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The gravitational-wave signal from inspiralling neutron-star–neutron-star (or black-hole–neutron-star)

binaries will be influenced by tidal coupling in the system. An important science goal in the gravitational-

wave detection of these systems is to obtain information about the equation of state of neutron star matter

via the measurement of the tidal polarizability parameters of neutron stars. To extract this piece of

information will require accurate analytical descriptions both of the motion and the radiation of tidally

interacting binaries. We improve the analytical description of the late inspiral dynamics by computing the

next-to-next-to-leading–order relativistic correction to the tidal interaction energy. Our calculation is

based on an effective-action approach to tidal interactions and on its transcription within the effective-one-

body formalism. We find that second-order relativistic effects (quadratic in the relativistic gravitational

potential u ¼ Gðm1 þm2Þ=ðc2rÞ) significantly increase the effective tidal polarizability of neutron stars

by a distance-dependent amplification factor of the form 1þ �1uþ �2u
2 þ � � � where, say, for an equal-

mass binary, �1 ¼ 5=4 ¼ 1:25 (as previously known) and �2 ¼ 85=14 ’ 6:07143 (as determined here for

the first time). We argue that higher-order relativistic effects will lead to further amplification, and we

suggest a Padé-type way of resumming them. We recommend testing our results by comparing resolution-

extrapolated numerical simulations of inspiralling binary neutron stars to their effective one-body

description.

DOI: 10.1103/PhysRevD.85.124034 PACS numbers: 04.30.�w, 04.25.Nx

I. INTRODUCTION

Inspiralling binary neutron stars are among the most
promising sources for the advanced versions of the cur-
rently operating ground-based gravitational wave (GW)
detectors LIGO/Virgo/GEO. These detectors will be maxi-
mally sensitive to the inspiral part of the GW signal, which
will be influenced by tidal interaction between two neutron
stars. An important science goal in the detection of these
systems (and of the related mixed black-hole–neutron-star
systems) is to obtain information about the equation of
state of neutron-star matter via the measurement of the
tidal polarizability parameters of neutron stars. The ana-
lytical description of tidally interacting compact-binary
systems (made of two neutron stars or one black hole and
one neutron star) has been initiated quite recently [1–8]. In
addition, these analytical descriptions have been compared
to accurate numerical simulations [5,9–11], and have been
used to estimate the sensitivity of GW signals to the tidal
polarizability parameters [11–15].

Here, we shall focus on one aspect of the analytical
description of tidally interacting relativistic binary
systems: namely, the role of the higher-order post-
Newtonian (PN) corrections in the tidal interaction energy,

as described in particular within the effective one body
(EOB) formalism [16–19]. Indeed, the analysis of Ref. [5],
which compared the prediction of the EOB formalism for
the binding energy of tidally interacting neutron stars to
(nonconformally flat) numerical simulations of quasi-
equilibrium circular sequences of binary neutron stars
[20,21], suggested the importance of higher-order PN cor-
rections to tidal effects beyond the first post-Newtonian
(1PN) level and their tendency to significantly increase the
‘‘effective tidal polarizability’’ of neutron stars.
In the EOB formalism, the gravitational binding of a

binary system is essentially described by a certain ‘‘radial
potential’’ AðrÞ. In the tidal generalization of the EOB
formalism proposed in Ref. [5], the EOB radial potential
AðrÞ is written as the sum of three contributions,

AðrÞ ¼ ABBHðrÞ þ Atidal
A ðrÞ þ Atidal

B ðrÞ; (1.1)

where ABBHðrÞ is the radial potential describing the dy-
namics of binary black holes and Atidal

A ðrÞ and Atidal
B ðrÞ are

the additional radial potentials associated, respectively,
with the tidal deformations of body A and body B. (For
binary neutron-star systems, both Atidal

A and Atidal
B are

present, while for mixed neutron-star–black-hole systems,
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only one term, corresponding to the neutron star, is present;
see following). Here, we consider a binary system of
(gravitational) masses mA and mB, and denote

M � mA þmB; � � mAmB

ðmA þmBÞ2
: (1.2)

(A labelling of the two bodies by the letters A and Bwill be
used in this introduction for writing general formulas. We
shall later use the alternative labelling A ¼ 1, B ¼ 2 when
explicitly dealing with the metric generated by the two
bodies.) The binary black-hole (or point-mass) potential
ABBHðrÞ is known up to the third post-Newtonian (3PN)
level [18], namely

ABBH
3PN ðrÞ ¼ 1� 2uþ 2�u3 þ a4�u

4; (1.3)

where a4 ¼ 94=3� ð41=32Þ�2 ’ 18:68790269 and

u � GM

c2r
; (1.4)

with c being the speed of light in vacuum and G the
Newtonian constant of gravitation.

It was recently found [22,23] that an excellent descrip-
tion of the dynamics of binary black-hole systems is ob-
tained by augmenting the 3PN expansion Eq. (1.3) with
additional fourth post-Newtonian and fifth post-Newtonian
(5PN) terms, and by Padé-resumming the corresponding
5PN Taylor expansion.

The tidal contributions Atidal
A;B ðrÞ can be decomposed ac-

cording to multipolar order ‘, and type, as

Atidal
A ðrÞ ¼ X

‘�2

fAð‘ÞLO
A electricðrÞÂð‘Þ

A electricðrÞ

þ Að‘ÞLO
A magneticðrÞÂð‘Þ

A magneticðrÞ þ . . .g: (1.5)

Here, the label ‘‘electric’’ refers to the gravito-electric
tidal polarization induced in body A by the tidal field
generated by its companion, while the label ‘‘magnetic’’
refers to a corresponding gravito-magnetic tidal polariza-
tion. On the other hand, the label LO refers to the leading-
order approximation (in powers of u) of each (electric or
magnetic) multipolar radial potential. For instance, the
gravito-electric contribution at multipolar order ‘ is equal
to [5]

Að‘ÞLO
A electricðrÞ ¼ ��ð‘Þ

A u2‘þ2; (1.6)

where

�ð‘Þ
A ¼ 2kð‘ÞA

mB

mA

�
RAc

2

GðmA þmBÞ
�
2‘þ1

: (1.7)

Here, RA denotes the radius of body A and kð‘ÞA denotes a

dimensionless ‘‘tidal Love number’’. (Note that kð‘ÞA was
denoted kA‘ in our previous work. Here we shall always put

the multipolar index ‘ within parentheses to avoid ambi-
guity with our later use of the labelling A, B ¼ 1, 2 for the
two bodies.) The corresponding leading-order radial

potential of the gravito-magnetic type is proportional to

u2‘þ3 (instead of u2‘þ2), and to jð‘ÞA R2‘þ1
A , where jð‘ÞA de-

notes a dimensionless magnetic tidal Love number. It was
found [3,4] that both types of Love numbers have a strong
dependence upon the compactness CA � GmA=ðc2RAÞ of
the tidally deformed body, and that both kð‘ÞA and jð‘ÞA

contain a factor 1� 2CA, so that they would formally
vanish in the limit where body A becomes as compact as
a black hole (i.e., CA ! CBH ¼ 1

2 ). This is consistent with

the decomposition Eq. (1.1), where the binary black-hole
radial potential ABBHðrÞ is the only remaining contribution
when one formally takes the limit where both CA and CB
tend to the black-hole value CBH ¼ 1=2. Finally, the sup-

plementary factors Âð‘Þ
A electricðrÞ and Âð‘Þ

A magneticðrÞ denote the
distance-dependent amplification factors of the leading-
order tidal interaction by higher-order PN effects. They
have the general form

Â
ð‘Þ
A electricðrÞ ¼ 1þ �Að‘Þ

1 electricuþ �Að‘Þ
2 electricu

2 þ . . . ; (1.8)

Â
ð‘Þ
A magneticðrÞ ¼ 1þ �Að‘Þ

1 magneticuþ . . . ; (1.9)

where u is defined by Eq. (1.4).
The main aim of the present investigation will be to

compute the electric-type amplification factors Âð‘Þ
A electric,

for ‘ ¼ 2 (quadrupolar tide) and ‘ ¼ 3 (octupolar tide), at

the second order in u, i.e., to compute both �Að‘Þ
1 electric and

�Að‘Þ
2 electric. We shall also compute the magnetic-type ampli-

fication factor Âð‘Þ
A magnetic for ‘ ¼ 2, at the first order in u.

The analytical value of the first-order electric amplifica-

tion coefficient �Að‘Þ
1 electric was computed some time ago for

‘ ¼ 2 (see Ref. [29] in Ref. [5]) and was reported in
Eq. (38) of Ref. [5], namely

�Að‘¼2Þ
1 electric ¼

5

2
XA; (1.10)

where XA � mA=ðmA þmBÞ is the mass fraction of body
A. The analytical result Eq. (1.10) has been recently con-
firmed [6]. On the other hand, several comparisons of the
analytical description of tidal effects with the results of
numerical simulations have indicated that the amplification

factor Âð‘¼2Þ
A electricðrÞ is larger than its 1PN value 1þ

�Að‘¼2Þ
1 electricu, and have suggested that the higher-order coef-

ficients �Að‘Þ
2 electric; . . . take large, positive values. More pre-

cisely, the analysis of Ref. [5] suggested (when taking into
account the value Eq. (1.10) for �1) a value of order

�Að‘¼2Þ
2 electric �þ40 (for the equal-mass case) from a compari-

son with the numerical results of Refs. [20,21] on quasi-
equilibrium adiabatic sequences of binary neutron stars.
Recently, a comparison with dynamical simulations of
inspiralling binary neutron stars confirmed the need for
such a large value of �A

2 electric [9,10]. (Note that, while

the comparison to the highest-resolution numerical data
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suggests the need of even larger values of �Að‘¼2Þ
2 electric, of

order þ100, the comparison to approximate resolution-
extrapolated data call only for �2 values of order þ40.
See Fig. 13 in Ref. [10].)

II. EFFECTIVE ACTION APPROACH
TO TIDAL EFFECTS

A. Finite-size effects and nonminimal
worldline couplings

It was shown long ago [24] using the technique of
matched asymptotic expansions that the motion and radia-
tion of N (nonspinning) compact objects can be described
up to the 5PN approximation by an effective action of the
type

S0 ¼
Z dDx

c

c4

16�G

ffiffiffi
g

p
RðgÞ þ Spoint mass; (2.1)

where RðgÞ represents the scalar curvature associated with
the metric g��, with determinant �g, and where

Spoint mass ¼ �X
A

Z
mAc

2d�A (2.2)

is the leading-order skeletonized description of the com-
pact objects as point masses. Here, d�A denotes the proper

time along the worldline y
�
A ð�AÞ of A, namely, d�A �

c�1ð�g��ðyAÞdy�Ady�AÞ1=2. To give meaning to the notion

of point-mass sources in General Relativity, one needs to
use a covariant regularization method. The most conve-
nient one is dimensional regularization, i.e., analytic con-
tinuation in the value of the spacetime dimension
D ¼ 4þ ", with " 2 C being continued to zero only at
the end of the calculation. The consistency and efficiency
of this method has been shown in the calculations of the
motion [25,26] and radiation [27] of binary black holes at
the 3PN approximation.

It was also pointed out in Ref. [24] that finite-size effects
(linked to tidal effects and the fact that neutron stars have,

contrary to black holes, nonzero Love numbers kð‘ÞA ) enter

at the 5PN level. In effective field theory, finite-size effects
are treated by augmenting the point-mass action of
Eq. (2.2) by nonminimal worldline couplings involving
higher-order derivatives of the field [28–30]. In a gravita-
tional context, this means considering worldline couplings
involving the 4-velocity u�A � dy�A=d�A (satisfying

g��u
�
Au

�
A ¼ �c2), together with the Riemann tensor

R���� and its covariant derivatives. To classify the pos-

sible worldline scalars that can be constructed, one can
appeal to the relativistic theory of tidal expansions
[31–33]. In the notation of Refs. [32,33], the tidal ex-
pansion of the ‘‘external metric’’ felt by body A can be
entirely expressed in terms of two types of external
tidal gradients evaluated along the central worldline of
this body: the gravito-electric GA

Lð�AÞ � GA
a1...a‘ð�AÞ and

gravito-magnetic HA
Lð�AÞ � HA

a1...a‘ð�AÞ symmetric trace-

free (spatial) tensors, together with their time-derivatives.
(The spatial indices ai ¼ 1, 2, 3 refer to a local frame X0

A �
c�A, X

a
A attached to body A.) This implies that the most

general nonminimal worldline action has the form

Snonminimal ¼
X
A

X
‘�2

�
1

2

1

‘!
�ð‘Þ

A

Z
d�AðGA

Lð�AÞÞ2

þ 1

2

‘

‘þ 1

1

‘!

1

c2
�ð‘Þ

A

Z
d�AðHA

Lð�AÞÞ2

þ 1

2

1

‘!

1

c2
�0ð‘Þ

A

Z
d�Að _GA

Lð�AÞÞ2

þ 1

2

‘

‘þ 1

1

‘!

1

c4
�0ð‘Þ

A

Z
d�Að _HA

Lð�AÞÞ2 þ . . .

�
;

(2.3)

where _GA
Lð�AÞ � dGA

L=d�A, and where the ellipsis refer
either to higher proper-time derivatives of GA

L and HA
L or

to higher-than-quadratic invariant monomials made from
GA

L, H
A
L and their proper-time derivatives. For instance, the

leading-order nonquadratic term would beZ
d�AG

A
abG

A
bcG

A
ca: (2.4)

Note that the allowed monomials in GL,HL, and their time
derivatives are restricted by symmetry constraints. When
considering a nonspinning neutron star (which is symmet-
ric under time and space reflections), one should only allow
monomials invariant under time and space reversals. For
instance, Gab

_Gab and GabHab are not allowed.

B. Tidal coefficients

The electric-type tidal moments GA
L are normalized in a

Newtonian way, i.e., such that in lowest PN order, they
reduce to the usual Newtonian tidal gradients: GA

L ¼
½@LUðXaÞ�Xa¼0 þOð 1

c2
Þ, where UðXÞ is the Newtonian po-

tential and @L � @i1@i2 . . . @i‘ represents multiple ordinary

space derivatives. The magnetic-type ones HA
L are defined

(in lowest PN order) as repeated gradients of the gravito-
magnetic field c3g0a. With these normalizations, the coef-

ficients �ð‘Þ
A and �ð‘Þ

A in the nonminimal action in Eq. (2.3)

both have dimensions ½length�2‘þ1=G. They are related to

the dimensionless Love numbers kð‘ÞA and jð‘ÞA , and to the

radius of body A, via [3]

G�ð‘Þ
A ¼ 1

ð2‘� 1Þ!! 2k
ð‘Þ
A R2‘þ1

A ; (2.5)

G�ð‘Þ
A ¼ ‘� 1

4ð‘þ 2Þ
1

ð2‘� 1Þ!! j
ð‘Þ
A R2‘þ1

A : (2.6)

Note that the coefficients associated with the first time

derivatives of GA
L and HA

L have dimensions G�0ð‘Þ
A �

½length�2‘þ3 �G�0ð‘Þ
A . The nonminimal action in Eq. (2.3)
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has a double ordering in powers of RA and in powers of
1=c2. The lowest-order terms in the RA expansion are
proportional to R5

A and correspond to the electric and mag-
netic quadrupolar tides, as measured by GA

ab and HA
ab,

respectively.

C. Tidal tensors

We have written the most general nonminimal action
Eq. (2.3) in terms of the irreducible symmetric trace-free
spatial tensors [with respect to the local space associated
with the worldline y

�
A ð�AÞ] describing the tidal expansion

of the ‘‘external metric’’ felt by body A, as defined in
Ref. [32]. These tidal tensors played a useful role in
simplifying the (1PN-accurate) relativistic theory of tidal
effects. In our present investigation, it will be convenient to
express them in terms of the Riemann tensor and its
covariant derivatives. Eq. (3.40) in Ref. [32] shows that
(in the case where one can neglect corrections proportional
to the covariant acceleration of the worldline) the first two
electric spatial tidal tensors, Gab and Gabc, are simply
equal (modulo a sign) to the nonvanishing spatial compo-
nents (in the local frame) of the following spacetime
tensors (evaluated along the considered worldline)

G�� � �R����u
�u�; (2.7)

G��	 � �Sym��	ðr?
�R��	�Þu�u�: (2.8)

Here the notationG�� for (minus) the electric part of the

curvature tensor should not be confused with the Einstein
tensor, Sym��	 denotes a symmetrization (with weight

one) over the indices ��	, while r?
� � PðuÞ��r� denotes

the projection of the spacetime gradient r� orthogonally

to u� (PðuÞ�� � 

�
� þ c�2u�u�). (Note that in the

Newtonian limit, u� ’ c

�
0 , so that the Newtonian limit

of G�� is �c2R�0�0, where the factor c2 cancels the

Oð1=c2Þ order of the curvature tensor.) By contrast, the
presence of the extra term �3c�2E�

haE
�
bi on the right-hand

side of Eq. (3.40) in Ref. [32] shows that the ‘ ¼ 4 electric
spatial tidal tensor Gabcd ¼ @habcE�

di would differ from the

symmetrized spatial projection of ðr�r�R	�
�Þu�u� by a
term proportional to Gh�	G�
i. [Here, the angular brackets
denote a (spatial) symmetric trace-free projection.] In ad-
dition, the electric time derivatives, such as _Gab, can be
replaced by corresponding spacetime tensors such as
u�r�G��. Similarly to Eqs. (2.7) and (2.8), one finds

that the ‘ ¼ 2 and ‘ ¼ 3magnetic tidal tensors (as defined
in Refs. [32,33]) are equal to the nonvanishing local-frame
spatial components of the spacetime tensors

H�� � þ2cR�
����u

�u�; (2.9)

H��	 � þ2c Sym��	ðr?
�R

�
��	�Þu�u�; (2.10)

where R�
���� � 1

2 �����R
��

�� is the dual of the curvature

tensor, ����� denoting here the Levi-Civita tensor (with

�0123 ¼ þ ffiffiffi
g

p
). Note the factor þ2 entering the link be-

tween the magnetic tidal tensorsH��; . . . (normalized as in

Refs. [32,33]) and the dual of the curvature tensor, which
contrasts with the factor �1 entering the corresponding
electric tidal-tensor links, Eqs. (2.7) and (2.8). [The defi-
nition of BA

�� in the text below Eq. (5) of Ref. [5] should

have included such a factor 2 in its right-hand side. On the
other hand, the corresponding magnetic-quadrupole tidal
action, Eq. (13) there, was computed with Hab and was
correctly normalized.] Let us also note that the expressions
in Eqs. (2.7), (2.8), (2.9), and (2.10) assume that the Ricci
tensor vanishes (e.g., to ensure the tracelessness of G��).

One could have alternatively definedG��, etc. by using the

Weyl tensor C���� instead of R����. However, as dis-

cussed in Ref. [29], the terms in an effective action which
are proportional to the (unperturbed) equations of motion
(such as Ricci terms) can be eliminated (modulo contact
terms) by suitable field redefinitions.

D. Covariant description of tidal interactions

Finally, the covariant form of the effective action de-
scribing tidal interactions reads

Stot ¼ S0 þ Spoint mass þ Snonminimal; (2.11)

where S0 and Spoint mass are given by Eqs. (2.1) and (2.2) and

where the covariant form of the nonminimal worldline
couplings starts as

Snonminimal

¼ X
A

�
1

4
�ð2Þ

A

Z
d�AG

A
��G

��
A

þ 1

6c2
�ð2Þ

A

Z
d�AH

A
��H

��
A

þ 1

12
�ð3Þ

A

Z
d�AG

A
��	G

��	
A

þ 1

4c2
�0ð2Þ

A

Z
d�Aðu�Ar�G

A
��Þðu�Ar�G

��
A Þ þ . . .

�
;

(2.12)

where G��
A � g��g��GA

��, etc. (evaluated along the A

worldline).
In principle, one can then derive the influence of tidal

interaction on the motion and radiation of binary systems
by solving the equations of motion following from the
action of Eqs. (2.11) and (2.12). More precisely, this action
implies both a dynamics for the worldlines where the
geodesic equation is modified by tidal forces [coming
from 
Snonminimal=
y

�
A ð�AÞ], and modified Einstein equa-

tions for the gravitational field of the type
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R�� � 1

2
Rg�� ¼ 8�G

c4
fTpoint mass

�� þ Tnonminimal
�� g; (2.13)

where the new tidal sources T
��
nonminimalðxÞ ¼

ð2c= ffiffiffi
g

p Þ
Snonminimal=
g��ðxÞ are essentially sums of de-

rivatives of worldline Dirac distributions:

TnonminimalðxÞ �
X
A

X
‘

@‘
ðx� yAÞ:

E. A simplifying, general property of reduced actions

The task of solving the coupled dynamics of the world-
lines and of the gravitational field, both being modified by
tidal effects, at the second post-Newtonian (2PN) level,
i.e., at the next-to-next-to-leading order in tidal effects, and
then of computing the looked-for higher-order terms in the
amplification factors of Eqs. (1.8) and (1.9), is quite non-
trivial. Happily, one can drastically simplify the needed
work by using a general property of reduced actions.
Indeed, we are interested here in knowing the influence
of tidal effects on the reduced dynamics of a compact
binary, that is, the dynamics of the two worldlines y

�
A ð�Þ,

y�B ð�Þ, obtained after having ‘‘integrated out’’ the gravita-
tional field (i.e., after having explicitly solved g��ðxÞ as a
functional of the two worldlines). When considering, as we
do here, the conservative dynamics of the system (without
radiation reaction), it can be obtained from a reduced
action, which is traditionally called the ‘‘Fokker action.’’
See Ref. [28] and references therein for a detailed discus-
sion (using a diagrammatic approach) of Fokker actions (at
the 2PN level, and with the inclusion of scalar couplings in
addition to the pure Einsteinian tensor couplings). If we
denote the fields mediating the interaction between the
worldlines y ¼ fyA; yBg as ’ (in our case ’ ¼ g��), the

reduced worldline action Sred½y� (a functional of the world-
lines y) that corresponds to the complete action S½’; y�
describing the coupled dynamics of y and ’ is formally
defined as:

Sred½y� � S½’sol½y�; y�; (2.14)

where ’sol½y� is the functional of y obtained by solving the
’-field equation,


S½’; y�=
’ ¼ 0; (2.15)

considered as an equation for ’, with given source-
worldlines. (This must be done with time-symmetric
boundary conditions and, in the case of g��, the addition

of a suitable gauge-fixing term; see Ref. [28] for details.)
Having recalled the concept of reduced (or Fokker)

action, let us now consider the case where the complete
action is of the form

S½’; y� ¼ Sð0Þ½’; y� þ �Sð1Þ½’; y�; (2.16)

where � denotes a ‘‘small parameter.’’ In our case, � can be
either a formal parameter associated with all the nonmini-

mal tidal terms in Snonminimal, Eq. (2.12), or, more con-
cretely, any of the tidal parameters entering Eq. (2.12):

�ð‘¼2Þ
A , �ð‘¼2Þ

B , etc. As said previously, when turning on �,
the equations of motion and therefore the solutions of both

’ and y get perturbed by terms of order �: ’ ¼ ’ð0Þ þ
�’ð1Þ þ . . . , y ¼ yð0Þ þ �yð1Þ þ . . . , but a simplification
occurs when considering the reduced action Eq. (2.14).
Indeed, it is true that the field Eq. (2.15) for’ gets modified
into

0 ¼ 
S½’; y�

’

¼ 
Sð0Þ½’; y�

’

þ �

Sð1Þ½’; y�


’
; (2.17)

so that its solution ’sol½y� gets perturbed:
’sol½y� ¼ ’ð0Þ

sol½y� þ �’ð1Þ
sol½y� þOð�2Þ: (2.18)

However, when inserting the perturbed solution of
Eq. (2.18) into the complete, perturbed action of
Eq. (2.16), one finds

Sred½y� ¼ S½’ð0Þ
sol½y� þ �’ð1Þ

sol½y� þOð�2Þ; y�
¼ S½’ð0Þ

sol½y�; y� þ �’ð1Þ
sol½y�


S


’
½’ð0Þ

sol½y�; y� þOð�2Þ

¼ S½’ð0Þ
sol½y�; y� þ �’ð1Þ

sol½y�

Sð0Þ


’
½’ð0Þ

sol½y�; y� þOð�2Þ

¼ S½’ð0Þ
sol½y�; y� þOð�2Þ; (2.19)

because, by definition, ’ð0Þ
sol is a solution of 
Sð0Þ=
’ ¼ 0.

Note that, in Eq. (2.19), while the functional S is the
complete, perturbed action, the functional argument is
the unperturbed solution. Decomposing the functional S
into its unperturbed plus perturbed parts [see Eq. (2.16)]
then leads to the final result:

Sred½y� ¼ Sð0Þ½’ð0Þ
sol½y�; y� þ �Sð1Þ½’ð0Þ

sol½y�; y� þOð�2Þ
¼ Sð0Þred½y� þ �Sð1Þ½’ð0Þ

sol½y�; y� þOð�2Þ: (2.20)

In words: the order Oð�Þ perturbation
�Sð1Þred½y� � Sred½y� � Sð0Þred½y�

of the reduced action is correctly obtained, modulo terms
of order Oð�2Þ, by replacing in the Oð�Þ perturbation

�Sð1Þ½’; y�
of the complete (unreduced) action the field ’ by its

unperturbed solution ’ð0Þ
sol½y�.

In our case, the ordering parameter � is either the
collection

�ð2Þ
A ;�ð2Þ

B ;�ð3Þ
A ;�ð3Þ

B ; . . . ; �ð2Þ
A c�2; . . . ; �0ð2Þ

A c�2; . . . , or the

corresponding sequence of powers of RA and
RB: R

5
A; R

5
B; R

7
A; R

7
B; . . . The terms quadratic in � would

therefore involve at least ten powers of the radii [and would
mix with higher-than-quadratic worldline contributions
akin to (2.4)]. Neglecting such terms, we conclude that
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the higher-PN corrections to the tidal effects are correctly
obtained by replacing in Eq. (2.12), considered as a
functional of g��ðxÞ and y

�
A ð�AÞ, the metric g��ðxÞ by the

point-mass metric obtained by solving Einstein’s equations
with point-mass sources. [This was the method used by one
of us (T. D.) to compute the 1PN coefficient of Eq. (1.10)
from the calculation by Damour, Soffel, and Xu of the
1PN-accurate value of Gab [34,35].]

III. THE 2PN POINT-MASS METRIC AND ITS
REGULARIZATION

A. Form of the 2PN point-mass metric

The result of the last section allows one to compute the
tidal corrections to the reduced action for two tidally
interacting bodies A, B with the same accuracy at which
one knows the metric generated by two (structureless)
point masses mA, y

�
A ; mB, y

�
B . The metric generated by

two point masses has been the topic of many works
over many years. It has been known (in various forms
and gauges) at the 2PN approximation for a long time
[36–38]. Here, we shall use the convenient, explicit
harmonic-gauge form of Ref. [39], with respect to the
(harmonic) coordinates x� ¼ ðx0 � ct; xiÞ, i.e., the metric

ds2 ¼ g00ðdx0Þ2 þ 2g0idx
0dxi þ gijdx

idxj; (3.1)

where, at 2PN, the metric components are written as

g00 ¼ �1þ 2�2V � 2�4V2

þ 8�6
�
X̂ þ 
ijViVj þ 1

6
V3

�
þOð8Þ;

g0i ¼ �4�3Vi � 8�5R̂i þOð7Þ;
gij ¼ 
ijð1þ 2�2V þ 2�4V2Þ þ 4�4Ŵij þOð6Þ: (3.2)

Here, as below, we sometimes use the alternative notation
� � 1=c for the small PN parameter. We used also the
shorthand notation OðnÞ � Oð�nÞ � Oðc�nÞ.

The various 2PN brick potentials V, Vi, Ŵij, R̂i and X̂

are the (time-symmetric) solutions of

hV ¼ �4�G�; hVi ¼ �4�G�i;

hŴij ¼ �4�Gð�ij � 
ij�kkÞ � @iV@jV;

hR̂i ¼ �4�GðV�i � Vi�Þ � 2@kV@iVk � 3

2
@tV@iV;

hX̂ ¼ �4�GV�ii þ 2Vi@t@iV þ V@2t V þ 3

2
ð@tVÞ2

� 2@iVj@jVi þ Ŵij@ijV; (3.3)

where @t denotes a time derivative (while we remind that
@i, for instance, denotes a spatial one), and where the
compact-supported source terms are [40]

� � T00 þ Tii

c2
; �i � T0i

c
; �ij � Tij; (3.4)

with T�� being the stress-energy tensor of two point
masses:

T�� ¼ �1ðtÞv�
1 ðtÞv�

1ðtÞ
ðx� y1ðtÞÞ þ 1 $ 2; (3.5)

where

�1ðtÞ ¼ m1½g�1=2ðg��v
�
1 v

�
1=c

2Þ�1=2�1: (3.6)

Here, v
�
1 ¼ dy

�
1

dt ¼ ðc; vi
1Þ and the index 1 on the bracket in

Eq. (3.6) refer to a regularized limit where the field point xi

tends towards the (point-mass) source point yi1. Note that,
in this section, we shall generally label the two particles as
ðm1; y

i
1Þ, ðm2; y

i
2Þ instead of ðmA; y

i
AÞ, ðmB; y

i
BÞ as above.

The notation 1 $ 2 means adding the terms obtained by
exchanging the particle labels 1 and 2.
The explicit forms of the 2PN-accurate brick potentials

V, Vi, Ŵij, R̂i, X̂ were given in Ref. [39]. Their time-

symmetric parts are recalled in Appendix . These brick
potentials are expressed as explicit functions of r1 � x�
y1, r1 � jr1j, n1 � r1=r1, r2 � x� y2, etc., y12 � y1 �
y2, r12 � jy12j, n12 � y12=r12, v12 � v1 � v2, ðn12v1Þ �
n12 � v1. Note the appearance of the auxiliary quantity S,
which denotes the perimeter of the triangle defined by x,
y1, and y2, viz.

S � r1 þ r2 þ r12: (3.7)

In all the PN expressions, the spacetime points x�, y
�
1 ,

y�2 (and the velocities v�
A ) are taken at the same instant t,

i.e., x0 ¼ y01 ¼ y02 ¼ ct.

B. Regularization of the 2PN metric and
of the 2PN tidal actions

Let us now discuss in more detail the crucial operation
(already implicit in Sec. II above) of regularization of
all the needed field quantities, such as g��ðxÞ; gðxÞ;
R����ðxÞ; . . . , when they are to be evaluated on a worldline:
x� ! y�A . As mentioned at the beginning of Sec. II, all the

quantities ½G��ðxÞ�1; . . . ; ½R����ðxÞ�1 are defined by di-

mensional continuation. It was shown long ago [24,41]
that, at 2PN, dimensional regularization is equivalent to
the Riesz’ analytic regularization and is a technical shortcut
for computing the physical answer obtained by the matching
of asymptotic expansions. In addition, because of the re-
stricted type of singular terms that appear at
2PN [see Eqs. (25), (30), and (33) in Ref. [24]], the
analytic-continuation regularization turns out to be equiva-
lent to Hadamard regularization (used, at 2PN, in
Refs. [38,39,42]); see below. Here, it will be technically
convenient to use Hadamard regularization (which is de-
fined inD ¼ 4) because the explicit form of Eqs. (A1)–(A5)
of the 2PN metric that we shall use applies only in the
physical dimension D ¼ 4 and has lost the information
about its dimensionally continued kin in D ¼ 4þ ".
Let us summarize here the (Hadamard-type) definition

of the regular part of any field quantity ’ðxÞ (which might
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be a brick potential, VðxÞ; ViðxÞ; . . . , a component of the
metric g��ðxÞ, or a specific contribution to a tidal moment,

G��; . . . ). We consider the behavior of’ðxÞ near particle 1,
i.e., when r1 ¼ jx� y1j ! 0. To ease the notation, we
shall provisionally put the origin of the (harmonic) coor-
dinate system at y1 (at some instant t); i.e., we shall assume
that y1 ¼ 0, so that r1 ¼ jxj � r and n1 ¼ r1=r1 ¼ x=r �
n. We consider the expansion of ’ðxÞ in (positive and
negative) integer powers k of r1 ¼ r, and in spherical
harmonics of the direction n1 ¼ n, say (for k 2 Z,
‘ 2 N, N 2 N)

’ðxÞ ¼ X
k��N

X
‘�0

rkn̂LfkL; (3.8)

where n̂L � n̂a1...a‘ denotes the symmetric trace-free pro-
jection of the tensor nL � na1 . . . na‘ . (The angular func-
tion fkLn̂

L is equivalent to a sum of
Pþ‘

m¼�‘ cmY‘m.) We

(uniquely) decompose the field ’ðxÞ in a regular part (R)
and a singular one (S),

’ðxÞ ¼ R½’ðxÞ� þ S½’ðxÞ�; (3.9)

by defining (n 2 N)

R½’ðxÞ� � X
‘�0

X
n�0

r‘þ2nn̂Lf‘þ2n
L ; (3.10)

S½’ðxÞ� � X
k�‘þ2n

rkn̂LfkL: (3.11)

Note that R½’ðxÞ� can be rewritten as a sum of infinitely
differentiable terms of the type x̂Lðx2Þn. By contrast,
S½’ðxÞ� is such that it (ifN, in Eq. (3.8), is strictly positive),
or one of its (repeated) spatial derivatives, tends towards
infinity as r ! 0. Note also that the Rþ S decomposition
commutes with linear combinations (with constant coeffi-
cients), as well as with spatial derivatives, in the sense that
R½a’ðxÞ þ bc ðxÞ� ¼ aR½’ðxÞ� þ bR½c ðxÞ�, S½a’ðxÞ þ
bc ðxÞ� ¼ aS½’ðxÞ� þ bS½c ðxÞ�, R½@i’ðxÞ� ¼ @iR½’ðxÞ�
and S½@i’ðxÞ� ¼ @iS½’ðxÞ�. By contrast, the Rþ S de-
composition (as defined above, in the Hadamard way)
does not commute with nonlinear operations (e.g.,
R½’c � � R½’�R½c �), nor even with multiplication by a
smooth ðC1Þ function fðxÞ (e.g., R½f’� � fR½’�). This is
a well-known inconsistency of the Hadamard regulariza-
tion, which created many ambiguities when it was used at
the 3PN level [43,44]. One might worry that our present
calculation (which aims at regularizing nonlinear quanti-
ties quadratic in R���� � @2gþ g�1@g@g) might be in-

trinsically ambiguous already at the 2PN level. Actually,
this turns out not to be the case because of the special
structure of the 2PN metric, which is at work in the Riesz-
analytic-continuation derivation of the 2PN dynamics in
Ref. [24]. This structure guarantees, in particular, that
the Riemann tensor (or its derivatives) is regularized
unambiguously.

C. On the special structure of the 2PN metric
guaranteeing its unambiguous regularization

Let us first recall why the Riesz-analytic-continuation
method, or, equivalently (when considering the regulariza-
tion of the metric and its derivatives), the dimensional-
continuation method, is consistent under nonlinear
operations. The dimensional-continuation analog of
Eqs. (3.9), (3.10), and (3.11) consists of distinguishing,
within ’ðxÞ, the terms that (in dimension 4þ ") contain
powers of r of the type rk�n", with n ¼ 1; 2; 3; . . . [which
define the "-singular part of ’ðxÞ], and the terms that are
(formally) C1 in 4þ " dimensions [which define the
"-regular part of’ðxÞ]. It is then easily seen in dimensional
continuation (simply by considering the continuation to
large, negative values of the real part of ") that the
"-singular terms give vanishing contributions when eval-
uated at r ! 0, and that they do so consistently in non-
linear terms such as @’@c . Let us now indicate why
the special structure of the 2PN metric ensures that the
decomposition into "-singular parts and "-regular parts
of the various brick potentials VðxÞ; ViðxÞ; . . . coincides
with their above-defined decomposition into Hadamard-
singular (S½VðxÞ�; S½ViðxÞ�; . . . ) and Hadamard-regular
parts (R½VðxÞ�; R½ViðxÞ�; . . . ) in the four-dimensional
case. This is trivially seen to be the case for most of the
2PN contributions to the brick potentials (because one
easily sees how those contributions smoothly evolve
when analytically continuing the dimension). However,
the most nonlinear contributions to the 2PN metric,

namely, the terms, say X̂ðVVVÞ, in X̂ that are generated by
the cubically nonlinear terms contained in the last source

term, ŴðVVÞ
ij @ijV, on the right-hand side of the last Eq. (3.3)

(where ŴðVVÞ
ij is the part of Ŵij generated by�@iV@jV) are

more delicate to discuss. Actually, among the contribution

X̂ðVVVÞ, only the terms proportional either to m2
1m2 or to

m1m
2
2, i.e., the terms whose cubically nonlinear source

�@2V��1@V@V involve two V potentials generated by
one worldline and one V potential generated by the other

worldline, such as X̂ðV1V1V2Þ / m2
1m2, pose a somewhat

delicate problem. More precisely, it is easily seen that the

only dangerous part in X̂ðV1V1V2Þ, considered near the first

worldline, is of the form fðxÞ=rð2þ2"Þ
1 in dimension 4þ ",

where fðxÞ denotes a smooth function. [Here, we add back
the particle label indicating whether the expansions
Eqs. (3.10) and (3.11) refer to the first (A ¼ 1) or the
second (A ¼ 2) particle. The appropriate label should be
added both on r and n in Eqs. (3.10) and (3.11): rkn̂L !
rkAn̂

L
A.] The problem is that the power of 1=r1 in this

"-singular term becomes an even integer when " ! 0.
When inserting the Taylor expansion of fðxÞ, say fðxÞ �P

r‘þ2n
1 n̂L1f

‘þ2n
L , some of the terms in the "-singular con-

tribution fðxÞ=rð2þ2"Þ
1 might be of the form r‘þ2n0�2"

1 n̂L1 ,
with n0 ¼ n� 1 � 0, and might then contribute to the

Hadamard-regular part of X̂ðV1V1V2Þ in the limit " ! 0.
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This would mean that the Hadamard-regular part of

X̂ðV1V1V2Þ would not coincide with its "-regular part. We
already know from Refs. [38,39], which used Hadamard
regularization to derive the 2PN-accurate dynamics and
found the same result (modulo gauge effects) as the
analytic-continuation derivation of Ref. [24], that this is

not the case for the regularized values of X̂ðV1V1V2Þ and of its
first derivatives on the first worldline. (Indeed, these quan-
tities enter the computation of the equations of motion.) On
the other hand, the computations that we shall do here

involve higher spatial derivatives of X̂, and it is important
to check that we can safely use Hadamard regularization to
evaluate them. This can be proven by using the techniques
explained in Ref. [24], based on iteratively considering

the singular terms in ŴðVVÞ
ij and X̂ðVVVÞ generated by the

singular local behavior (near the first worldline) of their
respective source terms. One finds then that the smooth

function fðxÞ entering the dangerous terms fðxÞ=rð2þ2"Þ
1 in

X̂ðV1V1V2Þ is of the special form fðxÞ �P
c‘GLr

‘
1n

L
1 in

dimension 4þ ", with ‘ � 1, where GL � @LV2

denotes the ‘-th tidal gradient (considered near the first
worldline) of the V potential generated by the second
worldline. When working (as we do) at the 2PN accuracy,

we can take V at Newtonian order, and the gradients GL ’
½@LðGm2=r

ð1þ"Þ
2 Þ�1 are then traceless: GL ¼ Ga1a2���a‘ ¼

Gha1a2���a‘i. As a consequence, it is immediately seen

that, in the limit " ! 0, the potentially dangerous term

fðxÞ=rð2þ2"Þ
1 in X̂ðV1V1V2Þ does not give any contribution to

the Hadamard-regular part of X̂. This means that we
can compute the "-regularized reduced tidal action in
Eq. (2.12) by replacing, from the start, the brick potentials
VðxÞ; ViðxÞ; . . . , by their Hadamard-regularized counter-
parts, R½VðxÞ�; R½ViðxÞ�; . . .

Summarizing: The A-worldline part of the tidal ac-
tion Eq. (2.12) can be obtained by computing all its ele-

ments ðd�A ¼ c�1ð�g��ðyAÞdy�Ady�AÞ1=2; GA
��; . . .Þ within

the A-regular metric g
A-reg
�� ðxÞ obtained by replacing each

2PN brick potential VðxÞ; ViðxÞ; . . . by its A-Hadamard-
regular part RA½VðxÞ�; RA½ViðxÞ�; . . .

As a check on our results (and on the many complicated
algebraic operations needed to derive them) we have also
recomputed the electric-quadrupole tidal Lagrangian,

L
�ð2Þ

A

¼ 1
4 ðd�A=dtÞGA

��G
��
A by effecting the Hadamard

regularization in a different way. More precisely, we first
calculatedG��ðyAÞ as�RA½R�����RA½u��RA½u��, then we
computed ½G2

ab�ðyAÞ � G��ðyAÞG��ðyAÞRA½g���RA½g���,
which we inserted into the expression of L

�ð2Þ
A

just written.

The remaining factor, ðd�A=dtÞ=4, was taken to be
RA½d�=dt�=4. Note in passing that, while one can a priori
prove that the alternative regularization ofG��ðyAÞ (and sub-
sequently ½G2

ab�ðyAÞ�G��ðyAÞG��ðyAÞRA½g���RA½g���)
just explained, must coincide with the one explained above,

namely ðG��G
��Þ½RAðVÞ; RAðViÞ; . . .� (because both of

them agree with the Riesz-analytic-regularization and/or
dimensional-regularization), a different result would have
been obtained if one had postponed the Hadamard regulari-
zation of the squared tidal quadrupole to the last moment;
i.e., if one had computed RA½G��G

���. [Such a difference

occurs because of the appearance of a dangerous nonlinear
mixing of Hadamard-regular and Hadamard-singular parts

in @ijV@ijX̂
ðV1V1V2Þ (with the special structure of the delicate

terms in X̂ðV1V1V2Þ given above). This shows again the con-
sistency problems of theHadamard regularizationwhen it is
used beyond the types of calculations where it is equivalent
to the Riesz analytic regularization (or to dimensional
regularization).]

D. Explicit rules for computing the regular parts
of the 2PN brick potentials

Let us now give some indications on the computation
of the regular parts of the various brick potentials
VðxÞ; ViðxÞ; . . .

1. Regularizing V and Vi

The situation is very simple for the ‘‘linear potentials’’ V
and Vi, which satisfy linear equations with delta-function
sources [see Eqs. (3.3)]. Near, say, the particle A ¼ 1, the
A-regular parts of V and Vi are the terms in Eqs. (A1) and
(A2) which are generated by the source terms / 
ðx� y2Þ
of the second particle. It is indeed easily seen [from the
definition in Eq. (3.10)] that the 1-regular part of all the
terms explicitly written in Eq. (A1) vanishes, while all
the nonexplicitly written terms obtained by the 1 $ 2
exchange are regular near the particle 1. The same is true
for Vi, Eq. (A2). A simple rule for obtaining these results is
to note that, from the definition in Eq. (3.11), any term of
the form

r2kþ1
1 fðxÞ; k 2 Z; (3.12)

where fðxÞ is a smooth function of x� (near x ¼ y1 at fixed
instant t) and where the power of r1 is odd, is purely
singular.
The situation is more complicated for the higher-order

potentials Ŵij and R̂i, whose sources contain both compact

terms / 
ðx� yAÞ, and quadratically nonlinear noncom-

pact ones / @V@V, and still more complicated for the X̂

potential whose source even depends on the previous Ŵij

potential.

2. Regularizing Ŵij

The potential Ŵij can be decomposed in powers of the

masses. It contains terms proportional to m1, m2, m
2
1, m

2
2

and m1m2. It is easily seen that, while the terms propor-
tional to m1 and m2

1 are 1-singular, the terms proportional
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to m2 and m2
2 are 1-regular. It is more delicate to decom-

pose the mixed terms / m1m2 into 1-regular (R1) and
1-singular (S1) parts. More precisely, the m1m2 part of

Ŵij has the form

Ŵ
½m1m2�
ij ¼ Ŵ½m1m2�

ijð0Þ þ ~̂W
½m1m2�
ijð0Þ ; (3.13)

where

Ŵ½m1m2�
ijð0Þ ¼ 1

r12S

ij þ

�
1

S2
ðnði1njÞ2 þ 2nði1n

jÞ
12Þ

� ni12n
j
12

�
1

S2
þ 1

r12S

��

� 1

r12S
Pðn12Þij þ 1

S2
ðnði1njÞ2 þ 2nði1n

jÞ
12 � ni12n

j
12Þ;

(3.14)

~̂W
½m1m2�
ijð0Þ ¼ 1

r12S

ij þ

�
1

S2
ðnði2njÞ1 � 2nði2n

jÞ
12Þ

� ni12n
j
12

�
1

S2
þ 1

r12S

��

� 1

r12S
Pðn12Þij þ 1

S2
ðnði2njÞ1 � 2nði2n

jÞ
12 � ni12n

j
12Þ;

(3.15)

and where Pðn12Þij � 
ij � ni12n
j
12 denotes the projector

orthogonal to the unit vector n12. (The decomposition in
Eq. (3.13) simply corresponds to the decomposition of
Eq. (A4) into an explicitly written term and its 1 $ 2
counterpart.) Here, we see that there appear (modulo
x-independent factors, such as r�1

12 ; n
i
12; Pðn12Þij; . . . ) terms

of the type

1

S
;

1

S2
;

ni1
S2

;
ni2
S2

;
ni1n

j
2

S2
; (3.16)

where we recall that S � r1 þ r2 þ r12. Near particle 1, n
i
2

is a smooth function, while ni1 ¼ ri1=r1 is the ratio of a
smooth function (ri1 ¼ xi � yi1) by r1. In other words, the
five terms listed in Eq. (3.16) are of three different types:

1

S
;

fðxÞ
S2

and
fðxÞ
r1S

2
; (3.17)

where fðxÞ denotes a generic smooth function near particle
1. (As we always consider the neighborhood of particle 1,
we do not add an index to fðxÞ to recall that it is 1-regular,
but might be singular near particle 2.) Because S ¼ r1 þ
r2 þ r12 is a function of ‘‘mixed character’’ (partly regular
and partly singular), it is not immediate to decompose the
functions in Eq. (3.17) into 1-regular and 1-singular parts.
(This mixed character of S is deeply linked with the fact
that it enters the 2PN metric because of the basic fact that a

solution of �g ¼ r�1
1 r�1

2 is g ¼ lnS.) A simple (though
somewhat brute-force) way of extracting the regular parts
of the functions in Eq. (3.17) consists of decomposing S
into

S � S0 þ r1 ¼ S0

�
1þ r1

S0

�
; (3.18)

with

S0 � r2 þ r12 (3.19)

(note that S0 is a smooth function near particle 1), and then
expanding S�n in powers of r1=S0. Namely,

1

S
¼ 1

S0

�
1� r1

S0
þ r21

S20
� r31

S30
þ . . .

�
; (3.20)

1

S2
¼ 1

S20

�
1� 2

r1
S0

þ 3
r21
S20

� 4
r31
S30

þ . . .

�
; (3.21)

and more generally,

1

Sn
¼ 1

Sn0

�
1� n

r1
S0

þ ðnþ 1Þn
2

�
r1
S0

�
2 � ðnþ 2Þðnþ 1Þn

3!

�
�
r1
S0

�
3 þ ðnþ 3Þðnþ 2Þðnþ 1Þn

4!

�
r1
S0

�
4 þ . . .

�
;

n ¼ 1; 2; . . . : (3.22)

Using these expansions, together with the rule that terms of
the form in Eq. (3.12) are purely singular, it is easy to
derive the following results for the 1-regular parts of
functions of the type in Eq. (3.17), and, more generally,
of the types fðxÞ=S, fðxÞ=S2, fðxÞ=ðr1SÞ, and fðxÞ=ðr1S2Þ:
�
fðxÞ
S

�
R
¼ fðxÞ

S0

�
1þ

�
r1
S0

�
2 þ

�
r1
S0

�
4 þ

�
r1
S0

�
6 þ . . .

�

� fðxÞ
�
1

S

�
R
; (3.23)

�
fðxÞ
S2

�
R
¼ fðxÞ

S20

�
1þ 3

�
r1
S0

�
2 þ 5

�
r1
S0

�
4 þ 7

�
r1
S0

�
6 þ . . .

�

� fðxÞ
�
1

S2

�
R
; (3.24)

�
fðxÞ
r1S

�
R
¼ � fðxÞ

S20

�
1þ

�
r1
S0

�
2 þ

�
r1
S0

�
4 þ . . .

�

� fðxÞ
�
1

r1S

�
R
; (3.25)
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�
fðxÞ
r1S

2

�
R
¼�fðxÞ

S30

�
2þ 4

�
r1
S0

�
2 þ 6

�
r1
S0

�
4 þ 8

�
r1
S0

�
6 þ . . .

�

� fðxÞ
�

1

r1S
2

�
R
: (3.26)

Here, we use a lower R subscript ð’ðxÞÞR to denote the
1-regular part of a function ’ðxÞ (above denoted as
R½’ðxÞ�). [We omit decorating R with a label 1, but one
should remember that we are always talking about the
1-regular part of ’ðxÞ.]

Note that, as indicated, all the terms above have the
simple property that the regular-projection operator R
commutes with the multiplication by a smooth function,
e.g., R½fðxÞS�1� ¼ fðxÞR½S�1�. Beware that this property
is true only for the special singular terms considered here.
We shall later see that more-complicated singular terms

(entering the X̂ potential) do not satisfy this simple com-
mutativity property.

Note that the number of terms one needs to retain in the
above expansions depends on the quantity one wants to
evaluate on the first worldline. For instance, when evaluating
G1

��, which involves the curvature tensor and therefore two

spatial derivatives of themetric (and, in particular, ofR½Ŵij�),
we need to include enough terms to ensure that R½Ŵij� is C2

nearx ¼ y1. Actually,we shall pushour calculations up to the
level ofG1

��	, which depends on the first covariant derivative

of the curvature tensor, and we shall therefore need all the
brick potentials to be at least C3 near x ¼ y1.

The application of the above results yields the following
explicit expressions for the 1-regular part of the two sepa-

rate Oðm1m2Þ delicate contributions to Ŵij [defined in

Eqs. (3.13), (3.14), and (3.15)]:

½Ŵ½m1m2�
ijð0Þ �R ¼ Pðn12Þij

r12

1

S0

�
1þ r21

S20
þ r41

S40
þ . . .

�

þ rði1n
jÞ
2

S20

�
� 2

S0
� 4

r21
S30

� 6
r41
S50

þ . . .

�

þ 2
rði1n

jÞ
12

S20

�
� 2

S0
� 4

r21
S30

� 6
r41
S50

þ . . .

�

� ni12n
j
12

1

S20

�
1þ 3

r21
S20

þ 5
r41
S40

þ . . .

�
; (3.27)

½ ~̂W½m1m2�
ijð0Þ �R ¼ Pðn12Þij

r12

1

S0

�
1þ r21

S20
þ r41

S40
þ . . .

�

þ nði2 r
jÞ
1

S20

�
� 2

S0
� 4

r21
S30

� 6
r41
S50

þ . . .

�

� 2nði2n
jÞ
12

1

S20

�
1þ 3

r21
S20

þ 5
r41
S40

þ . . .

�

� ni12n
j
12

1

S20

�
1þ 3

r21
S20

þ 5
r41
S40

þ . . .

�
: (3.28)

3. Regularizing R̂i

As the potential R̂i has a source of the same type as Ŵij

(namely, 
ðx� yAÞ terms plus a noncompact term qua-
dratic in theV potentials), the calculation of its regular part

can be done in exactly the same way as Ŵij. R̂i contains

terms / m2
1, m

2
2 and m1m2. The Oðm2

1Þ piece is purely
singular, the Oðm2

2Þ one is purely regular, while the
Oðm1m2Þ one is a mix of regular and singular terms. As

above, we can decompose the m1m2 part of R̂i in two
pieces, say

R̂
½m1m2�
i ¼ R̂½m1m2�

ið0Þ þ ~̂R
½m1m2�
ið0Þ ; (3.29)

where

R̂½m1m2�
ið0Þ ¼ ni12

�
�ðn12v1Þ

2S

�
1

S
þ 1

r12

�
� 2ðn2v1Þ

S2
þ 3ðn2v2Þ

2S2

�

þ ni1
1

S2

�
2ðn12v1Þ � 3ðn12v2Þ

2
þ 2ðn2v1Þ

� 3ðn2v2Þ
2

�
þ vi

1

�
1

r1r12
þ 1

2r12S

�
� vi

2

1

r1r12
;

(3.30)

~̂R
½m1m2�
ið0Þ ¼�ni12

�ðn12v2Þ
2S

�
1

S
þ 1

r12

�
�2ðn1v2Þ

S2
þ3ðn1v1Þ

2S2

�

þni2
1

S2

�
�2ðn12v2Þþ3ðn12v1Þ

2
þ2ðn1v2Þ

�3ðn1v1Þ
2

�
þvi

2

�
1

r2r12
þ 1

2r12S

�
�vi

1

1

r2r12
:

(3.31)

Applying the above results then yields the following
expressions for the 1-regular parts of these quantities:

½R̂½m1m2�
ið0Þ �R ¼ ni12

��
�ðn12v1Þ

2
� 2ðn2v1Þþ 3ðn2v2Þ

2

��
1

S2

�
R

�ðn12v1Þ
2r12

�
1

S

�
R

�
þ
�
2ðn12v1Þ� 3ðn12v2Þ

2

þ 2ðn2v1Þ� 3ðn2v2Þ
2

�
ri1

�
1

r1S
2

�
R
þ vi

1

2r12

�
1

S

�
R
;

(3.32)

½ ~̂R½m1m2�
ið0Þ �R ¼ �ni12

�ðn12v2Þ
2

��
1

S2

�
R
þ 1

r12

�
1

S

�
R

�

� 2ðr1v2Þ
�

1

r1S
2

�
R
þ 3

2
ðr1v1Þ

�
1

r1S
2

�
R

�

þ ni2

��
�2ðn12v2Þ þ 3ðn12v1Þ

2

��
1

S2

�
R

þ
�
2ðr1v2Þ � 3ðr1v1Þ

2

��
1

r1S
2

�
R

�

þ vi
2

�
1

r2r12
þ 1

2r12

�
1

S

�
R

�
� vi

1

1

r2r12
: (3.33)
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One should substitute the expansions in Eqs. (3.23), (3.24),
(3.25), and (3.26) into these results to get their explicit
forms.

4. Regularizing X̂

Finally, we come to the most complicated 2PN brick

potential, namely, X̂. It contains contributions proportional
to m2

1, m1m2, m
2
2; m

3
1, m

2
1m2, m1m

2
2 and m3

2 [see Eq. (A5)].
The terms in m2

1, m
2
2, m

3
1, m

3
2 are easily dealt with (they are

either purely singular or purely regular). Many, but not all,
of them1m2 terms can be dealt with in the same way as the

m1m2 terms in Ŵij and R̂i. If we again decompose X̂½m1m2�

in two pieces

X̂ ½m1m2� ¼ X̂½m1m2�
ð0Þ þ ~̂X

½m1m2�
ð0Þ ; (3.34)

we have the following results for their regular parts:

½X̂½m1m2�
ð0Þ �R¼v2

1

��
1

r1S

�
R
þ 1

r12

�
1

S

�
R

�
þv2

2

��
1

r1S

�
R
þ 1

r12

�
1

S

�
R

�
�ðv1v2Þ

�
2

�
1

r1S

�
R
þ 3

2r12

�
1

S

�
R

�
�ðn12v1Þ2

��
1

S2

�
R

þ 1

r12

�
1

S

�
R

�
�ðn12v2Þ2

��
1

S2

�
R
þ 1

r12

�
1

S

�
R

�
þ3ðn12v1Þðn12v2Þ

2

��
1

S2

�
R
þ 1

r12

�
1

S

�
R

�
þ2ðn12v1Þðr1v1Þ

�
1

r1S
2

�
R

�5ðn12v2Þðr1v1Þ
�

1

r1S
2

�
R
�ðr1v1Þ2

�
1

r21S
2
þ 1

r31S

�
R
þ2ðn12v2Þðr1v2Þ

�
1

r1S
2

�
R
þ2ðr1v1Þðr1v2Þ

�
1

r21S
2
þ 1

r31S

�
R

�ðr1v2Þ2
�

1

r21S
2
þ 1

r31S

�
R
�2ðn12v2Þðn2v1Þ

�
1

S2

�
R
þ2ðr1v2Þðn2v1Þ

�
1

r1S
2

�
R
�3

2
ðr1v1Þðn2v2Þ

�
1

r1S
2

�
R
; (3.35)

½ ~̂X½m1m2�
ð0Þ �R ¼ v2

2

�
1

r2r12
þ 1

r2

�
1

S

�
R
þ 1

r12

�
1

S

�
R

�
þ v2

1

�
� 1

r2r12
þ 1

r2

�
1

S

�
R
þ 1

r12

�
1

S

�
R

�
� ðv1v2Þ

�
2

r2
þ 3

2r12

��
1

S

�
R

� ðn12v2Þ2
��

1

S2

�
R
þ 1

r12

�
1

S

�
R

�
� ðn12v1Þ2

��
1

S2

�
R
þ 1

r12

�
1

S

�
R

�
þ 3ðn12v2Þðn12v1Þ

2

��
1

S2

�
R
þ 1

r12

�
1

S

�
R

�

� 2ðn12v2Þðn2v2Þ
�
1

S2

�
R
þ 5ðn12v1Þðn2v2Þ

�
1

S2

�
R
� ðn2v2Þ2

��
1

S2

�
R
þ 1

r2

�
1

S

�
R

�
� 2ðn12v1Þðn2v1Þ

�
1

S2

�
R

þ 2ðn2v2Þðn2v1Þ
��

1

S2

�
R
þ 1

r2

�
1

S

�
R

�
� ðn2v1Þ2

��
1

S2

�
R
þ 1

r2

�
1

S

�
R

�
þ 2ðn12v1Þðr1v2Þ

�
1

r1S
2

�
R

þ 2ðn2v1Þðr1v2Þ
�

1

r1S
2

�
R
� 3

2
ðn2v2Þðr1v1Þ

�
1

r1S
2

�
R
: (3.36)

One should substitute the expansions in Eqs. (3.23),
(3.24), (3.25), and (3.26) into the corresponding terms in
Eqs. (3.35) and (3.36). However, these equations involve
new types of terms not discussed above. These new terms
are of the form

fðxÞ
�

1

r21S
2
þ 1

r31S

�
: (3.37)

The fact that we have a specific combination of r�2
1 S�2 and

r�3
1 S�1 simplifies things. Indeed, using the expansions in

Eqs. (3.20) and (3.21) above, we have

fðxÞ
r21S

2
¼ fðxÞ

S40

�
S20
r21

� 2
S0
r1

þ 3� 4
r1
S0

þ 5
r21
S20

þ . . .

�
; (3.38)

fðxÞ
r31S

¼ fðxÞ
S40

�
S30
r31

� S20
r21

þ S0
r1

� 1þ r1
S0

� r21
S20

þ . . .

�
: (3.39)

When summing these two equations, we see that the terms
/ 1=r21 cancel. We shall deal later with these terms, which
turn out to be delicate to handle, but anyway, in the sum of

Eqs. (3.38) and (3.39), they cancel out. The remaining
terms contain either an odd power of r1 [and are therefore
purely singular, Eq. (3.12)] or a positive, even power of r1
(which makes them purely regular). As a consequence, the
regular part of the combination of Eq. (3.37) reads�
fðxÞ

�
1

r21S
2
þ 1

r31S

��
R
¼ fðxÞ

S40

�
2þ 4

�
r1
S0

�
2 þ 6

�
r1
S0

�
4

þ 8

�
r1
S0

�
6 þ . . .

�

� fðxÞ
�

1

r21S
2
þ 1

r31S

�
R
: (3.40)

Note that, thanks to the cancellation of the 1=r21 terms, we
have again a property of commutativity R½fðxÞ’ðxÞ� ¼
fðxÞR½’ðxÞ�, for the special type of terms ’ðxÞ entering
Eq. (3.37).

Concerning the m1m
2
2 contribution to X̂, it is the sum of

X̂
½m1m

2
2
�

ð0Þ ¼ � 1

2r312
þ r2

2r1r
3
12

� 1

2r1r
2
12

(3.41)
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and

~̂X
½m1m

2
2
�

ð0Þ ¼ 1

2r32
þ 1

16r31
þ 1

16r22r1
� r21

2r22r
3
12

þ r31
2r32r

3
12

� r22
32r31r

2
12

� 3

16r1r
2
12

þ 15r1
32r22r

2
12

� r21
2r32r

2
12

� r1
2r32r12

� r212
32r22r

3
1

: (3.42)

Using the rule of Eq. (3.12), we easily see that each term
clearly is either purely regular or purely singular.

Computing the regular part of X̂½m1m2� is then easy.

The most delicate contribution to X̂ is its Oðm2
1m2Þ one,

which can again be written as the sum of

X̂
½m2

1
m2�

ð0Þ ¼ 1

2r31
þ 1

16r32
þ 1

16r21r2
� r22

2r21r
3
12

þ r32
2r31r

3
12

� r21
32r32r

2
12

� 3

16r2r
2
12

þ 15r2
32r21r

2
12

� r22
2r31r

2
12

� r2
2r31r12

� r212
32r21r

3
2

(3.43)

and

~̂X
½m2

1m2�
ð0Þ ¼ � 1

2r312
þ r1

2r2r
3
12

� 1

2r2r
2
12

: (3.44)

Actually, the part ~̂X
½m2

1
m2�

ð0Þ is easy to discuss: Its regular part

is obtained simply by discarding the term r1=ð2r2r312Þ.
Similarly, most of the terms in X̂

½m2
1m2�

ð0Þ are easy to treat,

being either purely regular or purely singular because of
Eq. (3.12). However, the third, fourth, eighth, and last
terms in the right-hand side of Eq. (3.43) are somewhat
tricky. (These terms correspond to the ‘‘dangerous terms’’

in X̂ðV1V1V2Þ that were discussed in Sec. III when making the
link between the "-regularization and the Hadamard one.)
The third term is

Q � 1

16r21r2
; (3.45)

while the sum of the fourth, eighth, and last terms reads

P � � r22
2r21r

3
12

þ 15r2
32r21r

2
12

� r212
32r21r

3
2

: (3.46)

BothQ and P are of the form fðxÞ=r21 (but we shall see that
Q is special compared with P). The computation of the
regular part of fðxÞ=r21 is a bit subtle. It can, however, be
done by brute force, namely, by replacing the smooth
function fðxÞ by its Taylor expansion around y1:

fðxÞ ¼ fðy1Þ þ ri1@ifðy1Þ þ
1

2!
ri1r

j
1@ijfðy1Þ

þ 1

3!
ri1r

j
1r

k
1@ijkfðy1Þ þ . . . (3.47)

When replacing ri1 ! r1n
i
1 and dividing by r21, one sees

that the regular part of fðxÞ=r21 will only come from the

terms rL1 � ri1i2...i‘1 with ‘ ¼ 2; 4; 6; . . . Moreover, by de-
composing rL1 ¼ r‘1n

L
1 in irreducible tensorial parts, as in

rij1 ¼ r21n
ij
1 ¼ r21

�
nhiji1 þ 1

3

ij

�
; (3.48)

where nhiji1 � n̂ij1 � nij1 � 1
3


ij denotes the symmetric

trace-free projection of nij1 � ni1n
j
1, we see [in view of

the definition in Eq. (3.10)] that only the pieces containing
at least one Kroneker 
 in the decomposition of nL1 will
contribute to the regular part. For instance, in the case
‘ ¼ 2, only the 
ij in Eq. (3.47) will contribute to the
regular part of fðxÞ=r21. More generally, we have that
R½rL1=r21� ¼ ðrL1 � r̂L1 Þ=r21.
Applying this method yields the following result [here

written with the simplified notation used around Eq. (3.8)]
for the regular part of fðxÞ=r21:�
fðxÞ
r2

�
R
¼ 1

6
�fð0Þ þ 1

10
xi@i�fð0Þ þ 1

28
x̂ij@ij�fð0Þ

þ 1

120
r2�2fð0Þ þ 1

108
x̂ijk@ijk�fð0Þ

þ 1

280
r2xi@i�

2fð0Þ þOðx4Þ: (3.49)

As one sees in Eq. (3.49) (and as can be proven to all
orders), all the terms on the right-hand side of Eq. (3.49)
are derivatives of the Laplacian of fðxÞ (taken at x ¼ y1).
As a consequence, in the particular case where �fðxÞ ¼ 0,
the regular part of fðxÞ=r21 is exactly zero. This is the case

for the term Q in X̂½m2
1
m2�, Eq. (3.45). (Let us point out in

passing that the discussion in Sec. III C of the link between
the "-regularization and the Hadamard one essentially
consisted in remarking that all the ‘‘dangerous’’ terms in

X̂½m2
1m2� had this innocuous structure fðxÞ=rð2þ2"Þ

1 with
�fðxÞ ¼ 0.) Therefore, we have simply

QR ¼ 0: (3.50)

On the other hand, this is not the case for the term P,
Eq. (3.46). The evaluation of the regular part of P needs to
appeal to the result in Eq. (3.49) and yields (modulo terms
of order Oðr41Þ that will not be needed in our calculations)

PR ¼ � 1

2r312

�
r22
r21

�
R
þ 15

32r212

�
r2
r21

�
R
� r212

32

�
1

r21r
3
2

�
R

¼ � 3

8r312
þ 1

r512

�
3

224
r21 �

15

112
ðr1n12Þ2

�

þ 5

12r612
ðr1n12Þ

�
ðr1n12Þ2 � 3

8
r21

�
: (3.51)

Summarizing: We have explicitly displayed all the rules
needed to compute (near particle 1) the regular parts of the

various brick potentials V, Vi, Ŵij, R̂i, X̂ entering the 2PN

metric. By replacing V ! VR; . . . ; X̂ ! X̂R in Eq. (3.2) we
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define a regularized version of the 2PN metric generated

by two point masses, gR��ðxÞ � g��½VRðxÞ; . . . ; X̂RðxÞ�,
which is smooth near particle 1.

IV. COMPUTATION OF THE INVARIANTS
ENTERING THE TIDAL ACTION

As we explained above, when neglecting terms qua-

dratic in the tidal parameters �ð‘Þ, etc., the tidal part of
the two-body action is simply obtained by evaluating the
Snonminimal, Eq. (2.12), as a function of the worldlines, by
replacing the metric g��ðxÞ entering the right-hand side of

Eq. (2.12) by the (regular part of the) point-mass metric

gpoint mass
�� ðx; y1; y2; m1; m2Þ. This reduced action is a sum

over the various tidal parameters, �ð‘Þ
A ; �ð‘Þ

A ;�0ð‘Þ
A ; . . . . We

can therefore compute separately the part of the reduced
action associated with each of them. This is what we shall
do in this section for the actions associated with the pa-

rameters �ð‘¼2Þ
A¼1 , �ð‘¼3Þ

A¼1 , �ð‘¼2Þ
A¼1 and �0ð‘¼2Þ

A¼1 . (We shall only
explicitly write down the results for A ¼ 1 but, evidently,
they also yield the results for A ¼ 2 by exchanging 1 $ 2.)

First, let us note that each action, say, associated with the
parameter �1 related to the first worldline, is of the form

�1

Z
dtL�1

ðy1; y2;v1;v2Þ; (4.1)

where the Lagrangian L�1
is the product of a geometrical

invariant by d�1=dt. For instance,

L
�ð2Þ

1

¼ 1

4

d�1
dt

½G��G
���1 � 1

4

d�1
dt

½G2
ab�1: (4.2)

We shall separately evaluate each geometrical invariant,
G2

ab; G
2
abc; . . . , before multiplying it by the (regularized)

proper-time redshift factor d�1=dt (‘‘Einstein time dila-
tion’’). Note also that we systematically work with the
order-reduced 2PN metric, i.e., the 2PN metric in which
the higher time derivatives of y1 and y2 have been ex-
pressed in terms of positions and velocities only,
ðy1; y2;v1;v2Þ, by iterative use of the (harmonic-gauge)
equations of motion. As was discussed long ago, such an
order reduction of the action is allowed when it is under-

stood that it corresponds to a certain additional change of
coordinate gauge [45–47]. As we shall ultimately be inter-
ested in computing gauge-invariant quantities associated
with the EOB reformulation of the dynamics, we do not
need to keep track of this coordinate change.

A. Explicit 2PN-accurate tidal actions for general orbits

Let us start by discussing the simplest (and physically
most important) geometric invariant, namely, the one as-
sociated with the electric-type quadrupolar tide, say

J2e � ½GabGab�1 ¼ ½G��G
���1

¼ ½R����R	�
g
�	g�
u�u�u�u�1; (4.3)

where u�1 � dy�1 =d�1 ¼ ðc;v1Þdt=d�1, and where the

subscript 2e on J2e refers to ‘‘‘ ¼ 2 electric.’’ Using two
independently written codes (one based on the Maple
system and the other one based on the Mathematica soft-
ware supplemented by the package xAct [48]) we have
computed the right-hand side of Eq. (4.3) within the
(regularized) 2PN metric. [Actually, as explained above,
the Mathematica code alternatively regularized, à la
Hadamard, the value of G�� computed with the full (non-

regularized) 2PN metric.]
As the PN expansion of the quadrupolar tidal tensor

Eq. (2.7) starts as

Gab ¼ �c2Ra0b0 þ . . .

¼ þ 1

2
c2ð@abg00 � @a0gb0 � @b0ga0 þ @00gabÞ þ . . . ;

one sees that the 2PN-accurate metric [i.e., the knowledge
of g00 up to Oð1=c6Þ terms included, of g0a up to Oð1=c5Þ,
and of gab up to Oð1=c4Þ] is exactly what is needed to be
able to compute Gab to the 2PN (fractional) accuracy, i.e.,
Gab ¼ þ@abV þ c�2ð. . .Þ þ c�4ð. . .Þ. The same is true for
the higher electric tidal moments Gabc; . . . . However, one
can easily see that one loses a PN order when evaluating
either the magnetic tidal moments Hab;Habc; . . . or the
time-differentiated electric one _Gab; . . . . The result we
obtained, for general orbits, is

J2e ¼ 6G2m2
2

r612

�
1þ 1

c2

�
�3ðn12v12Þ2 � 3ðn12v2Þ2 þ 3v2

12 �
G

r12
ð5m1 þ 6m2Þ

�
þ 1

c4

�
3ðn12v12Þ4 þ 12ðn12v2Þ2ðn12v12Þ2

þ 6ðn12v2Þ4 � 9v2
12ðn12v12Þ2 � 6ðn12v12Þ2ðv2v12Þ � 6ðn12v2Þðn12v12Þðv2v12Þ � 3v2

2ðn12v12Þ2 � 9v2
12ðn12v2Þ2

� 3v2
2ðn12v2Þ2 þ 6v4

12 þ 6v2
12ðv2v12Þ þ 3ðv2v12Þ2 þ 3v2

2v
2
12 þ

Gm1

r12

�
� 109

4
ðn12v12Þ2 þ 41

2
ðn12v2Þ2 þ 21

4
v2
12

�

þGm2

r12
ð6ðn12v12Þ2 þ 21ðn12v2Þ2 � 6v2

12Þ þ
G2

r212

�
365m2

1

28
þ 125m1m2

2
þ 21m2

2

���
: (4.4)

Similarly, we computed the further geometrical invariants ‘‘‘ ¼ 3 electric’’

J3e � ½G2
abc�1 ¼ ½G��	G

��	�1; (4.5)

and ‘‘‘ ¼ 2 magnetic’’
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J2m � 1

4
½H2

ab�1 ¼
1

4
½H��H

���1
¼ c2½R�

����R
�
	�
g

�	g�
u�u�u�u�1: (4.6)

Note the factor 1
4 , introduced in the definition of J2m to

have J2m ¼ ðcR�
����u

�u�Þ2, analogously to J2e ¼
ðR����u

�u�Þ2. Let us also note in passing that, in evaluat-

ing J3e, i.e., the square of the electric octupole G��	,
Eq. (2.8), it is important to use the orthogonally projected
covariant derivative r?

� . If, instead of ðG��	Þ2, one eval-
uates ðC��	Þ2 where C��	 ¼ Sym��	r�R��	�u

�u�, one
finds a result which differs from ðG��	Þ2 by a term pro-
portional to J _2e ¼ ð _GabÞ2 [see Eq. (6.51)].
The results for these invariants (along general orbits) are

J3e ¼ 90G2m2
2

r812

�
1þ 1

c2

�
�2ðn12v12Þ2 � 4ðn12v2Þ2 þ 3v2

12 �
Gð4m1 þ 10m2Þ

r12

�
þ 1

c4

�
10ðn12v2Þ2ðn12v12Þ2 þ 10ðn12v2Þ4

� 14

3
v2
12ðn12v12Þ2 � 4ðn12v12Þ2ðv2v12Þ � 12v2

12ðn12v2Þ2 � 4ðn12v2Þðn12v12Þðv2v12Þ � 2v2
2ðn12v12Þ2

� 4v2
2ðn12v2Þ2 þ 17

3
v4
12 þ 6v2

12ðv2v12Þ þ 3ðv2v12Þ2 þ 3v2
2v

2
12 þ

Gm1

r12

�
�32ðn12v12Þ2 þ 2ðn12v2Þðn12v12Þ

þ 22ðn12v2Þ2 þ 16

3
v2
12

�
þGm2

r12
ð12ðn12v12Þ2 þ 45ðn12v2Þ2 � 18v2

12Þ þ
G2

r212

�
9m2

1 þ
259m1m2

3
þ 54m2

2

���
(4.7)

and

J2m ¼ 18G2m2
2

r612

�
�ðn12v12Þ2 þ v2

12 þ
1

c2

�
ðn12v12Þ4 þ 4ðn12v2Þ2ðn12v12Þ2 � 3v2

12ðn12v12Þ2 � 2ðn12v12Þ2ðv2v12Þ

� v2
2ðn12v12Þ2 � 2ðn12v2Þðn12v12Þðv2v12Þ � 3v2

12ðn12v2Þ2 þ 2v4
12 þ 2v2

12ðv2v12Þ þ ðv2v12Þ2 þ v2
2v

2
12

þ 2G

r12

�
m1

3
þm2

�
ððn12v12Þ2 � v2

12Þ
��
: (4.8)

The result Eq. (4.4), after multiplication by the redshift
factor

d�1
dt

¼
�
�g00 � 2g0i

vi
1

c
� gij

vi
1v

j
1

c2

�
1=2

; (4.9)

which evaluates to (we use again the notation � � 1=c, and
henceforth often set Newton’s constant to one)

d�1
dt

¼ 1� �2
�
1

2
v2
1 þ

m2

r12

�
þ �4

�
� 1

8
v4
1 þ

m2

r12

�
1

2
ðn12v2Þ2

� 3

2
v2
1 þ 4ðv1v2Þ � 2v2

2

�
þ m2

2r212
ð3m1 þm2Þ

�
;

(4.10)

provides the Oð�ð‘¼2Þ
1 Þ piece (‘‘gravitoelectric tidal quadru-

pole’’) of the reduced two-body action at the 2PN approxi-
mation level; i.e., including tidal correction terms that are
ðv=cÞ4 smaller than the leading order tidal Lagrangian,

which is simply given by Jð0Þ2e ¼ 6m2
2=r

6
12. Similarly, multi-

plying the results of Eqs. (4.7) and (4.8) by the redshift factor
in Eq. (4.10) provides the reduced tidal actions associated
with J3e � ½G2

abc�1 and J2m � 1
4 ½H2

ab�1 at the 2PN approxi-

mation for the electric-octupole term J3e, and at the 1PN
approximation for the magnetic-quadrupole term J2m.

In view of their complexity, the results of Eqs. (4.4),
(4.7), and (4.8), which provide the action for general orbits,
are not very useful as they are. In what follows, we shall
extract the physically most useful information they contain

by: (i) focusing our attention on circular orbits and
(ii) reformulating our results in terms of the EOB descrip-
tion of binary systems. Note in passing that though circular
orbits are only special solutions of binary dynamics, they
are the ones of prime physical importance in many situ-
ations, most notably radiation-reaction–driven inspiralling
binary systems.

B. Tidal actions along circular orbits

In the following, we shall therefore restrict our attention
to circular motions. (However, we shall show below how
this restricted result can crucially inform the EOB descrip-
tion of tidally interacting binary systems.) We shall also
focus on the relative dynamics in the center-of-mass frame.
As we see in Eqs. (4.4), (4.7), (4.8), and (4.10), the various
Lagrangians depend only on the relative position y12 ¼
y1 � y2 and start depending on (individual) velocities only
at 1PN (for general orbits) and even at 2PN for the invar-
iants themselves (in the case of circular orbits). This im-
plies that we shall not really need to use to its full 2PN
accuracy the relation between center-of-mass variables
yCM1 , yCM2 , vCM

1 , vCM
2 , and relative ones y12, v12, namely,

(in the circular case)

yi1 ¼
�
X2 þ 3

�
M

r12c
2

�
2
�X12

�
yi12;

yi2 ¼
�
�X1 þ 3

�
M

r12c
2

�
2
�X12

�
yi12;

(4.11)
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and the corresponding velocity relations obtained by time-
differentiating them, using the fact that y12 ¼ r12n12 where
r12 is constant and n12 rotates with an angular velocity
given by

�2 ¼ M

r312

�
1þ �2ð�� 3Þ M

r12
þ �4

�
6þ 41

4
�þ�2

��
M

r12

�
2
�
:

(4.12)

Here and below, we use the notation

X1 � m1

M
; X2 � m2

M
; � � X1X2;

X12 � X1 � X2

(4.13)

(recall that M � m1 þm2 so that X1 þ X2 ¼ 1). In our
calculations, the �4 ¼ 1=c4 contributions in Eqs. (4.11)
and (4.12) do not matter and can be neglected from the
start.

Using such an additional circular (and center-of-mass)
reduction, we get a much simplified result for the electric-
quadrupole invariant J2e, Eq. (4.3), namely,

JðcircÞ2e ¼ 6M2X2
2

r612

�
1þ �2

ðX1 � 3ÞM
r12

� �4
M2

28r212
ð713X2

1 � 805X1 � 336Þ
�
: (4.14 )

In a similar manner, one gets much simplified results for
the other (subleading) geometrical invariants of tidal
significance, namely, the magnetic quadrupolar term J2m,
Eq. (4.6), the electric octupolar term J3e, Eq. (4.5), and also
for the time-differentiated electric-quadrupole coupling, say,

J _2e � ½ _G2
ab�1 ¼ ½ðu�r�G��Þðu�r�G

��Þ�1: (4.15)

Among these invariants, the 2PN accurate metric allows one
(as forG2

ab) to calculate to 2PN fractional accuracy only the

electric-octupole term J3e. The other ones can be computed
only at 1PN fractional accuracy because of their magnetic or
‘‘@0 ¼ c�1@t’’ character. Our explicit ‘‘circular’’ results for
J2m, J3e, and J _2e are

JðcircÞ2m ¼ 18X2
2M

3

r712

�
1þ �2

M

3r12
ð3X2

1 þ X1 � 9Þ
�
; (4.16)

JðcircÞ3e ¼ 90X2
2M

2

r812

�
1þ �2ð6X1 � 7Þ M

r12

� �4
M2

3r212
ð61X2

1 þ 4X1 � 98Þ
�
; (4.17)

JðcircÞ_2e
¼ 18X2

2M
3

r912

�
1þ �2ðX2

1 � 7Þ M
r12

�
: (4.18)

To complete the above results and allow one to compute
the corresponding associated Lagrangians, let us note that
the circular value of the redshift factor is

d�1
dt

� 1

�1

¼ 1�MðX1 � 1ÞðX1 � 3Þ
2r12

�2 þM2ðX1 � 1Þ
8r212

� ð3X3
1 � 9X2

1 þ 13X1 � 3Þ�4: (4.19)

Let us also quote the value of the inverse redshift factor, �1

(analog to a Lorentz 	-factor 	 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
), namely,

�1 � dt

d�1

¼ 1þMðX1 � 1ÞðX1 � 3Þ
2r12

�2 � M2

8r212

� ðX1 � 1ÞðX3
1 þ 5X2

1 � 17X1 þ 15Þ�4: (4.20)

V. EOB DESCRIPTION OF THE TIDAL ACTION

We have computed above the effective actions associ-

ated with the tidal parameters �ð2Þ
1 , �ð3Þ

1 , �ð2Þ
1 , and �0ð2Þ

1 .

Before the restriction to circular motions (in the center-of-
mass frame), they have the general form

�1

Z
dtL�1

ðy12;v1;v2Þ; (5.1)

where �1 denotes a generic tidal parameter, and y12 ¼
y1 � y2. In this section, we discuss how one can describe
the actions of Eq. (5.1) within the EOB formalism. Let us
recall that the EOB formalism [16–19] replaces the (pos-
sibly higher-order) Lagrangian dynamics of two particles
by the Hamiltonian dynamics of an ‘‘effective particle’’
embedded within some ‘‘effective external potentials.’’ For
nonspinning [49] bodies, the original (velocity-dependent)
two-body interactions become reformulated (and simpli-
fied by means of a suitable contact transformation in phase
space) in terms of three ‘‘EOB potentials’’: AðreffÞ, �BðreffÞ,
and Qðreff ; peffÞ. The first two potentials, AðreffÞ and
�BðreffÞ, parametrize an ‘‘effective metric’’

ds2eff ¼ g��ðxeffÞdx�effdx�eff
¼ �AðreffÞc2dt2eff þ �BðreffÞdr2eff þ r2effðd�2eff

þ sin2�effd’
2
effÞ (5.2)

and its associated Hamilton-Jacobi equation, while the
third potential, Qðreff ; peffÞ (which necessarily appears at
3PN [18]), describes additional contributions to the
(Hamilton-Jacobi) mass-shell condition,

0 ¼ �2 þ g��
eff ðxeffÞpeff

� peff
� þQðreff ; peffÞ (5.3)

[where � � m1m2=M � �M is the reduced mass of the
binary system], that are higher than quadratic in the effec-
tive momentum peff . Following the EOB-simplifying
philosophy of Ref. [18], we shall assume that the third
potential has been reduced (by a suitable canonical
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transformation) to a form where it vanishes with the radial
momentum peff

r .
In addition, EOB theory introduces a dictionary between

the original dynamical variables (positions, momenta, an-
gular momentum, energy) and the effective ones. A crucial
entry of this dictionary is a nontrivial transformation be-
tween the original ‘‘real’’ energy, i.e., the value of the
original (total) Hamiltonian H, and the ‘‘effective’’ energy
�peff

0 � Heff entering the mass-shell condition of Eq. (5.3)

. Because of this transformation, the final EOB-form of the
(original, real) Hamiltonian reads (here we set c ¼ 1 for
simplicity)

HEOBðxeff ;peffÞ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
Heff

�
� 1

�s
; (5.4)

where Heff ¼ Heffðxeff ;peffÞ is given by

Heff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðreffÞ

�
�2þJ2

eff

r2eff
þðpeff

r Þ2
�BðreffÞþQðreff ;peffÞ

�vuut : (5.5)

Here, Jeff � xeff � peff denotes the effective orbital angu-
lar momentum which, by the EOB dictionary, is actually
identified with the original, total (center-of-mass) orbital
angular momentum J of the binary system: Jeff � J.

A. EOB reformulation of tidal actions: General orbits

Let us now discuss what the various possible methods
are for reformulating an original action of the type
L0ðy12;v1;v2; . . .Þ þ�1L�1

ðy12;v1;v2Þ (where �1 stands

for a sum over a collection of tidal parameters �ð2Þ
1 ;

�ð2Þ
2 ; �ð3Þ

1 ; �ð3Þ
2 ; . . . ) into corresponding �1-deformations

of EOB potentials: A0ðreffÞ þ�1A�1
ðreffÞ, �B0ðreffÞ þ

�1
�B�1

ðreffÞ, Q0ðreff ; peffÞ þ�1Q�1
ðreff ; peffÞ. The main

difficulty in finding the perturbed EOB potentials A�1
,

�B�1
, and Q�1

that encode the dynamics of L�1
is that

such a dynamical equivalence is obtained only after
some a priori unknown phase-space contact transforma-
tion between the EOB phase-space coordinates, say
�eff ¼ ðxeff ;peffÞ, and the original (harmonic-coordinate-
related) ones, say �h ¼ ðy12;v12Þ. For simplicity, we
assume that we have already performed the reduction of
the original harmonic-coordinate dynamics to its center-
of-mass version, in which one can express v1 and v2 in
terms of the relative velocity v12 � v1 � v2 and of y12 �
y1 � y2. On the other hand, we do not immediately assume
that the original Lagrangian dynamics is expressed in
Hamiltonian form. [Let us recall that, as was found long
ago [24,50], starting at the 2PN level, the harmonic-
coordinate dynamics does not admit an ordinary Lag-
rangian, Lðy; _yÞ, but only a higher-order one, Lðy; _y; €yÞ. In
order to express the 2PN dynamics in Hamiltonian form,
one already needs some (higher-order) contact transforma-
tion. However, this transformation is well-known, e.g.,

Ref. [46], and we do not need to complicate our discussion
by explicitly mentioning it. Nonetheless, it will be taken
into account in our calculations below.]
The transformation T between �eff and �h will have the

general structure

�h ¼ T0ð�effÞ þ�1T�1
ð�effÞ: (5.6)

The unperturbed part T0ð�effÞ is known from the pre-
vious EOB work [16,18], but the Oð�1Þ perturbed part
T�1

ð�effÞ is unknown, and actually is part of the problem

which must be solved for reformulating the (perturbed)
harmonic-coordinate dynamics in EOB form. This means,
in particular, that it would not be correct to try to compute
A�1

, �B�1
, andQ�1

simply by replacing in the tidal action in

Eq. (5.1) the harmonic variables �h by their unperturbed
expression T0ð�effÞ in terms of the effective variables �eff .
For the general case of noncircular orbits, a universal,

correct method for transforming the original Lagrangian
Lð�hÞ ¼ L0ð�hÞ þ�1L�1

ð�hÞ in EOB form consists (as

explained in Ref. [16]) of the following steps: (i) to trans-
form the original Lagrangian Lð�hÞ in Hamiltonian form
Hð�HÞ ¼ H0ð�HÞ þ�1H�1

ð�HÞ, where �H ¼ ðq; pÞ are

canonical coordinates; (ii) to extract the gauge-invariant
content of Hð�HÞ by expressing it in terms of action
variables Ia ¼ 1

2�

H
padqa, which yields the Delaunay

Hamiltonian HðIÞ ¼ H0ðIÞ þ�1H�1
ðIÞ; (iii) to do the

same thing for the EOB Hamiltonian, i.e., to compute as
a functional of the unknown EOB potentials its Delaunay
form HEOBðIÞ ¼ HEOB

0 ðIÞ þ�1H
EOB
�1

ðIÞ; and finally,

(iv) to identify the known HðIÞ to HEOBðIÞ, which depends
on the unknown functions A�1

, �B�1
, Q�1

. This last step

yields (functional) equations for A�1
, �B�1

, Q�1
, and

thereby allows one to determine them. (In practice, the
functional dependence on A, �B, Q is replaced by a much
simpler parameter dependence by using the method of
undetermined coefficients for parametrizing general forms
of A, �B, Q.) An alternative (and equally universal) method
for transforming Lð�hÞ in EOB form (as used in Ref. [18])
is to add the transformation �h ¼ Tð�effÞ to the list of
unknowns (using the method of undetermined coeffi-
cients), and to directly solve the set of constraints for
T, A, �B, and Q coming from the requirement that
HEOBð�eff ; A; �B;QÞ ¼ HðTð�effÞÞ. (One must then take
into account that T is constrained to be a canonical
transformation.)

B. EOB reformulation of tidal actions: Circular orbits

The 2PN-accurate results, given for several tidal inter-
actions in the case of general orbits in the previous section,
can in principle be transformed within the EOB format by
using any of the two methods we just explained. However,
from the point of view of current astrophysical applica-
tions, one is mainly interested in knowing the EOB de-
scription of (quasi)-circularmotions. In this case, we know
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a priori that it is only the A radial potential which matters.
Knowing this, the question arises whether to compute the
tidal perturbation A�1

of the EOB A potential in the most

efficient manner, possibly without having to go through the
rather involved, general universal methods recalled above.
Fortunately, it is possible to do so by using the following
facts.

The first useful fact concerns the relation between the
tidal perturbation (in harmonic coordinates) of the
Lagrangian of the binary system, say


Lhðyh; vhÞ ¼ �1L�1
ðy12;v1;v2Þ; (5.7)

and the corresponding tidal perturbation (in harmonic-
related phase-space coordinates) of the Hamiltonian, say


Hhðyh; phÞ � Hh
fullðyh; phÞ �Hh

tidal-freeðyh; phÞ: (5.8)

(Strictly speaking, as we recalled above, the harmonic-
related ðq; pÞ ¼ ðyh; phÞ phase-space coordinates involve
a supplementary Oð1=c4Þ gauge transformation linked to
the order reduction of L2PNðy; _y; €yÞ into Lred

2PNðy0; _y0Þ.) Note
that here and in the following, the notation 
Qð�Þ will
always refer to the tidal contribution to some function of
specified variables, i.e., 
Qð�Þ � Qfullð�Þ �Qtidal-freeð�Þ.
One has to be careful about which variables are fixed, as for
instance, the transformation between Lagrangian ðq; _qÞ and
Hamiltonian ðq; pÞ coordinates does contain a tidal contri-
bution [because 
tidalLðyh; _yhÞ does depend on velocities].
This being made clear, we have the well-known universal
result about first-order deformations of Lagrangians
by small parameters, Lðq; _qÞ ¼ L0ðq; _qÞ þ�1L�1

ðq; _qÞ,
namely,


Hhðyh; phÞ ¼ �
Lhðyh; vhÞ; (5.9)

which follows from the properties of the Legendre
transform.

Let us now apply the second method recalled above for
transforming the ‘‘harmonic’’ Hamiltonian Hh

fullðyh; phÞ ¼
Hh

0 ðyh; phÞ þ 
Hhðyh; phÞ (where the index 0 refers to the

unperturbed, tidal-free dynamics) into its corresponding
EOB form HEOB

full ðxEOB; pEOBÞ, defined in Eqs. (5.4) and

(5.5) above. (For clarity, we denote here the effective-
one-body phase-space coordinates by xEOB, pEOB, instead
of xeff , peff , as above.) The crucial point is that the EOB
potentials entering the definition of HEOB

full must be the full,

tidally completed values of A, �B, and Q, e.g.,

AfullðrEOBÞ ¼ A0ðrEOBÞ þ�1A�1
ðrEOBÞ

� A0ðrEOBÞ þ 
AðrEOBÞ: (5.10)

In other words, 
HEOBðxEOB;pEOBÞ�HEOB
full ðxEOB;pEOBÞ�

HEOB
0 ðxEOB;pEOBÞ is obtained by varying the functions A,

�B, and Q (i.e., AðrEOBÞ ¼ A0ðrEOBÞ þ 
AðrEOBÞ, etc.) in

the definition in Eqs. (5.4) and (5.5) of HEOB
full ½xEOB;

pEOB;AðrEOBÞ; �BðrEOBÞ; QðrEOB; pEOBÞ�.
This second method for mapping Hh

fullð�hÞ into

HEOB
full ð�EOBÞ (where �h � ðyh; phÞ, �EOB � ðxEOB; pEOBÞ)

consists of looking for a full, i.e., perturbed, (time-
independent) contact transformation �h ¼ Tfullð�EOBÞ ¼
T0ð�EOBÞ þ�1T�1

ð�EOBÞ that transforms Hh
fullð�hÞ into

HEOB
full ð�EOBÞ, i.e., such that

Hh
full½Tfullð�EOBÞ� ¼ HEOB

full ð�EOBÞ: (5.11)

Rewriting the full transformation Tfull as the composition
T0 	 T0 of the known unperturbed (tidal-free) contact
transformation �0

h ¼ T0ð�EOBÞ mapping Hh
0 ð�0

hÞ into

HEOB
0 ð�EOBÞ with an unknown near-identity additional

transformation, �h ¼ T0ð�0
hÞ ¼ �0

h þ �1fG�1
ð�0

hÞ; �0
hg

(where ff; gg denotes a Poisson bracket and where
�1G�1

ð�0
hÞ is the first-order generating function associated

with the canonical transformation T0), and expanding all
functions in Eq. (5.11) into unperturbed plus tidal contri-
butions (Hh ¼ Hh

0 þ 
Hh, T ¼ ð1þ 
T0Þ 	 T0, H
EOB ¼

HEOB
0 þ 
HEOB), leads to the condition

½
Hhð�0
hÞ þ f
Gð�0

hÞ; Hhð�0
hÞg��0

h
¼T0ð�EOBÞ

¼ 
HEOBð�EOBÞ; (5.12)

where 
Gð�0
hÞ ¼ �1G�1

ð�0
hÞ.

In general, 
Gð�0
hÞ is part of the unknown functions that

must be looked for when writing the condition in Eq. (5.12)
. However, another simplifying fact occurs in the case
where one focuses on circularmotions: The supplementary
term f
G;Hhg happens to vanish. Indeed, 
Gð�0

hÞ is a

scalar function and the Poisson bracket f
G;Hhg is equal
to the time derivative of 
Gð�0

hÞ along the Hh-dynamical

flow, which clearly vanishes along circular motions. This
allows one to conclude that, along circular motions, we
have the simple condition

½
Hhð�0
hÞ�circ�0

h
¼T0ð�EOBÞ ¼ ½
HEOBð�EOBÞ�circ; (5.13)

where the left-hand side is, in principle, fully known.

C. Link between the circular tidal action and the tidal
contribution to the EOB A potential

Let us now evaluate the right-hand side of Eq. (5.13).
When restricting the definition of Eqs. (5.4) and (5.5) of
the EOB Hamiltonian to circular motions, the terms
ðpEOB

r Þ2= �B and QðrEOB; pEOBÞ disappear (because one
works with a gauge-reduced Q which vanishes with
pEOB
r ). As a consequence, Hcirc

EOBðrEOB; JÞ only depends

on the A potential. The difference, 
Hcirc
EOB �

Hcirc
EOB½rEOB; J; Afull� �Hcirc

EOB½rEOB; J; A0�, can then be

simply computed by varying A (Afull ¼ A0 þ 
A) within
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Hcirc
EOB½A�. To write explicitly the result of this variation,

it is convenient to work with dimensionless variables.
We can replace the two phase-space variables rEOB,
pEOB
’ � J that enter Hcirc

EOB, by their dimensionless

counterparts

u � GM

c2rEOB
� Gðm1 þm2Þ

c2rEOB
; (5.14)

and

j � cJ

GM�
� cJ

Gm1m2

: (5.15)

In terms of these variables, the explicit expression of
½HEOB

full �circ reads

½HEOB
full ðu; jÞ�circ ¼Mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðuÞð1þ j2u2Þ

q �s
:

(5.16)

Varying AðuÞ in Eq. (5.16) then yields the following ex-
plicit expression for the right-hand side of Eq. (5.13):

½
HEOBðu;jÞ�circ

¼1

2
M�c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj2u2

AðuÞ
�
1þ2�

�
�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðuÞð1þj2u2Þp ��
vuuuut 
AðuÞ:

(5.17)

In addition, one must take into account the constraint
coming from the reduction to circular motions,
namely, from _pEOB

r ¼ �@HEOB=@rEOB, the fact that
@u½AðuÞð1þ j2u2Þ� ¼ 0, i.e., the fact that j2 is the follow-
ing function of u (using a prime to denote the
u-derivative):

j2 ¼ j2circðuÞ � � A0ðuÞ
ðu2AðuÞÞ0 : (5.18)

Note that this relation depends on the value of the radial
potential AðuÞ. If one is considering the full, tidally per-
turbed circular motions, one must use AfullðuÞ ¼ A0 þ 
A
in Eq. (5.18). On the other hand, as we are now interested in
considering the (first-order) tidal perturbations 
Hh and

HEOB and their link in Eq. (5.13), we can evaluate 
HEOB

circ

with sufficient accuracy by replacing in the coefficient of

AðuÞ on the right-hand side of Eq. (5.17), AðuÞ and j2 by
their unperturbed, tidal-free expressions A0ðuÞ and j2A0

ðuÞ
(obtained by replacing A ! A0 on the right-hand side of
Eq. (5.18). [This remark applies to several other results
below; notably Eqs. (5.20) and (5.22)]..

Combining our results of Eqs. (5.9), (5.13), and (5.17),
we finally get a very simple link between the tidal variation
of the harmonic-coordinate Lagrangian 
Lðyh; vhÞ and the
corresponding tidal variation 
AðuÞ of the EOB A poten-
tial, namely,


AðuÞ ¼ � 2

M�c2

ffiffiffiffiffiffiffiffiffiffi
FðuÞ

p
½
Lðyh; vhÞ�circrh¼T0ðuÞ; (5.19)

where

FðuÞ�
�

AðuÞ
1þj2u2

�
1þ2�

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðuÞð1þj2u2Þ

q ���
circ

A¼A0

:

(5.20)

Here, the superscript ‘‘circ’’ means that j2 must be re-
placed by j2circðuÞ, Eq. (5.18). (Note that the replacement

A ! A0 indicated as a subscript must be done both in the
explicit occurrence of A in Eq. (5.20) and in the definition
in Eq. (5.18) of j2circðuÞ). Finally, if we introduce the short-
hand notation

~AðuÞ � AðuÞ þ 1

2
uA0ðuÞ; (5.21)

FðuÞ, Eq. (5.20), can be rewritten in the explicit form

FðuÞ ¼ ~AðuÞ
�
1þ 2�

�
�1þ AðuÞffiffiffiffiffiffiffiffiffiffi

~AðuÞ
q ��

; (5.22)

which is valid along circular orbits and applies for any
relevant (exact or approximate) value of the A potential. On
the other hand, as we computed 
L only to the 2PN frac-
tional accuracy, it is sufficient to use a value of FðuÞ which
is also only fractionally 2PN-accurate. One might think
a priori that this would mean using for AðuÞ in Eq. (5.22)
the tidal-free approximation A0ðuÞ truncated at the 2PN
order, namely A2PN

0 ðuÞ ¼ 1� 2uþ 2�u3. However, the

contribution 2�u3 ¼ 2�ðGM=ðc2rEOBÞÞ3 is Oð1=c6Þ com-
pared to one, which is the leading-order value of FðuÞ,
which starts as FðuÞ ¼ 1þOðuÞ ¼ 1þOð1=c2Þ. The

same consideration applies to ~AðuÞ. (The situation would
have been different if FðuÞ had been, say, / A0ðuÞ.) This
means that, at the 2PN fractional accuracy, we can use
the value of FðuÞ obtained from the leading-order,
‘‘Schwarzschild-like’’ value of A0ðuÞ, namely A1PN

0 ðuÞ ¼
1� 2u. The corresponding ~A function is then ~A1PN

0 ðuÞ ¼
1� 3u, so that

F2PNðuÞ ¼ ð1� 3uÞ
�
1þ 2�

�
�1þ 1� 2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3u
p

��
: (5.23)

Consistently with the fractional 2PN accuracy, and remem-
bering, that u ¼ Oð1=c2Þ, we could as well use the 2PN-
accurate series expansion of Eq. (5.23), say, F2PNðuÞ ¼
1þ f1ð�Þuþ f2ð�Þu2 þOðu3Þ. However, it is better to
retain the information contained in Eq. (5.23) that, in the
test-mass limit � ! 0 (where A0ðuÞ ! 1� 2u), the exact
value of FðuÞ becomes 1� 3u (see later).
There remains only one missing piece of information to

be able to use our result in Eq. (5.19) for computing the
various tidal contributions to AðuÞ. We need to work out the
explicit form of the unperturbed transformation T0 be-
tween rEOB and rh.
A first method for getting the transformation T0 (at 2PN)

is to compose the transformation �0
h ! �ADM (obtained at

2PN in Ref. [46], and at 3PN in Ref. [51]) with the
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transformation �ADM ! �EOB (obtained at 2PN in
Ref. [16], and at 3PN in Ref. [18]). For our present pur-
pose, it is enough to restrict these transformations to the
circular case, i.e., to transformations rh ! rADM and
rADM ! rEOB.

The transformation h ! ADM starts at 2PN, i.e., yhA ¼
xADMA þ c�4Y2PN

A ðxADM;pADMÞ, with Y2PN
A ðxADM;pADMÞ

given, e.g., in Eq. (4.5) of Ref. [51]. Its circular, and
center-of-mass, reduction (with n12 � pA ¼ 0, p1 ¼
�p2 � p, and ðp=�Þ2 ¼ GM=r12 þOð1=c2Þ) yields at
2PN

rh12 ¼ rADM12

�
1þ

�
1

4
þ 29

8
�

��
GM

c2r12

�
2
�
: (5.24)

On the other hand, the transformation ADM ! EOB starts
at 1PN. To determine the corresponding radial transforma-
tion rADM12 ! rEOB, one could think of using Eq. (6.22) of
Ref. [16]. However, this equation needs to be completed by
the knowledge of the circularity condition relating
ðpADM=�Þ2 to GM=rADM12 at the 1PN level included. This
1PN-accurate circularity condition can, e.g., be obtained
from combining the 1PN-accurate rADM ¼ rADMðjÞ
relation given in Ref. [52] (see below), with the fact
that [setting uADM � GM=ðc2rADMÞ] ðpADM=ð�cÞÞ2 ¼
j2u2ADM. This yields ðpADM=ð�cÞÞ2 ¼ uADM þ 4u2ADM,
and therefrom the relation between rADM and rEOB.

Another method (which we have checked to give the
same result) for determining the rADM12 ! rEOB transforma-
tion does not need to use Eq. (6.22) of Ref. [16]. It consists
of directly eliminating the dimensionless angular momen-
tum j between the two relations rADM ¼ rADMðjÞ and
rEOB ¼ rEOBðjÞ. The former relation was derived at 3PN
in Ref. [52] and reads, at 2PN,

rADM12 ¼ GM

c2
j2
�
1� 4

j2
� 1

8
ð74� 43�Þ 1

j4

�
; (5.25)

while the latter one is obtained by inverting the 2PN-
accurate version of Eq. (5.18), namely, using A2PNðuÞ ¼
1� 2uþ 2�u3:

1

j2
¼ uð1� 3uþ 5�u3Þ

1� 3�u2
: (5.26)

Inserting Eq. (5.24) into Eq. (5.23) yields (at 2PN)

GM

c2rADM12

¼ u

�
1þ uþ

�
5

4
� 19

8
�

�
u2
�
: (5.27)

Then, combining Eqs. (5.27) and (5.24) yields the looked-
for transformation rEOB ! rh12, at 2PN accuracy,

rh12 þ
GM

c2
¼ rEOB

�
1þ 6�

�
GM

c2rEOB

�
2
�
; (5.28)

or, setting uh � GM=ðc2rh12Þ by analogy with u �
GM=ðc2rEOBÞ,

uh ¼ u

1� u
ð1� 6�u2Þ: (5.29)

We have written the transformation of Eqs. (5.28) and
(5.29) so as to exhibit the exact form of the transformation
rh ! rEOB in the extreme mass ratio limit � ! 0, namely,
rh ¼ rEOB �GM=c2 þOð�Þ.
Summarizing: The (first-order) tidal contribution


AðuÞ ¼ �1A�1
ðuÞ to the main EOB radial potential,

associated with any tidal parameter �1ð¼ �ð2Þ
1 ; �ð2Þ

2 ;

�ð3Þ
1 ; . . .Þ, is given in terms of the corresponding

harmonic-coordinate tidal contribution to the action

Lðyh; vhÞ ¼ �1L�1

ðyh; vhÞ, for circular motion, by

Eq. (5.19), where FðuÞ is given (at 2PN) by Eq. (5.23),
and where the transformation between the harmonic radial
separation rh12 and the EOB radial coordinate rEOB �
GM=ðc2uÞ is given by Eq. (5.28) or (5.29).

VI. EOB DESCRIPTION OF TIDAL ACTIONS

A. Tidal actions for comparable-mass systems

We have explained in the previous section how to convert
each contribution ��1L�1

ðyh; vhÞ to the (reduced) tidal

action into a corresponding additional contribution
�1A�1

ðuÞ to the main EOB radial potential AðuÞ. For in-
stance, if we consider the dominant tidal parameter, i.e., the

electric quadrupolar one, �ð‘¼2Þ
1 (or �ð‘¼2Þ

2 , after exchang-

ing 1 $ 2), the combination of the result of Eq. (4.2) for the
associated Lagrangian, with Eq. (5.19) yields

�ð2Þ
1 A

�ð2Þ
1

ðuÞ ¼ � 1

2c2
�ð2Þ

1

M�

ffiffiffiffiffiffiffiffiffiffi
FðuÞ

p d�1
dt

½G��G
���1: (6.1)

In other words, apart from a (negative) numerical coeffi-

cient, and the rescaled tidal parameter �ð2Þ
1 =ðM�Þ (where

M� ¼ � ¼ m1m2=ðm1 þm2Þ is the reduced mass of the
system), the corresponding tidal contribution to AðuÞ is the
product of three factors:

ffiffiffiffiffiffiffiffiffiffi
FðuÞp

, d�1=dt and the geometrical
invariant associated with the considered tidal parameter,
e.g., ½G��G

���1 for the electric quadrupole along the first

worldline. In addition, two of these factors, d�1=dt and the
geometrical invariant, must be reexpressed as functions of
the EOB coordinates by using Eq. (5.28).
Let us start by applying this procedure to the dominant

tidal action term: the electric-quadrupole one in Eq. (6.1).
We have given above, in Eq. (4.14 ), the 2PN-accurate
value of J2e � ½G��G

���1 in harmonic coordinates.

Using the transformation of Eq. (5.29) to replace 1=rh12 in
terms of 1=rEOB leads to

JðcircÞ2e ¼ 6M2X2
2

r6EOB

�
1þ �2

ðX1 þ 3ÞM
rEOB

þ �4
M2

28r2EOB

� ð295X2
1 � 7X1 þ 336Þ

�
: (6.2)
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In addition, the reexpression of the time-dilation factor
d�1=dt, Eq. (4.19), in terms of 1=rEOB yields

d�1
dt

¼ 1

�1

¼ 1� 1

2
ðX1 � 1ÞðX1 � 3Þu�2 þ 3

8
u2ðX1 � 1Þ

� ðX3
1 � 3X2

1 þ 3X1 þ 3Þ�4: (6.3)

Their product yields the electric-quadrupole tidal

Lagrangian (stripped of its prefactor 1
4�

ð2Þ
1 ) in EOB coor-

dinates, at the 2PN accuracy, namely,

G2
ab

d�1
dt

¼ JðcircÞ2e

�1

¼ 6ðX1 � 1Þ2u6
M4

L̂2e; (6.4)

where

L̂2e ¼ 1� 1

2
uðX2

1 � 6X1 � 3Þ�2 þ u2

56
ð21X4

1 � 112X3
1

þ 744X2
1 þ 238X1 þ 357Þ�4: (6.5)

Adding the further factor
ffiffiffiffiffiffiffiffiffiffi
FðuÞp

, as well as the prefactor,
leads to the corresponding contribution to the EOB A
potential, namely

�ð2Þ
1 A

�ð2Þ
1
ðuÞ ¼ Að2ÞLO

1 electricðrEOBÞÂð2Þ
1 electricðuÞ; (6.6)

where

Að2ÞLO
1 electricðrEOBÞ ¼ � 3G2

c2
�ð2Þ

1 M

�

X2
2

r6EOB
; (6.7)

and

Â
ð2Þ
1 electricðuÞ ¼

ffiffiffiffiffiffiffiffiffiffi
FðuÞp

L̂2e ¼ 1þ �2e
1 uþ �2e

2 u2 þOðu3Þ;
(6.8)

with

�2e
1 ¼ 5

2
X1; (6.9)

�2e
2 ¼ 337

28
X2
1 þ

1

8
X1 þ 3: (6.10)

The leading-order (i.e., Newtonian-level) A potential of
Eq. (6.7) is equivalent to Eqs. (1.6) and (1.7) above (i.e.,
Eqs. (23), (25) of Ref. [5]), using the link

G�ð‘Þ
A ¼ 1

ð2‘� 1Þ!! 2k
ð‘Þ
A R2‘þ1

A : (6.11)

The term of order u (i.e., 1PN) in the relativistic amplifi-

cation factor Âð2Þ
1 electricðuÞ, Eq. (6.8), coincides with the

result computed some time ago (see Eq. (38) in Ref. [5]).

By contrast, the (2PN) term of order u2 in Âð2Þ
1 electricðuÞ is the

main new result of our present work. Let us discuss its
properties.

Similarly to the 1PN coefficient �2e
1 ¼ 5

2X1, which was

positive, and monotonically increasing (from 0 to 5=2) as
X1 � m1=M varies between 0 and 1, the 2PN coefficient
�2e
2 is also positive and increases as X1 varies between

0 and 1. When X1 ¼ 0 (i.e., in the limit m1 
 m2), �
2e
2

takes the value þ3, while when X1 ¼ 1 (i.e., in the limit
m1 � m2), it takes the value

�2e
2 ðX1 ¼ 1Þ ¼ 849

56
¼ 15:16071429: (6.12)

Note that this is about five times larger than its value when
X1 ¼ 0. Of most interest (as neutron stars are expected to
have rather similar masses �1:4M�) is the equal-mass
value of �2e

2 , which is

�2e
2

�
X1 ¼ 1

2

�
¼ 85

14
¼ 6:071428571: (6.13)

In other words, the distance-dependent amplification
factor of the electric quadrupole reads, in the equal-mass
case,

½Âð2Þ
1 electricðuÞ�equal-mass ¼ 1þ 5

4
uþ 85

14
u2 þOðu3Þ

¼ 1þ 1:25uþ 6:071429u2 þOðu3Þ:
(6.14)

We will comment further on these results for Âð2Þ
1 electricðuÞ

and on the recent comparisons between numerical simula-
tions and the EOB description of tidal interactions below.
For the time being, let us give the corresponding results of
our analysis for some of the subleading tidal interactions.
The EOB-coordinate value of the electric octupole in-

variant, JðcircÞ3e , Eq. (4.17), reads

JðcircÞ3e ¼ 90X2
2M

2

r8EOB

�
1þ �2ð6X1 þ 1Þ M

rEOB

þ �4
M2

3r2EOB
ð83X2

1 þ 14X1 þ 17Þ
�
: (6.15)

Its corresponding action (stripped of its prefactor) is

G2
abc

d�1
dt

¼ JðcircÞ3e

�1

¼ 90X2
2u

8

M6
L̂3e (6.16)

with

L̂3e ¼ 1� 1

2
ðX2

1 � 16X1 þ 1Þu�2 þ 1

24
ð9X4

1 � 108X3
1

þ 994X2
1 � 56X1 þ 73Þu2�4; (6.17)

while the corresponding contribution to the EOB A poten-
tial reads

�ð3Þ
1 A

�ð3Þ
1

ðuÞ ¼ Að3ÞLO
1 electricðrEOBÞÂð3Þ

1 electricðuÞ; (6.18)

where
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Að3ÞLO
1 electricðrEOBÞ ¼ � 15G2

c2
�ð3Þ

1 M

�

X2
2

r8EOB
; (6.19)

and

Â
ð3Þ
1 electricðuÞ ¼

ffiffiffiffiffiffiffiffiffiffi
FðuÞp

L̂3e ¼ 1þ �3e
1 uþ �3e

2 u2 þOðu3Þ;
(6.20)

with

�3e
1 ¼ 15

2
X1 � 2; (6.21)

�3e
2 ¼ 110

3
X2
1 �

311

24
X1 þ 8

3
: (6.22)

Here, both results in Eqs. (6.21) and (6.22) are new. Note
that, contrary to the quadrupolar case where �1 and �2

were always both positive (so that Âð2Þ
1 electricðuÞ was always

an amplification factor) the electric-octupole factor

Âð3Þ
1 electricðuÞ is smaller than 1 (for large separations) when

X1 <
4
15 ’ 0:2667. Moreover, while the X1-variation of �

3e
1

is monotonic (going from �2 to 11
2 as X1 increases from 0

to 1), �3e
2 ðX1Þ first decreases from �3e

2 ð0Þ ¼ 8
3 ¼ 2:666667

to �3e
2 ðXmin

1 Þ ¼ 42853=28160 ¼ 1:521768 as X1 increases

from 0 to Xmin
1 ¼ 311=1760 ¼ 0:1767046, before increas-

ing as X1 goes from Xmin
1 to 1, to reach the final value

�3e
2 ð1Þ ¼ 211=8 ¼ 26:375 for X1 ¼ 1. Note, however, that

when (as expected) the two masses are nearly equal, the

factor Âð3Þ
1 electricðuÞ is an amplification factor. In particular,

its equal-mass value is

½Âð3Þ
1 electricðuÞ�equal-mass ¼ 1þ 7

4
uþ 257

48
u2 þOðu3Þ

¼ 1þ 1:75uþ 5:354167u2 þOðu3Þ;
(6.23)

which is similar to its corresponding quadrupolar counter-
part, Eq. (6.14).

Let us finally give the corresponding results for the
magnetic quadrupole and time-differentiated electric quad-
rupole. For the magnetic quadrupole (at the 1PN fractional
accuracy), we found

1

4
H2

ab�JðcircÞ2m

¼18X2
2M

3

r7EOB

�
1þ�2

M

3rEOB
ð3X2

1þX1þ12Þ
�
; (6.24)

1

4
H2

ab

d�1
dt

� 18X2
2

M4
u7L̂2m; (6.25)

L̂ 2m ¼ 1þ 1

6
ðX1 þ 3Þð3X1 þ 5Þu�2; (6.26)

Â
ð2Þ
1 magneticðuÞ ¼

ffiffiffiffiffiffiffiffiffiffi
FðuÞ

p
L̂2m ¼ 1þ �2m

1 uþOðu2Þ;
(6.27)

with

�2m
1 ¼ X2

1 þ
11

6
X1 þ 1: (6.28)

Here, �2m
1 ðX1Þ is always positive and monotonically in-

creases from �2m
1 ð0Þ ¼ 1 to �2m

1 ð1Þ ¼ 23
6 ¼ 3:833333, its

equal-mass value being �2m
1 ð12Þ ¼ 13

6 ¼ 2:166667.

Finally, for the time-differentiated electric quadrupole,
we got

_G 2
ab ¼ JðcircÞ_2e

¼ 18X2
2M

3

r9EOB

�
1þ �2ðX2

1 þ 2Þ M

rEOB

�
; (6.29)

_G 2
ab

d�1
dt

¼ 18X2
2

M6
u9L̂ _2e; (6.30)

L̂ _2e ¼ 1þ 1

2
u�2ðX2

1 þ 4X1 þ 1Þ; (6.31)

Â
ð2Þ
1 _G
ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffi
FðuÞ

p
L̂ _2e ¼ 1þ �

_2e
1 uþOðu2Þ; (6.32)

with

�
_2e
1 ¼ 1

2
ðX1 þ 2Þð2X1 � 1Þ: (6.33)

B. Tidal actions of a tidally deformable test mass

One of the characteristic features of the EOB formalism
for point-mass systems is the natural incorporation of the
exact test-mass limit � ! 0. Indeed, in this limit the effec-
tive metric in Eq. (5.2) describing the relative dynamics
reduces to the Schwarzschild metric: lim�!0AðuÞ ¼
1� 2u ¼ ðlim�!0

�BðuÞÞ�1. Let us study the test-mass limit
of tidal effects with the aim of incorporating it similarly in
their EOB description. When considering the nonminimal
worldline action of particle 1, the simplest test-mass limit
to study is the limit m1=m2 ! 0. (When considering tidal
effects within body 2, the permutation 1 $ 2 of our results
below allow them to describe the limit m2=m1 ! 0. We
leave to future work a study of the limitm2=m1 ! 0, when
considering tidal effects taking place within body 1.) In the
limit investigated here, one is considering a tidally deform-

able test-mass (m1; �
ð‘Þ
1 ; . . . ) moving around a large mass

m2 � m1. The effective action of body 1 is then exactly
obtained by evaluating the A ¼ 1 contribution of the gen-
eral (two-body) effective action of Eq. (2.12) within the
background metric generated by the (nontidally deform-
able) large mass m2, at rest, i.e., within a Schwarzschild
metric of mass m2. The latter reads
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ds2ðm2Þ ¼ �
�
1� 2

Gm2

c2rs

�
c2dt2 þ dr2s

1� 2 Gm2

c2rs

þ r2sðd�2 þ sin2�d’2Þ (6.34)

in ‘‘Schwarzschild’’ or areal coordinates, and

ds2ðm2Þ ¼ �
1� Gm2

c2rh

1þ Gm2

c2rh

c2dt2 þ
1þ Gm2

c2rh

1� Gm2

c2rh

dr2h

þ
�
rh þGm2

c2

�
2ðd�2 þ sin2�d’2Þ (6.35)

in harmonic coordinates: rh ¼ rs �Gm2=c
2. As a check

on the results below (and on our codes), we have computed
them both in Schwarzschild coordinates and in harmonic
ones.

The geometrical invariants J2e ¼ G2
ab, etc., take the

following values in this Schwarzschild limit, and when
considering as above circular motions (we again set G
and c to one for simplicity):

GðSÞ2
ab ¼ �JðSÞ2e

¼ 6m2
2ðm2

2 þ r2h �m2rhÞ
ðrh � 2m2Þ2ðrh þm2Þ6

� 6m2
2

r6h

�
1� 3m2

rh
þ 12m2

2

r2h
þ . . .

�

¼ 6u6S
m4

2

1

ð1� 3uSÞ
�
1þ 3u2S

ð1� 3uSÞ
�

¼ 6u6S
m4

2

�
1þ 3uS

ð1� 2uSÞ
ð1� 3uSÞ2

�
;

(6.36)

1

4
HðSÞ2

ab ¼ �JðSÞ2m

¼ 18m3
2ðrh �m2Þ

ðrh � 2m2Þ2ðrh þm2Þ6

� 18m3
2

r7h

�
1� 3m2

rh
þ 11m2

2

r2h
þ . . .

�

¼ 18u7S
m4

2

�
1þ uSð4� 9uSÞ

ð1� 3uSÞ2
�
;

(6.37)

GðSÞ2
abc ¼ �JðSÞ3e

¼ 30m2
2ðrh �m2Þð2m2

2 þ 3r2h � 3m2rhÞ
ðrh � 2m2Þ2ðrh þm2Þ9

� 90m2
2

r8h

�
1� 7

m2

rh
þ 98

3

m2
2

r2h
þ . . .

�

¼ 90u8S
m6

2

ð1� 2uSÞ
ð1� 3uSÞ

�
1þ 8u2S

3ð1� 3uSÞ
�
;

(6.38)

_GðSÞ2
ab ¼ �JðSÞ_2e ¼ 18m3

2ðrh �m2Þ2
ðrh � 2m2Þ2ðrh þm2Þ9

¼ 18m3
2

r9h

�
1� 7

m2

rh
þ 32

m2
2

r2h
þ . . .

�

¼ 18u9S
m6

2

ð1� 2uSÞ2
ð1� 3uSÞ2

;

(6.39)

where uS � Gm2=ðc2rsÞ. We have indicated above the
expansions in powers of the inverse harmonic radius rh
as checks of our 2PN-accurate results, written in harmonic
coordinates; see Eqs. (4.14 ), (4.16), (4.17), and (4.18).
In the following, we shall focus on the transformation of

the exact test-mass geometrical invariants above into cor-
responding contributions to the EOB A potential. As ex-
plained previously, Eqs. (5.19) and (6.1), apart from the
universal prefactor �2=ðM�c2Þ and the specific original
tidal coefficient multiplying the considered geometrical

invariant (such as 1
4�

ð2Þ
1 for the electric quadrupole), the

contribution to AðuÞ associated with some given invariant
is obtained by multiplying it by two extra factors: (i) the
time-dilation factor d�1=dt and (ii) the EOB-rooted factorffiffiffiffiffiffiffiffiffiffi
FðuÞp

. Let us discuss their values in the test-mass limit
m1 
 m2 that we are now considering.
The first factor is the square-root of

�
d�1
dt

�
2 ¼ 1� 2Gm2

c2rs
� 1

c2
r2s

�
d’

dt

�
2
: (6.40)

Denoting, as above, uS � Gm2=ðc2rsÞ, and using the well-
known Kepler law for circular orbits in Schwarzschild
coordinates, �2 ¼ Gm2=r

3
s , simply yields

�
d�1
dt

�
test-mass

circ
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3uS
p

: (6.41)

The exact test-mass limit of the second factor is obtained
by taking the limit � ! 0 in the exact expression of

Eq. (5.22). In this limit, AðuÞ ! 1� 2u, so that ~AðuÞ !
1� 3u, and � ffiffiffiffiffiffiffiffiffiffi

FðuÞ
p �

test-mass

circ
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3u
p

: (6.42)

In addition, as the EOB coordinates reduce to
Schwarzschild coordinates in the test-mass limit � ! 0,
and M ¼ m1 þm2 ! m2, we have simply

uS � Gm2

c2rs
! u � GM

c2rEOB
: (6.43)

In other words, the two extra factors in Eqs. (6.41) and

(6.42) become both equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3u

p
. As a consequence,

the A contribution corresponding to the various geometri-
cal invariants of Eqs. (6.36), (6.37), (6.38), and (6.39) is
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obtained (apart from a constant prefactor) by multiplying

these invariants by ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3u

p Þ2 ¼ 1� 3u ¼ 1� 3uS.
Including the universal factor �2=ðM�c2Þ and the various

tidal coefficients 1
2

1
‘!�

ð‘Þ
1 , 1

2
‘

‘þ1
1
‘!

�ð‘Þ
1

c2
; . . . (as well as the

factor 4 in H2
ab ¼ 4J2m) yields the following exact, test-

mass contributions

�ð2Þ
1 Atest-mass

�ð2Þ
1

ðuÞ¼�3
G2

c2
�ð2Þ

1

m1

ðm2Þ2
r6EOB

�
1þ 3u2

1�3u

�
; (6.44)

�ð3Þ
1 Atest-mass

�ð3Þ
1

ðuÞ ¼ �15
G2

c2
�ð3Þ

1

m1

ðm2Þ2
r8EOB

� ð1� 2uÞ
�
1þ 8

3

u2

1� 3u

�
; (6.45)

�ð2Þ
1 Atest-mass

�ð2Þ
1

ðuÞ ¼ �24
G3

c4
�ð2Þ

1

m1

ðm2Þ3
r7EOB

1� 2u

1� 3u
; (6.46)

�0ð2Þ
1 Atest-mass

�0ð2Þ
1

ðuÞ¼�9
G3

c4
�0ð2Þ

1

m1

ðm2Þ3
r9EOB

ð1�2uÞ2
1�3u

: (6.47)

One easily sees that the various exact, test-mass ampli-

fication factors ÂðuÞ exhibited here are compatible with the
X1 ! 0 limit of the 2PN-expanded ones �1þ �1uþ
�2u

2 þOðu3Þ derived above.

C. Light-ring behavior of test-mass tidal actions

A striking feature of all the amplification factors present
in Eqs. (6.44), (6.45), (6.46), and (6.47), such as

Â
ð2Þtest-mass
1 electric ðuÞ ¼ 1þ 3

u2

1� 3u
; (6.48)

is that they all formally exhibit a pole / 1=ð1� 3uÞmathe-
matically located at 3u ¼ 1, i.e., corresponding to formally
letting particle 1 tend to the last unstable circular orbit,
located at 3Gm2=c

2 (‘‘light-ring’’ orbit). This behavior has
a simple origin.

The invariant that is simplest to consider in order to see
this is J2e ¼ G2

ab. From Eq. (4.3), its covariant expression

reads

G2
ab ¼ R����R

� �
�u

�u�u�u: (6.49)

Let us study its mathematical behavior in the formal
limit where particle 1 tends to the light-ring orbit. Using
the language of Special Relativity, we consider the
Schwarzschild coordinates as defining a ‘‘lab-frame.’’
With respect to this lab-frame, particle 1 becomes ultra-
relativistic as it approaches the light ring. More precisely,

near the light ring, the lab-frame components of the
4-velocity u� ¼ ðdt=d�1Þðc; viÞ tend towards infinity pro-

portionally to dt=d�1 ¼ �1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3u

p
, while the lab-

frame components of R���� (and of the metric) stay finite.

AsG2
ab is quartic in the lab-frame components of u�, it will

tend towards infinity, like �4
1 ¼ ðdt=d�1Þ4 ¼ ð1� 3uÞ�2.

The corresponding contribution to AðuÞ is obtained
by multiplying G2

ab by the factor ðd�1=dtÞ2 ¼ ��2
1 ¼

ð1� 3uÞþ1, which reduces the blowup ofG2
ab to the milder

ð1� 3uÞ�2þ1 ¼ ð1� 3uÞ�1 behavior that is apparent in
Eq. (6.44) or (6.48).
A different way of phrasing this result uses the law of

transformation of the electric and magnetic components of
the Weyl tensor, Gab and Hab, under a boost. Using, for
instance, the fact that under a boost with velocity
� ¼ tanh’ in the x direction, the complex tensor
Fab ¼ Gab þ iHab undergoes a complex rotation of angle
c ¼ i’ in the yz plane [53], one easily finds that the
transverse traceless components of Fab (in the yz plane)
acquire, under such a boost, a factor of order cos2c ¼
cosh2� ¼ ð1� �2Þ�1 � �2

1. Because of the special struc-
ture of the tensor Fab / diagð�1;�1; 2Þ, with the third
axis z labelling the radial direction, this reasoning shows
that boosts in the radial (z) direction leave Fab invariant.
However, we are mainly interested here in boosts in a
tangential direction, say x, associated with the fast motion
of a circular orbit, and therefore orthogonal to the radial
direction, which do introduce a factor �2

1 in some of the
boosted components of Fab. For completeness, let us in-
dicate that because of this special structure of Fab,
the invariant J2e ¼ G2

ab for general, noncircular orbits is

equal to

J2e ¼ G2
ab ¼

6m2
2

r6s
ð1þ 3u2

tg þ 3u4
tgÞ; (6.50)

where u2
tg � r2sððu�Þ2 þ sin2�ðu�Þ2Þ is the square of the

part of the 4-velocity u� that is tangent to the sphere.
(The radial component of the 4-velocity brings no contri-
bution to J2e.)
The behavior near the light ring of the magnetic-quad-

rupole invariant J2m¼ 1
4H

2
ab is understood in the sameway as

that of J2e ¼ G2
ab. Concerning the other invariants, one can

note that J3e ¼ G2
abc can be written as the sum

J3e ¼ G2
abc ¼ C��	C

��	 þ 1

3c2
J _2e; (6.51)

where

C��	 ¼ Sym��	r�R��	�u
�u� (6.52)

and

J _2e ¼ _G2
ab ¼ _G��

_G�� (6.53)

with

_G�� ¼ urR����u
�u�: (6.54)
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Similarly to G2
ab, Eq. (6.49), the term C2

��	 in Eq. (6.51) is

quartic inu� and is therefore expected to blow up like�4
1. On

the other hand, though _G��, Eq. (6.54), is cubic in u
�, it only

blows up like�2
1 (so that J _2e � �4

1 and J3e � C2 þ J _2e � �4
1)

because of the special geodetic-precession properties of the
proper-time derivative operator r=d� ¼ ur (see, e.g.,
Sec. 3.6 of Ref. [54]).

D. Suggested ‘‘resummed’’ version
of comparable-mass tidal actions

Having understood that the formal polelike behavior,
�ð1� 3uÞ�1, in the test-mass limit of the electric-
quadrupole A potential is linked to simple boost properties
of Gab near the light-ring orbit, and knowing that the EOB
formalism predicts the existence of a formal analog of the
usual Schwarzschild light ring at the EOB dimensionless
radius r̂LR � 1=uLR, defined as the solution of

~AðuLRÞ ¼ 0; (6.55)

with ~AðuÞ defined in Eq. (5.21), it is natural to expect the
(unknown) exact two-body version of the electric-
quadrupole A potential to mathematically exhibit an analo-
gous polelike behavior of the form �ð1� r̂LRuÞ�1. As we
shall discuss elsewhere, such a mathematical behavior,
linked to considering (within the EOB-simplifying ap-
proach advocated in Ref. [18]) what would happen if one
formally considered (unstable) circular orbits with
u ! uLR, does not mean that there is a real physical
singularity in the EOB dynamics near u ¼ uLR, but it
indicates that higher-than-2PN contributions to the

electric-quadrupole amplification factor Âð2Þ
1 electricðuÞ ¼

1þ �2e
1 uþ �2e

2 u2 þ �2e
3 u3 þ � � � will probably be slowly

convergent and will tend to amplify further the correspond-
ing tidal interaction. Such an extra amplification might, for
instance, be physically important in the last orbits of
comparable-mass neutron-star binaries (which will reach
contact for values of u smaller than uLR).

This leads us to suggest that a more accurate value (for
u < uLR) of the electric-quadrupole amplification factor is
the following ‘‘resummed’’ version of Eq. (6.8):

Â
ð2Þ
1 electricðuÞ ¼ 1þ �2e

1 uþ �2e
2

u2

1� r̂LRu
; (6.56)

where �2e
1 and �2e

2 are given by Eqs. (6.9) and (6.10) and
where r̂LR � 1=uLR is the solution of Eq. (6.55). Similar
resummed versions of the other amplification factors can
be defined by incorporating in their PN-expanded versions
the formal light-ring behaviors exhibited by the exact test-
mass results of Eqs. (6.44), (6.45), (6.46), and (6.47).

Let us finally discuss several possible approximate val-
ues for r̂LR in the proposed Eq. (6.56). The simplest ap-
proximation consists of using the Schwarzschild value
r̂SLR ¼ 3. However, a better value might be obtained by
taking a solution of Eq. (6.55) that incorporates more

physical effects. This might require solving Eq. (6.55)
numerically, with AðuÞ being the full A potential (contain-
ing both Padé-resummed two-point-mass effects and the
various tidal contributions). In order to have a feeling for
the modification of r̂LR brought by incorporating these
changes, let us consider solving Eq. (6.55) when using
the following approximation to the full A potential:

AapproxðuÞ ¼ 1� 2uþ 2�u3 � �u6 (6.57)

where

� ¼ �ð2Þ
1 þ �ð2Þ

2

¼ 2kð2Þ1

m2

m1

�
R1c

2

Gðm1 þm2Þ
�
5 þ 2kð2Þ2

m1

m2

�
R2c

2

Gðm1 þm2Þ
�
5
:

(6.58)

Here, the term þ2�u3 is the 2PN-accurate point-mass
modification of AðuÞ, while the term ��u6 is the
leading-order tidal modification. Note that they have op-

posite signs. The corresponding expression of ~AðuÞ reads
~A approxðuÞ ¼ 1� 3uþ 5�u3 � 4�u6: (6.59)

The corresponding value of uLR � 1=r̂LR is the solution
close to 1=3 of the equation

uLR ¼ 1

3
½1þ 5�u3LR � 4�u6LR�: (6.60)

If we could treat both � and � as small deformation
parameters, this would imply that, to first order in these
two deformation parameters, the value of uLRð�; �Þ would
be obtained by inserting the leading-order value uLR ’ 1=3
in the right-hand side of Eq. (6.60). This would yield

uLRð�; �Þ ¼ 1

3

�
1þ 5

33
�� 4

36
�þOð�2; ��; �2Þ

�
(6.61)

and

r̂LRð�; �Þ ¼ 3

�
1� 5

33
�þ 4

36
�þOð�2; ��; �2Þ

�
: (6.62)

Note that while comparable-mass corrections ( / �) have
the effect of decreasing r̂LR, tidal ones ( / �) have the
opposite effect of increasing r̂LR. Let us focus on the tidal
effects and consider the equal-mass case with R1 ¼ R2 and

kð2Þ1 ¼ kð2Þ2 . One has a first-order increase of r̂LR equal to


tidalr̂LR ’ 16kð2Þ1

�
R1c

2

6Gm1

�
5 ¼ 16kð2Þ1

1

ð6C1Þ5
; (6.63)

where C1 � Gm1=ðc2R1Þ denotes the common compact-
ness of the two neutron stars. This simple approximate
analytical formula shows that 
tidalr̂LR is very sensitive to
the value of the compactness of the neutron star. If C1 ¼
1=6 ¼ 0:166667, i.e., R1 ¼ 6Gm1=c

2 (roughly corre-
sponding to a radius of 12 km for a 1:4M� neutron star),
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then 
tidalr̂LR ¼ 1:44ðkð2Þ1 =0:09Þ will be of order 1 (the

value kð2Þ1 ¼ 0:09 being typical for C1 ¼ 1=6; see, e.g.,

Table II in Ref. [5]). On the other hand, if R̂1 �
R1c

2=ðGm1Þ is slightly smaller than 6, 
tidalr̂LR will

quickly become much smaller than 1, while if R̂1 is slightly
larger than 6, 
tidalr̂LR will quickly become formally large
(thereby invalidating the first-order analytical estimate
of Eq. (6.63), which assumed 
r̂LR 
 3). These rough
estimates indicate that in many cases, tidal effects on r̂LR
will be quite important and will significantly increase the
numerical value of r̂LR. Note that an increased value of r̂LR
will in turn increase the effect of the conjectured resummed

2PN contribution �2e
2 u2=ð1� r̂LRuÞ to Âð2Þ

1 electricðuÞ.

VII. SUMMARYAND CONCLUSIONS

Using an effective-action technique, we have shown
how to compute the additional terms in the reduced
(Fokker) two-body Lagrangian Lðy1; y2; _y1; _y2Þ that are
linked to tidal interactions. Thanks to a general property
of perturbed Fokker actions [explained at the end of
Sec. II, see Eq. (2.20)], the additional tidal terms are
correctly obtained (to first order in the tidal perturbations)
by replacing in the complete, unreduced action
S½g��; y1; y2� the gravitational field g�� by the solution

of Einstein’s equations generated by two structureless
point masses m1, y1; m2, y2. This allowed us to compute
in a rather straightforward manner the reduced tidal action
at the 2PN fractional accuracy by using the known, explicit
form of the 2PN-accurate two-point-mass metric [36–39].
The main technical subtlety in this calculation is the regu-
larization of the self-field effects associated with the
computation of the various nonminimal tidal-action terms
�R

d�ðR����u
�u�Þ2 þ . . . , where, e.g., R����ðx; y1; y2Þ

is to be evaluated on one of the worldlines that generate the
metric g�� (so that R����ðy1; y1; y2Þ is formally infinite).

We explained in detail (in Sec. III) one (algorithmic) way
to perform this regularization, using Hadamard regulariza-
tion (which is equivalent to dimensional regularization at
the 2PN level). We then computed the regular parts of the
brick potentials that parametrize the 2PN metric, from
which we derived the regularized values of several of the
geometrical invariants entering the nonminimal worldline
tidal action terms. [See Eqs. (4.4), (4.5), (4.6), (4.7), (4.8),
(4.9), and (4.10) for the 2PN-accurate Lagrangians (for
general orbits) of the three leading tidal terms (electric
quadrupole, electric octupole, and magnetic quadrupole)].
We then focused on the most physically useful information
contained in these actions, namely, the corresponding con-
tributions to the EOB main radial potential, AðuÞ, with u ¼
Gðm1 þm2Þ=ðc2rEOBÞ. Our Eqs. (5.19), (5.20), and (5.28)
gave the explicit transformation between the previously
derived harmonic-coordinates tidal Lagrangians and their
corresponding contributions to the EOB A potential. Using
this transformation, we could finally explicitly compute the

most important tidal contributions to the EOB A potential
to a higher accuracy than had been known before; namely,
we computed the quadrupolar (‘ ¼ 2) and octupolar
(‘ ¼ 3) gravito-electric tidal contributions to 2PN frac-
tional accuracy, i.e., with the inclusion of a relativistic
distance-dependent factor of the type u2‘þ2ð1þ �1uþ
�2u

2Þ [see Eqs. (6.6), (6.7), (6.8), (6.9), (6.10), (6.18),
(6.19), (6.20), (6.21), and (6.22)]. We also computed the
quadrupolar gravito-magnetic tidal contribution, as well as
a newly introduced time-differentiated electric quadrupo-
lar tidal term, to 1PN fractional accuracy [see Eqs. (6.25),
(6.26), (6.27), (6.28), (6.30), (6.31), (6.32), and (6.33)]. Of
most interest among these results is the obtention of the
2PN coefficient �2e

2 entering the distance-dependence of
the electric quadrupolar term. We found that this coeffi-
cient, Eq. (6.10), is always positive and varies betweenþ3
and þ15:16071 as the mass fraction X1 ¼ m1=ðm1 þm2Þ
of the considered tidally deformed body varies between 0
and 1. In the equal-mass case, m1 ¼ m2, i.e., X1 ¼ 1

2 , we

found that �2e
2 ¼ 6:07143. This value shows that when the

neutron stars near their contact, 2PN effects are compa-
rable to 1PN ones. Indeed, contact occurs when the sepa-
ration r ’ R1 þ R2 ¼ Gm1=ðc2C1Þ þGm2=ðc2C2Þ [where
CA � GmA=ðc2RAÞ, A ¼ 1, 2, are the two compactnesses].
In the equal-mass case (with C1 ¼ C2), this shows that at
contact, u ¼ Gðm1 þm2Þ=ðc2rÞ is approximately equal to
ucontact ’ C1. If we consider as typical neutron star a star of
mass 1:4M� and radius 12 km, we expect C1 � 1=6, i.e.,
ucontact � 1=6. The successive PN contributions to the

distance-dependent amplification factor Âð2Þ2PN
1 electricðuÞ ¼ 1þ

�2e
1 uþ �2e

2 u2 of the electric quadrupolar tidal interaction
for the first body then becomes, at contact,

Âð2Þ2PN
1 electricðucontactÞ ’ 1þ �2e

1 C1 þ �2e
2 C21

� 1þ 1:25

6
þ 6:07143

62
; (7.1)

where one sees that the 2PN (Oðu2Þ) contribution is nu-
merically comparable to the 1PN one. This suggests that
the PN-expanded form of the tidal amplification factor

Âð2Þ
1 electricðuÞ is slowly converging and could get comparable

or even larger contributions from higher powers of u (i.e.,
3PN and higher terms). In order to get a feeling about the
possible origin of this slow convergence of the PN expan-
sion, we followed the approach of Ref. [55], i.e., we looked
for the existence of a nearby pole (in the complex u plane)
within the formal analytic continuation of the considered

function Âð2Þ
1 electricðuÞ. [Ref. [55] considered the energy flux

F as a function of x ¼ ðGM�=c3Þ2=3; it pointed out that
FðxÞ had (in the test-mass limit) a pole at the light-ring
value x ¼ 1=3 and recommended improving the PN ex-
pansion of FðxÞ (for x < 1=3) by a Padé-type resummation
incorporating the existence of this pole in FðxÞ.] By com-

puting the exact test-mass limit of the function Âð2Þ
1 electricðuÞ,

we found that it formally exhibits a pole located at the
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light-ring value utest mass
LR ¼ 1=3 [see Eq. (6.44)]. Such a

pole is also present in other amplification factors [see
Eqs. (6.45), (6.46), and (6.47)], and we discussed its origin.
(Note that two equal-mass neutron stars will get in contact
before reaching this pole. However the idea here is that the
hidden presence of this pole in the analytical continuation

of the function Âð2Þ
1 electricðuÞ is behind the bad convergence

of the Taylor expansion of this function in powers of u.)
This led us to suggest that one might get an improved value

of the tidal amplification factor Âð2Þ
1 electricðuÞ by formally

incorporating the presence of this pole in the following
Padé-resummed manner:

Â
ð2Þ
1 electricðuÞ ¼ 1þ �2e

1 uþ �2e
2

u2

1� r̂LRu
; (7.2)

where r̂LR � 1=uLR is the (EOB-defined) dimensionless

light-ring radius, i.e., the solution of Eq. (6.55), with ~AðuÞ
defined by Eq. (5.21). Let us point out that Eq. (7.2) is
equivalent to saying that the 2PN coefficient �2e

2 becomes
replaced by the effective distance-dependent coefficient
�eff
2 ðuÞ � �2e

2 =ð1� r̂LRuÞ. Note that �eff
2 ðuÞ>�2e

2 . In
particular, for the ‘‘typical’’ compactness C1 ¼ C2 � 1=6
considered above, and when using the unperturbed value

of r̂LR, i.e., r̂
ð0Þ
LR ¼ 3, the effective value �eff

2 ðuÞ will at
contact (i.e., when u ¼ ucontact ’ C1 � 1=6) be equal to
�eff
2 ðucontactÞ ’ �2e

2 =ð1� 3C1Þ � �2e
2 =ð1� 3=6Þ � 2�2e

2 �
12. We recalled in the Introduction that several compari-
sons between the analytical (EOB) description of tidal
effects and numerical simulations of tidally interacting
binary neutron stars [5,9,10] have suggested the need for

significant amplification factors Âð2Þ
1 electricðuÞ parametrized

by rather large values of �2e
2 . However, up to now the

numerical results that have been used have been affected
by numerical errors that have not been fully controlled. In
particular, in the recent comparisons [9,10], one did not
have in hand sufficiently many simulations with different
resolutions for being able to compute and subtract the
finite-resolution error. We hope that a more complete
analysis will be performed soon (see, in this respect,
Refs. [56,57]). We recommend comparing resolution-
extrapolated numerical data to the pole-improved amplifi-
cation factor of Eq. (7.2). As discussed in Sec. VI, it might
be necessary to use as value of r̂LR the improved estimate
obtained from the full (tidally modified) value of the A
potential. This suggests (especially for compactnesses
C1 & 1=6) as discussed above that r̂LR might be signifi-
cantly larger than 3, thereby further amplifying the effec-
tive value of �2e

2 during the last stages of the inspiral.
The present study has focused on the 2PN tidal effects in

the interaction Hamiltonian. There is also a 2PN tidal
effect in the radiation reaction, which has contributions
from various tidally modified multipolar waveforms. The

tidal contribution to each (circular) multipolar gravita-
tional waveform can be parametrized (following
Refs. [5,10]) as an additional term of the form

htidal‘m ðxÞ ¼ X
J

hðJÞLO‘m ðxÞĥðJÞtail‘m ðxÞĥðJÞPN‘m ðxÞ; (7.3)

where x � ðGðm1 þm2Þ�=c3Þ2=3; J labels the various
tidal geometrical invariants, such as J2e � G��G

��;

hðJÞLO‘m ðxÞ denotes the leading-order (i.e., Newtonian-order)
tidal waveform; ĥðJÞtail‘m ðxÞ the effect of tails [58,59] and

their resummed EOB form [60]; while

ĥ
ðJÞPN
‘m ðxÞ ¼ 1þ �ðJ‘mÞ

1 xþ �ðJ‘mÞ
2 x2 þ . . . (7.4)

denotes the effect of higher PN contributions. The 1PN

coefficient �ðJ2e22Þ
1 is known [7,15]. The other 1PN coef-

ficients needed for deriving a 2PN-accurate flux can be
obtained from applying the simple 1PN-accurate formal-
ism of Ref. [40]. It is more challenging to compute the 2PN

coefficient �ðJ2e22Þ
2 . Indeed, this requires applying the 2PN-

accurate version [59] of the Blanchet-Damour-Iyer wave-
generation formalism [40,61–63] to the tidal-modified
Einstein Eqs. (2.13). Let us, however, note that although

from a PN point of view, the 2PN coefficient �ðJ2e22Þ
2

contributes to the phasing of coalescing binaries at the
same formal level as the dynamical 2PN coefficient �2e

2

determined above, it has been found in Refs. [9,15] that (if

�ðJ2e22Þ
2 ��2e

2 ) it has a significantly smaller observable effect.
Let us finally point out that our general result in

Eq. (2.20) also opens the possibility of computing the
3PN coefficient �2e

3 in the PN-expanded amplification

factor of the electric quadrupolar tidal interaction

Âð2Þ
1 electricðuÞ ¼ 1þ �2e

1 uþ �2e
2 u2 þ �2e

3 u3 þOðu4Þ. This

computation would, however, be much more involved
than the calculation of �2e

2 because of the technical subtle-
ties in the regularization of self-field effects at the 3PN
level [43,64–66] that necessitate using dimensional regu-
larization [25,26] instead of Hadamard regularization.
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APPENDIX A: EXPLICIT FORMS
OF (TIME-SYMMETRIC) 2PN-ACCURATE

BRICK POTENTIALS

The explicit forms of the (time-symmetric) 2PN-
accurate brick potentials V, Vi, etc. are [39]
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V¼Gm1

r1
þGm1

c2

�
�ðn1v1Þ2

2r1
þ2v2

1

r1
þGm2

�
� r1
4r312

� 5

4r1r12
þ r22
4r1r

3
12

��
þGm1

c4r1

�
3ðn1v1Þ4

8
�3ðn1v1Þ2v2

1

2
þ2v4

1

�

þG2m1m2

c4

�
v2
1

�
3r31
16r512

� 37r1
16r312

� 1

r1r12
�3r1r

2
2

16r512
þ r22
r1r
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12

�
þv2
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�
3r31
16r512

þ 3r1
16r312
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2r1r12
�3r1r
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2

16r512
þ r22
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3
12

�

þðv1v2Þ
�
� 3r31
8r512

þ13r1
8r312

� 3

r1r12
þ3r1r

2
2

8r512
� r22
r1r

3
12

�
þðn12v1Þ2

�
� 15r31
16r512

þ 57r1
16r312

þ15r1r
2
2

16r512

�
þðn12v2Þ2

�
� 15r31
16r512

� 33r1
16r312

þ 7

8r1r12
þ15r1r

2
2

16r512
� 3r22
8r1r

3
12

�
þðn12v1Þðn12v2Þ

�
15r31
8r512

� 9r1
8r312

�15r1r
2
2

8r512

�
þðn1v1Þðn12v1Þ

�
� 3r21
2r412

þ 3

4r212
þ 3r22
4r412

�
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3r21
4r412
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r212

�
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�
3r21
2r412
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� 3r22
4r412
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4r412
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8r312
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12
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2
2
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4
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2
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2
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þOð6Þþ1$2; (A1)

Vi ¼ Gm1v
i
1
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þ ni12

G2m1m2

c2r212
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2r12
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Ŵij ¼ 
ij

�
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r1
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1

4r21
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r12S
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R̂i ¼ G2m1m2n
i
12

�
�ðn12v1Þ
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r12
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Here, r1 � x� y1, r1 � jr1j, n1 � r1=r1, r2 � x� y2,
etc.; y12 � y1 � y2, r12 � jy12j, n12 � y12=r12, v12 �
v1 � v2, ðn12v1Þ � n12 � v1. In addition, the notation 1 $
2 means adding the terms obtained by exchanging the

particle labels 1 and 2, while the quantity S denotes the
perimeter of the triangle defined by x, y1 and y2, viz.

S � r1 þ r2 þ r12: (A6)
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