3mpl as parameters. The mean

square gauge-invariant inflaton fluctuation (thick line) dominates
over those of test fields (m� ¼ 10�2H0 is the solid line, c ¼ 0:1

is the dashed line, � ¼ 0:05 is the dotted line).
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where we have set y ¼ yðNÞ ¼ e�ðð2M2M2
pl
Þ=V0ÞðN�NiÞ. From

this expression, when analyzing the hybrid inflation case,
one can notice that the fluctuations have a maximum for a
certain amount of e-folds N and then decay to the asymp-
totic value for a large number of e-folds. Nevertheless,
such a maximum is typically a few percent above the
asymptotic value which has been already obtained above
using a more crude approximation.

For the exponential potential we find

h��2iREN ¼ p

8�2
ðH2

i �H2Þ; (38)

which at late times (see also [26]) becomes

h��2iREN ¼ pH2
i

8�2
: (39)

We show in Figs. 1–4, one for each inflaton potential
investigated, the mean square of quantum fluctuations of
the three types of test fields together with the gauge-
invariant inflaton ones. For the hybrid model, quantum
fluctuations of test fields with a small effective mass can
dominate the gauge-invariant inflaton one, because of the
presence of the leading constant term in the potential.

V. GROWTH OF QUANTUM FLUCTUATION IN
TWO FIELD INFLATIONARY MODELS

We now wish to consider a two field model in which an
inflaton � and a minimally coupled scalar field � are
present (see [27] for a different approach to the moduli
problem). We shall neglect the � energy density and pres-
sure in the background FRW equations. We expand to
second order in the uniform curvature gauge (UCG), in
which the inflaton fluctuation ’ coincides with the gauge-
invariant Mukhanov variable, the Einstein and Klein-
Gordon equations.

In the test field expansion �ð ~x; tÞ ¼ �0ðtÞ þ �ð1Þð ~x; tÞ þ
�ð2Þð ~x; tÞ þ . . . , the homogeneous term satisfies

€� 0 þ 3H _�0 þ �V� ¼ 0; (40)

while fluctuations satisfy, order by order, for the leading
order in the slow-roll approximation and in the long-
wavelength limit (neglecting vector and tensor contribu-
tions), the following equations:

3H _�ð1Þ þ �V���
ð1Þ ¼ 2

H�

H
�V�’

ð1Þ; (41)

3H _�ð2Þ þ �V���
ð2Þ ¼ 2

H�

H
�V�’

ð2Þ

þ
�
H��

H
� 3

�
H�

H

�
2
�
�V�’

ð1Þ2

þ 2 �V��

H�

H
’ð1Þ�ð1Þ �

�V���

2
�ð1Þ2:

(42)

Following the consideration in Sec. VI of Ref. [7], we
wish to investigate which time variable in the stochastic
equation should be chosen to reobtain, order by order, the
equation of motion for the test field � starting from

d�

dt
¼ �

�V�

3Hð�Þ (43)

and expanding order by order. For a general time variable
� ¼ R

HðtÞndt, the equation becomes
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8 10 11

FIG. 3 (color online). Evolution of the mean square quantum
fluctuations (in units of m2

pl) versus the number of e-folds N for

the hybrid model in Eq. (5). For the inflationary background we
have chosen V0 ¼ 2:6� 10�12m4

pl, M ¼ 1:8� 10�6mpl, and

�i ¼ 0:3mpl as parameters. In this case the mean square of

moduli can dominate over the mean square of gauge-invariant
inflaton fluctuation (thick line): the parameters chosen are m� ¼
10�2H0 (solid line), c ¼ 0:002 (dashed line), � ¼ 0:05 (dotted
line).
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FIG. 4 (color online). Evolution of the mean square quantum
fluctuations (in units of m2

pl) versus the number of e-folds N for

the exponential potential. For the inflationary background we
have chosen the inflationary trajectory in Eq. (9) with p ¼ 100
and ti ¼ 107m�1

pl . The mean square gauge-invariant inflaton

fluctuation (thick line) dominates over those of test fields (m� ¼
10�6mpl is the solid line, c ¼ 0:1 is the dashed line, � ¼ 0:05 is

the dotted line).
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1

HðtÞn
d�

dt
¼ �

�V�

3Hð�Þnþ1
: (44)

As before, expanding to leading order in the slow-roll
approximation, we obtain the following equation to the
first and second order:

d�ð1Þ

dt
¼ � 1

3H
�V���

ð1Þ þ 1

3
ðnþ 1ÞH�

H2
�V�’

ð1Þ; (45)

d�ð2Þ

dt
¼ � 1

3H
�V���

ð2Þ þ 1

3
ðnþ 1ÞH�

H2
�V�’

ð2Þ

� 1

6H
�V����

ð1Þ2 þ 1

3
ðnþ 1ÞH�

H2
�V��’

ð1Þ�ð1Þ

� 1

6
ðnþ 1Þ �V�

�
�H��

H2
þ ðnþ 2ÞH

2
�

H3

�
’ð1Þ2:

(46)

As is easy to verify, we recover the former result only for
n ¼ 1. So for the case of a test scalar field, evolving in a
FRW inflaton driven space-time, in the UCG the right time
to consider is the number of e-folds N ¼ R

HðtÞdt; this
recovers the result obtained in [7] for the inflaton fluctua-
tions. As for the case of the standard Mukhanov variableQ,
which is defined, order by order, as the value of the inflaton
perturbation in the UCG, we can define a generic gauge-
invariant Mukhanov variable Q�, associated with the per-

turbation of �, as the value that this perturbation has in the

UCG. In this way QðnÞ
� ¼ �ðnÞ in the UCG and, as seen for

variable Q in [7], the equations above can be regarded as
the gauge-invariant equations of motion, to first and second
order, of this new Mukhanov variable, where one replaces

�ðnÞ with QðnÞ
� and ’ðnÞ with QðnÞ.

As for the case of the Mukhanov variable, this result can
be considered as a starting point to study the fluctuations of
� in the stochastic approach for an arbitrary potential �V in
the described background. The correct stochastic differen-
tial equation is obtained with respect to the number of e-
folds [dN ¼ HðtÞdt] which appears to be the right evolu-
tion parameter. One starts from the slow-roll approxima-
tion to the Heisenberg equation, which can be interpreted
in a general nonperturbative sense, for the large-scale
quantum field �,

d

dN
� ¼ � 1

3H2
�V� þ 1

H
f�;

hf�ðN1;x1Þf�ðN2;x2Þi ¼ H4

4�2
�ðN1 � N2Þ sinðjx1 � x2jÞ

jx1 � x2j ;

where f� is the stochastic noise term given, to the leading

order in the slow-roll approximation, by

f�ðt;xÞ ¼ �aH2
Z d3k

ð2�Þ3=2 �ðk� �aHÞ

� ½b̂k�kðtÞe�ik	x þ b̂yk �


kðtÞeþik	x�: (47)

Thus, on expanding to the second order, one obtains the

following stochastic equations for �ð1Þ and �ð2Þ:

d�ð1Þ

dt
¼ � 1

3H
�V���

ð1Þ þ 2

3

H�

H2
�V�’

ð1Þ þ f�; (48)

d�ð2Þ

dt
¼ � 1

3H
�V���

ð2Þ þ 2

3

H�

H2
�V�’

ð2Þ � 1

6H
�V����

ð1Þ2

þ 2

3

H�

H2
�V��’

ð1Þ�ð1Þ

� 1

3
�V�

�
�H��

H2
þ 3

H2
�

H3

�
’ð1Þ2 þH�

H
’ð1Þf�: (49)

Let us consider the first order stochastic equation. Its
general solution with the zero initial condition is given by

�ð1Þ ¼ �V�

Z t

ti

�
2

3

H�

H2
’ð1Þ þ f�

�V�

�
d�: (50)

Taking into account that h’ð1Þf�i ¼ 0, it is easy to derive

the expression for the mean square of the first order fluc-

tuation hð��ð1ÞÞ2i:

h�ð1Þ2i¼ �V2
�

Z t

ti

d�
Z t

ti

d	

�
4

9

H�ð�Þ
Hð�Þ2

H�ð	Þ
Hð	Þ2

�h’ð1Þð�Þ’ð1Þð	Þiþ 1
�V�ð�Þ

1
�V�ð	Þ

hf�ð�Þf�ð	Þi
�

¼
�V2
�

4�2

Z t

ti

d�

�
Hð�Þ3
�V�ð�Þ2

� 4

9M2
pl

Z �

ti

d	
_Hð�Þ

Hð�Þ3
_Hð	Þ

Hð	Þ3

�
Z 	

ti

d�
Hð�Þ5
_Hð�Þ

�
; (51)

where we have used the stochastic solution

’ð1Þ ¼ V�

V

Z t

ti

d�

�
V

V�

f�

�
; (52)

with f� being the stochastic noise for the inflaton defined

analogously to f�. Similarly, one can obtain the following

solution for a vacuum expectation value of the second
order fluctuation:

h�ð2Þi ¼ �V�

Z t

ti

d�

�
2

3

H�

H2
h’ð2Þi � 1

6H

�V���

�V�

h�ð1Þ2i

þ 2

3

H�

H2

�V��

�V�

h’ð1Þ�ð1Þi

þ 1

3

�
H��

H2
� 3

H2
�

H3

�
h’ð1Þ2i

�
; (53)

where, to expand further, we should substitute Eq. (51), the
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result for h’ð2Þi and h’ð1Þ2i obtained in [7] and

h’ð1Þ�ð1Þi ¼ �
�V�

12�2

_�

HM2
pl

Z t

ti

d�
Z t

�
d	

�
Hð�Þ5
_Hð�Þ

_Hð	Þ
Hð	Þ3

�
:

(54)

A. A working example: Two field quadratic model

Let us now consider the particular case Vð�Þ ¼ m2�2

2 and

�Vð�Þ ¼ m2
��

2

2 . Classical slow-roll inflation in this model

and the evolution of small perturbations in it were calcu-
lated in [28], but here we take into account the backreac-
tion of the generated quantum fluctuations of these scalar
fields on the evolution of their background values. By
solving the background equations, one obtains the follow-
ing zero order solution for the test field �:

�ð0ÞðtÞ ¼ �ð0ÞðtiÞ
�
HðtÞ
HðtiÞ

�
m2

�=m
2

: (55)

It remains a test field for the whole duration of the inflation
era if

�ð0ÞðtiÞ2 �
�
1þ 


9

m2

H2

��1 1




�
H

Hi

�
2�2


6
H2

i

m2
M2

pl (56)

for any value ofH (where 
 ¼ m2
�=m

2). For the case 
 �
1, we obtain the following limiting condition at the end of
inflation (H ’ m),

�ð0ÞðtiÞ2 � 6



M2

pl; (57)

and for this particular background we can solve Eq. (51)
obtaining

h�ð1Þ2i ¼ 3H2


8�2m2ð2� 
Þ ðH
4�2

0 �H4�2
Þ

� 
2

48�2

�ð0ÞðtiÞ2
M2

pl

�
H

Hi

�
2
 1

H4
ðH2 �H2

i Þ3: (58)

Thus, one obtains the term already considered in [7] plus a
new term which depends on the background value of �. At
the end of inflation, the leading value of this second term is
negligible with respect to the leading value of the first one,
for 
< 2, if

�ð0ÞðtiÞ2 � 18

2� 


1


2

M2
plm

2

H2
i

: (59)

This condition is different from, and can be stronger than,
the condition (57). If we consider the particular case 
 �
1 and require that (57) implies (59), we obtain the follow-
ing condition on 
:


 � 3

2

m2

H2
i

: (60)

Analogously we can evaluate Eq. (53),

h�ð2Þi ¼ 


8�2

�ð0ÞðtiÞ
M2

pl

�
H

Hi

�


�
�H6

i

H4

1� 
=2

6
þH4

i

H2

1� 


4

þH2
i




4
�H2 1þ 


12

�
; (61)

which to leading order gives

h�ð2Þi ¼ � 


48�2

�ð0ÞðtiÞ
M2

pl

�
Hi

H

�
4�


H2
i

�
1� 


2

�
: (62)

VI. CONCLUSIONS

Motivated by previously found differences for gravita-
tional particle production in the de Sitter background and
in realistic inflationary models with _H � 0, we have
studied in detail the growth of quantum fluctuations for
the latter case. We have selected four different potentials as
representative examples of the inflationary zoo and differ-
ent types of nearly massless fluctuations, including inflaton
ones. We have rewritten in Eq. (32) the diffusion equation
for the gauge-invariant inflaton fluctuations found in [7],
emphasizing the role of the slope of the spectrum of
curvature perturbations ns and of the tensor-to-scalar ratio
r, i.e., the relevant observable quantities.
We have found that for most of the inflationary models,

the mean square of the gauge-invariant inflaton fluctuations
dominates over those of moduli with a non-negative effec-
tive mass. Hybrid inflationary models can be an exception:
the mean square of a test field can dominate over that of the
gauge-invariant inflaton fluctuations on choosing parame-
ters appropriately. Our findings show that the understand-
ing of inflaton dynamics including its quantum fluctuations
is more important than the moduli problem in most of the
inflationary models.
We have then discussed the stochastic approach for

general scalar fluctuations, which may have a nonzero
homogeneous mode, in a generic model of inflation. We
show, by using the field theory results as a guideline, that
the stochastic equations for the gauge-invariant variable
associated with such scalar fluctuations are naturally for-
mulated as a flow in terms of the number of e-folds N.
Finally we have studied the particular case of a massive
inflaton and a second massive scalar field �, for which we
show how to extract some bounds for the homogeneous
mode of � and for its mass.
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