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ABSTRACT

We report the detection of a dark substructure – undetected in the Hubble Space Telescope HST
ACS F814W image – in the gravitational lens galaxy SDSSJ0946+1006 (the ‘double Einstein
ring’), through direct gravitational imaging. The detection of a small mass concentration in the
surface density maps, at 4.3 kpc from the galaxy centre, has a strong statistical significance.
We confirm this detection by modelling the substructure with a tidally truncated pseudo-
Jaffe density profile; in that case the substructure mass is Msub = (3.51 ± 0.15) × 109 M�,
precisely where also the surface density map shows a strong convergence peak (Bayes factor
� log E = −128.0; equivalent to a ∼16σ detection). The result is robust under substantial
changes in the model. We set a lower limit of (M/L)V,� � 120 M�/LV,� (3σ ) inside a
sphere of 0.3 kpc centred on the substructure (rtidal = 1.1 kpc). The mass and luminosity limit
of this substructure are consistent with Local Group results if the substructure had a virial
mass of ∼1010 M� before accretion and formed at z � 10. Our detection implies a projected
dark matter mass fraction in substructure at the radius of the inner Einstein ring of f =
2.15+2.05

−1.25 per cent [68 per cent confidence level (CL)] in the mass range 4 × 106– 4 × 109 M�,
assuming α = 1.9 ± 0.1 (with dN/dm ∝ m−α). Assuming a flat prior on α, between 1.0 and
3.0, increases this to f = 2.56+3.26

−1.50 per cent (68 per cent CL). The likelihood ratio is ∼0.5
between these fractions and that from simulations (f N-body ≈ 0.003). Hence the inferred dark
matter mass fraction in substructure, admittedly based on a single-lens system, is large but
still consistent with predictions.

Key words: gravitational lensing: strong – galaxies: structure.

1 IN T RO D U C T I O N

In the process of building a coherent picture of galaxy formation
and evolution, early-type galaxies play a crucial role. Often un-
fairly referred to as red and dead objects, many aspects about
their structure and formation are still unknown. What is the ori-
gin of the tight empirical relations between their global properties
(Djorgovski & Davis 1987; Dressler et al. 1987; Bower, Lucey &
Ellis 1992; Guzman et al. 1992; Bender, Burstein & Faber 1993;
Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al.
2000)? How do massive early-type galaxies assemble? What is the
fraction of mass substructure populating the haloes of early-type
galaxies and is this in agreement with the cold dark matter (CDM)
paradigm (Kauffmann, White & Guiderdoni 1993; Klypin et al.
1999; Moore et al. 1999, 2001; Macciò & Miranda 2006; Diemand
et al. 2008; Springel et al. 2008; Xu et al. 2009)?

�E-mail: vegetti@astro.rug.nl

Gravitational lensing, especially in combination with other tech-
niques, provides an invaluable and sometimes unique insight in
answering these questions (e.g. Treu & Koopmans 2004; Rusin &
Kochanek 2005; Koopmans et al. 2009, and references therein).

At the level of small mass structure lensing stands out as a unique
investigative method; different aspects of the lensed images can be
analysed to extract information about the clumpy component of
galactic haloes. Flux ratio anomalies, astrometric perturbations and
time delays, in multiple images of lensed quasars, can all be related
to substructure at scales smaller than the images separation (Mao &
Schneider 1998; Bradač et al. 2002; Chiba 2002; Dalal & Kochanek
2002; Metcalf & Zhao 2002; Keeton, Gaudi & Petters 2003; Bradač
et al. 2004; Kochanek & Dalal 2004; Keeton, Gaudi & Petters 2005;
Chen et al. 2007; McKean et al. 2007; More et al. 2009).

As described by Koopmans (2005) and Vegetti & Koopmans
(2009a), the information contained in multiple images and Einstein
rings of extended sources, can also be used. While the former three
approaches only provide a statistical measure of the lens clumpi-
ness, the latter allows one to identify and quantify of each single
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substructure, measuring for each of them the mass and the position
on the lens plane. Both approaches are however complementary in
that the former is more sensitive to low-mass perturbations, which
are potentially present in large numbers, whereas the latter is sensi-
tive to the rarer larger scale perturbations.

The method of direct gravitational imaging of the lens potential –
shortly described in the following section – represents an objective
approach to detect dark and luminous substructures in individual
lens systems and allows on to statistically constrain the fraction of
galactic satellites in early-type galaxies. Extensively described and
tested in Vegetti & Koopmans (2009a), the procedure is here applied
to the study of the double ring SDSSJ0946+1006 (Gavazzi et al.
2008) from the sample of the Sloan Lens ACS Survey (SLACS),
yielding the first detection of a dwarf satellite through its gravita-
tional effect only, beyond the local Universe.

The layout of the paper is as follows. In Section 2 we provide
a general description of the method. In Section 3 we introduce
the analysed data and in Section 4 we discuss the results of the
modelling under the assumption of a smooth lens potential. In Sec-
tion 5 we describe the detection of the substructure. In Section 6
we present the error analysis and the model ranking. In Section 7
we discuss implication for the CDM paradigm and in Section 8 we
conclude. Throughout the paper we assume the following cosmo-
logical parameters: H0 = 73 km s−1 Mpc−1, �m = 0.25 and �� =
0.75.

2 TH E M E T H O D

In this section we provide a short introduction to the lens modelling
method. The main idea behind the method of ‘gravitational imaging’
is that effects related to the presence of dwarf satellites and/or CDM
substructures in a lens galaxy can be modelled as local perturbations
of the lens potential and that the total potential can be described as
the sum of a smooth parametric component with linear corrections
defined on a grid. We refer to Vegetti & Koopmans (2009a) for a
more complete discussion.

2.1 Source and potential reconstruction

As shown in Blandford, Surpi & Kundić (2001), Koopmans (2005),
Suyu et al. (2006) and Vegetti & Koopmans (2009a), it is possible
to express the relation between perturbations in the lensed data (δd;
i.e. perturbations of the surface brightness distribution of the lensed
images), the unknown source surface brightness distribution (s) and
perturbations in the lens potential (δψ) as a set of linear equations
δd = −∇s · ∇δψ . Through the Poisson equation δψ can be turned
into a relation with the convergence correction δκ = ∇2δψ/2.

For a fixed form of the lensing potential and regularization, the in-
version of these equations leads to the simultaneous reconstruction
of the source and a potential correction. The source grid is defined by
a Delaunay tessellation which automatically concentrates the com-
putational effort in high-magnification regions while keeping the
number of degrees of freedom constant, which is critical in assess-
ing the Bayesian posterior probability and evidence for the model
(see Vegetti & Koopmans 2009a). The procedure is embedded in
the framework of Bayesian statistics which allows us to determine
the best set of non-linear parameters for a given potential and the
linear parameters of the source to objectively set the level of regu-
larization and to compare different model families (MacKay 1992,
2003; Brewer & Lewis 2006; Suyu et al. 2006). Specifically, for a
particular lens system we wish to objectively assess whether it can

be reproduced with a smooth potential or whether mass structure
on smaller scales has to be included in the model.

The modelling is performed via a four-step procedure. (i) We start
by choosing a form for the parametric smooth lens density profile,
generally an elliptical power law, and we determine the non-linear
parameters and level of source regularization that maximize the
Bayesian evidence, through a non-linear optimization scheme. (ii)
In the case that this model is too simple and significant image resid-
uals are left, we allow for grid-based potential corrections. This
leads to the initial detection and localization of possible substruc-
tures. (iii) The substructure masses and positions are then more
precisely quantified by assuming a tidally truncated pseudo-Jaffe
(PJ) profile (Dalal & Kochanek 2002) and by simultaneously op-
timizing for the main lens galaxy and substructure parameters, i.e.
its mass Msub and position on the lens plane (xsub; ysub). (iv) Finally
the two models, i.e. the single power law (PL) and the power law
plus PJ substructures (PL + PJ), are compared through their total
marginalized Bayesian evidences (E), which represent the (condi-
tional) probabilities of the data marginalized over all variable model
parameters.

2.2 Detection threshold of mass substructure

The method has a mass-detection threshold to substructure that de-
pends on the signal-to-noise ratio and spatial resolution of the lensed
images; for typical Hubble Space Telescope (HST) (e.g. SLACS)
data quality the mass-detection threshold for a substructure located
on the Einstein ring and with a PJ density profile is of the order
of a few ×108 M� and quickly increases with the distance from
the lensed images (see Vegetti & Koopmans 2009a) because of the
decrease in the image surface brightness and local magnification.

Despite having been developed with the specific task of identify-
ing and constraining the fraction of substructure in lens galaxies, this
technique can also be used to model complex lens potentials, which
are relatively smooth, but do not have the simple symmetries that
are often assumed in mass models (e.g. elliptical power-law density
profiles). As shown in Barnabè et al. (2009), we can also reconstruct
the lensed images and the relative sources down to the noise level,
even for systems that are highly asymmetric and strongly depart
from a power-law density profile. The grid-based potential correc-
tion is able to correct the inexact initial choice of the lens potential
model and recover existing asymmetries in the mass distribution.

In the rest of this paper, we use this method to analyse the dou-
ble Einstein ring system SLACS SDSSJ0946+1006 and search for
deviations from a smooth power-law elliptical mass model.

3 TH E DATA

In this section we present a brief overview of the double Einstein
ring lens system SLACS SDSSJ0946+1006 (see Fig. 1). We refer
to Gavazzi et al. (2008) for a more detailed description.

SLACS selects gravitational lens candidates from the Sloan Dig-
ital Sky Survey (SDSS) spectroscopic data base on the basis of
multiple emission lines in the spectrum at redshifts larger than that
of the lower redshift target galaxies (Bolton et al. 2006). The sys-
tem was selected by the presence of multiple emission lines at zs1 =
0.609 in the spectrum of a lensing galaxy at zl = 0.222. Subse-
quently confirmed as a strong lens with ACS on board the HST , the
system shows a very peculiar structure in the lensed images which
are composed of two concentric partial rings, at radii of 1.43 ±
0.01 and 2.07 ± 0.02 arcsec, respectively, from the centre of the
lens galaxy. This particular configuration is related to the presence
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Detection of a dark substructure 1971

Figure 1. The image of the lens system SDSSJ0946+1006, obtained with HST ACS through the filter F814W, after subtraction of the lens surface brightness
distribution.

of two sources at different redshifts which are being lensed by the
same foreground galaxy (see Gavazzi et al. 2008 for the a priori
probability of this event in a survey such as SLACS); the nearest
source is lensed into the inner ring (Ring 1), while the second one,
further away along the optical axis, is lensed into the outermost ring
(Ring 2). Ring 1 with a F814W magnitude m1 = 19.784 ± 0.006
is one of the brightest lensed sources in the SLACS sample, while
Ring 2 with m2 = 23.68 ± 0.09 is 36 times fainter. Ring 2 is not ob-
served in the SDSS spectrum, and an upper limit to its redshift zs2 <

6.9 was set on the basis of ACS imaging. As inferred by Gavazzi
et al. (2008) the lens galaxy has a projected dark matter mass frac-
tion inside the effective radius that is about twice the average value
of the SLACS lenses (Koopmans et al. 2006; Gavazzi et al. 2007),
i.e. f DM ≈ 73 ± 9 per cent, corresponding to a project dark matter
mass approximately equal to MDM (< Reff ) ≈ 3.58×1011 h−1

70 M�.
The high dark matter mass fraction makes this system particularly

interesting for CDM substructure studies. If the framework of galaxy
formation given by N-body simulations is correct (substructure mass
function slope αN-body = 1.90 and projected dark matter fraction in
substructure f N-body = 0.3 per cent), we would expect, within an
annulus of 0.6 arcsec centred on the Einstein radius, on average μ =
6.46 ± 0.95 substructures (Vegetti & Koopmans 2009b) with masses
between 4 × 106 and 4 × 109 M� (Diemand, Kuhlen & Madau
2007a,b; Diemand et al. 2008). Whereas these have typical masses
a few times that of the lower limit on this range, the probability

of finding a mass substructure above �108 M� is certainly non-
negligible.

4 SM O OTH MA S S MO D E L S

In this section we describe the details and the results of our analysis.
Because of the very low surface brightness, and of the low signal-to-
noise ratio of the images associated with Ring 2, we limit our study
to a tight annulus around Ring 1, in which Ring 2 has been fully
excised. This does not affect the lens potential reconstruction which
is almost solely constrained by the detailed information given by the
high surface brightness distribution of Ring 1. Our potential recon-
struction therefore only probes the region around the inner ring. The
choice of reconstructing the potential (ψ) inside a limited field of
view (e.g. mask), rather than the surface mass density (κ), ensures
that the potential and the resulting convergence reconstructions are
both unbiased (see Koopmans 2005, for a detailed discussion about
this subtle point).

4.1 Image reconstruction

At the first level of reconstruction all potential corrections are kept
at zero. We start by assuming that to first order the lens is well
approximated by a simple smooth elliptical power-law density pro-
file (Barkana 1998) with a convergence (surface density in terms of
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critical density �c)

k(r) = b

2
√

qrγ−1
, (1)

where r = √
x2 + y2/q2. The non-linear parameters describing the

lens are the lens strength b, the position angle θ , the flattening q, the
centre coordinates x0, the density slope γ , the shear strength �sh

and the shear angle θ sh. We do not optimize for the mass centroid,
but centre on the peak of the surface brightness distribution, as
precisely determined from the HST image. We show in Section 6.4
that this assumption does not alter the main results of the paper, but
reduces our substantial computational load.

As described in more detail in Vegetti & Koopmans (2009a), the
source grid is constructed from a (sub)sample of pixels in the image
plane which are cast back to the source plane using the lens equation.
The number of grid points can be objectively set by comparing their
Bayesian evidence. In this particular case, we find that using all the
image points (e.g. 81 × 81 pixels) is the most appropriate choice.
On the image plane the pixel scale is constant and equal to 0.05
arcsec pixel−1, while on the source plane the Delaunay triangle scale
is adaptive and depends on the local lensing magnification. We adopt

an adaptive curvature regularization, weighting the regularization
penalty by the inverse of the image signal-to-noise ratio. We find
that this significantly improves the modelling of sharp high dynamic
range features in the lensed images, where in general all other forms
of regularization (e.g. gradient or unweighted curvature) falter and
give much lower evidence values.

We use the results obtained by Gavazzi et al. (2008), for a single-
lens plane, as starting point η0 and then optimize for the potential
parameters and the level of the source regularization. The resulting
source and image reconstruction are presented in Fig. 2. In Table 1
the recovered lens parameters and level of source regularization
{ηb, λs,b} are listed. The recovered parameters for the smooth mass
component of the lens potential are somewhat different from the
results in Gavazzi et al. (2008), which we attribute to the fact that
Gavazzi et al. (2008) make use of both Einstein rings and match
conjugate points instead of the full surface brightness distribution.
Some notable results for the smooth mass model are a density slope
γ ≈ 2.20 and a mass axial ratio of q = 0.96, indicating that the galaxy
is very close to an isothermal sphere mass model, although it has
a slightly steeper density profile. The quantity cannot be compared
directly with the slope measured by Gavazzi et al. (2008) because

Figure 2. Results of the lens and source reconstruction under the hypothesis of a smooth potential. The top right-hand panel shows the original lens data,
while the top left-hand one shows the final reconstruction. On the second row the image residuals (left-hand panel) and the source reconstruction (right-hand
panel) are shown.
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Table 1. Parameters of the mass model distribution for the lens SDSSJ0946+1006. For each parameter we report the best recovered value and the relative
likelihood for a smooth model (PL) in column (2); for a smooth over-regularized smooth model in column (3); for a perturbed model (PL + PJ) in column (4);
for a smooth and perturbed model (PL + PJ) with rotated PSF, respectively, in columns (5) and (6); a smooth and perturbed model (PL + PJ) for different
galaxy subtraction, respectively, in columns (7) and (8) and a smooth and perturbed model (PL + PJ) with varying coordinates for the lens centre, respectively,
in columns (9) and (10). We note that the models in columns (7) and (8) use a different (also rotated) data set, and the evidence values, position angles and
positions can therefore not be directly compared.

(PL)0 PL0,over (PL + PJ)0 PLpsf90 (PL + PJ)psf90 PLsubt (PL + PJ)subt PLcntr (PL + PJ)cntr

b 1.329 1.329 1.328 1.329 1.328 1.280 1.272 1.329 1.328
θ (◦) 65.95 65.80 69.26 64.97 71.04 −60.99 −60.96 63.45 70.15

q 0.961 0.961 0.962 0.962 0.963 0.982 0.982 0.962 0.962
xc (arcsec) −0.006 −0.005
yc (arcsec) 0.014 0.012

γ 2.196 2.199 2.198 2.194 2.200 2.282 2.292 2.209 2.210
�sh 0.081 0.081 0.086 0.080 0.087 −0.092 −0.097 0.083 0.082

θ sh(◦) −20.83 −20.65 −22.32 −20.63 −22.12 −39.83 −40.58 −21.13 −21.00
log (λs) 1.152 2.028 2.028 1.059 1.988 0.036 0.052 1.414 1.151

msub(1010 M�) 0.323 0.333 0.342 0.325
xsub (arcsec) −0.686 −0.682 −1.286 −0.683
ysub (arcsec) 0.989 0.996 −0.391 0.993

logL 20 350.97 20 328.11 20 511.14 20 358.49 20 525.32 61 520.63 61 674.63 20 418.74 20 578.90

we are measuring the slope at the location of the inner ring, while
Gavazzi et al. (2008) is measuring the average slope in-between the
rings.

4.2 Image residuals after reconstruction

In Fig. 2, we clearly see remaining image residuals above the noise
level, in particular near the uppermost arc feature. The source ap-
pears to be a normal, although not completely symmetric, galaxy.
Structure in the source (e.g. brightness peaks and the faint tail-like
feature to the upper right-hand side of the source) can also be one-to-
one related to structure in the arcs. This provides strong confidence
to the overall reconstruction of the system, as being remarkably
accurate despite its complexity. The source still shows significant
structure on small scales, which is due to a preferred low level of
regularization, when optimizing for the Bayesian evidence. (Note
that at this level the evidence is simply the posterior probability of
the free parameters, including the source regularization.)

The image residuals can be related either to different aspects of
the reconstruction procedure, for example the modelling of the point
spread function (PSF), the choice of the simply parametrized model
for the lens potential, the number and scale of the image pixels,
the lens galaxy subtraction, or to features in the galaxy brightness
profile. To test whether these residuals are related to the presence
of substructures, however, we now first proceed by considering a
more general model in which we allow for very general potential
corrections (see above). We discuss the effects of systematic errors
in a later section, but stress that none of the above systematic errors
is expected to mimic localized lensing features.

5 TH E D E T E C T I O N O F MA S S SU B S T RU C T U R E

From the ‘Occam’s razor’ point of view, it is more probable that
uncorrelated structures in the lensed images are related to local
small-scale perturbations in the lens potential, rather than fea-
tures in the source distribution itself (Koopmans 2005; Vegetti &
Koopmans 2009a). It is, therefore, possible to describe galaxy sub-
structure or satellites as linear local perturbations to an overall
smooth parametric potential and separate them from changes in the

surface brightness distribution due to the source model (Koopmans
2005). Given that the remaining image residuals are small, we can
assume that the values for the lens parameters recovered in the
previous section are sufficiently close to the real smooth compo-
nent of the lens potential such that our linearized reconstruction of
the source and the grid-based lens potential corrections are fully
justified, as discussed in Section 2.1.

5.1 Grid-based substructure modelling

The potential corrections are defined on a regular Cartesian grid with
21 × 21 pixels. Both the source and the potential have a curvature
regularization (in the case of the source inversely weighted by the
local image signal-to-noise ratio) and are initially over-regularized
in order to keep the potential corrections in the linear regime, where
the formalism of the method is valid. The potential corrections
are repeated (adding the previous correction to the current total
potential) until convergence is reached in the evidence value. Results
for this linear reconstruction are presented in Fig. 3.

The potential correction and convergence show a clear signature
of a concentrated mass overdensity (i.e. a substructure) observed
around the position (−0.5, 1.0 arcsec). We have tested the effect of
the potential-correction regularization on the stability of the recon-
struction by using three different levels of regularization, in partic-
ular λδψ = 107, 108 and 109. As expected, the convergence correc-
tion becomes smoother as the regularization increases; however, the
feature near (−0.5, 1.0 arcsec) in the convergence-correction map
remains clearly visible in each reconstruction, together with a mi-
nor mass gradient from the lower right-hand side of the ring to the
upper left-hand side. This gradient is associated with the presence
of the substructure itself (curvature regularization of the potential
implies 〈κ〉 = 0 in the annulus and thus neither the total mass nor
the average convergence gradient changes in the annulus; this is
an advantage of the method). For the nearly under-regularized case
with λδψ = 107, the source is slightly twisted and the reconstruction
becomes more noisy. This suggests that the potential allows for a
minor amount of shear (we note that shear has κ = 0 everywhere
and that is not penalized by a curvature form of regularization), but
that the substructure, although noisier, is still present near the same
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1974 S. Vegetti et al.

Figure 3. Results for the pixelized reconstruction of the source and lens potential corrections for three different value of the potential corrections regularization
λδψ = 107 (top panels), λδψ = 108 (middle panels) and λδψ = 109 (low panels). For each panel on the first row from left to right the original lens data, the final
reconstruction, and the image residuals are shown. On the second row from left to right the source reconstruction, the potential correction and the potential
correction convergence are shown.
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Detection of a dark substructure 1975

position as in the other reconstruction. We therefore believe, given
the data, that this feature is genuine. This statement, however, re-
quires quantification. This is difficult at this moment, based on the
grid-based method, but can be done if the substructure is modelled
through a simply parametrized mass component.

5.2 Parameterized substructure modelling

We quantify the mass of this substructure by assuming an analytic
PL + substructure model. We assume the structure to have tidally
truncated PJ profile (Dalal & Kochanek 2002) with a convergence

k(r) = bsub

2

[
r−1 − (

r2 + r2
t

)−1/2
]
, (2)

where rt is the substructure tidal radius and bsub its lens strength;
both are related to the main galaxy lens strength b and to Msub

by rt = √
bsubb and Msub = πrtbsub�c. Combining the last two

relations leaves its total mass and position on the lens plane as free
parameters for the substructure model. Fig. 4(b) shows the final
result of the Bayesian evidence maximization for both the main
lens and substructure parameters.

Remarkably, this procedure requires a substructure right at the
position of the convergence overdensity found in the grid-based re-
construction. In terms of likelihood, the PL + PJ model is favoured
with a |� logL| = +161.0 over the PL model (i.e. roughly com-
parable to a �χ 2 ∼ 2� logL improvement). One might note that
the two models still seem to have similar levels of image residuals.
This can be attributed to a significant difference in the source reg-
ularization. The smooth model, in order to fit the data, has to allow
for more freedom to the source and has a lower level of source
regularization. Hence, part of the potential structure is ‘absorbed’
in the source brightness distribution. The two models have in fact
an absolute difference between their χ 2 values of |�χ 2| = 120,
while the difference in the regularization term of the evidence is

1120. Because the change in the rms of the image residuals is re-
lated to the difference in the χ 2 per number of degrees of freedom,
the two models do not seem to differ significantly in their residual
maps. However, this does not take into account source structure,
which is smoother when a substructure is included in the model.
The latter model thus yields a substantially higher evidence as will
be shown in the next section. To better assess the level at which
the source regularization contributes to the image residual level, we
run a non-linear optimization for the smooth model while keeping
fixed the regularization constant at the level of the best PL + PJ
model; we call this over-regularized model PL0,over (see Fig. 4a).
The likelihood difference between a perturbed model and a smooth
one is now further increased to |� logL| = +183.0. Hence, indeed
there is some covariance between the potential and source models.
However, no smooth potential model does as well as models that in-
clude the PJ substructure, near the position found in the grid-based
reconstruction. We are therefore convinced, based on the likelihood
ratio, that a PL + PJ model provides a much more probable expla-
nation of the data than a PL model with a more structured source
model.

Despite the difference in L(η), at this stage of the modelling, it
not possible to state whether the detection is statistically significant
because the effective number of degrees of freedom have not yet
been accounted for. As shown in the next section, a nested-sampling
exploration and marginalization of the posterior probability density
can be used to clarify this point and provide the Bayesian evidence
values for the PL and PL + PJ models that can objectively be
compared.

We note that the exclusion of the outer Einstein ring (Ring 2) from
our analysis does not have influence on the substructure detection
nor its quantification. First, our potential reconstruction method is
based only on local quantities, e.g. the gradient of the local poten-
tial and the local intensity difference between the lensed images
and the source model. Exclusion of data does therefore not bias

Figure 4. Shown are the results for the over-regularised PL model (left panel) and for the PL+PJ model (right panel). The residuals for the PL model are
still subtle but have become more pronounced and that the source model also still has more structure, despite over-regularization. Some of these residuals are
reduced by lowering the source regularisation (see text), but the evidence difference between the two models remains large.
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the resulting local potential correction (see Koopmans 2005 for a
discussion on this important point), although of course it could re-
duce its significance if those data are near the substructure position
in the image plane and substantially contributes to the information
we can gain on it. Secondly, low-mass substructures have a rather
localized effect on the surface brightness of the lensed images.
Ring 2 is localized about 1 arcsec away from the substructure in
the radial direction, whereas the effect of the substructure is mostly
along the tangentially stretched arc. Hence, whereas the inclusion
of the second ring could lead to more stringent constraints on the
global model, it has negligible influence on our ability to detect and
quantify the substructure.

As a final remark, we note that there is the possibility that the
substructure is not associated with the lens galaxy, but lies along
the line of sight. Despite the fact that lensing effects by substruc-
ture in the lens galaxy are most efficient and decrease in efficiency
further from the lens, the cumulative number density of substruc-
tures along the line of sight could be significant. Chen, Kravtsov &
Keeton (2003), however, showed that substructures along the line
of sight are probably responsible for a contamination of only up
to 20–30 per cent. This result was based on comparatively low-
resolution numerical simulations where only a few substructures
were located in the inner 10 per cent of the lens virial radius.
In current high-resolution simulations this fraction is shown to be
substantially larger, whereas the overall substructure mass fraction
that dominates the line-of-sight contamination has not changed. We
therefore expect their contamination rate to be a conservative upper
limit and currently well within the Poisson errors derived on the
substructure mass fraction (see below).

6 ER RO R A NA LY S I S A N D M O D E L R A N K I N G

In this section we present the statistical analysis on the model pa-
rameters and the total marginalized evidence computation for model
comparison. We are interested to test whether the lensed images are
compatible with a single smooth potential or whether the data indeed
objectively require the presence of a mass substructure. We consider
therefore two models, one defined by a smooth lens with a power-
law density profile and the other containing an additional mass
substructure. In general, two models can only be objectively and
quantitatively compared in terms of the total marginalized Bayesian
evidence and the Bayes factor, � log E ≡ log E0 − log E1, which
expresses their relative probability given a specific data set.

Heuristically the Bayesian evidence (E) can be compared to the
classic reduced χ 2 (i.e. per degree of freedom), but without as-
sumptions about Gaussianity of the posterior probability distribu-
tion function about lack of covariance between parameters (which
could reduce the effective number of degrees of freedom).

6.1 Prior probabilities

Prior to the data taking, little is known about the non-linear pa-
rameters describing the lens potential model. A natural choice is
therefore a uniform prior probability. We centre this prior on the
best smooth values ηb,i as recovered in Section 4.1, although the
choice of prior range is not very relevant as long as the likelihood
is sharply peaked inside the prior volume:

P (ηi) =
{

constant for |ηb,i − ηi| ≤ δηi,

0 for |ηb,i − ηi| > δηi.
(3)

Hence, the sizes of the intervals are taken in such a way that they en-
close the bulk of the evidence (i.e. the likelihood multiplied by prior

volume). Exactly identical priors for η are used for both the smooth
and perturbed model. Also in the latter case, the prior is centred on
the mass model parameters of the smooth model. This ensures that
we are comparing their evidences in a proper manner. The regu-
larization constant has a prior probability which is logarithmically
flat in a symmetric interval around λs,b. The mass substructure is
assumed to have a PJ density profile and a mass with a flat prior be-
tween Mmin = 4.0 × 106 M� and Mmax = 4.0 × 109 M� (Diemand
et al. 2007a,b) and a position with a flat prior over the complete data
grid. We note that our recovered mass, although close to the upper
limit, is well inside this range (see below). We choose this range to
make a comparison with simulations easier, but could have chosen
a smaller or larger range. The results, however, are similar (only
the evidence is offset by a constant value for both the PJ and PL +
PJ models).

6.2 The evidence and posterior probability exploration

One of the most efficient methods for exploring the posterior prob-
ability within the framework of Bayesian statistics is the nested-
sampling technique developed by Skilling (2004). Although being
faster than thermodynamic integration, the nested sampling can
still be computationally expensive as the overall computational cost
rapidly grows with the dimension D of the problem as O(D3/e2),
where e is the desired level of accuracy (Chopin & Robert 2008).
Most of the nested-sampling computational effort is required by
the simulations of points from a prior probability distribution π (η)
with the constraints that the relative likelihood L(η) has to be larger
than an increasing threshold L∗. Different approaches have been
suggested in order to increase the performance of this simulation.
Chopin & Robert (2008), for example, proposed an extension of the
nested sampling, based on the principle of importance sampling,
while Mukherjee, Parkinson & Liddle (2006) developed an ellip-
soidal nested sampling by approximating the isolikelihood contours
by D-dimensional ellipsoids. Shaw, Bridges & Hobson (2007) sub-
sequently improved the ellipsoidal nested sampling with a cluster
nested sampling which allows efficient sampling also of multimodal
posterior distributions.

In our analysis, we replace the standard nested sampling used
in Vegetti & Koopmans (2009a) with MULTINEST, a multi-
modal nested sampling algorithm developed by Feroz & Hobson
(2008). As further improved by Feroz, Hobson & Bridges (2009),
MULTINEST allows us to efficiently and robustly sample poste-
rior probabilities even when the distributions are multimodal or
affected by pronounced degeneracies. The possibility of running
the algorithm in parallel mode further reduces the computational
load.

The most appealing property of nested-sampling-based tech-
niques is that they also efficiently explore the model parameter
posterior probabilities and simultaneously compute the marginal-
ized Bayesian evidence of the model. The former provide error
determinations for the parameters of a given model, while the latter
allows for a quantitative and objective comparison between differ-
ent and not necessarily nested (i.e. one model is not necessarily a
special case of the other) models. The Bayesian evidence automat-
ically includes the Occam’s razor and penalizes models which are
unnecessarily complicated. This means that a PL + substructure
model is preferred over a single PL only if the data require the
presence of extra free parameters and the likelihood of the model
increases sufficiently to offset the decrease in prior probability (i.e.
extra model parameters lead to a larger prior volume and hence
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a smaller prior probability density near the peak of the likelihood
function).

6.3 The substructure evidence and model parameters

The main result of the nested-sampling analysis is that the PL + PJ
model has a substructure with mean mass

Msub = (3.51 ± 0.15) × 109 M�,

located at a position (−0.651 ± 0.038, 1.040 ± 0.034 arcsec) (see
Table 1); the quoted statistical errors do not take into account the
systematic uncertainties, but fully account for all covariance in the
mass model. In our case, systematic errors are mostly related to the
PSF and to the procedure for the subtraction of the lens galaxy sur-
face brightness (see Marshall et al. 2007, for a discussion). Effects
related to systematic uncertainties are explored in Section 6.4. Note
that the results of this section are in agreement with those in the
previous section and in particular that the substructure is exactly
located where the positive convergence correction is found by the
pixelized potential reconstruction (see Fig. 3).

Finally, we find that the perturbed PL + PJ model is strongly
favoured by the data with � log E = log EPJ − log EPL+PJ =
20 353.90 − 20 482.1 = −128.2. Heuristically, and ignoring the
difference in degrees of freedom between the PL and PL + PJ
models, this would correspond in classical terms to more or less a
dramatic �χ 2 ∼ 256 improvement in the model. Given that we have
thousands of data pixels and no major residual features this shows
that adding only a few extra parameters to the lens model improves
the agreement between the model and the data over a wide range of
data pixels. Heuristically one might further estimate the substruc-
ture mass error to be δMsub ∼ Msub/

√
2|�E | ∼ 0.2 × 109 M�,

which is indeed close to the proper determination of this error. We
are therefore confident about this detection and its strong statistical
significance. This represents the first gravitational imaging detec-
tion of a dark substructure in a galaxy.

However, to test the robustness of this detection (i.e. systematics)
we will now subject our reconstructions against several substantial
changes in the model and the data, some of these going far beyond
what could be regarded as reasonable changes.

6.4 Robustness and systematic errors

A number of major sources of systematic error might still affect
the lens modelling: the PSF modelling, the pixel scale and lens
galaxy subtraction from the lens plane. To determine at which level
systematic errors influenced the substructure detection we tested
the PL + PJ modelling (see Section 5) by rotating the PSF model
through 90◦ from the original one; we call this model (PL + PJ)psf90.
We also used a different data set with smaller drizzled pixels
(0.03 arcsec) and a different lens galaxy subtraction procedure (us-
ing a Sérsic profile rather than a b-spline surface brightness profile);
we call this model (PL + PJ)subt. We refer to the corresponding
smooth models as PLpsf90 and PLsubt, respectively. The results are
shown in Figs 5(a)–(d) and listed in Table 1.

More precisely, (PL + PJ)subt is not only rotated but also has
a different pixel scale (0.03 arcsec pixel−1), a different number of
pixels, a different noise level and a different PSF, so that we also
test against all these changes. We also check whether the form of
source regularization has any effect by running a PL and a PL +
PJ modelling for a non-adaptive regularization constant and for a
gradient regularization. Finally we run an optimization for both the
smooth and the perturbed model in which the centre of the lens is

allowed to change [PLcntr and (PL + PJ)cntr] and an optimization
with a larger PSF.

All tests (see Table 1) lead to results that are consistent with
each other for both the main lens and the substructure parameters.
First, we note that rotating the PSF changes the evidence by a
value that could be expected based on the sampling error in the
nested sampling. Hence we conclude that PSF effects are negligible.
In the case of the ‘subt’ model, we note that we are no longer
comparing the same data sets and that the evidence values have
dramatically changed. This simply reflects the large increase by
a factor of ∼(0.05/0.03)2 in the number of data points. Bayesian
evidence cannot be used to compare different data sets, but we can
compare the PLsubt and (PL + PJ)subt models amongst each other.
First, we remark that the pixel scale in this data set is considerably
smaller than the resolution and pixel scale in the image; hence
neither the data pixels nor their errors are fully independent. This
leads to a rather odd stripped source reconstruction, not observed
for the original data set. Despite this difference, we note that image
residuals in the PL + PJ models are reduced, especially near the
substructure positions, compared to the PL model. The likelihood
difference is � logLsubt = logLPJ − logLPL+PJ = −154 in favour
of the substructure model.

We have considered a wide range of possible sources of system-
atic errors and we have applied rather extreme changes, beyond
what one would expect realistic scenarios. This shows that the sub-
structure detection is stable. Overall, we are therefore confident that
the substructure detection is not only a statistically sound detection,
but also robust against dramatic changes in the model and the data.

6.5 The substructure mass-to-light ratio

Based on the residual images, we determine an upper limit on the
magnitude of the substructure in two different ways: by setting the
limit equal to three times the estimated (cumulative) noise level or by
aperture-flux fitting, both inside a 5 × 5 pixel (0.25 × 0.25 arcsec2)
window. The aperture is chosen to gather most of the light of the
substructure, which is expected to be effectively point-like, given
the typical size of the optical counterpart of galaxies of ≈109 M�.
They are in good agreement because the image residuals are very
close to the noise level. The 3σ limit is found to be IF814W,3σ > 27.5
mag. At the redshift of the lens galaxy this corresponds to a 3σ

upper limit in luminosity of 5.0 × 106 LV,�. Within the inner 0.3
and 0.6 kpc, we therefore find that the integrated masses are, respec-
tively, (5.8 ± 0.3) × 108 and (1.1 ± 0.05) × 109 M�, and hence
lower limits are (M/L)V,� � 120 M�/LV,� (3σ ) and (M/L)V,� �
218 M�/LV,� (3σ ).

The mass of the substructure is about one order of magnitude
larger than the mass of Milky Way (MW) satellites inside 0.3 kpc
(see Figs 6a and b; e.g. Strigari et al. 2008). Whereas this might
appear high, this is not necessarily in disagreement with MW ob-
servations. Diemand et al. (2007b), for example, showed that these
massive substructures can have a mass at the present time of only
40 per cent of the virial mass before accretion, due to tidal effects.
The total mass within the tidal radius of the substructure is currently
3.5 × 109 M�, which then translates into Mvir,acc ≈ 1010 M� before
accretion. As shown by Kravtsov (2010) a subhalo with Mvir,acc ≈
1010 M�, which formed at a redshift z � 10, corresponds to the
mass of a few ×108 M� that we find within 0.3 kpc. To be in
agreement with the MW observations, the Mvir,acc–LV relationship
proposed by Kravtsov (2010) yields a satellite luminosity of LV =
1.2 × 106 L�, which is lower than our detection limit. Hence, if the
detected substructure was formed early (i.e. z � 10), not unlikely
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1978 S. Vegetti et al.

Figure 5. The over-regularised PL model with a rotated PSF ((a) panels). The PL + PJ model with a rotated PSF ((b) panels). The over-regularised PL model
with a smaller pixel scale and a different procedure for the lens galaxy subtraction ((c) panels). The PL + PJ model with a smaller pixel scale and a different
procedure for the lens galaxy subtraction ((d) panels).

for massive early-type galaxies whose building blocks formed in
the highest density peaks in the early universe, our detection is
fully consistent with all observations. It does, however, require an
earlier typical formation redshift of the substructure in this galaxy
compared to those in the Local Group.

Also, the normalization of the mass function number density
scales with the total mass of the host galaxy. Because SDSSJ0946+
1006 is substantially more massive than the MW at fixed radius, it
is therefore not surprising to find a satellite of this mass around such
a massive elliptical galaxy. Madau, Diemand & Kuhlen (2008), for
example, showed that a dark matter halo eight times more mas-
sive than a MW halo contains almost a factor of 2 more substruc-
tures with larger circular velocities. Gao et al. (2004) looked at
haloes of different scales (i.e. cluster and galaxy) and they con-

cluded that the subhalo abundance in high-mass haloes is higher
than that in low-mass haloes. The difference between a rich clus-
ter halo and a galaxy halo is a factor of 2. Similar results were
found with the semi-analytical modelling by Zentner & Bullock
(2003). This is expected in the hierarchical scenario, where the
more massive haloes assemble later and their satellites have not been
destroyed yet.

7 THE SUBSTRUCTURE MASS FUNCTI O N

What does this imply for the �CDM model and the expected frac-
tion of mass in substructure? Given the statistical formalism pre-
sented in Vegetti & Koopmans (2009b), we can use this detection
to constrain the projected dark matter mass fraction in substructure
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Detection of a dark substructure 1979

Figure 6. Left-hand panel: the integrated mass in units of solar masses, within the inner 0.3 kpc as a function of the total luminosity, in units of solar luminosity
for the MW satellites (black points) and the substructure detected in this paper (red arrow). Note the small error on the substructure mass. Right-hand panel:
the integrated M/L, within the inner 0.3 kpc as a function of the total luminosity, in units of solar luminosity for the MW satellites (black points) and the
substructure detected in this paper (red arrow). We note that the results for the MW, a spiral galaxy, and the system analysed in this paper, an elliptical galaxy,
may not be directly comparable as explained in the text.

f and the substructure mass function slope dN/dm ∝ m−α . We note
that we can ignore the baryonic content in the substructure because
of its large total mass-to-light ratio (M/L).

To make a proper comparison with simulations, we assume that
the substructure mass can assume any value from Mmin = 4.0 ×
106 M� to Mmax = 4.0 × 109 M� (Diemand et al. 2007a,b, 2008)
and that the mass we can detect varies from Mlow = 0.15 × 109 M�
to Mhigh = Mmax. The current lower limit is set by the resolution
of the current simulations. If that limit decreases, then fraction of
substructure increases in that widened range. However, this does not
modify the fraction within the well-defined range where the current
simulations have already converged in the substructure mass func-
tion. We note that different limits would scale both the simulation
and observed mass fraction in the same way. The mass fractions
quoted throughout the papers are for this mass range only. We ig-
nore the error on the measured substructure mass; this does not
influence the results because our detection is well beyond the error
σ m = 0.15 × 109 M� level. Given the quality of the fit for a PL +
PJ model, we are confident that there are no other substructures with
mass above our detection threshold.

Fig. 7 shows the joint posterior probability density function
P (α, f |ns = 1, m = Msub, p) contours and the marginalized
probability densities P (f |ns = 1, m = Msub, p) and P (α|ns =
1, m = Msub, p), given one detected substructure ns = 1 with mass
m = Msub, where p is a vector containing the model parameters,
Mmin, Mmax, Mlow and Mhigh. Specifically, from the mariginalized
probability density distributions we find f = 2.56+3.26

−1.50 per cent and
α = 1.36+0.81

−0.28 at a 68 per cent confidence level (CL) for a flat prior
on α and f = 2.15+2.05

−1.25 per cent and α = 1.88+0.10
−0.10 at a 68 per cent

CL for a Gaussian prior centred in 1.90 ± 0.1. The same results are
found if an error on the mass measurement and a detection threshold
Mlow = 3 × σ m are assumed.

As already discussed in Vegetti & Koopmans (2009b), while even
a single-lens system is enough to set upper and lower limits on the
mass fraction, a larger number of lenses is required in order to con-
strain the mass function slope, unless a stringent prior information
on the parameter itself is adopted. By assuming a Gaussian prior
of the mass function slope centred at 1.90, we can quantify the
probability that the dark matter mass fraction is the one given by

Figure 7. Joint probability P (α, f | {ns, m}, p) contours and marginalized
probabilities P (f | {ns, m}, p) and P (α | {ns, m}, p) for a uniform prior
(solid lines) and for a Gaussian prior in α (dashed lines). Contours (inside
out) are set at levels �log(P) = −1, −4, −9 from the peak of the posterior
probability density.

N-body simulations f N-body ≈ 0.3 per cent (Diemand et al. 2007a,b,
2008), by considering the ratio between the posterior probabil-
ity densities P (fN-body, α = 1.9| ns = 1, m = Msub, p) and
Pmax(f , α = 1.9| ns = 1, m = Msub, p) and find that this ratio
is 0.51. Hence, currently our measurement and that inferred from
N-body simulations still agree as a result of the rather larger error
bar on the measured value of f . The combination of more lens sys-
tems is, of course, required to set more stringent constraints also on
α. We plan such an analysis in forthcoming papers.
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1980 S. Vegetti et al.

Given our best value of f = 0.0215 for α = 1.9, we might expect
to detect ∼1 mass substructures above our 3σ mass threshold of
4.5 × 108 M�. It is therefore unlikely that we have missed many
substructures with a mass slightly below that of our detection. Given
this result and image residuals already at the noise level, we believe
that adding a second substructure is not warranted and missing lower
mass substructure leads only to a minor bias (note that logarithmic
bins have nearly equal amounts of mass for α = 1.9).

8 SU M M A RY

We have applied our new Bayesian and adaptive-grid method for
pixelized source and lens potential modelling (Vegetti & Koopmans
2009a) to the analysis of HST data of the double Einstein ring system
SLACS SDSSJ0946+1006 (Gavazzi et al. 2008). This system was
chosen based on its large expected dark matter mass fraction near
the Einstein radius and the high signal-to-noise ratio of the lensed
images. Although these two facts should be uncorrelated to the
mass fraction of CDM substructure, both incidences maximize the
change of detection.

We find that a smooth elliptical power-law model of the system
leaves significant residuals near or above the noise level; these
residuals are correlated and spread over a significant part of the
lensed images. Through a careful modelling of this data including
either lens potential corrections or an additional (low-mass) simply
parametrized mass component, we conclude that the massive early-
type lens galaxy of SLACS SDSSJ0946+1006 hosts a large-M/L
substructure with a mass around Msub ∼ 3.5 × 109 M�, situated
on one of the lensed images. A careful statistical analysis of the
image residuals, as well as a number of more drastic robustness
tests (e.g. changing the PSF, pixel number and scale, regularization
level and form, galaxy subtraction and image rotation), confirm
and support this detection. Based on this detection, the first of
its kind, we derive a projected CDM substructure mass fraction of
∼2.2 per cent for the inner regions of the galaxy, using the Bayesian
method of Vegetti & Koopmans (2009b); this fraction is high, but
still consistent with expectations from numerical simulations due to
the large (Poisson) error based on a single detection.

The numerical details of our results can be further summarized
as follows.

(1) Using a Bayesian MULTINEST Markov-chain exploration of
the full model parameter space, we show that the identified object
has a mass of Msub = (3.51 ± 0.15) × 109 M� (68 per cent CL)
and is located near the inner Einstein ring at (−0.651 ± 0.038,
1.040 ± 0.034 arcsec). The Bayesian evidence is in favour of a
model that includes a substructure versus a smooth elliptical power
law only, with � log(E) = −128.2. This is roughly equivalent to a
16σ detection.

(2) At the redshift of the lens galaxy a 3σ upper limit in lumi-
nosity is found to be 5.0 × 106 LV,�. Within the inner 0.3 and
0.6 kpc, we find that the integrated masses are, respectively, (5.8 ±
0.3) × 108 and (1.1 ± 0.05) × 109 M�, and hence lower limits are
(M/L)V,� � 120 M�/LV,� (3σ ) and (M/L)V,� � 218 M�/LV,�
(3σ ). This is higher than that of MW satellites, but may be not
unexpected for satellites near massive elliptical galaxies. The mass
and luminosity limit of this substructure are consistent with Local
Group results if the substructure had a virial mass of ∼1010 M�
before accretion and formed at z � 10.

(3) The CDM mass fraction and a mass function slope are equal
to f = 2.15+2.05

−1.25 per cent and α = 1.88+0.10
−0.10, respectively, at a 68

per cent CL for a Gaussian prior on α centred on 1.90 ± 0.1. For a

flat prior on α between 1.0 and 3.0, we find f = 2.56+3.26
−1.50 per cent.

Asking whether the f = 2.15 per cent is consistent with f N-body =
0.3 per cent, we find a likelihood ratio of 0.51; indeed both are
consistent. This is the result of the considerable measurement error
found for f because it is based on only a single detection.

This is the first application of our adaptive ‘gravitational imaging’
method to real data and clearly shows its promise. In the near future
we will apply the method to a larger set of SLACS lenses in order
to constrain, via the statistical formalism presented in Vegetti &
Koopmans (2009b), the dark matter fraction in substructure and the
substructure mass function.
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